
HAL Id: hal-03492189
https://hal.science/hal-03492189v1

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Probabilistic modeling of surface effects in
nano-reinforced materials

Tien-Thinh Le

To cite this version:
Tien-Thinh Le. Probabilistic modeling of surface effects in nano-reinforced materials. Computational
Materials Science, 2021, 186, pp.109987 -. �10.1016/j.commatsci.2020.109987�. �hal-03492189�

https://hal.science/hal-03492189v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Probabilistic modeling of surface effects in nano-reinforced1

materials2

Tien-Thinh Lea,∗
3
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Abstract6

This work is concerned with multiscale analysis of nano-reinforced heterogeneous ma-

terials. Such materials exhibit surface effects that are typically taken into account

through interface models in mean-field homogenization theories. However, both exper-

iments and numerical simulations demonstrate the existence of a perturbed area at the

boundary between the inclusion and the matrix phase. This area is modeled as an

interphase whose elastic properties randomly fluctuate from point to point and must

be characterized from a probabilistic standpoint. In this study, we therefore address (i)

the stochastic modeling of the interphase and (ii) the study of the relationship between

the random interphase model and a deterministic interface model. The aim of this work

is twofold. First of all, we are interested in constructing a probabilistic model for the

matrix-valued random field, modeling the elastic properties of the interphase. Then,

this model is used to perform a parametric study for the apparent tensor associated

with the microstructure. Simulations are specifically used to characterize the influence

of both the random interphase and interface models on the material’s overall properties.

When the interface model is consistent from a physical point of view, the associated

elastic surface properties are computed by solving an optimization problem involving

the effective properties of the random medium.
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1. Introduction9

Nanocomposites are heterogeneous materials, generally of the matrix-inclusions10

type, in which the reinforcements are of nanometric size – with a characteristic size11

typically less than 100 nm [1]. Unlike conventional composite materials reinforced12

by micro- and millimetric inclusions, these materials exhibit novel multi-physical phe-13

nomena that are linked to interactions at the smallest scales [1]. These interactions14

cause significant alterations of the local physical properties – in particular, of the ma-15

trix phase (for instance, transition and/or modification of phase, specific conformation,16

modification of the degree of crystallinity for an organic polymer matrix, etc.) [2, 3, 4].17

Generally, these alterations give rise to significant improvement of certain macroscopic18

properties (mechanical, optical, electrical, etc.). From a mechanical point of view, nu-19

merous experimental and numerical studies have shown that this marked improvement20

in properties is exhibited more prominently when the inclusions are small in size (for21

a sufficiently large volume fraction of reinforcements): this is called the nano-effect22

[5, 6, 7, 8, 9]. The characterization and modeling of the nano-effect, and its use in opti-23

mizing certain key properties, has given rise to a very large number of works spanning24

the boundaries between scientific communities (chemists, physico-chemists, mechanics,25

etc.), as well as growing industrial interest [5].26

One of the most widely documented aspects in the literature, both from an exper-27

imental and a numerical point of view, is the existence of an interphase surrounding28

the heterogeneities. From experimental investigations, the interphase has been char-29

acterized as a disturbed area of the matrix phase near the surface of the inclusions,30

highlighted by the measurements of the local mobility of atoms, using Nuclear Mag-31

netic Resonance, for instance, [4, 10, 2, 3]. Berriot et al. [10] demonstrated a notable32

decrease in the mobility of the polymer chains in the vicinity of the nanofillers, together33

with a modification of the local density. The thickness of this interphase zone remained34

constant (to within the capabilities of the measuring equipment) when the size of the35

reinforcements was modified. Consequently, a reduction in size of the reinforcements in-36
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duces an increase of their specific surface. This effect, called surface effect, is commonly37

invoked in the development of multiscale models to explain the aforementioned nano-38

effect [11]. These experimental observations on the interphase in the nanocomposite39

have also been thoroughly correlated by numerical simulation. Various investigations40

in Molecular Dynamics such as [12, 13, 14, 15] have also highlighted a modified zone41

of the polymer matrix surrounding the nanofillers. More precisely, they have found a42

preferential orientation of the polymer chain segments, situated on the plane tangential43

to the vector normal to the surface of the nanoparticles.44

For such nano-reinforced materials, interactions at small scales (between nanofillers45

and the matrix, or between different nanofillers) are no longer negligible and must be46

interpreted and modeled in a multi-scale framework [16, 17, 18, 19, 20]. From the47

standpoint of continuum mechanics, two types of approaches have been developed in48

order to: (i) estimate the effective properties of nano-reinforced materials and (ii) take49

account of the surface effect, mentioned above. One category of approach is based on the50

integration of interface models in classical micro-mechanical formulations (e.g. of similar51

type to Eshelby’s inclusion). The formulation is generally based on the introduction52

of a Gurtin-Murdoch surface elasticity [21, 22] to obtain an explicit dependence of53

the characteristic dimensions of the nanometric inclusions on the effective properties54

