Jiang Mao 
  
Zeng 
  
Bin Han 
  
AND Jianxi Mao 
  
Jiang Zeng 
  
EULERIAN POLYNOMIALS AND EXCEDANCE STATISTICS

Keywords: Eulerian polynomials and excedance statistics 2010 Mathematics Subject Classification. 05A05, 05A15, 05A19 Eulerian polynomials, Peak polynomials, Gamma-positivity, Derangement polynomials, q-Narayana polynomials, Continued fractions, Laguerre histories, Françon-Viennot bijection, Foata-Zeilberger bijection, Cyclic modified Foata-Strehl action

 

Stieltjes [25] showed that the Eulerian polynomials A n (t) can be defined through the continued fraction (S-fraction) expansion

n≥0 A n (t)z n = 1 1 - 1 • z 1 - t • z 1 - 2 • z 1 - 2t • z 1 -. . . . (1.1) 
For an n-permutation σ := σ(1)σ(2) • • • σ(n) of the word 1 . . . n, an index i (1 ≤ i ≤ n-1) is a descent (resp. excedance) of σ if σ(i) > σ(i + 1) (resp. σ(i) > i). It is well-known [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF]19] that

A n (t) = σ∈Sn t des σ = σ∈Sn t exc σ , (1.2) 
where S n is the set of n-permutations and des σ (resp. exc σ) denotes the number of descents (resp. excedances) of σ. The value σ(i) (2 ≤ i ≤ n -1) is a peak of σ if σ(i -1) < σ(i) > σ(i + 1) and the peak polynomials are defined by

P pk n (x) := σ∈Sn x pk σ , (1.3) 
where pk σ denotes the number of peaks of σ. The peak polynomials are related to the Eulerian polynomials by Stembridge's identity [START_REF] Stembridge | Enriched P -partitions[END_REF]Remark 4.8], see also [START_REF] Brändén | Actions on permutations and unimodality of descent polynomials[END_REF][START_REF] Zhuang | Eulerian polynomials and descent statistics[END_REF],

A n (t) = 1 + t 2

n-1

P pk n 4t (1 + t) 2 , (1.4) 
which can be used to compute the peak polynomials. Obviously Eq. (1.4) is equivalent to the so-called γ-expansion of Eulerian polynomials

A n (t) = (n-1)/2 k=0 2 2k+1-n γ n,k t k (1 + t) n-1-2k , (1.5) 
where γ n,k is the number of n-permutations with k peaks. In the form of (1.5) it is not difficult to see that Stembridge's formula (1.4) is actually equivalent to a formula of Foata and Schüzenberger [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF]Théorème 5.6], see also Brändén's proof using modified Foata-Strehl action [START_REF] Brändén | Actions on permutations and unimodality of descent polynomials[END_REF]. In the last two decades, many refinements of Stembridge's identity have been given by Brändén [START_REF] Brändén | Actions on permutations and unimodality of descent polynomials[END_REF], Petersen [START_REF] Petersen | Enriched P-partitions and peak algebras[END_REF], Shin and Zeng [START_REF]The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF][START_REF]Symmetric unimodal expansions of excedances in colored permutations[END_REF], Zhuang [START_REF] Zhuang | Eulerian polynomials and descent statistics[END_REF], Athanasiadis [START_REF] Athanasiadis | Gamma-positivity in combinatorics and geometry[END_REF] and others. In particular, Zhuang [START_REF] Zhuang | Eulerian polynomials and descent statistics[END_REF] has proved several identities expressing polynomials counting permutations by various descent statistics in terms of Eulerian polynomials, extending results of Stembridge, Petersen and Brändén.

By contracting the continued fraction (1.1) starting from the first and second lines (see Lemma 5.1), respectively, we derive the two Jacobi-type continued fraction (J-fraction) formulae (cf. [9])

n≥0 A n+1 (t)z n = 1 1 -(1 + t) • z - 1 • 2 • t • z 2 1 -2(1 + t) • z - 2 • 3 • t • z 2 1 -3(1 + t) • z - 3 • 4 • tz 2 1 -• • • , (1.6a) and n≥0 
A n (t)z n = 1

1

-(1 + 0 • t) • z - 1 2 • z 2 1 -(2 + 1 • t) • z - 2 2 • t • z 2 1 -(3 + 2 • t) • z - 3 2 • t • z 2 1 -• • • . (1.6b)
In view of Flajolet's combinatorial theory for generic J-type continued fraction expansions [9], Françon-Viennot's bijection ψ F V (resp. its restricted version φ F V ) between permutations and Laguerre histories provides a bijective proof of (1.6a) (resp. (1.6b)), while Foata-Zeilberger's bijection ψ F Z [START_REF] Foata | Denert's permutation statistic is indeed Euler-Mahonian[END_REF] gives a bijective proof of (1.6b). More precisely, Françon-Viennot [START_REF] Françon | Permutations selon leurs pics, creux, doubles montées et double descentes, nombres d'Euler et nombres de Genocchi[END_REF] set up a bijection (and its restricted version) from permutations to Laguarre histories using linear statistics of permutation, while Foata-Zeilberger constructed another bijection [START_REF] Foata | Denert's permutation statistic is indeed Euler-Mahonian[END_REF] using cyclic statistics of permutations. In 1997 Clarke-Steingrímsson-Zeng [START_REF] Clarke | New Euler-Mahonian statistics on permutations and words[END_REF] constructed a bijection Φ on permutations converting statistic des into exc on permutations and linking the restricted Françon-Viennot's bijection φ F V to Foata-Zeilberger bijection φ F Z , see the right diagram in Figure 1. Later, similar to Φ, Shin and Zeng [START_REF]The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF] constructed a bijection Ψ on permutations to convert linear statistics to cycle statistics on permutations corresponding to (1.6a). We will show that the composition ψ F V • Ψ -1 coincides with a recent bijection of Yan, Zhou and Lin [START_REF] Yan | A new encoding of permutations by Laguerre histories[END_REF], see Figure 1.

LH n S n+1 S n+1 ψ F V ψ Y ZL Ψ LH * n S n S n φ F V φ F Z Φ Figure 1. Two factorizations: ψ F V = ψ Y ZL • Ψ and φ F V = φ F Z • Φ.
The Narayana polynomials N n (t) can be defined by the S-fraction expansion

n≥0 N n (t)z n = 1 1 - z 1 - t • z 1 - z 1 - t • z 1 -• • • , (1.7) 
see [START_REF] Fu | q, t)-Catalan numbers: gamma expansions, pattern avoidances and the (-1)-phenomenon[END_REF]. Note that N n (1) is the n-th Catalan number C n = 1 n+1 2n n . Similar to Eulerian polynomials, by contracting the S-fraction (1.7) we derive immediately the followoing Jfractions

n≥0 N n+1 (t)z n = 1 1 -(1 + t) • z - t • z 2 1 -(1 + t) • z - t • z 2 1 -• • • (1.8a) and n≥0 N n (t)z n = 1 1 -z - t • z 2 1 -(1 + t) • z - t • z 2 1 -(1 + t) • z -• • • . (1.8b) Let τ ∈ S 3 = {123, 132, 213, 231, 312, 321}.
Recall that a permutation σ ∈ S n is said to avoid the pattern τ if there is no triple of indices i < j < k such that σ(i)σ(j)σ(k) is order-isomorphic to τ . We shall write S n (τ ) for the set of permutations in S n avoiding the pattern τ . It is known [START_REF] Fu | q, t)-Catalan numbers: gamma expansions, pattern avoidances and the (-1)-phenomenon[END_REF] that the Narayana polynomials have the combinatorial interpretations

N n (t) = σ∈Sn(231) t des σ = σ∈Sn(321) t exc σ .
(1.9)

Hence, the Narayana polynomials can be considered as the Eulerian polynomials for restricted permutations. Moreover, they are γ-positive and have the γ-expansion [19, Chapter 4]:

N n (t) = (n-1)/2 j=0 γ n,j t j (1 + t) n-1-2j , (1.10) 
where

γ n,j = |{σ ∈ S n (231) : des(σ) = pk(σ) = j}|.
In this paper we shall give generalizations of Stembridge's formula or their γ-analogues (1.5) and (1.10) using excedance statistics by further exploiting the continued fraction technique in [START_REF] Shin | The q-tangent and q-secant numbers via continued fractions[END_REF][START_REF]The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF][START_REF]Symmetric unimodal expansions of excedances in colored permutations[END_REF]. Indeed, from the observation (cf. [START_REF]The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF]) that the gamma-positive formula of Eulerian polynomials (1.5) is equal to the Jacobi-Rogers polynomial corresponding to (1.6a), it becomes clear that Flajolet-Viennot's combinatorial theory of formal continued fractions could shed more lights on this topic. Our main tool is the combinatorial theory of continued fractions due to Flajolet [9] and bijections due to Françon-Viennot, Foata-Zeilberger between permutations and Laguarre histories, see [START_REF] Clarke | New Euler-Mahonian statistics on permutations and words[END_REF]9,[START_REF] Foata | Denert's permutation statistic is indeed Euler-Mahonian[END_REF][START_REF] Françon | Permutations selon leurs pics, creux, doubles montées et double descentes, nombres d'Euler et nombres de Genocchi[END_REF][START_REF] Shin | The q-tangent and q-secant numbers via continued fractions[END_REF]. As in [START_REF]The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF] this approach uses both linear and cycle statistics on permutations. There are several wellknown q-Narayana polynomials in the litterature; see [START_REF] Fu | q, t)-Catalan numbers: gamma expansions, pattern avoidances and the (-1)-phenomenon[END_REF] and the references therein. As a follow-up to [START_REF] Fu | q, t)-Catalan numbers: gamma expansions, pattern avoidances and the (-1)-phenomenon[END_REF], we shall give more results on q-Narayana polynomials using patternavoiding permutations.

The rest of this paper is organized as follows. In Section 2 after recalling the necessary definitions and results from [START_REF] Shin | The q-tangent and q-secant numbers via continued fractions[END_REF][START_REF]The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF][START_REF]Symmetric unimodal expansions of excedances in colored permutations[END_REF], we link the recent bijection ψ Y ZL of Yan-Zhou-Lin [START_REF] Yan | A new encoding of permutations by Laguerre histories[END_REF] to two known bijections; in Section 3 we present our generalized formulae of (1.4) in three classes:

• Eulerian polynomials for permutations and derangements, • Eulerian polynomials for pattern-avoiding permutations, • Eulerian polynomials for signed permutations. There are two types of proof: group actions of Foata-Strehl's type and manipulations of continued fractions. More precisely, we prove Theorems 3.5 and 3.6 using variations of modified Foata-Strehl action on permutations or Laguerre histories in Section 4; we then prove these two theorems and the remaining theorems by comparing the continued fraction expansions of the generating functions in Section 5. In what follows, we shall abbreviate "generating functions" by "g.f.".

