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Running title: Bayesian vs Frequentist methods in trial analysis. 

 

 

EDITORS KEYPOINTS 

• Bayes’ theorem was devised by the 18th-century English theologian and 

mathematician Thomas Bayes. 

• The Bayesian view of probability is related to degree of belief, reflecting the 

plausibility of an event given incomplete knowledge. 

• The Bayesian approach uses probabilities for both hypotheses and data. 

• This statistical approach is increasingly used in clinical trials, genetic analyses and for 

applied machine learning. 
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Abstract 

The critical reading of scientific articles is necessary for the daily practice of evidence-based 

medicine. Rigorous comprehension of statistical methods is essential, as reflected by the 

extensive use of statistics in the biomedical literature. In contrast to the customary frequentist 

approach, which never uses uses or gives the probability of a hypothesis, Bayesian theory 

uses probabilities for both hypotheses and data. This statistical approach is increasingly used 

for analyses of clinical trial data and for applied machine learning. The aim of this review is 

to compare general Bayesian concepts with frequentist methods, in order to facilitate a better 

understanding of Bayesian theory for readers who are not familiar with this approach. The 

review is intended to be used in combination with a checklist we have devised for reading 

reports analysed by Bayesian methods. We compare and contrast the different approaches of 

Bayesian versus frequentist statistical methods by considering data from a clinical trial that 

lends itself to this comparative approach.  
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Introduction 

In order to keep up to date, physicians frequently consider the results of clinical trials, 

particularly phase III trials. To appropriately interpret trial results, clinicians must understand 

the statistical methods reported. Currently, two kinds of methods coexist in inferential 

statistics: frequentist and Bayesian methods. Frequentist statistics are predominant in the field 

of biomedical research, based on the Null Hypothesis Test (NHT). The probability of an event 

is defined as the long-term frequency of occurrence of this event, in a series of repeated trials 

or in a set of “identically” conducted experiments. The name frequentist statistics is derived 

from this definition of probability. This probability is empirical and deemed objective because 

it relies on past observed data only. 

However, recent advances in the implementation of older Bayesian statistical approaches 1 2 

have led to a renewed interest in Bayesian methods, where probability is a measure of the 

degree of confidence or knowledge (or belief) in the occurrence of an event. This definition is 

consistent with the meaning of probability in everyday language. Bayesian probability is 

subjective and relates to statement on the credibility of an event. In this approach, the 

parameter of interest, with unknown values, is used in a probability distribution (the set of 

values that the parameter can take, with their probabilities of occurrence). Bayesian 

probability distributions express our degree of knowledge of the parameter with prior 

probabilities (knowledge of the parameter before further study), posterior probabilities 

(conditional on study data) and predictive probabilities (relating to data yet to be observed).3  

Many studies have now demonstrated the feasibility and relevance of these statistical methods 

in clinical trials 4–8. Consequently, an increasing number of therapeutic trials with results 

analysed by Bayesian methods are being published in major journals 9–20. Recommendations 

for Bayesian analyses have been developed 21–23, but these were primarily developed for 

researchers. They are not aimed at readers unfamiliar with Bayesian methods. For this reason, 

we have also developed a tool destined for practitioner to aid them in the understanding of 

clinical trials with analyses described by Bayesian terminology.24 To further facilitate 

understanding of the Bayesian approach, here we compare Bayesian and frequentist 

approaches using the IMMERSION clinical trial as an example.25 
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Methods 

Clinical trial 

We apply the Bayesian approach to a clinical trial following the IMRAD structure 26. 

IMMERSION was an open prospective randomised controlled study with parallel groups. 

Non-pregnant women were assigned to either water immersion (2 hours in a bathtub ((Bath 

group)) or to bed rest for the same duration at neutral temperature (Bed group). Diuresis 

(primary endpoint) was assessed by measuring voiding volume. A Bayesian statistical 

analysis was performed. The mean difference and its 95% credibility interval, posteriors 

probabilities were computed for the main outcome. The main analytical objective was to 

determine the difference in diuresis levels, hereafter called θ, between the intervention group 

(partial immersion: “bath”) and control group (“bed rest”). The required sample size was 20 

subjects per group for an expected mean diuresis difference of 100 mL, with a standard 

deviation of 100 mL, a type I error rate of 5%, a type II error rate of 20% in an equitail test 25. 