[23, 24, 25]. Many investigations of this class can be found in the literature; see e.g.55

[26, 27, 28, 29, 30]. In a second category of approach, the interphase is considered as56

an additional finite-volume phase, exhibiting a positive-definite elasticity tensor [20, 14,57

31, 32]. In this case, the equivalent properties can be determined by micromechanical58

frameworks, such as the generalized self-consistent scheme [33, 34, 35, 36, 37, 38] or a59

numerical finite element scheme [14, 39, 32, 40, 41, 31, 42].60

In this work, we are interested in the multi-scale modeling of heterogeneous materials61

with nanoscopic particle reinforcements. As revealed in the literature, such materials62

exhibit surface effects that have widely been demonstrated through experimentation63

(see, for instance, [10]). In the case of polymer matrices, recent contributions have64

shown that the strengthening effect is notably due to a local modification of the distri-65
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bution of the polymer chains surrounding the nanofillers. Indeed, Ciprari et al. [43]66

found a modification of molecular chain entanglements around alumina and magnetite67

nanoinclusions embedded in poly(methyl methacrylate) and polystyrene matrices (also68

see Riggleman et al. [44] for molecular chain entanglements around nanoparticles).69

Moreover, local disarrangement in the mobility of the polymer chains, as well as den-70

sity fluctuations vanishing outside the vicinity of the inclusions in nanocomposites, have71

been observed in [12, 45, 35, 46, 47] through numerical simulation. From the modeling72

point of view, most models developed for the modified matrix area are deterministic73

[32, 48, 49, 5] despite the stochastic nature of the interaction between the matrix and74

the nanoparticle [50, 51]. Thus, in this study, we propose a probabilistic model of the75

interphase whose mechanical properties exhibit random spatial fluctuations [52, 53, 54].76

Moreover, the hypothesis of separation of scale in the random interphase, which has77

not been sufficiently well documented in the literature, can be investigated with the78

proposed stochastic model and spatial correlation structures. On the other hand, one79

may legitimately question the relationship between such a stochastic interphase model80

and the interface models [8, 55, 56, 27] typically used in homogenization methods in mi-81

cromechanics. It is worth noting that the mechanical properties of an interface model82

and those of a finite-volume interphase are usually linked by the interphase thickness83

[57, 26, 58], though from a deterministic point of view. In addition, such a connection84

depends on several factors, such as the level of anisotropy and the selection of imperfec-85

tion types (displacement and/or traction jumps) [16]. Moreover, the question remains86

open as to the spatial correlation structures in the context of which the equivalent inter-87

face model can be derived from the random interphase. Hence, in this study, we employ88

an optimization procedure to identify, if possible, the mechanical properties of an equiv-89

alent coherent interface model from the stochastic interphase. This work constitutes a90

contribution to this problem, restricted here to the case of 2D linear elasticity.91

This paper is organized as follows. Section 2 is devoted to the modeling of mechan-92

ical properties of the interphase using a probabilistic model. The stochastic homog-93

enization of nano-reinforced materials is also introduced in this section. Finally, the94
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results of the parametric study on the apparent properties of heterogeneous materials is95

presented in Section 3, together with an identification of an equivalent interface model.96

2. Materials and methods97

2.1. Microstructure of heterogeneous material98

In this work, we consider a heterogeneous material made up of three phases: a99

matrix, a spherical inclusion and an interphase (see Fig. 1). It is worth noting that100

the interphase thickness remains an open question, in the sense that it depends on101

the selected criterion. Voyiatzis et al. [59] proved that the thickness of the interphase102

depends on the properties being monitored. The interphase thickness can be determined103

by characterizing fluctuations in mass density [12], preferred segmental orientation [45]104

, molecular chain entanglements [43] or the decrease in mean-square displacements [60]105

. Each of these criteria may yield a different estimate of the interphase thickness, and106

the quantitative definition of this property can impact the modeling methodology. In107

order to simplify the analysis, and based on the results presented in [12, 32], it is further108

assumed that the interphase is of constant thickness.109
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Fig. 1: Microstructure of nano-reinforced material considered in this study.

The geometric parameters describing the microstructure are then the radius of the110

nanoscopic reinforcement R0, the surface fraction fi of the inclusion, the thickness h111

of the interphase and finally the size of the domain L. We also use the notation (I)112

to denote the geometric domain occupied by the interphase, identified in a cylindrical113

coordinate system:114

(I) := {(r cos θ, r sin θ) | r ∈ [R0;R0 + h], θ ∈ [0; 2π]} (1)

In this work, the matrix and inclusion phases are considered isotropic. On the other115

hand, spatial and random fluctuations are presented in the interphase. Consequently,116

the interphase exhibits anisotropic properties, as shown in Fig. 1.117
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2.2. Probabilistic modeling for mechanical properties of interphase118

