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Abstract

Group codes are right or left ideals in a group algebra of a finite group
over a finite field. Following the ideas of a paper on binary group codes by
Bazzi and Mitter in 2006, we prove that group codes over finite fields of any
characteristic are asymptotically good.
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1. Introduction

Let F be a finite field of characteristic p and let G be a finite group. By
a group code or, more precisely, a G-code we denote a right or left ideal in
the group algebra FG1. Many interesting linear codes are group codes. For
example, cyclic codes of length n are group codes for a cyclic group Cn; Reed-
Muller codes are group codes for an elementary abelian p-group [4, 8]; the
binary extended self-dual [24, 12, 8] Golay code is a group code for the sym-
metric group S4 on 4 letters [5] and the dihedral group D24 of order 24 [15].
Many best known codes are group codes as well. For instance, F5(C6 × C6)
contains a [36, 28, 6] and F5(C12 × C6) a [72, 62, 6] group code [14]. Both
codes improved earlier examples in Grassl’s list [12].

1In the literature a block code is often also called a group code if the underlying alphabet
is a finite group.
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Already in 1965, Assmus, Mattson and Turyn [2] asked the question
whether the class of cyclic codes, i.e., the class of group codes over cyclic
groups, is asymptotically good. The answer is still open. In [3], Bazzi and
Mitter proved that the class of group codes over the binary field is asymp-
totically good. Using the trivial fact that by field extensions neither the
dimension nor the minimum distance changes, group codes are asymptoti-
cally good in characteristic 2. In this note we use the ideas of Bazzi and
Mitter to prove our main result.

Theorem. Group codes over fields are asymptotically good in any charac-
teristic.

The proof mainly follows the lines of [3] and does not distinguish between
the prime p = 2 and p odd for the characteristic of the underlying field.

Note that, very recently, it has been shown that metacylic codes are
asymptotically good [7]. In the present paper the codes considered are meta-
cylic too and the characteristic of the field is related to the cardinality of
the group, which is a sort of restriction. However, the results in [7] rely on
a variant of Artin’s primitive root conjecture being true, which is currently
only guaranteed on assuming the GRH, whereas the results of the present
paper are unconditional.

For different primes p 6= q let sp(q) denote the order of p modulo q. In
order to construct a sequence of particular binary group algebras over dihe-
dral groups, in [3] the authors need a set of primes q with 2 | s2(q) which
has positive density in the set of all primes. Such a set is obviously given by
all primes q ≡ ±5 mod 8. For odd primes p the analog is far less obvious,
but has already been proved by Wiertelak in 1977 (see [16]). In the following
unified proof (i.e., p any prime) we heavily use results from modular repre-
sentation theory.

In the following, FG = {a =
∑

g∈G agg | ag ∈ G} always denotes the
group algebra of a finite group G over F. The vector space FG with basis
g ∈ G serves as the ambient space of linear codes C with the weight function
wt(a) = |{g ∈ G | ag 6= 0}|. In particular dimFG = |G| and C has length
|G|. Moreover FG carries in a natural way an F-algebra structure via the
multiplication in G. More precisely, if a =

∑
g∈G agg and b =

∑
g∈G bgg are
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given, then

ab =
∑
g∈G

(
∑
h∈G

ahbh−1g)g.

Thus we may look at those linear codes C in FG which are invariant under G
from the left or right, i.e., the left or right ideals of FG which we call group
codes or G-codes. Since the F-algebra antiautomorphism on FG given by
g 7→ g−1 defines a weight preserving map from the set of left ideals to the set
of right ideals we may stick on the left ideals.

In the next section we analyze the algebra structure of FpG where Fp is
a field of prime order p and G is a particular group of order qp for a prime
q 6= p. In particular, we determine all minimal left ideals. In FpG we look at
the set I of left ideals Iq = M1 ⊕ · · · ⊕Ms where the Mi are irreducible and
taken from the different p-blocks of FpG. Choosing the prime q carefully with
q1 < q2 < · · · and taking the Mi randomly we are able to find in Section 3
ideals Iqi all with minimum distance at least δ > 0 and dimension at least
1
p
− 1

pq1
> 0.