Part 1. Theory and general concepts of frequentist and Bayesian methods  

Study objective defined by probability  

Considering a toin coss, the frequentist approach dictates that if one tosses a coin 10 times and 

for example, gets 6 tails, then the probability of tails is, according to this experiment, 60%. By 

contrast, in Bayesian theory, for a coin assumed to be fair, the prior probability of heads or 

tails is 50%. If, for example, one gets tails on 6 of 10 tosses, then the posterior probability of 

tails, according to the results of this experiment, will be a combination of the prior probability 

of 50% and of the observed 6/10 tail tosses. Therefore, this view distinguishes the notion of 

frequency observed during the experiment (6/10) from that of the estimated value of the 

unknown probability of getting heads, in a population of total tosses. The final posterior 

estimated value of the unknown probability of heads can thus be close to the prior 50% 

probability hypothesis or close to the observed 60% probability depending on the relative 

weigth of the prior and of the data. 

Hypothesis. 

To compare two means, the frequentist methodology asks the clinician to define two 

hypotheses: 

H0: there is no difference between the two groups. 
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H1: there is a difference between the two groups. 

The magnitude of the difference is only specified for calculating the number of required 

subjects but is not the formal subject of the test. 

In the IMMERSION trial, the null hypothesis is H0 i.e. there is no difference between the 

mean diuresis of the IMMERSION group and the mean diuresis of the control group. 

Alternative hypothesis is H1 i.e. there is a difference between the two groups in terms of 

diuresis. 

The Bayesian methodology asks the clinician to define the prior knowledge of plausible 

means of each group, which the statistician translates into a probability distribution 

(corresponding to a description of all possible values of the estimated mean and their 

probabilities of occurrence), called a prior distribution to summarise this knowledge. 

In most cases, partial knowledge of the difference of the means (θ) is available before the data 

are collected. This prior information may come from previous similar experiments, expert 

opinions of the phenomenon or basic physiological knowledge. 

In the IMMERSION trial, authors assume that the hourly diuresis for a healthy woman is in 

most cases (i.e., with a very high probability) between 0 and 1 L. It is never negative or > 4 L. 

The starting hypothesis is that the diuresis of the experimental group is 50 ml greater than that 

of the control group. Therefore, we can start from a hypothesis of a mean diuresis level of 100 

ml.h-1 in the control group and 150 ml.h-1 in the experimental group with identical standard 

deviations of approximately 40 ml. 

Theoretical framework (table 1). 

In the NHT approach, only H0 is formally tested, and the whole process of the test is carried 

out under the consideration that this hypothesis is true. However, the process attempts to show 

that it is false. This hypothesis test establishes a decision rule that will lead us to consider 

non-rejection or rejection of the null hypothesis H0. Since this decision is based on the results 

of a sample that is only a part of the population, we cannot make a decision with certainty, 

and therefore a risk of error must be considered. The decision to accept or reject H0 is made 

so as to minimise the risk of a wrong decision in a hypothetical series of test repetitions.  

By contrast, Bayesian theory does not use test in this way. The Bayes theorem allows for 

determining probabilities, as probability of occurrence of a parameter of interest θ (in 

IMMERSION, probability that the difference in mean diuresis of the immersion group is 
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greater than that of the control group) knowing the data observed in the experiment (termed y) 

(i.e., here measurements of diuresis values in each participant in both groups). If we call θ the 

difference in mean diuresis, then according to the Bayes theorem: 

Pr(θ|y) = Pr(y|θ) Pr(θ) / Pr(y)        (1) 

Each term of the theorem has a usual denomination. The explanation of these terms will be 

presented in table 1. The term Pr (θ) is the prior probability of θ. The term Pr (y | θ) is the 

likelihood function of θ. The term Pr(θ|y) is the posterior probability.  

Concept of estimation. 

In the frequentist approach, the parameter of interest θ is unknown but is considered constant. 

θ is estimated considering that everything we know about θ comes from the data. Therefore, 

this estimation relies solely on the likelihood and probability of the data under H0. H0 has no 

probability in itself.  

In the IMMERSION study, the Bayesian approach reports a primary outcome measure 

comparing the mean diuresis between the two study groups. Previous knowledge of an 

expected mean difference in diuresis of 100 mL between the groups, under the assumption of 

a standard deviation of 100 mL diuresis in each group, was only used in the sample size 

determination. 