In this section, we construct a probabilistic model for the mechanical properties of119

the interphase. In general, there is no separation of scale for the equivalent properties of120

the interphase, these properties then being qualified as ”apparent” [61, 62, 63, 64]. This121

non-separation of scale means that the ”equivalent” material for the interphase must122

be modeled as a random field, whose levels of anisotropy and statistical fluctuations123

are likely to evolve with the spatial coordinates [65, 66]. We are therefore interested124

in the modeling of a random field
{

[Cint(x)], x ∈ (I)
}

, with values in space M+
3 (R) of125

real (3 × 3) matrices, symmetrical positive-definite, representing the elastic properties126

of the interphase. For given r and θ, [Cint(r, θ)] is a random matrix, defined by a127

probability density, which is denoted by p[Cint]. In this work, we follow the construction128

methodology introduced in Soize 2006 [67], which basically consists of:129

• prescribing the family of first-order marginal probability distributions, each el-130

ement of which is constructed using the principle of Maximum Entropy ([68],131

[69]).132

• introducing statistical dependencies (and correlations) using normalized homo-133

geneous Gaussian fields, called stochastic germs, such that the matrix [Cint(x)]134

is expressed algebraically using a measurable non-linear transformation of these135

germs at the point in question.136

We use S to denote the Shannon’s entropy of the probability density function p [69]:137

S(p) = −
∫

M+
3 (R)

p([C]) ln(p([C]))d[C], (2)

where d[C] is the volume element in M+
3 (R). In order to proceed with the construc-138

tion of the model, it is assumed that [Cint] satisfies λ algebraic constraints, expressed in139

the form of mathematical expectations and defining the objectively available informa-140

tion in [Cint]. The probability density function p[Cint] is then obtained as the solution141

to the optimization problem (using the principle of Maximum Entropy):142
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p[Cint] = arg max
p∈Cad

S(p), (3)

where Cad is the admissible space of all the functions of M+
3 (R) in R+ such that all

the constraints are satisfied. More specifically, we consider the following constraints

[70, 71]: ∫
M+

3 (R)

p[Cint]([C])d[C] = 1,

E{[Cint(x)]} = [C(x)] ∈M+
3 (R),

E{log(det([Cint(x)]))} = ν, |ν| < +∞,

where E denotes the mathematical expectation operator. We then obtain the fol-143

lowing probability density function [65, 72]:144

p[Cint]([C]) = 1M+
3 (R)([C])× c× (det[C])B/δ

2−2 × exp

(
−B
δ2
� [C]−1, [C]�

)
, (4)

in which 1M+
3 (R)([C]) is equal to 1 if [C] ∈M+

3 (R) and is equal to zero if [C] /∈M+
3 (R),145

c is the normalization constant, δ is the parameter controlling the level of statistical146

fluctuations, the parameter B =
1

2
+

(tr[C])2

2tr([C]2)
and� ·, · � denotes the dot product in147

M+
3 (R). Furthermore, following the construction methodology in Soize [67], a non-linear148

transformation T can be introduced such that:149

[Cint(x)] = T (ξ1(x), . . . , ξ6(x)) (5)

for every x in the interphase area (I), where {ξ1(x),x ∈ R2}, . . . , {ξ6(x),x ∈ R2}150

are homogeneous and normalized real scalar Gaussian fields, called stochastic germs.151

The model therefore depends on the average function x 7→ [C(x)] of the parameter δ152

and correlation functions of the stochastic germs. We write (r, θ; r′, θ′) 7→ ρξi(r, θ; r′, θ′)153

to denote the normalized correlation function of the germ {ξi(x),x ∈ R2}. Here, we154

adopt a hypothesis of separation of the variables [67, 73] – that is:155
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ρξi(r, θ; r′, θ′) := ρξir (r, r′)× ρξiθ (θ, θ′). (6)

Based on the results presented in Brown et al. [12], the hypothesis of orthoradial156

stationarity can be employed. Therefore, we denote ρξiθ (θ, θ′) = ρξiθ (τθ), where τθ = |θ−157

θ′|. Assuming homogeneity in the radial direction, we can denote the same ρξir (r, r′) =158

ρξiθ (τr), with τr = |r − r′|. In this work, we use the following algebraic forms [67, 74]:159

ρξiθ (τθ) = cos (2τθ)
cosh( τθ−π

Lθ
)

cosh( π
Lθ

)
, and ρξir (τr) =

4L2
r

π2τ 2
r

sin2

(
πτr
Lr

)
, (7)

where Lr and Lθ are the correlation lengths in the radial and angular directions,160

respectively, assumed to be identical – for simplicity’s sake – for the six stochastic germs161

mentioned above.162

For illustration purposes, Fig. 2a and Fig. 2b show the correlation functions ρξir (τr)163

and ρξiθ (τθ) for different radial and angular correlation lengths, respectively. These illus-164

trations offer a clear visualization of the incidence of each parameter on the correlation165

structure of the considered Gaussian random field.166

Fig. 2: Correlation function for different correlation lengths: (a) in radial and (b) angular

directions, respectively.