Background and preliminaries

2.1. Permutation statistics and two bijections.

For σ = σ(1)σ(2) • • • σ(n) ∈ S n with convention 0-0, i.e., σ(0) = σ(n + 1) = 0, a value σ(i) (1 ≤ i ≤ n) is called • a peak if σ(i -1) < σ(i) and σ(i) > σ(i + 1); • a valley if σ(i -1) > σ(i) and σ(i) < σ(i + 1); • a double ascent if σ(i -1) < σ(i) and σ(i) < σ(i + 1); • a double descent if σ(i -1) > σ(i) and σ(i) > σ(i + 1).
The set of peaks (resp. valleys, double ascents, double descents) of σ is denoted by Pk σ (resp. Val σ, Da σ, Dd σ).

Let pk σ (resp. val σ, da σ, dd σ) be the number of peaks (resp. valleys, double ascents, double descents) of σ. For i ∈ [n] := {1, . . . , n}, we introduce the following statistics:

(31-2) i σ = #{j : 1 < j < i and σ(j) < σ(i) < σ(j -1)} (2-31) i σ = #{j : i < j < n and σ(j + 1) < σ(i) < σ(j)} (2-13) i σ = #{j : i < j < n and σ(j) < σ(i) < σ(j + 1)} (13-2) i σ = #{j : 1 < j < i and σ(j -1) < σ(i) < σ(j)} (2.1)
and define four statistics (see (2.41)):

(31-2) = n i=1 (31-2) i , (2-31) = n i=1 (2-31) i , (2-13) = n i=1 (2-13) i , (13-2) = n i=1 (13-2) i . Now, we consider σ ∈ S n as a bijection i → σ(i) for i ∈ [n], a value x = σ(i) is called • a cyclic peak if i = σ -1 (x) < x and x > σ(x); • a cyclic valley if i = σ -1 (x) > x and x < σ(x); • a double excedance if i = σ -1 (x) < x and x < σ(x); • a double drop if i = σ -1 (x) > x and x > σ(x); • a fixed point if x = σ(x). We say that i ∈ [n -1] is an ascent of σ if σ(i) < σ(i + 1) and that i ∈ [n] is a drop of σ if σ(i) < i. Let Cpk (resp. Cval, Cda, Cdd, Fix, Drop) (2.2)
be the set of cyclic peaks (resp. cyclic valleys, double excedances, double drops, fixed points, drops) and denote the corresponding cardinality by cpk (resp. cval, cda, cdd, fix, drop).

Obviously we have

cpk σ = cval σ for σ ∈ S n . (2.3) 
Moreover, we define

wex σ = #{i : i ≤ σ(i)} = exc σ + fix σ (2.4a
)

cros i σ = #{j : j < i < σ(j) < σ(i) or σ(i) < σ(j) ≤ i < j}, (2.4b 
)

nest i σ = #{j : j < i < σ(i) < σ(j) or σ(j) < σ(i) ≤ i < j}. (2.4c) Let cros = n i=1 cros i , nest = n i=1 nest i and icr σ 1 = cros σ -1 . Note (cf [14, Remark 2.4]) that nest σ -1 = nest σ for σ ∈ S n .
(2.5) A pair of integers (i, j) is an inversion of σ ∈ S n if i < j and σ(i) > σ(j), and σ(i) (resp. σ(j)) is called inversion top (resp. bottom). Let inv σ be the inverion number of σ.

For σ ∈ S n with convention 0-∞, i.e., σ(0) = 0 and σ(n + 1) = ∞, let Lpk (resp. Lval, Lda, Ldd)

be the set of peaks (resp. valleys, double ascents and double decents) and denote the corresponding cardinality by lpk (resp. lval, lda and ldd). For i ∈ [n], the value σ(i) is called a left-to-right maximum (resp. right-to-left minimum) if σ(i) = max {σ(1), σ(2), . . . , σ(i)} (resp. σ(i) = min {σ(i), . . . , σ(n -1), σ(n)}). Similarly, we define left-to-right minimum (resp. right-to-left maximum). A double ascent σ(i) (i = 1, . . . , n) is called a foremaximum (resp. afterminimum) of σ if it is at the same time a left-to-right maximum (resp. right-to-left minimum). Denote the number of foremaxima (resp. afterminima) of σ by fmax σ (resp. amin σ). Note that for the peak number pk in (1.3) we have following identities : pk = val = pk -1 and lval = lpk.

(2.6)

Now we recall two bijections Φ and Ψ due to Clarke et al. [START_REF] Clarke | New Euler-Mahonian statistics on permutations and words[END_REF] and Shin-Zeng [START_REF]The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF], respectively.

2.2. The bijection Φ. Let σ = σ(1) . . . σ(n) ∈ S n , an inversion top number (resp. inversion bottom number) of a letter x := σ(i) in the word σ is the number of occurrences of inversions of form (i, j) (resp (j, i)). A letter σ(i) is a descent top (resp. descent bottom) if σ(i) > σ(i + 1) (resp. σ(i -1) > σ(i)). Given a permutation σ, we first construct two biwords, f f and g g , where f (resp. g) is the subword of descent bottoms (resp. nondescent bottoms) in σ ordered increasingly, and f (resp. g ) is the permutation of descent tops (resp. nondescent tops) in σ such that the inversion bottom (resp. top) number of each letter x := σ(i) in f (resp. g ) is (2-31) x σ, and then form the biword w = f f g g by concatenating f and g, and f and g , respectively. Rearranging the columns of w, so that the bottom row is in increasing order, we obtain the permutation τ = Φ(σ) as the top row of the rearranged bi-word.

The following result can be found in [START_REF]The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF]Theorem 12] and its proof. Thus τ = Φ(σ) = 10 3 5 1 4 9 6 8 2 7, and Ψ(σ) = τ (2) . . . τ (10) = 3 5 1 4 9 6 8 2 7.

Lemma 2.3. For i ∈ [n], we have

(2-31) i+1 σ = (2-13) i σ + 1 if i + 1 ∈ Lval σ ∪ Lda σ, (2-13) i σ if i + 1 ∈ Lpk σ ∪ Ldd σ.
Proof. An increasing (resp. decreasing) run of σ is a maximum consecutive increasing (resp. decreasing) subsequence R := σ(i)σ(i + 1) . . . σ(j) of σ such that σ(i -1) > σ(i) and σ(j) > σ(j + 1) (resp. σ(i -1) < σ(i) and σ(j) < σ(j + 1)) with 1 ≤ i ≤ j ≤ n. For any i ∈ [n], as σ(n + 1) = 1, there is a unique way to write

σ = w 1 (i + 1)u 1 d 2 . . . u k-1 d k if i + 1 ∈ Lval σ ∪ Lda σ, w 1 (i + 1)d 1 u 2 d 2 . . . u k d k if i + 1 ∈ Lpk σ ∪ Ldd σ,
where u i (resp. d i ) is an increasing (resp. decreasing) run, and (i + 1)u 1 (resp. (i + 1)d 1 ) is an increasing (resp. decreasing) sequence. We say that a run R covers i if i is bounded by max(R) and min(R). It is not hard to show that

#{j ≥ 2 : u j covers i + 1} = #{j ≥ 2 : d j covers i + 1} + 1 if i + 1 ∈ Lval σ ∪ Lda σ, #{j ≥ 2 : d j covers i + 1} if i + 1 ∈ Lpk σ ∪ Ldd σ.
Since (2-13) i (resp. (2-31) i ) is the number of increasing (resp. decreasing) runs covering i to the right of i, we are done.

We use the aforementioned statistics to define variant boundary conditions. Given a permutation σ ∈ S n with convention ∞ -0, the number of corresponding peaks, valleys, double ascents, and double descents of permutation σ ∈ S n is denoted by rpk σ, rval σ, rda σ, rdd σ respectively. A double descent σ(i) is called a aftermaximum (resp. foreminimum) of σ if it is at the same time a right-to-left maximum (resp. left-to-right minimum). Denote the number of aftermaxima (resp. foreminimum) of σ by amax σ (resp. fmin σ). For

σ = σ(1)σ(2) • • • σ(n) ∈ S n ,
we define two permutations σ c and σ r by

σ c (i) = n + 1 -σ(i) and σ r (i) = σ(n + 1 -i) for i ∈ [n].
(2.10)

It is not difficult to verify the following properties

(2-31, 31-2, des, lda -fmax, ldd, lval, fmax) σ (2.11a) =(13-2, 2-13, asc, rdd -amax, rda, rval, amax) σ r (2.11b) =(31-2, 2-31, des, lda -amin, ldd, lpk, amin) σ r•c (2.11c) =(2-13, 13-2, asc, rdd -fmin, rda, rval, fmin) σ r•c•r , (2.11d) 
where

σ r•c = (σ r ) c and σ r•c•r = (σ r•c ) r = (σ r ) c•r .
2.4. The star variation.

For σ = σ(1) • • • σ(n) ∈ S n
, we define its star companion σ * as a permutation of {0, . . . , n} by

σ * = 0 1 2 . . . n n σ(1) -1 σ(2) -1 . . . σ(n) -1 . (2.12) 
We define the following sets of cyclic star statistics for σ:

Cpk * σ = {i ∈ [n -1] : (σ * ) -1 (i) < i > σ * (i)}, (2.13a 
)

Cval * σ = {i ∈ [n -1] : (σ * ) -1 (i) > i < σ * (i)}, (2.13b 
)

Cda * σ = {i ∈ [n -1] : (σ * ) -1 (i) < i < σ * (i)}, (2.13c 
)

Cdd * σ = {i ∈ [n -1] : (σ * ) -1 (i) > i > σ * (i)}, (2.13d 
)

Fix * σ = {i ∈ [n -1] : i = σ * (i)}, (2.13e 
)

Wex * σ = {i ∈ [n -1] : i ≤ σ * (i)}, (2.13f 
)

Drop * σ = {i ∈ [n] : i > σ * (i)}. (2.13g)
The corresponding cardinalties are denoted by cpk * , cval * , cda * , cdd * , fix * , wex * and drop * , respectively. By (2.13a), (2.13d) and (2.13g), we have drop * -1 = cdd * + cpk * . Let cyc σ be the number of cycles of σ and cyc * σ := cycσ * . For example, for σ = 3762154, we have

σ * = 72651043, which has two cycles 1 → 2 → 6 → 4 → 1 and 7 → 3 → 5 → 0 → 7. Thus cyc * σ = 2.
For any subsebt S ⊂ N, we write S + 1 := {s + 1 : s ∈ S}.