The principle of Bayesian estimation is to consider the parameter θ as unknown. What is 

unknown is uncertain and is thus given a probability distribution (see Bayesian definition of 

probability). We then estimate the probability that θ is within a certain range of values. To 

estimate θ consists in adjusting the prior knowledge on θ using the information provided by 

the data for the experiment, through the likelihood. We then examine the conditional 

distribution of θ knowing the data y, i.e. the posterior distribution. 

In the IMMERSION study, the chosen prior distribution for mean diuresis levels (a normally-

distributed outcome) in each group was a normal, or Gaussian, distribution, with two 

parameters: the mean and the standard deviation. The prior was N(m = 2.68, sd = 1) in the 

Bath group and N(m = 1.75, sd = 1.56) in the bed group, based on the results of Katz 36, 

expressed in mL standardised on the mean study participant weight (59.9 kg). 

Bayesian and frequentist estimators can be numerically very close, especially when there are 

many data points. When there are few data points, the difference may be great and depends on 



Page 8  

 

the choice of the prior distribution and we could compensate for this lack of information with 

a prior knowledge. The more observations we have, the more the relative importance of the 

prior information decreases. 

Use of data. 

For frequentist, in analysing a clinical trial, the previous data are not used explicitly. They are 

used for computing the sample size, but they do not appear in the final analysis of the data. 

The clinician must define an expected mean difference and standard deviation to calculate the 

sample size of the study. In the context of a meta-analysis, previous data are formally 

included in the computation, but only as “pure data” and not as an accumulating knowledge. 

For Bayesians, in analysing a clinical trial, the previous data can be used explicitely, by 

introducing them in the prior distribution. Considered as a prior knowledge, they are thus 

formally included in the estimation process and mixed with the observed data. In the context 

of a meta-analysis, previous data are included in the estimation process through the prior and 

the Bayesian meta-analysis can reach conclusion much sooner than its classical counterpart 

that consider the study as independent 28. 

Results: Practical application of statistical analyses 

Study objective defined by probability.  

Frequentist: a single question using the null hypothesis test is addressed, namely that there is 

no difference in diuresis reduction after partial immersion (bath) versus after bed rest.  

Bayesian: the main objective is determined by asking a single question in a probabilistic form 

(i.e., as a degree of belief). In IMMERSION, the main objective would be to determine what 

is the probability that diuresis is reduced by at least x mL after partial immersion (bath) versus 

after bed rest. 

Process of data analyses 

The classical test is performed as follows: 

1) The null and alternative hypotheses are expressed, in particular by specifying the targeted 

effect size, based on previous parameter estimations, considered as known, or as hypothetical 

values of clinical interest. The hypotheses of the IMMERSION study are defined in 

hypothesis section. 
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2) Determination of the specific test or model to use in accordance with the nature of the 

variable (t-test for a quantitative outcome, etc.) and the conditions of application of the test. 

The main objective of the IMMERSION study is to compare a quantitative variable (diuresis) 

between the interventional group (bath) and the control group (bed rest) in a unilateral 

situation (higher diuresis level in the bath group). If the test assumptions are met (normality of 

distributions and homogeneity of variances), the test to be used is the Student's t test. If the 

conditions are not met, a non-parametric Mann and Whitney test will be used instead. 

3) Determination of the test values, after defining the acceptance and rejection zones based on 

the type I rate and the power of the test. In our example, we use the t test. The t test threshold 

value delineating the acceptance and rejection zones was defined with an α risk of 5% for 

n=40. 

4) Calculation of the test value from the sample data and conclusion of the test. The t test 

value is calculated and compared to the t-test threshold value at a, say, 5% level. Similarly, a 

p-value can be computed and compared to the alpha level. 

According to Gelman 29, the process of Bayesian data analysis can be described by dividing it 

into three steps: 

1) A probability distribution is determined for all variables of the studied problem. The 

sources used to construct the prior distribution can be derived from a meta-analysis, previous 

studies 5 10, expert opinion 5 30 or a biophysical theory. However, the use of expert opinion is 

debated because this introduces a more subjective nature into the study outcome analysis. 

The process of the expert expressing knowledge and formulating it mathematically in the 

prior distribution is called elicitation. 

The model should be consistent with what is known about the scientific problem involved and 

the nature of the parameters involved in the analysis (mean, proportions, etc). The prior 

distribution specifies what is known about the difference of interest. Clinically relevant 

differences to be tested are specified before the study.   