2.3. Stochastic homogenization scheme167

In this section, we briefly summarize the homogenization procedure for estimating168

the macroscopic properties of heterogeneous materials in continuum mechanics. The169
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inner domain and its boundary are denoted Ω and ∂Ω (also see Fig. 1). It is noteworthy170

that the domain Ω presents significant statistical fluctuations in the interphase zone.171

Consequently, the macroscopic properties of the heterogeneous material are qualified172

as apparent [75, 76, 77]. The stochastic boundary value problem [75, 78, 79, 80] is then173

written:174

−div [σ(x)] = 0 , ∀x ∈ Ω , (8)

u = [E] .x , ∀x ∈ ∂Ω , (9)

where x 7→ [σ(x)] is the local stress field, n(x) is the unit vector normal to ∂Ω at175

point x and [E] is the macroscopic strain tensor. Hooke’s law is then written [81, 82]:176

[σ(x)] = JC(x)K : [ε(x)] , ∀x ∈ Ω , (10)

where JC(x)K is the fourth-order tensor representation of elasticity matrix [C(x)].177

Note that JC(x)K is random in the interphase zone (i.e. x ∈ (I)), and deterministic in178

the inclusion and matrix phases, respectively.179

It can be shown that a fourth-order localization tensor exists, x 7→ JA(x)K, relating180

the microscopic and macroscopic strains such that [83]181

[ε(x)] = JA(x)K : [E] , ∀x ∈ Ω (11)

and182

1

|Ω|

∫
Ω

JA(x)K dx = JIK , (12)

with JIK being the identity tensor. By construction, one has183

Aijk`(x) = εk`ij (x) , (13)

where x 7→ [εk`(x)] is the local strain field solving the mechanical problem defined184

by Eqs (8 and 10). The macroscopic strain tensor Ek` is given by:185
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Ek`
ij =

1

2
(δikδj` + δi`δjk) . (14)

In this case of 2D linear elasticity, the use of three different values for the macroscopic186

strain tensor Ek`, with k and ` in {1, 2}, can solve the boundary value problem defined187

by Eqs (8 and 10). The apparent stiffness tensor JCappK is then computed with respect188

to static uniform boundary conditions [26]:189

JCappK =
1

|Ω|

∫
Ω

JC(x)K : JA(x)K dx . (15)

In this work, macroscopic strains were prescribed as follows:190

E11 =

 1 0

0 0

 ; E22 =

 0 0

0 1

 ; E12 =

 0 1/2

1/2 0

 . (16)

Finally, the Monte Carlo method was used to propagate fluctuations in the in-191

terphase onto the macroscopic properties of the heterogeneous material. A diagram192

illustrating the use of the Monte Carlo method is shown in Fig. 3, whereas the statisti-193

cal convergence analysis of the mean of a random variable W is estimated on the basis194

of Eq. 17 [84, 85, 86, 87, 88, 89]:195

n 7→ ConvMean(n) =
1

n

n∑
i=1

Wi , (17)

where n is the number of Monte Carlo runs, and Wi is the value of the ith observation196

of random variable W .197
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Fig. 3: Diagram of using Monte Carlo technique for propagating fluctuations in the interphase

to the apparent properties of material.

3. Stochastic homogenization and equivalent interface model198

3.1. Details of numerical study and parametric analysis199

Using the geometric and stochastic models mentioned above, it is now possible to200

carry out simulations for the microstructure considered. Specifically, we denote R0 = 1201

nm, h = 0.5 nm and fi = 0.15 (see Section 2.1 for details of geometric description).202

From experimental investigations of interphase thickness, several papers can be referred203

to, such as Yu et al. [90] for epoxy matrix reinforced with aluminum oxide nanoparticles,204

exhibiting an interphase of 0.67 nm, or Tsai and Tzeng [91] for polyimide reinforced by205

silica nanoparticles, exhibiting an interphase of 3.2-4.1 nm).206

Additionally, multiple combinations of correlation lengths are used as a parametric207

analysis for the random properties in the interphase: Lr ∈ {h, h/2, h/4, h/6}, Lθ ∈208

{π/5, π/10, π/20, π/30} (representing a total number of 16 combinations) (see Section209

2.2 for details of probabilistic model and correlation lengths). The impact of different210

correlation lengths on the radial and angular correlation functions was also presented211

in Fig. 2.212
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The elastic properties of the constituent phases and their fluctuation level are sum-213

marized in Table 1. The mechanical properties of the deterministic phases were chosen214

as typical values for silica nanoparticles and polymer matrix [12, 33]. As the elastic215

properties of the interphase are modeled by the random field introduced in Section216

2.2, the fluctuation level was chosen as 40%. Finally, the mean model for the elas-217

tic properties of the interphase was chosen to be stiffer than the matrix phase (i.e.218

Eint = 3/2Em), based on the observation that the interphase is a layer of immobilized219

polymer surrounding the nanofillers [15, 12, 4, 3]. The elasticity tensor of the matrix220

and the inclusion is presented in Eqs. 18 and 19, respectively.221

Table 1: Summary of properties of the constituent phases and fluctuation level.