Theorem 2.4. For σ ∈ S n , we have

(Val, Pk n , Da, Dd)σ = (Cval * , Cpk * , Cda * ∪ Fix * , Cdd * )Ψ(σ) (2.14)
with Pk n σ = Pk σ \ {n} and

((2-13) i , (31-2) i )σ = (nest i , cros i )Ψ(σ) for i ∈ [n]. (2.15) 
Proof. For σ ∈ S n , by definition (2.8), (2.9) and (2.12), we have

τ (i + 1) = (Ψ(σ)) * (i) + 1. (2.16)
and

((Val σ + 1) ∪ {1}, Pk σ + 1, Da σ + 1, Dd σ + 1) = (Lval, Lpk, Lda, Ldd)σ.
(2.17)

For 2 ≤ i ≤ n, by (2.2) and (2.16) we have the following equivalences:

i ∈ Cval τ ⇐⇒ i -1 ∈ Cval * (Ψ(σ)) and i < τ (i) and i < τ -1 (i) ⇐⇒ i < Ψ(σ)(i -1) and i -1 < (Ψ(σ)) -1 (i).
Thus, by (2.8) and (2.9),

(Cval * Ψ(σ) + 1) ∪ {1} = Cval Φ(σ). (2.18)
In the same vein, we have

Cpk * Ψ(σ) + 1 = Cpk Φ(σ) \ {n + 1}, Cda * Ψ(σ) ∪ Fix * Ψ(σ) + 1 = Cda Φ(σ) ∪ Fix Φ(σ), (2.19) 
Cdd * Ψ(σ) + 1 = Cdd Φ(σ).
Comparing (2.17) and (2.18)-(2.19) and using (2.7b) we derive (2.14).

Next, for (2.15), we only prove nest i Ψ(σ) = (2-13) i σ and leave cros i Ψ(σ) = (31-2) i σ to the interested reader. By Lemma 2.3 we have

(2-31) i+1 σ = (2-13) i σ + 1 if i + 1 ∈ Lval σ ∪ Lda σ, (2-13) i σ if i + 1 ∈ Lpk σ ∪ Ldd σ. (2.20) 
So, if we show that

(nest) i+1 τ = (nest) i Ψ(σ) + 1 if i + 1 ∈ Cval τ ∪ Cda τ ∪ Fix τ , (nest) i Ψ(σ) if i + 1 ∈ Cpk τ ∪ Cdd τ , (2.21) 
as τ = Φ(σ) and by (2.7b),

(Lval, Lpk, Lda, Ldd)σ = (Cval, Cpk, Cda ∪ Fix, Cdd)Φ(σ), (2.22) 
the result follows from the identity nest i τ = (2-31) i σ (see (2.7c)). Now we prove (2.21). By (2.4c) the index nest i σ (i ∈ [n]) can be characterized in terms of σ * (see (2.12)) as follows:

nest i σ = #{j ∈ [n] : j < i ≤ σ * (i) < σ * (j) or σ * (j) < σ * (i) < i < j}.
(2.23)

We consider three cases of i + 1.

(a) if i + 1 < τ (i + 1), then i < (Ψ(σ)) * (i). By (2.16), we have

#{j ∈ [n] : j + 1 < i + 1 < τ (i + 1) < τ (j + 1)} (2.24a) =#{j ∈ [n] : j < i ≤ (Ψ(σ)) * (i) < (Ψ(σ)) * (j)} and #{j ∈ [n] : j + 1 > i + 1 ≥ τ (i + 1) > τ (j + 1)} (2.24b) = #{j ∈ [n] : j > i > (Ψ(σ)) * (i) > (Ψ(σ)) * (j)}.
Since τ (1) = n + 1 and

1 < i + 1 < τ (i + 1) < n + 1, by (2.4c), (2.24a
) and (2.24b) we obtain

nest i+1 τ = 1+#{j ∈ [n] : j + 1 < i + 1 < τ (i + 1) < τ (j + 1)} +#{j ∈ [n] : j + 1 > i + 1 ≥ τ (i + 1) > τ (j + 1)} = 1+#{j ∈ [n] : j < i ≤ (Ψ(σ)) * (i) < (Ψ(σ)) * (j)} +#{j ∈ [n] : j > i > (Ψ(σ)) * (i) > (Ψ(σ)) * (j)}, which is equal to nest i Ψ(σ) + 1 by (2.23). (b) if i + 1 > τ (i + 1), then i > (Ψ(σ)) * (i). Similarly to (a) we get nest i+1 τ = nest i Ψ(σ). (c) if i + 1 = τ (i + 1), then i = (Ψ(σ)) * (i). It is easy to see that #{j ∈ [n + 1] : j > i + 1 > τ (j)} = #{j ∈ [n + 1] : j < i + 1 < τ (j)}.
(2.25)

As τ (1) = n + 1, we have (2.26) 2.5. Laguerre histories as permutation encodings. A 2-Motzkin path is a lattice path starting and ending on the horizontal axis but never going below it, with possible steps (1, 1), (1, 0), and (1, -1), where the level steps (1, 0) can be given either of two colors: blue and red, say. The length of the path is defined to be the number of its steps. For our purpose it is convenient to identify a 2-Motzkin path of length n as a word s := s 

#{j ∈ [n + 1] : j > i + 1 > τ (j)} =#{j ∈ [n + 1] : j < i + 1 < τ (j)} =#{j ∈ [n] : j + 1 < i + 1 < τ (j + 1)} + 1 =#{j ∈ [n] : j < i < (Ψ(σ)) * (j)} +
1 . . . s n • • • • • • • • • p i 0 0 0 1 0 1 1 0 L b Lr Lr L b Figure 2. A
) with 0 ≤ p i ≤ h i-1 (s) (resp. 0 ≤ p i ≤ h i-1 (s) -1 if s i = L r or D) with h 0 (s) = 0. Let LH n (resp. LH * n )
be the set of Laguerre histories (resp. restricted Laguerre histories) of length n. There are several well-known bijections between S n and LH * n and LH n-1 , see [START_REF] Clarke | New Euler-Mahonian statistics on permutations and words[END_REF][START_REF] De Médicis | Moments des q-polynômes de Laguerre et la bijection de Foata-Zeilberger[END_REF].

2.6. Françon-Viennot bijection. We recall a version of Françon and Viennot's bijection ψ F V : S n+1 → LH n . Given σ ∈ S n+1 , the Laguerre history ψ F V (σ) = (s, p) is defined as follows:

s i =          U if i ∈ Val σ D if i ∈ Pk σ L b if i ∈ Da σ L r if i ∈ Dd σ (2.28)
and

p i = (2-13) i σ for i = 1, . . . , n.
For example, if σ = 4 1 2 7 9 6 5 8 3 ∈ S 9 , then

(s, p) = ((U, L b , L r , D, U, L r , L b , D), (0, 0, 0, 1, 0, 1, 1, 0)) ∈ LH 8 ,
which is depicted in Figure 2.

For σ ∈ S n+1 , we define the following sets

Scval = {i ∈ [n] : i < σ(i) and i + 1 ≤ σ -1 (i + 1)}, (2.29a 
)

Scpk = {i ∈ [n] : i ≥ σ(i) and i + 1 > σ -1 (i + 1)}, (2.29b 
)

Scda = {i ∈ [n] : i < σ(i) and i + 1 > σ -1 (i + 1)}, (2.29c 
) Yan, Zhou and Lin [START_REF] Yan | A new encoding of permutations by Laguerre histories[END_REF] constructed a bijection ψ Y ZL : S n+1 → LH n , which can be defined as follows. For σ ∈ S n+1 , let ψ Y ZL (σ) = (s, p) with

Scdn = {i ∈ [n] : i ≥ σ(i) and i + 1 ≤ σ -1 (i + 1)}. (2.29d) σ ∈ DD 4,k σ σ r Ψ(σ) ∈ SDE 4,k (31-2)σ (2-
s i =          U if i ∈ Scval σ, D if i ∈ Scpk σ, L b if i ∈ Scda σ, L r if i ∈ Scdn σ, (2.30) and p i = nest i σ for i = 1, . . . , n. Theorem 2.5. We have ψ F V = ψ Y ZL • Ψ. Proof. Let ψ = ψ F V • Ψ -1
, which is a bijection from S n+1 to LH n . By Theorem 2.4, for σ ∈ S n+1 , we can define ψ(σ) = (s, p) as follows: for i = 1, . . . , n, (2.32)

s i =          U if i ∈ Cval * σ, D if i ∈ Cpk * σ, L b if i ∈ Cda * σ ∪ Fix * σ, L r if i ∈ Cdd * σ,
We just prove Scval σ = Cval * σ and omit the similar proof of other cases. As

Cval * (σ) = {i : i + 1 < σ(i), i < σ -1 (i + 1)}, comparing with (2.29a) we need only to show that Scval σ ⊂ Cval * σ. If i ∈ Scval(σ), then i < σ(i) and i + 1 ≤ σ -1 (i + 1). Suppose i + 1 = σ(i)
, then σ -1 (i + 1) = i, which contradicts the second inequality. So i + 1 < σ(i), and i ∈ Cval * σ. We are done.

Given a 2-Motzkin path s of length n we define θ(s) to be the 2-Motzkin path obtained by switching all the letters L b with L r in s. By abuse of notation, for a Laguerre history (s, p) ∈ LH n we define θ(s, p) = (θ(s), p).

( 

) i )σ =(Cval * , Cpk * , Cda * ∪ Fix * , Cdd * , nest i )τ, ∀i ∈ [n]. Let ψ F V (σ) = (s, p) and ψ(τ ) = (s , p ). Then h i (s, p) = h i (s , p ) for all i ∈ [n]. It is not difficult to prove by induction that (2-13) i σ + (31-2) i σ = h i-1 (s, p), (2.34a 
)

nest i σ + cros i σ = h i-1 (s , p ).
(2.34b)

Thus we have (31-2) i σ = cros i τ . As exc = wex * = cval * + cda * + fix * , des = val + dd, cpk * = cval * , and val = pk -1, the proof is completed.