2. From the observed data and the prior distribution, the posterior distribution is calculated by 

simulation (using software such as BUGS, JAGS...). The main objective of the IMMERSION 

study is the same as in a classical framework. 
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3. Evaluation of the goodness of fit of the model and the implications on the resulting 

posterior distribution. Using the suitable model, software and technic, for the main outcome, 

the mean difference (in favor of the bath group) and its 95% credible interval (CrI) are 

computed thanks to the posterior distribution, as well as the probability that the difference is 

positive and that the difference is > 0.835 mL.kg-1.h-1, which corresponds to a diuresis 

difference of 50 mL.h-1, standardised on the mean study participant weight (59.9 kg). 

Presentation of the results 

A frequentist result usually provides the estimated parameter of interest with its 95% 

confidence interval (CI). When using a statistical test in addition to the test results and its 95% 

CI, the p value is computed. 

In the IMMERSION study, the difference between the bath and bed rest group hourly diuresis 

was 1.23 mL.kg-1.h-1 (95% CI 0.42; 2.05) p=0.0039. The p value means that under the null 

hypothesis (typically that the intervention has no effect), there is a 0.39% chance of observing 

a mean diuresis gap as large as that observed in the study. 

The posterior distribution is the main result of a Bayesian analysis and it encompass all the 

values that the parameter of interest can take a posteriori. From this distribution, one can 

deduce a mean or median with a “range” for the parameter of interest, called a Credible 

Interval (CrI). A Bayesian result is thus obtained by estimating the posterior value of the 

parameter of interest with its 95% CrI. 

In the IMMERSION study, the posterior probability that the diuresis difference is at least 

0.835 mL.kg-1.h-1 in bath vs. bed rest (considering an informative prior from Katz et al 

N(2.68,1))36 was estimated to be 0.782, with a mean difference of 1.26 mL.kg-1.h-1 (95% CrI 

0.20; 2.32). It was positive, so hourly diuresis was larger for the bath than bed rest group. The 

probability of this difference being positive was 0.99. 

Interpretation of the results 

The frequentist situation corresponds to a deductive inference, which begins with a hypothesis 

about the world and tests whether the observations are consistent with this hypothesis 31.  

We see that the p value is not the probability that H0 is right or false. It does not give any 

indication of the magnitude of the difference in the population, which is the criterion of 

clinical interest. It is in fact confounded with the difference magnitude and the sample size. 
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Moreover, the fact that the threshold of significance is set at 0.05 is totally arbitrary 13 14 and 

completely ignores the clinical-biological likelihood and previous knowledge 15. 

For Bayesians, different thresholds can be tested on the same posterior distribution without 

having to correct the tests for multiple comparisons. For example, the probabilities that the 

diuresis difference is greater than, say, 0.5, 0.7 or 1 mL.kg-1.h-1 can be computed and 

compared without considering the number of comparisons made because they all derive from 

the same distribution. 

The estimation of the value of the unknown parameter is based on a random sample. This 

estimate will result from the combination of the known information on the parameter before 

the experiment and the data resulting from the experiment. The goal is not to estimate the 

mean difference in a given sample (this is of no interest) but to make a general estimate of this 

difference for the population of interest, based on the observation provided by a single 

sample. The use of the concept of subjective probability makes it possible to really calculate 

the probability, in the population, that the parameter of interest is within a given range, based 

on a single sample. The effect magnitude can thus be “isolated” from the sample size effect. 

Interpretation of intervals 

Common statististical analyses rely on both descriptive and inferential analyses. The 

descriptive analysis is done giving the point estimation (mean, proportion, quartiles, etc) 

while the inferential analysis relies on formal testing of the parameter. These two approaches 

are separated in the classical statistical context while in Bayesian statistics they are both 

computed on a unique object, i.e. the posterior distribution. In both paradigms, the point 

estimate is given with an interval: confidence interval in the frequentist method and credibility 

interval in the Bayesian world.  

The 95% CI means that if an experiment was repeated an infinite number of times under the 

same conditions, 95% of the estimated intervals would contain the true value of the 

parameter, whose value remains unknown 32 33. It is a description of what value a parameter 

can take under repeated sampling. Contrary to what intuition may make one believe, it does 

not provide the probability that the value is within a given interval. 

The 95% CrI indicates that there is a probability of 0.95 (“95% chance”) that the true value of 

the parameter is within the interval. The 95% posterior CrI depends in part on the prior 

distribution (credible values taken on diuresis levels before the study are performed) and in 
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part on the observed data (diuresis values during the study). When the initial information is 

vague (lowly or uninformative prior), the 95% CrI, in its usual version, will have 

approximately the same bounds as the classical 95% CI. 