Parameter Notation Unit Matrix phase Interphase Inclusion

Young’s modulus E GPa 1.1 1.65 (3/2Em) 40

Poisson’s ratio ν - 0.4 0.4 0.25

Bulk modulus κ GPa 1.83 2.75 26.67

Shear modulus µ GPa 0.39 0.59 16

Fluctuation level δ % 0 40 0

[Cm] =


2.36 1.57 0

1.57 2.36 0

0 0 0.39

 , (18)

[
C inc

]
=


48 16 0

16 48 0

0 0 16

 (19)

3.2. Numerical resolution using the finite element method222

The associated homogenization problem (introduced in Section 2.3), formulated223

with Dirichlet boundary conditions, is solved by the finite element method. An adaptive224

linear triangular - 1 integration point mesh was used to discretize the domain as shown in225
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Fig. 4. In this work, about 20 elements in the interphase zone in the radial direction was226

adopted as optimum (to ensure sampling of the correlation structure of the random field227

with at least 3 integration points per correlation length [73], which exhibited minimum228

values of Lr = h/6 and Lθ = π/30 in the parametric study. Finally, the domain was229

discretized by a total of 36,349 elements (corresponding to 36,618 degrees of freedom).230

It should be noted that there were 4,944, 13,713 and 16,692 elements in the inclusion,231

interphase and matrix phases, respectively.232

Fig. 4: Visualization of finite element mesh for the microstructure.

3.3. Micromechanical fields and transmission of force233

This section presents micromechanical fields such as elasticity tensor, strain and234

stress when applying macroscopic strains as prescribed in Section 2.3. Fig. 6 presents235

micromechanical fields when applying macroscopic strain in direction x2, while Fig. 7236
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shows micromechanical fields when applying macroscopic shear strain, for different con-237

figurations of correlation lengths: {Lr = h, Lθ = π/5}, {Lr = h/6, Lθ = π/5}, and238

{Lr = h/6, Lθ = π/30}, respectively. Figs. (6a, 6d and 6g) present a realization for239

the component C22, while Figs. (7a, 7d and 7g) present a realization for the compo-240

nent C33 of the elasticity tensor of the inclusion, interphase, and matrix, for different241

combinations of correlation lengths: {Lr = h, Lθ = π/5}, {Lr = h/6, Lθ = π/5},242

and {Lr = h/6, Lθ = π/30}, respectively. The elastic properties of the interphase243

were randomly generated associating to the correlation lengths used. For instance, the244

correlation structure in the interphase radially decreases when Lr decreases from h to245

h/6, as shown in Figs. (6a and 6d) for the component C22, and Figs. (7a and 7d) for246

the component C33. Same observation can be made regarding orthoradial correlation247

structure, as shown in Figs. (6d and 6g) for the component C22, and Figs. (7d and 7g)248

for the component C33.249

Regarding the local stress field, we can see the role of the inclusion in transferring the250

load through the domain (i.e. the local stress field in the inclusion could be considered251

maximal). On the other hand, it is seen that the inclusion is not deformed (i.e. the252

local strain field in the inclusion is close to zero). We can also see that there is a253

concentration of stress in the zone of contact between the interphase and inclusion.254

However, the incidence of the random interphase and its correlation structure on the255

local strain and stress fields was observed. It is seen in Figs. (6a and 6b) that the256

poorer the mechanical properties of the interphase compared to the matrix phase, the257

higher the degree of strain achieved for the same region. The same observation applies258

in Figs (6d and 6e), Figs (6g and 6h), Figs (7a and 7b), Figs (7d and 7e), Figs (7g259

and 7h). Consequently, the concentration of stress in the vicinity of the inclusion also260

depends on the properties of the random interphase and its correlation structure.261

Fig. 5 illustrates the ability of the stochastic model to control the change of the262

elastic properties from isotropic to locally anisotropic in the interphase (under sym-263

metrical positive-definite conditions). The elasticity random field
{

[Cint(x)], x ∈ (I)
}

264

in Fig. 5 was controlled by two correlation structures {Lr = h/6, Lθ = π/5} and fluc-265
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tuation in the interphase (40% as indicated in Table 1). The mean model [C int
mean] is266

also provided to illustrate the anisotropic generation effect. It is seen that the elasticity267

random field
{

[Cint(x)], x ∈ (I)
}

is locally anisotropic. Finally, an illustration of the268

spatial fluctuation of the component C int
22 is provided.269

Fig. 5: Illustration for anisotropic properties and statistical fluctuation in the interphase: a

realization for the elasticity random field
{

[Cint(x)], x ∈ (I)
}

(in GPa) with {Lr = h/6, Lθ =

π/5}. The mean model [C int
mean] is also provided. The elasticity tensor of the matrix and the

inclusion is presented in Eqs. 18 and 19, respectively.
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Fig. 6: Micromechanical fields when applying macroscopic strain in direction x2 for different

configurations of correlation lengths: {Lr = h, Lθ = π/5}, {Lr = h/6, Lθ = π/5}, and