For k ∈ [n] we define the subsets of S n :

DD n,k :={σ ∈ S n : des σ = k, dd σ = 0}, (2.35a) 
DE * n,k :={σ ∈ S n : exc σ = k, cda * σ + fix * σ = 0}, (2.35b 
)

SDE n,k :={σ ∈ S n : exc σ = k, scda(σ) = 0}. (2.35c) 
Theorem 2.6. For 0 ≤ k ≤ (n -1)/2 we have γ n,k (q) := σ∈DD n,k q 2(31-2)σ+(2-13)σ (2.36a)

= σ∈DE * n,k q inv σ-exc σ (2.36b) = σ∈SDE n,k q inv σ-exc σ . (2.36c) Proof. For σ ∈ S n , recall that σ r := σ(n) • • • σ(2)σ(1) (see (2.10)). By (2.26), 2(31-2) + 2-13 σ = 2(2-13) + 31-2 σ r = (2nest + cros)Ψ(σ r ).
Invoking the following formula for inversion numbers (cf. [20, Eq. ( 40)])

inv = exc + 2nest + cros, (2.37) 
we derive [START_REF] Yan | A new encoding of permutations by Laguerre histories[END_REF] proved that

2(31-2) + (2-13) σ = (inv -exc)Ψ(σ r ). ( 2 
γ n,k (q) = σ∈DD n,k q (31-2)σ+2(2-13)σ
which first appeared as the γ-coefficents of the polynomial σ∈Sn t excσ q invσ-excσ in [START_REF]Symmetric unimodal expansions of excedances in colored permutations[END_REF]. 2.7. Restricted Françon-Viennot bijection. We recall a restricted version of Françon and Viennot's bijection φ F V : S n → LH * n . Given σ ∈ S n , the Laguerre history (s, p) is defined as follows:

s i =          U if i ∈ Lval σ D if i ∈ Lpk σ L b if i ∈ Lda σ L r if i ∈ Ldd σ (2.39)
and p i = (2-31) i σ for i = 1, . . . , n.

2.8. Foata-Zeilberger bijection. This bijection φ F Z encodes permutations using cyclic statistics. Given σ ∈ S n , φ F Z : S n → LH * n is for i = 1, . . . , n, 

s i =          U if i ∈ Cval σ D if i ∈ Cpk σ L b if i ∈ Cda σ ∪ Fix σ L r if i ∈ Cdd σ ( 
(31-2) π = #{(i, j) : i + 1 < j ≤ n and π(i + 1) < π(j) < π(i)}, (2-31) π = #{(i, j) : j < i < n and π(i + 1) < π(j) < π(i)}, (2-13 
) π = #{(i, j) : j < i < n and π(i) < π(j) < π(i + 1)}, (13-2) π = #{(i, j) : i + 1 < j ≤ n and π(i) < π(j) < π(i + 1)}.

(2.41)

Similarly, we use S n (31-2) to denote the set of permutations of length n that avoid the vincular pattern 31-2, etc. In order to apply Laguerre history to count pattern-avoiding permutations, we will need the following results in [ (ii) The mapping Φ has the property that Φ(S n (231)) = S n (321).

We use 2-M n to denote the set of 2-Motzkin paths of length n and 2-M * n to denote its subset that is composed of 2-Motzkin paths without L r -step at level zero, i.e., if Proof. We just prove (1) and leave the others to the reader. If 

h i-1 = 0, then s i = L r . Let φ F V , φ F Z , ψ F V and ψ Y ZL be the restriction of φ F V , φ F Z , ψ F V
σ 1 , σ 2 ∈ S n (231), let φ F V (σ i ) = (s i , p i ) for i = 1, 2. By definition we have (2-31)σ 1 = (2-31)σ 2 = 0, which implies that p 1 = p 2 = (0, 0, • • • , 0); as φ F V is
ψ F V ψ Y ZL Ψ 2-M * n S n (231) S n (321) φ F V φ F Z Φ Figure 4. Two factorizations: ψ F V = ψ Y ZL • Ψ and φ F V = φ F Z • Φ Proof. If σ ∈ S n (213), then (2-13) i σ = 0 for i ∈ [n]
. Thus, (2-31) 1 σ = 0, and by Lemma 2.3, (2-31) i+1 σ = 1 if i + 1 is a nondescent top and (2-31) i+1 σ = 0 otherwise. By definition of Φ, we construct two biwords, f f and g g , where f (resp. g) is the subword of descent bottoms (resp. nondescent bottoms) in σ ordered increasingly, and f (resp. g ) is the permutation of descent tops (resp. nondescent tops) in σ such that the letters (resp. except 1 at the end) in f (resp. g ) are in increasing order.

Let τ = Φ(σ). It is not hard to verify that nest i (τ ) = 1 if i ∈ g \ {1} and nest i (τ ) = 0 otherwise. Thus, by (2.21), we have nest( Ψ(σ)) = 0. By Lemma 2.9, Ψ(σ) ∈ S n (321). Combining Theorems 2.10, 2.11, 2.12 and Figure 1 we obtain the diagrams in Figure 4.

Main results

For a finite set of permutations Ω and m statistics stat 1 , . . . , stat m on Ω, we define the generating polynomial

P (stat 1 ,...,statm) (Ω; t 1 , . . . , t m ) := σ∈Ω t stat 1 σ 1 . . . t statm σ m . (3.1)
We define the polynomial

A n (p, q, t) := σ∈Sn p nest σ q cros σ t exc σ . (3.2)
The following is a generalization of Stembridge's identity (1.4).

Theorem 3.1. For n ≥ 1, we have

A n (p, q, t) = 1 + xt 1 + x n-1 P (nest,cros,cpk * ,exc) S n ; p, q, (1 + x) 2 t (x + t)(1 + xt) , x + t 1 + xt , (3.3) 
equivalently,

P (nest,cros,cpk * ,exc) (S n ; p, q, x, t) = 1 + u 1 + uv n-1 A n (p, q, v), (3.4 
)

where u = 1+t 2 -2xt-(1-t) √ (1+t) 2 -4xt 2(1-x)t and v = (1+t) 2 -2xt-(1+t) √ (1+t) 2 -4xt 2xt
. By Corollary 2.2, we obtain the following linear generalization of Stembridge's identity.

Corollary 3.1. For n ≥ 1, we have

A n (p, q, t) = 1 + xt 1 + x n-1 P (2-13,31-2,pk-1,des) S n ; p, q, (1 + x) 2 t (x + t)(1 + xt) , x + t 1 + xt , (3.5) 
equivalently, P (2-13,31-2,pk-1,des) (S n ; p, q, x, t)

= 1 + u 1 + uv n-1 A n (p, q, v), (3.6) 
where u =

1+t 2 -2xt-(1-t) √ (1+t) 2 -4xt 2(1-x)t and v = (1+t) 2 -2xt-(1+t) √ (1+t) 2 -4xt 2xt .
Remark 3.2. When x = 1 or p = q = 1 we recover two special cases of (3.3) due to Brändén [3, Eq (5.1)] and Zhuang [START_REF] Zhuang | Eulerian polynomials and descent statistics[END_REF]Theorem 4.2], respectively. With Lemma 2.8 and (2.6), letting p = 0 (resp. q = 0) in Corollary 3.1, we obtain the following corollary. Corollary 3.2. For all positive integers n and each triple statistic (τ, stat 1 , stat 2 ) ∈{(213, 31-2, val), (312, 2-13, val)}, we have P (stat 1 ,des) (S n (τ ); q, t)

= 1 + xt 1 + x n-1 P (stat 1 ,stat 2 ,des) S n (τ ); q, (1 + x) 2 t (x + t)(1 + xt) , x + t 1 + xt , (3.7)
equivalently,

P (stat 1 ,stat 2 ,des) (S n (τ ); q, x, t) = 1 + u 1 + uv n-1 P (stat 1 ,des) (S n (τ ); q, v), (3.8 
) From (2.37) and (3.3) we derive the following result, which is an extension of Shin and Zeng [START_REF]Symmetric unimodal expansions of excedances in colored permutations[END_REF]Theorem 1].

where u = 1+t 2 -2xt-(1-t) √ (1+t) 2 -4xt 2(1-x)t and v = (1+t) 2 -2xt-(1+t) √ (1+t) 2 -4xt 2xt . Remark 3.
Corollary 3.3. For n ≥ 1, σ∈Sn q inv σ-exc σ t exc σ = 1 + xt 1 + x n-1 P (2-13,31-2,pk-1,des) S n ; q 2 , q, (1 + x) 2 t (x + t)(1 + xt) , x + t 1 + xt .
(3.9)

Define the cycle-refinement of the Eulerian polynomial A n (t) by

A (cyc * -fix * ,exc) n (q, t) := σ∈Sn q (cyc * -fix * ) σ t exc σ ,
we obtain a cyclic analogue of Zhuang's formula [29, Theorem 4.2].

Theorem 3.4. For n ≥ 1, we have

A (cyc * -fix * ,exc) n (q, t) = 1 + xt 1 + x n-1 P (cyc * -fix * ,cpk * ,exc) S n ; q, (1 + x) 2 t (x + t)(1 + xt) , x + t 1 + xt , (3.10) 
equivalently,

P (cyc * -fix * ,cpk * ,exc) (S n ; q, x, t) = 1 + u 1 + uv n-1 A n (q, v), (3.11 
)

where u = 1+t 2 -2xt-(1-t) √ (1+t) 2 -4xt 2(1-x)t and v = (1+t) 2 -2xt-(1+t) √ (1+t) 2 -4xt 2xt . Let p = q = 1 in (3.
3) or q = 1 in (3.10), we get the following corollary.

Corollary 3.4. For n ≥ 1, we have

A n (t) = 1 + xt 1 + x n-1 P (cpk * ,exc) S n ; (1 + x) 2 t (x + t)(1 + xt) , x + t 1 + xt , (3.12)
equivalently,

P (cpk * ,exc) (S n ; x, t) = 1 + u 1 + uv n-1 A n (v), (3.13 
)

where u = 1+t 2 -2xt-(1-t) √ (1+t) 2 -4xt 2(1-x)t and v = (1+t) 2 -2xt-(1+t) √ (1+t) 2 -4xt 2xt .
Recall that a permutation σ ∈ S n is a derangement if it has no fixed points, i.e., σ(i

) = i for all i ∈ [n]. Let D (stat 1 ,stat 2 ) n (q, t) := σ∈Dn q stat 1 σ t stat 2 σ ,
where D n is the set of derangements in S n .

Taking (p, q, tq, r) = (q, 1, t, 0) (resp. (p, q, tq, r) = (q 2 , q, tq, 0)) in Theorem 3.6 and by (2.37), we obtain the following corollary.