Initial prior information that is relatively precise will reduce the dispersion of the posterior 

distribution and thus reduce the 95% CrI, making it more precise. Moreover, one can calculate 

the probability that the parameter of interest value is greater or less than a threshold (set 

before the study) or whether it is in a predefined given interval. 

Sensitivity analyses 

Sensitivity analysis is defined as “a method to determine the robustness of an assessment by 

examining the extent to which results are affected by changes in methods, models, values of 

unmeasured variables, or assumptions” with the aim of identifying “results that are most 

dependent on questionable or unsupported assumptions” 34 35. 

There are different kind of scenarios 35: 

• Modification of cut-offs or definition of outcomes 

• Methods of inclusion of outliers 

• Use of missing data or not 

• Intention to treat or per protocol analysis etc. 

Statistical methods can be modified: for example, 

• Parametric and non-parametric methods 

• Use of different methods of adjustment (baseline characteristics, the kind of method of 

adjusting) 

All the elements listed above concern both approaches, but the Bayesian approach also 

requires that assumptions about prior distributions be included in the sensitivity analysis. 

Indeed, sensitivity analyses are frequently used to test the impact of several prior distributions 

on the estimation of the parameter of interest, and on its posterior distribution. They are 

essential because they allow for checking the result stability under varying initial 

assumptions. 

If the results are essentially identical when different prior distributions are used, then we can 

consider the data to be of sufficient weight and that the conclusion has been reached. 
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Otherwise, ideally, the number of individuals included in the analysis should be increased 

until a stable conclusion is reached. However, this is not possible, most of the time, in a fixed 

design. This calls for tempering the results on the one hand and planning a new study to 

increase the amount of data available on the other. 

Thus, in addition to the “principal” prior distribution, complementary analyses using an 

uninformative prior distribution, an “enthusiastic” prior distribution (in favor of the 

hypothesis tested), and a “pessimistic” prior distribution (not in favor of the hypothesis 

tested) can be performed. It is also possible to perform a sensitivity analysis on the model, or 

the estimation methods used. If different priors yield different results and conclusion, the 

authors should acknowledge this.  

Discussion 

This comparison shows that, beyond the differences in their use, the difference in the 

interpretation of these two methods is also very important. All clinicians naturally have a 

moderate sense of Bayesian reasoning, often without knowing it. In the search for a diagnosis, 

the question is “What is the probability that my patient has this or a different pathology?”. 

The clinician intuitively uses a pretest probability for each disease (in the form of a list of 

diagnoses consistent with early observations, each diagnosis being more or less probable, 

depending on the frequency of the disease in the general population and the frequency of each 

symptom for each disease). The pretest probability of each disease under consideration is 

increased or decreased according to the results of the diagnostic test (resulting in a post-test 

probability). The same reasoning is used when making decisions about treatments. The initial 

confidence about whether or not a treatment will work is influenced by the clinician’s 

knowledge of pathophysiology and pharmacology, by reading reports of high-quality RCTs 37, 

and should be confirmed by practice 38.  

The prior distribution is called “informative” if it conveys a lot of information on the 

parameter (i.e., is precise on its prior values). “Non-informative” or better “lowly 

informative” distribution can also be used: all possible values of the parameter of interest θ 

are, in the eyes of the expert, equally (or almost equally) likely; that is, he (she) will not bet 

more on one value than on another. Using this kind of prior, it is the data (the likelihood) that 

will have the greatest impact on the posterior distribution 5 39 40. A “typical” non-informative  

prior distribution is a normal distribution with a zero mean and very large variance 39. In 



Page 14  

 

phase III trials, non-informative (lowly) informative priors are generally preferred by 

regulators. 

To follow a hypothetical deductive scientific approach, the prior distribution must be 

defined before the data collection. The prior distribution is susceptible to biases if it is 

constructed after data collection, especially if it is based on expert opinion. However, the 

prior could be revised during the study if other information becomes available, provided that 

the revisions occur independently of the results of the study. 