{Lr = h/6, Lθ = π/30}: (a, d, g) C22 component of the elasticity tensor, (b, e, h) ε22

component of the strain tensor, and (c, f, i) σ22 component of the stress tensor.
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Fig. 7: Micromechanical fields when applying macroscopic shear strain for different con-

figurations of correlation lengths: {Lr = h, Lθ = π/5}, {Lr = h/6, Lθ = π/5}, and

{Lr = h/6, Lθ = π/30}: (a, d, g) C33 component of the elasticity tensor, (b, e, h) ε12

component of the strain tensor, and (c, f, i) σ12 component of the stress tensor.
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3.4. Macromechanical properties and statistical convergence270

This section presents the macromechanical properties of the heterogeneous material271

from a statistical point of view. It should be noted that 2,000 Monte Carlo runs were272

performed for each combination of correlation structure. The statistical convergence of273

that number of Monte Carlo runs was estimated by using Eq. 17. Regarding the varia-274

tion of macromechanical properties as a function of radial correlation length, Figs 8a)275

and 8c) present the probability distribution of the components Capp
11 and Capp

33 , respec-276

tively, of the apparent elasticity tensor. It is seen that the dispersion of the probability277

distribution decreases when decreasing the radial correlation length from Lr = h to278

Lr = h/6. However, the average value of the apparent macroscopic properties seems to279

be unchanged. At the same time, Figs 8b) and 8d) present the statistical convergence280

for these two components over 2,000 random samples in the interphase region. It is281

observed that 2,000 Monte Carlo runs was sufficient to obtain statistical convergence282

for these two components (for all components of the apparent tensor). The same re-283

marks apply when investigating the influence of orthoradial correlation length on the284

apparent macroscopic properties, as shown in Fig. 8.285
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Fig. 8: Macromechanical properties of heterogeneous material for different radial and or-

thoradial correlation lengths: (a) probability distribution of component Capp
11 , (b) statistical

convergence of random samples for component Capp
11 , (c) probability distribution of component

Capp
33 , (d) statistical convergence of random samples for component Capp

33 .

3.5. Parametric analysis of apparent properties286

Fig. 9 presents the coefficients of variation of the random variables Capp
11 and Capp

33287

for different combinations of correlation lengths. We can see that for a given value of288

h, the coefficients of variation tend towards 0 (for all the components of the apparent289

tensor) when the correlation lengths tend towards 0. The same remark applies in290

relation to the coefficient of variation as a function of the orthoradial correlation length291

Lθ. In other words, when the correlation lengths become small, the fluctuation level292

in the macroscopic properties tends toward 0. Thus, the hypothesis of separation of293

scale could be stated for the medium constituting the interphase; such a medium then294
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becomes homogenizable. It is worth noting that if the statistical fluctuations are non-295

negligible in the domain, then it is not assumed to be a representative volume element,296

so that upscaled properties are termed ”apparent” (see, for instance, Huet [75] and297

Ostoja-Starzewski [76]). Therefore, in this case, it is possible to build an equivalent298

interface model. This point is specifically discussed in the next section.299

Fig. 9: Evolution of the coefficients of variation of (a) Capp
11 and (b) Capp

33 depending on

parameters Lr and Lθ.

3.6. Equivalent interface model300

In this section, we propose to determine the optimal surface properties associated301

with a coherent imperfect interface model [8, 26], such that the ”physical” model (based302

on stochastic interphase modeling) and the idealized model (based on deterministic303

modeling using an interface) provide similar estimates (in a sense to be specified) for304

the effective properties (see Fig. 10a).305

Let us first specify the notations. We note κs and µs for the desired surface prop-306

erties. For the interface model, the effective properties are estimated by a generalized307

self-consistent approach (detailed in Lequang and He [8]) and are denoted by κsurf
eff and308

µsurf
eff respectively – note that the effective tensor is, in this case, isotropic. For the309

model with interphase, for which the apparent tensor presents statistical fluctuations310

(contained for Lr → 0 and Lθ → 0), we consider a projection of the average tensor onto311
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isotropic space [92]:312

κiso =
11

60
(C11 + C22) +

19

30
C12 −

1

15
C33 , (20)

and313

µiso =
1

5
(C11 + C22 + C33)− 2

5
C12 . (21)

The homogenized model then becomes deterministic and isotropic, characterized by314

the moduli κint.stoch
iso and µint.stoch

iso . The surface moduli are then deduced by solving the315

following optimization problem:316

(κs, µs) = arg min
RxR

J(κ, µ), (22)

where J is the cost function defined by317

J(κ, µ) = (κsurf
eff (κ, µ)− κint.stoch

iso )2 + (µsurf
eff (κ, µ)− µint.stoch

iso )2. (23)