Corollary 3.5. For all positive integers n and for each statistic stat ∈ {nest, inv},

D (stat,exc) n (q, t) = 1 + xt 1 + x n P (stat,cpk,exc) D n ; q, (1 + x) 2 t (x + t)(1 + xt) , x + t 1 + xt , (3.14) 
equivalently,

P (stat,cpk,exc) (D n ; q, x, t) = 1 + u 1 + uv n D (stat,exc) n (q, v), (3.15) 
where u =

1+t 2 -2xt-(1-t) √ (1+t) 2 -4xt 2(1-x)t and v = (1+t) 2 -2xt-(1+t) √ (1+t) 2 -4xt 2xt
. By (2.37) and Lemma 2.9, the r = 0 case of (3.22) yields the following result in parallel with Corollary 3.5, which generalizes Lin's identity [START_REF] Lin | On γ-positive polynomials arising in pattern avoidance[END_REF]Theorem 1.4].

Corollary 3.6. For n ≥ 1, P (inv,exc) (D n (321); q, t) (3.16)

= 1 + xt 1 + x n P (inv,cpk,exc) D n (321); q, (1 + x) 2 t (x + t)(1 + xt) , x + t 1 + xt ,
equivalently,

P (inv,cpk,exc) (D n (321); q, x, t) = 1 + u 1 + uv n P (inv,exc) (D n (321); q, v), (3.17 
)

where u = 1+t 2 -2xt-(1-t) √ (1+t) 2 -4xt 2(1-x)t and v = (1+t) 2 -2xt-(1+t) √ (1+t) 2 -4xt 2xt
. Moreover, we have the the following formula. Theorem 3.5. For all positive integers n,

D (cyc,exc) n (q, t) = 1 + xt 1 + x n P (cyc,cpk,exc) D n ; q, (1 + x) 2 t (x + t)(1 + xt) , x + t 1 + xt , (3.18)
equivalently,

P (cyc,cpk,exc) (D n ; q, x, t) = 1 + u 1 + uv n D (cyc,exc) n (q, v), (3.19 
)

where u = 1+t 2 -2xt-(1-t) √ (1+t) 2 -4xt 2(1-x)t and v = (1+t) 2 -2xt-(1+t) √ (1+t) 2 -4xt 2xt .
Theorem 3.6. For n ≥ 1, P (nest,cros,exc,fix) (S n ; p, q, tq, r)

= 1 + xt 1 + x n P (nest,cros,cpk,exc,fix) S n ; p, q, (1 + x) 2 t (x + t)(1 + xt) , q(x + t) 1 + xt , (1 + x)r 1 + xt , (3.20)
equivalently, P (nest,cros,cpk,exc,fix) (S n ; p, q, x, qt, r)

= 1 + u 1 + uv n P (nest,cros,exc,fix) S n ; p, q, qv, (1 + uv)r 1 + u , (3.21 
)

where u = 1+t 2 -2xt-(1-t) √ (1+t) 2 -4xt 2(1-x)t and v = (1+t) 2 -2xt-(1+t) √ (1+t) 2 -4xt 2xt .
Remark 3.7. Cooper et al. [START_REF] Cooper | On the joint distribution of cyclic valleys and excedances over conjugacy classes of S n[END_REF]Theorem 11] have recently proved the p = q = 1 case of (3.20) by applying Sun and Wang's CMFS action [26], see (4.1).

Applying Lemma 2.9 and Theorem 3.6 with p = 0, we obtain the following result.

Corollary 3.7. For n ≥ 1, P (cros,exc,fix) (S n (321); q, tq, r)

= 1 + xt 1 + x n P (cros,cpk,exc,fix) S n (321); q, (1 + x) 2 t (x + t)(1 + xt) , q(x + t) 1 + xt , (1 + x)r 1 + xt , (3.22) equivalently, 
P (cros,cpk,exc,fix) (S n (321); q, x, qt, r)

= 1 + u 1 + uv n P (cros,exc,fix) S n (321); q, qv, (1 + uv)r 1 + u , (3.23) 
where u =

1+t 2 -2xt-(1-t) √ (1+t) 2 -4xt 2(1-x)t and v = (1+t) 2 -2xt-(1+t) √ (1+t) 2 -4xt 2xt .
Consider the generalized q-Narayana polynomials N n (t, q, r) defined by N n (t, q, r) := σ∈Sn(321)

t exc σ q inv σ r fix σ . (3.24) 
In particular, we have N n (t/q, q, 1) = σ∈Sn(321)

t exc σ q inv σ-exc σ , (3.25) 
N n (t, q, t) = σ∈Sn(321)

t wex σ q inv σ .

(3.26) Fu et al. [START_REF] Fu | q, t)-Catalan numbers: gamma expansions, pattern avoidances and the (-1)-phenomenon[END_REF] gave more interpretations of N n (t/q, q, 1) and N n (t, q, t) in terms of npermutation patterns. We further prove the following interpretations by using the (n -1)permutation patterns. 

N n (t/q, q, 1) = σ∈S n-1 (τ ) t stat 1 σ q stat 2 σ (1 + t) stat 3 σ , (3.27) 
N n (t, q, t) = t n σ∈S n-1 (τ ) (q/t) stat 1 σ q stat 2 σ (1 + q/t) stat 3 σ , (3.28) 
where five choices for the quadruples (τ, stat 1 , stat 2 , stat 3 ) are listed in Table 1.

For 0 ≤ k ≤ n, define the sets S n,k (321) = {σ ∈ S n (321) : exc σ = k, cda σ = 0}, (3.29a) 
S n,k (213) = {σ ∈ S n (213) : asc σ = k, rda σ = 0}, (3.29b) 
S n,k (312) = {σ ∈ S n (312) :

des σ = k, ldd σ = 0}, (3.29c) 
S n,k (132) = {σ ∈ S n (132) :

asc σ = k, rda σ = 0}, (3.29d) 
S n,k (231) = {σ ∈ S n (231) :

des σ = k, ldd σ = 0}, (3.29e) 
and S n (τ ) = ∪ n k=0 S n,k (τ ) for τ ∈ S 3 . Theorem 3.9. For n ≥ 1, the following q-analogue of (1.10) holds

N n (t/q, q, 1) = n-1 2 k=0 γ n-1,k (q)t k (1 + t) n-1-2k , (3.30a) 
where

γ n-1,k (q) = π∈ S n-1,k (321) 
q inv π (3.30b) = π∈ S n-1,k (231) 
q (31-2) π+des π = π∈ S n-1,k (312) 
q (2-31) π+des π (3.30c)

= π∈ S n-1,k (132) q (2-13) π+asc π = π∈ S n-1,k (213) 
q (13-2) π+asc π .

(3.30d) Theorem 3.10. For n ≥ 1, the following q-analogue of (1.10) holds

N n (t, q, t) = n+1 2 k=1 γ n-1,k-1 (q)t k (1 + t/q) n+1-2k , (3.31) 
where

γ n-1,k-1 (q) = π∈ S n-1,k (321) 
q n-1+inv π-exc π (3.32)

= π∈ S n-1,k-1 (231) q n-1+(31-2) π = π∈ S n-1,k-1 (312) q n-1+(2-31) π (3.33) = π∈ S n-1,k-1 (132) q n-1+(2-13) π = π∈ S n-1,k-1 (213)
q n-1+(13-2) π .

(3.34) Remark 3.11. Other interpretations for γ n-1,k (q) and γ n-1,k-1 (q) are given in [START_REF] Fu | q, t)-Catalan numbers: gamma expansions, pattern avoidances and the (-1)-phenomenon[END_REF][START_REF] Lin | On γ-positive polynomials arising in pattern avoidance[END_REF][START_REF] Lin | On 1212-avoiding restricted growth functions[END_REF].

Let B n be the set of permutations σ of {±1, . . . , ±n} with σ

(-i) = -σ(i) for every i ∈ [n]. From Steingrímsson [23, Definition 3], we define the excedance of σ ∈ B n by i < f σ(i) for i ∈ [n],
in the friends order < f of {±1, . . . , ±n}:

1 < f -1 < f 2 < f -2 < f • • • < f n < f -n,
and denote the number of excedances of σ by exc B (σ). Following Brenti [START_REF] Brenti | q-Eulerian polynomials arising from Coxeter groups[END_REF] we say that i ∈ {0, 1, . . . , n -1} is a B-descent of σ if σ(i) > σ(i + 1) in the natural order < of {±1, . . . , ±n}:

- and proved the following exponential g.f.

n < • • • < -2 < -1 < 1 < 2 < • • • < n,
n≥0 B n (y, t) z n n! = (1 -t)e z(1-t) 1 -te z(1-t)(1+y) = e y(t-1)z S((1 + y)z; t), (3.36) 
where S(z; t) := (1-t)e z(1-t) 1-te z(1-t) is the exponential g.f. of type A Eulerian polynomials A n (t). Our main results for the polynomials B n (y, t) are the following two theorems. Theorem 3.12. We have

B n (y, t) = σ∈Bn y neg σ t exc B σ . (3.37) Theorem 3.13. For n ≥ 1, B n (y, t) = (1 + yt) n P (cpk,exc) S n ; (1 + y) 2 t (y + t)(1 + yt) , y + t 1 + yt , (3.38a) 
equivalently,

P (cpk,exc) (S n ; y, t) = 1 (1 + uv) n B n (u, v), (3.38b) 
where u =

1+t 2 -2yt-(1-t) √ (1+t) 2 -4yt 2(1-y)t and v = (1+t) 2 -2yt-(1+t) √ (1+t) 2 -4yt 2yt .

Proofs using group actions

In this section, using group actions we shall prove Theorem 3.5 and Theorem 3.6, respectively, in the following two subsections. 4.1. Proof of Theorem 3.5. Let σ ∈ S n with convention 0-∞. For any x ∈ [n], the x-factorization of σ reads σ = w 1 w 2 xw 3 w 4 , where w 2 (resp. w 3 ) is the maximal contiguous subword immediately to the left (resp. right) of x whose letters are all smaller than x. Following Foata and Strehl [START_REF] Foata | Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers[END_REF] we define the action ϕ x by

ϕ x (σ) = w 1 w 3 xw 2 w 4 .
Note that if x is a double ascent (resp. double descent), then w 3 = ∅ (resp. w 2 = ∅), and if x is a valley then w 2 = w 3 = ∅. For instance, if x = 5 and σ = 26471583 ∈ S 7 , then w 1 = 2647, w 2 = 1, w 3 = ∅ and w 4 = 83. Thus ϕ 5 (σ) = 26475183. Clearly, ϕ x is an involution acting on S n and it is not hard to see that ϕ x and ϕ y commute for all x, y ∈ [n]. Brändén [START_REF] Brändén | Actions on permutations and unimodality of descent polynomials[END_REF] modified the map ϕ x to be

ϕ x (σ) := ϕ x (σ) if x is not a peak of σ, σ if x is a peak of σ.
It is clear that ϕ x is involution and commutes with ϕ y for x = y. For any subset S ⊆ [n] with S = {x 1 , . . . , x r } we then define the map ϕ S : S n → S n by

ϕ S (σ) = x∈S ϕ x (σ)
where x∈S ϕ x = ϕ x 1 • • • • • ϕ xr .
Hence the group Z n 2 acts on S n via the functions ϕ S , S ⊆ [n]. This action is called the Modified Foata-Strehl action (MFS-action for short).