In Bayesian methodology, the prior knowledge is explicitly formalised, enabling authors to 

use informative knowledge as soon as possible under the control of the reader's common 

sense. In the IMMERSION study, assuming that a mean diuresis level is between -106 L.h-1 

and +106 L.h-1 would be difficult. However, these are values considered possible by the 

alternative hypothesis in the frequentist null hypothesis test. With Bayesian methods, the 

combination of the plausible values for the parameter of interest before the experiment (prior) 

and the information from the experiment allow for obtaining our result: the posterior 

distribution (all the values that posterior parameters can take and their probabilities). When 

the sample size is large (n → ∞), the influence of the prior distribution fades and the 

likelihood of the data makes up the bulk of the posterior distribution. When the state of 

knowledge about the problem in question permits only a very vague prior, the likelihood of 

the data will also have a predominant impact on the posterior distribution. Therefore, there 

will be disagreement only when the data are insufficient to yield the same posterior 

distribution for different prior assumptions. If the data are of sufficient quantity, all the 

different prior values will approximately approach the same posterior distribution and the 

debate will be settled. Furthermore, the posterior distribution is often difficult to obtain 

analytically which requires simulation through specific statistical software. This is one of the 

reasons why Bayesian methods have sometimes been deemed to be difficult to use in the past. 

In frequentist methodology, this prior knowledge is implicitly used for the parameter of 

interest when calculating the sample size. This calculation can never be reassessed without 

prior agreement in the protocol. In practice, it undergoes the fluctuations inherent in the daily 

constraints of research (patient lost to follow-up, protocol violations, etc.), therefore making 

the conclusions of the study obsolete 41. The final usable result of the statistical tests is the p 

value, which determines a threshold of arbitrary significance to reject the null hypothesis. The 
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p value does not measure the probability that the hypothesis studied is true or that the data are 

produced by chance alone.  

Many clinicians instinctively interpret the p value by using an inductive reasoning that is 

characteristic of the Bayesian method 31. In a clinical case, the frequentist statistician asks 

“What is the probability of having a temperature > 39.5º with a diagnosis of influenza”, 

whereas the Bayesian statistician asks “What is the probability of having the flu, knowing that 

the temperature is > 39.5º”, the typical reasoning used in a diagnostic procedure. 

In summary, we have compared Bayesian methods with frequentist methods using the 

IMRAD structure to provide a better understanding of the general theories and concepts of 

these two methods. This document is intended to serve as an adjunct to our reading grid 24 but 

can also be used individually to understand Bayesian methodology. 
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Table 1. Interpretation of theory, according to frequentist and Bayesian methods  

 

Null Hypothesis test (NHT) approach Bayesian approach 

  

The probabilities of error are known as alpha (α) and beta (β). The 

risk α, or type I error rate, is the probability of rejecting the null 

hypothesis (H0) as false when it is true.  

The risk β, or type II error rate, is the probability of not rejecting 

the null hypothesis (H0) when the alternate hypothesis (H1) is 

true.  

 

The complementary probability of the type II error (1–β) defines 

the power of the test and represents the probability of rejecting the 

null hypothesis (H0) when the hypothesis (H1) is true. 

In other words, the conclusion provided by the NHT does not 

measure the probability that H0 is true or false, but the probability 

of a given result in a repetitive process 26. 

 

The p value is the probability, under H0, of obtaining a statistic as 

extreme as the value observed in the sample. Given a threshold of 

significance, we compare p and α to decide whether to reject or 

not reject H0. 

The expression (1) can be simplified: 

Posterior ∝ Prior × Likelihood 

(“∝" symbol reads “is proportional to”) 

 

The prior distribution summarises the information available on the 

parameter of interest before the collection of our data. It corresponds to 

all possible values that the diuresis in the two groups can plausibly have 

before the study is carried out (see example in hypothesis section). It 

may be based on data from previous trials (other cases are described in 

this paper). It is obtained by the combination of the prior distribution 

(what we know about the parameter before the experiment) and the 

likelihood (what the data tell us about the parameter according to its 

prior probability). The data are formally turned into accumulating 

statistical knowledge through the use of Bayesian theorem into the 

posterior distribution.  

 

 



• if p < α, we reject the null hypothesis H0 (in favor of H1) 

• If p > α, we do not reject H0 (in favor of H0). 

 

We can then interpret the p value as the smallest threshold of 

significance for which the null hypothesis is accepted. 

 

Two results are possible: 

1) H0 is not rejected, and we admit there is no difference between 

the mean diuresis levels of the two groups. 

2) We reject H0 and accept H1, and we admit there is a difference 

between the mean diuresis levels of the two groups. 

The posterior distribution describes all we know about the parameter 

after the experiment. It thus provides us with the parameter estimate and 

its credibility interval.  

  

 