Note, here, that the optimization problem is not formulated with the positivity318

constraints of elasticity coefficients, in accordance with the literature (see, e.g., [8, 93]).319

Fig. 10b and Fig. 10c present the results obtained for κs and µs, respectively, for different320

interphase thicknesses and different inclusion radii. Fig. 10b and Fig. 10c present the321

results obtained for κs and µs, respectively, for different interphase thicknesses and322

different inclusion radii. Fig. 10d and Fig. 10e present the results obtained for κs323

and µs, respectively, as a function of the h/R0 ratio. The interphase-thickness-over-324

inclusion-radius parameter h/R0 is considered here as a ”dimensionless” length-scale325

parameter.326
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Fig. 10: Diagram linking stochastic interphase and equivalent interface model (a); represen-

tation of functions: (b) R0 7→ κs(R0) and (c) R0 7→ µs(R0) for different thickness values h;

and representation of functions: (d) h/R0 7→ κs(h/R0) and (e) h/R0 7→ µs(h/R0).

We find in Fig. 10b and Fig. 10c that when h is too large, the surface moduli depend327

strongly on the radius R0 of the inclusion. This is due to the fact that in this case, the328

interphase cannot be relevantly modeled by an equivalent interface. When the thickness329

decreases and for sufficiently short correlation lengths, the interface properties become330
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almost independent of the radius of the inclusion. This observation is consistent with331

the homogenization theories [30, 9]. Thus, the hypothesis of modeling the interphase332

by an equivalent interface becomes admissible. The bridge between interphase and333

interface models is, at least, possible where the interphase thickness is sufficiently small.334

The same remarks apply regarding the interphase properties as a function of h/R0 in335

Fig. 10d and Fig. 10e. For a given inclusion volume fraction, the interphase-thickness-336

over-inclusion-radius plays a crucial role. Moreover, Fig. 10d and Fig. 10e show that337

the modeling of the stochastic interphase by an equivalent interface becomes admissible338

when the ”dimensionless” length-scale parameter h/R0 is smaller than 2%.339

The probabilistic model (with finite-volume interphase) can provide different homog-340

enized responses when the actual size of the inclusion changes. This effect is mainly due341

to the increase of the interphase volume fraction in the microstructure when the size of342

the inclusion decreases, for a given inclusion volume fraction. Such a positive effect of343

interphase volume fraction on the elastic modulus of nanocomposites is consistent with344

thee numerical investigation by Zakaria and Shelesh-Nezhad [48], who compared FEM345

and Odegard’s Equivalent Interface Model [35]. However, the current probabilistic in-346

terphase model, used in conjunction with classical homogenization principles, is still347

limited and needs to be improved in order to more clearly reflect the size-dependent ef-348

fect when the inclusion characteristic size enters the nanometric scale. For a comparison349

with the coherent interface model, we have first evaluated the hypothesis of separation350

of scale in the interphase medium, as a function of the correlation structures. Secondly,351

the results obtained in Fig. 10 show that the bridge between interphase and interface352

models is, at least, possible where the interphase thickness is sufficiently small, identi-353

fied as being 2% max. for the ”dimensionless” length-scale parameter h/R0. Despite354

the aforesaid efforts, a more efficient homogenization scheme needs to be developed to355

take account of the size-dependent effect, from both the physical and numerical points356

of view. The classical homogenization framework could be extended to incorporate the357

size-dependent effect by introducing an incremental energy equivalence (see Firooz et358

al. [16] for an extension of the composite sphere assemblage model). From a numerical359
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point view, two approaches could be indicated: (i) standard FEM with surface element360

(see Gao Wei et al. [94], Javili et al. [55], Firooz et al. [16]), and (ii) eXtended FEM361

with the level set method (see Yvonnet et al. [9], Farsad et al. [95], Ren et al. [96]362

, Dang et al. [97]). Last but not least, the classical homogenization principles can363

also be used if an equivalent inclusion that substitutes the inclusion-plus-interphase is364

employed [57, 16, 98, 99].365

4. Conclusion and outlook366

In this work, we are interested in the modeling of heterogeneous materials presenting367

surface effects. To do this, we relied on probabilistic modeling of the interphase zone,368

the existence of which is highlighted in the literature. First, we produced a probabilistic369

model of the elastic properties of the interphase, modeled by a random field with matrix370

values. We then proceeded to propagate the uncertainties in order to estimate the371

apparent elastic properties of the microstructure. Parametric analysis highlighted the372

role of the lengths of radial and orthoradial correlations for the homogenization of373

the properties of the interphase. Secondly, we characterized an equivalent interface374

model, for which the surface moduli are obtained by the resolution of an optimization375

problem formulated on the basis of the effective properties. It is observed that when the376

thickness of the interphase is sufficiently small, the surface properties obtained become377

independent of the radius of the inclusion.378

The proposed research methodology in this study can be extended to finite defor-379

mations and non-linear elasticity. Firstly, the random field model of the interphase380

elasticity tensor can be applied to any uncertain random materials exhibiting spatial381

fluctuations. Thus, from a computational point of view, the stochastic model presented382

in this study can be readily coupled with iterative techniques (e.g. the arc-length383

method [100], the Newton–Raphson technique [101, 102], or normal flow [103]) for solv-384

ing large deformation problems. For instance, in Ref. [102], the authors constructed385

a probabilistic model for the random elasticity tensor, and deduced the influence of386

such fluctuation on the macroscopic behavior of the structural member in buckling387
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failure (large displacement when the load increment is small). Secondly, the construc-388

tion of stochastic models for random strain energy functions, recently presented in389