Recall that a permutation σ ∈ S n can be factorized into distinct cycles, say C 1 , C 2 , • • • , C k , where each cycle C can be written as a sequence C = (a, σ(a), . . . , σ r-1 ((a)) with σ r (a) = a for some a, r ∈ [n]. We say that stan(σ

) := C 1 C 2 • • • C k is the standard cycle representation of σ if
• the largest element of each cycle is at the first position,

• the cycles are arranged in increasing order according to their largest elements.

We define ι(σ) to be the permutation obtained from stan(σ) by erasing the parentheses of cycles. For example, for σ = 26471583 ∈ D 8 , then stan(σ) = (6512)(8347) and ι(σ) = 65128347.

In this section, we consider the statistics of ι(σ) with the convention 0-∞.

Lemma 4.1. For σ ∈ D n , we have

cval σ =lval ι(σ) = lpk T (σ) = cpk σ, lda ι(σ) = exc σ -cpk σ, ldd ι(σ) =n -cpk σ -exc σ, lda ι(σ) + ldd ι(σ) = n -2cpk σ.
Proof. The first two identities are easily seen by the definitions of σ and ι(σ). For the third identity,

ldd ι(σ) =n -(lpk ι(σ) + lval ι(σ) + lda ι(σ)) =n -(cpk σ + cval σ + exc σ -cval σ) =n -cpk σ -exc σ.
With the second and third identities, the fourth identity can be derived directly.

For σ ∈ D n , define the map τ c x :

D n → D n by τ c x (σ) := ι -1 (ϕ x (ι(σ))). It is easy to see that τ c
x is an involution and commutes with τ Remark 4.2. The CMFS-action divides the set D n into disjoint orbits. Moreover, for σ ∈ D n , x is a double drop (resp. double excedance) of σ if and only if x is a double excedance (resp.double drop) of τ c x (σ). A double drop (resp. double excedance) x of σ remains a double drop (resp. double excedance) of τ c y (σ) for any y = x. Hence, there is a unique permutation in each orbit which has no double excedance. Let σ be this unique element in Orb(σ), and for any other σ ∈ Orb(σ), it can be obtained from σ by repeatedly applying τ c

x for some double drop x of σ. Each time this happens, exc increases by 1 and cdd decreases by 1. Thus by Lemma 4.1, we have

σ∈Orb σ t exc σ = t exc σ(1 + t) cdd σ = t cpk σ(1 + t) n-2cpk σ. (4.2)
We obtain gamma expansion of derangement polynomials immediately by summing over all the orbits that form D n .

We can give a more general version of Theorem 3.5. For any subset Π ⊆ S n let

A (exc,cyc) (Π; w, t) := σ∈Π w cyc σ t exc σ .
The set Π is invariant under the CMFS-action if τ c S (σ) ∈ Π for any σ ∈ Π and any S ⊆ [n]. Theorem 4.3. If Π ⊆ D n is invariant under the CMFS-action, then

A (cyc,exc) (Π; w, t) = 1 + xt 1 + x n P (cyc,cpk,exc) Π; w, (1 + x) 2 t (x + t)(1 + xt) , x + t 1 + xt , (4.3) 
equivalently, P (cyc,cpk,exc) (Π; x, t, w) = 1 + u 1 + uv n+1 A (cyc,exc) (Π; w, v),

where u = 1+t 2 -2xt-(1-t) √ (1+t) 2 -4xt 2(1-x)t and v = (1+t) 2 -2xt-(1+t) √ (1+t) 2 -4xt 2xt .
First we prove the following identity. Lemma 4.4. Let σ ∈ D n . We have

(1 + x) cda σ+cdd σ σ ∈Orb(σ) t exc σ = σ ∈Orb(σ) (1 + xt) cdd σ (x + t) cda σ t cval σ . (4.4)
Proof. Let j = cda σ + cdd σ. By (4.2) the left-hand side of (4.4) is equal to

(1 + x) j t cval σ(1 + t) j = t cval σ(1 + xt + x + t) j .
Let J(σ) be the set of indices of double excedances and double drops of σ, i.e., J(σ) := {i ∈ [n] : σ(i) is a double excedance or double drop}.

Clearly |J(σ)| = j. By (4.1) CMFS-action establishes a bijection from the set of subsets of J(σ) to Orb(σ) such that if S ⊂ J(σ) then |S| = cdd σ with σ = τ c S (σ). Hence the right-hand side of (4.4) is equal to

t cvalσ S⊂J(σ) (1 + xt) |S| (x + t) j-|S| .
Eq. (4.4) follows then from S⊂

[j] (1 + xt) |S| (x + t) j-|S| = (1 + xt + x + t) j .
Proof of Theorem 4.3. With Lemma 4.1 and Eq. (4.4), we have σ ∈Orb(σ)

t exc σ (1 + x) n-2cpk σ = σ ∈Orb(σ) (1 + xt) n-exc σ -cpk σ (x + t) exc σ -cpk σ t cpk σ , which is equivalent to σ ∈Orb(σ) t exc σ = σ ∈Orb(σ) (1 + xt) n-exc σ -cpk σ (x + t) exc σ -cpk σ t cpk σ (1 + x) n-2cpk σ .
Then, summing over all the orbits leads to

σ∈Π t exc σ = σ∈Π (1 + xt) n-exc σ-cpk σ (x + t) exc σ-cpk σ t cpk σ (1 + x) n-2cpk σ .
For σ ∈ Orb(σ), first we have cyc(σ ) = cyc(σ). From the definition of o(σ), we have cyc(σ) is equal to the number of left-to-right maximum of o(σ). It is easy to see that the number of left-to-right maximum is invariant under MFS-action. Thus the number cyc(σ ) is invariant for any σ ∈ Orb(σ). Therefore,

σ∈Π t exc σ w cyc σ = σ∈Π (1 + xt) n-exc σ-cpk σ (x + t) exc σ-cpk σ t cpk σ (1 + x) n-2cpk σ w cyc σ = 1 + xt 1 + x n P (cpk,exc,cyc) Π; (1 + x) 2 t (x + t)(1 + xt) , x + t 1 + xt , w .
The proof is completed. A variant restricted Laguerre history of length n is a pair (s, p), where s is a 3-Motzkin path s 1 . . . s n and p = (p 1 , . . . , p n ) with 0

≤ p i ≤ h i-1 (s) if s i = U, 0 ≤ p i ≤ h i-1 (s) -1 if s i = D, L b , L r and p i = h i-1 if s i = L y
with h 0 (s) = 0. Let LH n be the set of variant restricted Laguerre histories of length n.

We use a variant of Foata-Zeilberger's bijection φ F Z : S n → LH n (cf. (2.40)). Given σ ∈ S n , we construct the variant restricted Laguerre history φ F Z (σ) := (s, p) ∈ LH n as follows. For i = 1, . . . , n, let

s i =              U if i ∈ Cval σ, D if i ∈ Cpk σ, L r if i ∈ Cdd σ, L b if i ∈ Cda σ, L y if i ∈ Fix σ, (4.6) with p i = nest i σ. Lemma 4.6. If φ F Z (σ) = (s, p) ∈ LH n with σ ∈ S n , then Fix σ = L y (s), (4.7a 
)

Exc σ = L b (s) ∪ U(s), (4.7b 
)

nest σ = n i=1 p i , (4.7c 
)

exc σ + cros σ + nest σ = n i=1 h i-1 (s), (4.7d) 
where Exc σ denotes the set of excedances of σ.

Proof. From the construction of φ F Z , it is easy to see (4.7a)-(4.7c). Define

exc i σ = 1 if σ(i) > i, 0 if σ(i) ≤ i.
By inductions on i ∈ [n] we verify that

exc i σ + nest i σ + cros i σ =            h i-1 (s) + 1, if s i = U, h i-1 (s) if s i = L r , h i-1 (s) -1 if s i = D, h i-1 (s) if s i = L b , h i-1 (s) if s i = L y . (4.8) 
This implies (4.7d) immediately.

We define a Z n 2 -action on LH n , which is similar to Yan-Zhou-Lin's group action on LH n in [START_REF] Yan | A new encoding of permutations by Laguerre histories[END_REF] and a generalization of Lin's group action on 2-M * n in [START_REF] Lin | On γ-positive polynomials arising in pattern avoidance[END_REF]. Let i ∈ [n] and (s, p) ∈ LH n . Define the group action θ i as follows, Summing over all the orbits leads to By Lemma 4.6, as the bijection φ F Z maps S n,j to R n,j with corresponding statistics, we can rewrite (4.13) as σ∈S n,j p nest σ q cros σ+exc σ t exc σ (4.14)

θ i ((s, p)) = (s, p) if i ∈ L y (s), ( s 

=

σ∈S n,j p nest σ q cros σ+exc σ (1 + xt) n-j-exc σ-cpk σ (x + t) exc σ-cpk σ t cpk σ (1 + x) n-j-2cpk σ = 1 + xt 1 + x n-j P (nest,cros,cpk,exc) S n,j ; p, q, (1 + x) 2 t (x + t)(1 + xt) , q(x + t) 1 + xt .

Multiplying (4.14) by r j and summing over j yields (3.20). By using the substitution u = (1+x 2 )t (x+t)(1+xt) and v = x+t 1+xt as in (3.20), we obtain (3.21) immediately.

Remark 4.8. We show that Eq. (4.13) implies also two other known results in the litterature. When x = 1 Eq.(4.13) reduces to (s,p)∈R n,j p |p| q h(s)-|p| t |s| L b +|s| U = (s,p)∈R n,j p |p| q h(s)-|p| (1 + t) n-j-2|s| U t |s| U 2 n-j-2|s| U . By the group action on R n,j , we see that there are 2 n-j-2|s| U elements in each orbit, and then p nest σ q cros σ+exc σ t k (1 + t) n-j-2k , (4.17

)
where S n,k,j = {σ ∈ S n , cpk σ = k, fix σ = j, cda σ = 0}.

By Lemma 2.9 and (2.37), letting p = 0 in (4.17) yields Theorem 2.4 in [START_REF] Lin | On γ-positive polynomials arising in pattern avoidance[END_REF],

σ∈Sn

t exc σ q inv σ r fix σ Note that when r = 1 + t, Eq. (4.18) reduces to Eq. (3.30a) with the γ-coefficients in (3.30b)-(3.30d).

Proofs via continued fractions

For convenience, we use the following compact notation for the J-type continued fraction

J[z; b n , λ n ] = 1 1 -b 0 z - λ 1 z 2 1 -b 1 z - λ 2 z 2 1 -b 2 z - λ 3 z 2 1 -• • • .
(5.1)

We shall use the notation [n] p,q := (p n -q n )/(p -q) for n ∈ N.

It follows from (5.17) that N n (t, q, t) = t n N n-1 (q/t, q, 1 + q/t).

(5.18)

In view of (3.24) identities (5.17) and (5.18) provide the first interpretation in Table 1.

Other interpretations in Table 1 can be derived from the equidistribution results in (2.7a) and (2.11a)-(2.11d)

Proof of Theorem 3.9. By Lemma 2.9, (2.37) and (5.4), we have B n (0, q, tq, 1, 0, 1, 1) = σ∈ Sn(321)

q inv σ t exc σ .

( 

q inv σ t exc σ z n = 1 1 -z - tqz 2 
1 -qz -tq 3 z 2

1 -q 2 z -tq 5 z 2 . . . 1 -(1 + t)q 2 z -tq 5 z 2 . . .

. ( 5 
= 1 1 -z - tz 2 
1 -(q + t)z -tq 2 z 2

1 -(q + t)qz -tq 4 z 2 • • • , which is equal to n≥0 N n (t/q, q, 1)z n by (5.15). Other interpretations can be obtained by the equidistribution results of (2.7a) and (2.11a)-(2.11d).

Lemma

  

Corollary 2 . 1 (

 21 Shin-Zeng). For σ ∈ S n we have (2-13, 31-2, des, asc, da, dd, val)σ =(nest, cros, drop * -1, wex * , cda * + fix * , cdd * , cval * )Ψ(σ).

Figure 3 .

 3 Figure 3. Illustration of Ψ on DD 4,k with their statistics.

  (2.31) with p i = nest i σ. Comparing (2.30) and (2.31) it suffices to show that for σ ∈ S n+1 , (Scval, Scpk, Scdn, Scda)σ = (Cval * , Cpk * , Cdd * , Cda * ∪ Fix * )σ.

  2.40) with p i = nest i σ. By (2.7b) and (2.7c), we can build a comutative diagram, see the right diagram of Figure 1. 2.9. Pattern avoidances and 2-Motzkin paths. We shall consider the so-called vincular patterns [2]. The number of occurrences of vincular patterns 31-2, 2-31, 2-13 and 13-2 in π ∈ S n are defined (cf. (2.1)) by

  and ψ Y ZL on the sets S n (231), S n (321), S n+1 (213) and S n+1 (321), respectively. Theorem 2.10. We have (1) The mapping φ F V is a bijection from S n (231) to 2-M * n . (2) The mapping φ F Z is a bijection from S n (321) to 2-M * n . (3) The mapping ψ F V is a bijection from S n (213) to 2-M n . (4) The mapping ψ Y ZL is a bijection from S n (321) to 2-M n .

For σ 1

 1 , σ 2 ∈ S n (213), since Ψ is a bijection, we have Ψ(σ 1 ) = Ψ(σ 2 ). And |S n (213)| = |S n (321)| = C n , so Ψ is a bijection from S n (213) to S n (321).

Example 2 . 13 . 8 ,

 2138 If σ = 1 6 8 9 7 2 5 3 4, then σ = 2 7 9 10 8 3 6 4 5 1, and reading from left to right, we obtain the corresponding numbers (2-31) i : 1, 1, 1, 0, 0, 1, 0, 1, 0, 0 for i = 2, 7, . . . , and Ψ(σ) = τ (2) . . . τ (10) = 2 5 6 1 3 7 4 9 8.

3 .

 3 When x = 1, (3.7) reduces to [14, Eqs. (1.5) and (1.6)]. When (τ, stat 1 , stat 2 ) = (213, 31-2, val) and q = 1, (3.7) reduces to [29, Corollary 5.3].

  where σ(0) = 0. Denote the number of B-descents of σ by des B (σ). Brenti [4, Theorem 3.4] considered the Eulerian polynomials of type B B n (y, t) := σ∈Bn y neg σ t des B σ (3.35)
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 175 Figure 5. CMFS-actions on (6512)(8347)

Remark 4 . 5 . 3 . 4 . 2 .

 45342 Recently, using the joint distribution of the cyclic valley number and excedance number statistics Cooper, Jones and Zhuang[START_REF] Cooper | On the joint distribution of cyclic valleys and excedances over conjugacy classes of S n[END_REF] have generalized the formula of Stembridge by applying Sun and Wang's CMFS-action. In particular they also obtained the w = 1 case of Theorem 4.Proof of Theorem 3.6. For our purpose we define a 3-Motzkin path of length n as a word s := s 1 . . . s n on the alphabet {U, D, L y , L b , L r } such that |s 1 . . . s n | U = [s 1 . . . s n | D and the height of the ith step is nonnegative, i.e.,h i (s) := |s 1 . . . s i | U -[s 1 . . . s i | D ≥ 0 (i = 1, . . . , n),(4.5) where |s 1 . . . s i | U is the number of letters U in the word s 1 . . . s i . Let α(s) := {i ∈ [n] : s i = α} for α ∈ {U, D, L y , L b , L r }.

( 1 +( 1 +( 1 +

 111 , p) otherwise, where s is the 3-Motzkin path obtained from s by changing s i as L b ↔ L r . For any subset S ⊆ [n] define the mapping θ S : LH n → LH n by θ S ((s, p)) = i∈S θ i ((s, p)).(4.9)Hence the group Z n 2 acts on LH n via the function θ S . Note that the three sequences L y (s), p and (h 0 (s), . . . , (h n-1 (s)) are invariant under the group action. This action divides the set LH n into disjoint orbits and each orbit has a unique restricted Laguerre history whose level steps are = L y or L b . For any fixed (s, p)∈ LH n let Orb((s, p)) := { θ S ((s, p)) | S ⊆ [n] }. For 0 ≤ j ≤ n we define S n,j = {σ ∈ S n : fixσ = j}, (4.10a) R n,j = {(s, p) ∈ LH n : |s| Ly = j}. (4.10b)where |s| a means the number of letters a in the word s.Lemma 4.7. Let (s, p) ∈ R n,j . We have(1 + x) |s| L b +|s| Lr (s ,p)∈Orb(s,p) t |s | L b = (s ,p)∈Orb(s,p) xt) |s | Lr (x + t) |s | L b .(4.11)Proof. Let L(s) = {i ∈ [n] : s i = L b or s i = L r } with cardinality = |s| Lr + |s| L b . By (4.9), the group action establishes a bijection from the set of subsets of L(s) to Orb(s, p) such that if S ⊂ L(s) then S = L r (s ) with (s , p) = θ S ((s, p)). Eq. (4.11) is equivalent to(1 + x) S⊂L(s) t |S| = S⊂L(s) (1 + xt) |S| (x + t) -|S| , namely, (1 + x) • (1 + t) = (1 + xt + x + t) .Proof of Theorem 3.6. For (s, p) ∈ R n,j , since 2|s| U + |s| Lr + |s| L b + j = n, by (4.11), we have(1 + x) n-j-2|s | U (s ,p)∈Orb(s,p) t |s | L b (4.12) = (s ,p)∈Orb(s,p) xt) n-j-2|s | U -|s | L b (x + t) |s | L b ,that is, (s ,p)∈Orb(s,p) t |s | L b = (s , p)∈Orb(s,p) xt) n-j-2|s | U -|s | L b (x + t) |s | L b (1 + x) n-j-2|s | U .

(( 1 +

 1 s,p)∈R n,jt |s| L b = (s,p)∈R n,j xt) n-j-2|s| U -|s| L b (x + t) |s| L b (1 + x) n-j-2|s| U .Since U(s), p and (h 0 (s), . . . , h n-1 (s)) are invariant under the group action, (s,p)∈R n,jp |p| q h(s)-|p| t |s| L b +|s| U = (s,p)∈R n,j p |p| q h(s)-|p| (1 + xt) n-j-2|s| U -|s| L b (x + t) |s| L b t |s| U (1 + x) n-j-2|s| U . (4.13) 

  k,j = {(s, p) ∈ R n,j : |s| L b = 0 and |s| U = k}.

2

  n-2k-j |O n,k,j | = |{(s, p) ∈ R n,j : |s| U = k}|. Hence (4.15) is equivalent to (s,p)∈R n,j p |p| q h(s)-|p| t |s| Lr +|s| U = n k=0 (s,p)∈O n,j,k p |p| q h(s)-|p| (1 + t) n-j-2k t k . (4.16)Thanks to the bijection φ F Z and (4.7a)-(4.7d) we obtain Theorem 8 in[START_REF]The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF], π∈Sn (tq) exc π p nest π q cros π r fix π



  t k (1 + t) n-j-2k , (4.18)where S n,k,j (321) := {σ ∈ S n (321) : fix σ = j, exc σ = k, cda σ = 0}.