[104, 105, 106], shows that probabilistic random field modeling can be applied to non-390

linear elasticity. Staber et al. [104] developed a stochastic model for the hyperelastic391

strain energy function for laminated composites, and then identified model parame-392

ters using an experimental database. More works dealing with stochastic modeling for393

non-linear heterogeneous materials can be found in [107, 64, 108, 109, 110, 73].394

In further studies, a fully probabilistic model considering the interphase thickness to395

be a random variable should be developed. Such a view is more closely in keeping with396

the random elastic properties in the interphase zone. The interphase thickness could397

also be considered as an unknown parameter that could be determined probabilistically398

by coupling the stochastic model and, for instance, results obtained from Molecular399

Dynamics simulations.400
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frontation between Molecular Dynamics and micromechanical approaches to in-521

vestigate particle size effects on the mechanical behaviour of polymer nanocom-522

posites, Computational Materials Science 79 (2013) 495–505. doi:10.1016/j.523

commatsci.2013.07.002.524

[34] B. Paliwal, M. Cherkaoui, Estimation of anisotropic elastic properties of nanocom-525

posites using atomistic-continuum interphase model, International Journal of526

Solids and Structures 49 (18) (2012) 2424–2438. doi:10.1016/j.ijsolstr.527

2012.05.004.528

[35] G. M. Odegard, T. C. Clancy, T. S. Gates, Modeling of the mechanical properties529

of nanoparticle/polymer composites, Polymer 46 (2) (2005) 553–562. doi:10.530

1016/j.polymer.2004.11.022.531

[36] S. Chang, S. Yang, H. Shin, M. Cho, Multiscale homogenization model for ther-532

moelastic behavior of epoxy-based composites with polydisperse SiC nanoparti-533

cles, Composite Structures 128 (2015) 342–353. doi:10.1016/j.compstruct.534

2015.03.041.535

[37] H. Le-Quang, G. Bonnet, Q.-C. He, Size-dependent Eshelby tensor fields and536

effective conductivity of composites made of anisotropic phases with highly con-537

ducting imperfect interfaces, Physical Review B 81 (6) (2010) 064203. doi:538

10.1103/PhysRevB.81.064203.539

31



[38] H. Le Quang, T. L. Phan, G. Bonnet, Effective thermal conductivity of periodic540

composites with highly conducting imperfect interfaces, International Journal541

of Thermal Sciences 50 (8) (2011) 1428–1444. doi:10.1016/j.ijthermalsci.542

2011.03.009.543

[39] R. D. Peng, H. W. Zhou, H. W. Wang, L. Mishnaevsky, Modeling of nano-544

reinforced polymer composites: Microstructure effect on Young’s modulus, Com-545

putational Materials Science 60 (2012) 19–31. doi:10.1016/j.commatsci.2012.546

03.010.547

[40] K. Baek, H. Shin, T. Yoo, M. Cho, Two-step multiscale homogenization for548

mechanical behaviour of polymeric nanocomposites with nanoparticulate ag-549

glomerations, Composites Science and Technology 179 (2019) 97–105. doi:550

10.1016/j.compscitech.2019.05.006.551

[41] T. T. Le, J. Guilleminot, C. Soize, Stochastic continuum modeling of random552

interphases from atomistic simulations. Application to a polymer nanocomposite,553

Computer Methods in Applied Mechanics and Engineering 303 (2016) 430–449.554

doi:10.1016/j.cma.2015.10.006.555

[42] A. Z. Zakaria, K. Shelesh-Nezhad, The Effects of Interphase and Interface Char-556

acteristics on the Tensile Behaviour of POM/CaCO3 Nanocomposites:, Nanoma-557

terials and Nanotechnology (Jan. 2014). doi:10.5772/58696.558

[43] D. Ciprari, K. Jacob, R. Tannenbaum, Characterization of Polymer Nanocompos-559

ite Interphase and Its Impact on Mechanical Properties, Macromolecules 39 (19)560

(2006) 6565–6573. doi:10.1021/ma0602270.561

[44] R. A. Riggleman, G. Toepperwein, G. J. Papakonstantopoulos, J.-L. Barrat, J. J.562

de Pablo, Entanglement network in nanoparticle reinforced polymers, The Journal563

of Chemical Physics 130 (24) (2009) 244903. doi:10.1063/1.3148026.564

32
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