. 20 ) 1 -

 201 Now, the g.f. of the right-hand side of Eq. (3.30a) isGF : t)z) n .By (5.20) and Lemma 5.1 we see thatGF = 1 + z 1 -(1 + t)z -tqz 2 (1 + t)qz -tq 3 z 2

  2.1 (Shin-Zeng ). For σ ∈ S n , we have

	2.3. The bijection Ψ. Given a permutation σ ∈ S n , let										
				σ =	1 σ(1) + 1 σ(2) + 1 . . . σ(n) + 1 2 . . . n	n + 1 1	,					(2.8)
	and τ := Φ(σ) ∈ S n+1 . Since the last element of σ is 1, the first element of τ should be
	n + 1. Define the bijection Ψ : S n → S n by														
							Ψ(σ) := τ (2) . . . τ (n + 1) ∈ S n .									(2.9)
	Example 2.2. If σ = 4 1 2 7 9 6 5 8 3, then σ = 5 2 3 8 10 7 6 9 4 1, and reading
	from left to right, we obtain the corresponding numbers (2-31) i σ : 1, 1, 1, 2, 0, 1, 1, 0, 0, 0 for
	i = 5, 2, . . . , 1, and																							
				f f	=		1 4	2 9	4 5	6 7	7 10	,		g g	=	3 2	5 3	8 8	9 6	10 1	.					
	Hence																									
	w =	f f	g g	=	1 4	2 9	4 5	6 7	7 10	3 2	5 3	8 8	9 6	10 1	→	10 1	3 2	5 3	1 4	4 5	9 6	6 7	8 8	2 9	7 10	.
			(2-31, 31-2, des, asc, lda -fmax, ldd, lval, lpk, fmax)σ						
			=(nest, icr, drop, exc + fix, cda, cdd, cval, cpk, fix)Φ(σ)						(2.7a)
			=(nest, cros, exc, drop + fix, cdd, cda, cval, cpk, fix)(Φ(σ)) -1 ,				
			(Lval, Lpk, Lda, Ldd)σ = (Cval, Cpk, Cda ∪ Fix, Cdd)Φ(σ),				(2.7b)
	and																									
						(2-31) i σ = nest i Φ(σ) ∀i = 1, . . . , n.								(2.7c)

  Laguerre history (s, p) of lenth 8. on the alphabet {U, D, L r , L b } such that |s 1 . . . s n | U = [s 1 . . . s n | D and the height of the ith step is nonnegative, i.e.,

h i (s) := |s 1 . . . s i | U -[s 1 . . . s i | D ≥ 0 (i = 1, . . . , n),

(2.27

) where |s 1 . . . s i | U is the number of letters U in the word s 1 . . . s i . By (1.8a) we see that the number of 2-Motzkin paths of length n is the Catalan number C n+1 . A Laguerre history (resp. restricted Laguerre history) of length n is a pair (s, p), where s is a 2-Motzkin path s 1 . . . s n and p = (p 1 , . . . , p n

  .33) Corollary 2.2. The two sextuple statistics (nest, cros, exc, cdd * , cda * + fix * , cpk * ) and (2-13, 31-2, des, da, dd, pk -1)are equidistributed on S n . Proof. For σ ∈ S n , let τ = ψ -1 • θ • ψ F V (σ).It follows from (2.33), (2.28) and (2.31) that (Val, Pk n , Dd, Da, (2-13

  Hence, if dd(σ) = (cda * + fix * )Ψ(σ) = 0, from (2.26) we see that σ ∈ DD n,k if and only if Ψ(σ r ) ∈ DE * n,k . By (2.38) this implies (2.36b). Finally, we derive (2.36c) from (2.32). Remark 2.7. Yang-Zhou-Lin

	.38)
	Besides, by (2.26) and (2.32) we have

(des, dd)σ = (asc, da)σ r = (wex * , cda * + fix * )Ψ(σ r ) = (cval * + cda * + fix * , cda * + fix * )Ψ(σ r ).

  Lemma 2.8. [14, Lemma 2.8] For any n ≥ 1, we have S n (2-13) = S n (213), S n (31-2) = S n (312), A permutation π ∈ S n belongs to S n (321) if and only if nestπ = 0.

		(2.42)
	S n (13-2) = S n (132), S n (2-31) = S n (231).	(2.43)
	Lemma 2.9. [14, Lemma 2.9]	
	(i)	

14, Lemma 2.8 and 2.9].

  a bijection, we derive that s 1 = s 2 . Hence, the mapping φ F V is an injection from S n (231) to 2-M * * n |z n has the continued fraction expansion (1.8b) with t = 1, we derive that |S n (231)| = |2-M * n | = C n . Thus, the mapping φ F V is a bijection. Theorem 2.11. Let Φ be the restriction of Φ on S n (231). Then Φ is a bijection from S n (231) to S n (321). Moreover, for σ ∈ S n (231), we have (31-2, des, asc, ldafmax, ldd, lval, lpk, fmax) σ By Lemma 2.9, we derive that τ ∈ S n (321). For σ 1 , σ 2 ∈ S n (231), since Φ is a bijection, we have Φ(σ 1 ) = Φ(σ 2 ). And |S n (231)| = |S n (321)| = C n , so Φ is a bijection from S n (231) to S n (321).

	2-M n	
	S n+1 (213)	S n+1 (321)
	=(icr, drop, exc + fix, cda, cdd, cval, cpk, fix) Φ(σ)	(2.44)
		Finally, the equidistribution (2.44) follows
	from Lemma 2.1.	

n . Noticing that the g.f. n≥0 |2-M =(cros, exc, drop + fix, cdd, cda, cval, cpk, fix)( Φ(σ)) -1 .

Proof. For σ ∈ S n (231), we have (2-31) i = 0 for i ∈ [n]. So the inversion bottom (resp. top) number of each letter in f (resp. g ) equals 0. Let τ = Φ(σ). By definition of Φ (cf. Section 2.2) the letters in f (resp. g ) are in increasing order. It is not hard to verify that nest i (τ ) = 0 for each i ∈ [n].

Theorem 2.12. Let Ψ be the restriction of Ψ on S n (213). Then Ψ is a bijection from S n (213) to S n (321).

Table 1 .

 1 Five choices of (τ, stat 1 , stat 2 , stat 3 ) Theorem 3.8. For n ≥ 1, the following identities hold

	# τ stat 1	stat 2	stat 3
	1 321 exc	inv	fix
	2 231 des des + 31-2 fmax
	3 132 asc asc + 2-13 amax
	4 312 des des + 2-31 amin
	5 213 asc asc + 13-2 fmin

Our definition of cros corresponds to icr in[START_REF] Fu | q, t)-Catalan numbers: gamma expansions, pattern avoidances and the (-1)-phenomenon[END_REF].
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5.1. Some combinatorial continued fractions. We first recall a standard contraction formula for continued fractions, see [START_REF] Shin | The q-tangent and q-secant numbers via continued fractions[END_REF]Eq. (44)].

Lemma 5.1 (Contraction formula). The following contraction formulae hold

The following four combinatorial continued fraction expansions are proved by Shin and Zeng [START_REF]The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF]. Let A n (p, q, t, u, v, w) := σ∈Sn p nest σ q cros σ t exc σ u cdd * σ v cda * +fix * σ w cpk * σ

(5.2a) = σ∈Sn p (2-13) σ q (31-2) σ t des σ u da σ v dd σ w pk σ-1 , (5.2b)

where the equality of the two enumerative polynomials follows from Lemma (2.2).

Lemma 5.2. [21, Eq. ( 28)] We have

)

(5.7b) Let D n (q, t, u, v, w) := σ∈Dn q cyc σ t exc σ u cda σ v cdd σ w cval σ .

(5.8)

Lemma 5.5. [21, Eq. ( 41)] We have

with b n = n(tu + v), λ n = n(q + n -1)tw.

(5.9b) 5.2. Proof of Theorems 3.1, 3.4-3.6, 3.8-3.10. In the previous section Theorems 3.1 and 3.7 are proved using group actions. Here we shall give an alternative proof for Theorems 3.1 and 3.7 using continued fractions.

Proof of Theorem 3.1. In view of (5.3a), we have

It follows that

(5.10b)

When x = 1 we have the J-fraction for ∞ n=0 A n+1 (p, q, t)z n . The g.f. of the right side of Eq. (3.3) is n≥0 P (nest,cros,cpk * ,exc) S n+1 ; p, q,

Substituting t, x and z, respectively, by

10a), we obtain the J-fraction of ∞ n=0 A n+1 (p, q, t)z n . Proof of Theorem 3.4. By Eq. (5.6), the g.f. of the left side of Eq. (3.10) is

By definition, the g.f. of the right side of Eq. (3.10) is n≥0

and z(1+xt) (1+x) to t, x and z in (5.7a), respectively, we obtain (5.11a) immediately.

Proof of Theorem 3.5. Letting u = v = w = 1 in Eq. (5.9a), we see that the g.f. of the left side of Eq. (3.18) is

On the other hand, the g.f. of the right side of Eq. (3.18) is n≥0

Letting u = v = 1 in (5.9a) and substituting t, w and z with

and

respectively, we obtain the J-fraction in (5.12a) immediately.

Proof of Theorem 3.6. We prove that both sides of Eq. (3.20) have the same g.f. by comparing their continued fraction expansions. By (5.4), we have B n (p, q, qt, 1, 1, 1, r) = P (nest,cros,exc,fix) (S n ; p, q, tq, r).

It follows from Eq. (5.5a) that n≥0 P (nest,cros,exc,fix) (S n ; p, q, tq, r)

(5.13b)

On the other hand, by definition and invoking the equality cpk = cval (cf. (2.3)), the g.f. of the right-hand side of Eq. (3.20) is

In Eq. (5.5a) letting u = v = 1 and making the substitution

we see that the g.f. (5.14) has the same J-fraction expansion as (5.13a).

Proof of Theorem 3.8.

which is n≥0 N n (t/q, q, 1)z n by applying Lemma 5.1. Thus N n (t/q, q, 1) = N n-1 (t, q, 1 + t).

(5.17) By (2.5) and and Lemma 2.9, we see that π ∈ S n (321) if and only if π -1 ∈ S n (321). As wex π -1 = n -drop π -1 = n -excπ and inv π -1 = inv π we have

(1/t) exc π q inv π = t n N n (1/t, q, 1).

Proof of Theorem 3.10. The g.f. of the right side of (3.31) can be written as

(5.21)

By using the second claim of Lemma 2.9, Eq.(2.37) and (5.4), we have

q inv σ-exc σ t exc σ , Lemma 5.3 implies that ∞ n=0 σ∈ Sn(321)

Making the substitution z → (q + t)z and t → tq 2 /(q + t) 2 in the above equation and applying the contarction formulae, we obtain

which is equal to n≥0 N n (t, q, t)z n by (5.15). Other interpretations can be obtained by the equidistribution results of (2.7a) and (2.11a)-(2.11d).

5.3.

Proof of Theorems 3.12 and 3.13. Recall the color order < c of {±1, . . . , ±n}:

and define the following statistics:

Let F n (q, t, w, r, y) = σ∈Bn q cros σ t wex A σ w wex C σ r fix σ y neg σ .

The following result is the r = 2 case of [START_REF]Symmetric unimodal expansions of excedances in colored permutations[END_REF]Lemma 16].

Lemma 5.6. We have

with

We need the following lemma, see [START_REF] Zeng | Énumérations de permutations et J-fractions continues[END_REF]Lemma 12] and [15, p. 307 

Proof of Theorem 3.12. Since exc = (wex A -fix) + wex C , see [22, Eq. (4.5)], we have