2. The structure of the group algebra FpGp,q,m

Let p be a fixed prime and let q be a prime such that p divides q − 1
(there are infinitely many such q, by Dirichlet’s Theorem). For m ∈ N such
that m 6≡ 1 mod q and mp ≡ 1 mod q, we define the group Gp,q,m by

Gp,q,m := 〈α, β | αp = βq = 1, αβα−1 = βm〉 = 〈β〉o 〈α〉. (1)

Note that Gp,q,m is a nonabelian metacyclic group. In the case p = 2 and
m = q − 1 the group G2,q,q−1 is a dihedral group which has been considered
in [3] to prove the Theorem over the binary field F2.

Next we put N := 〈β〉 and Q := FpN . Any element r of FpGp,q,m can
uniquely be written as

r = r0 + αr1 + · · ·+ αp−1rp−1

with r0, . . . , rp−1 ∈ Q. If a =
∑q−1

i=0 aiβ
i (with ai ∈ Fp) is an element of Q,

we define â by

â :=

q−1∑
i=0

aiβ
i·m
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Clearly, the mapˆ: Q→ Q is an Fp-algebra automorphism. From the relation
αβ = βmα we get αβi = βi·mα for all i ∈ {0, . . . , q − 1}, so that

αa = âα

for all a ∈ Q.
Now we realize Q as Fp[x]/〈xq − 1〉. Since Q is a semisimple algebra by

Maschke’s Theorem ([1], p. 116), we have, due to Wedderburn’s Theorem
([1], Chap. 5, Sect. 13, Theorem 16), a unique decomposition

Q =
s⊕
i=0

Qi

into 2-sided ideals Qi, where each Qi is a simple algebra over Fp. If

xq − 1 =
s∏
i=0

fi

is a factorization of xq − 1 into irreducible polynomials fi ∈ Fp[x], then

Qi =

〈
xq − 1

fi

〉
∼= Fp[x]/〈fi〉 ∼= Fpdeg fi .

We may suppose that f0 = x− 1, so that Q0 = 〈1 + . . .+ xq−1〉 ∼= Fp.
Now let ζq be a primitive q-th root of unity in an extension field of Fp. It is
well-known by basic Galois theory that, for every i ∈ {1, . . . , s}, there exists
exactly one coset Ai in F×q /〈p〉 such that

fi =
∏
a∈Ai

(x− ζaq )

and the map fi 7→ Ai is one-to-one. Furthermore, deg fi = sp(q), which is
the multiplicative order of p in F×q . In particular,

dimQi := li = sp(q)

for i ∈ {1, . . . , s}. The automorphism ˆ maps each Qi to some Qj. More pre-

cisely, Q̂i corresponds to the coset mAi. In particular, Q̂i = Qi iff mAi = Ai.

In what follows we need to understand which conditions on q and m imply
Q̂i = Qi for all i ∈ {1, . . . , s}. Note that obviously Q̂0 = Q0.

4



Lemma 2.1. The following conditions are equivalent.

1. Q̂i = Qi for all i ∈ {0, 1, . . . , s}.
2. There exists i ∈ {1, . . . , s} such that Q̂i = Qi.

3. m ∈ 〈p〉 ≤ F×q .

Proof. Clearly (1) implies (2). By the discussion above, Q̂i = Qi for some
i ≥ 1 iff mAi = Ai, which happens iff m ∈ 〈p〉 ≤ F×q . So (2) implies (3).
Obviously (1) follows from (3).

Let sp(q) denote the order of p modulo q and suppose that p | sp(q). Thus
sp(q) = pu for some u ∈ N. We may take m := pu in the definition of Gp,q,m,

since m 6≡ 1 mod q and mp ≡ 1 mod q. In this case we have Q̂i = Qi for
i ∈ {0, 1, . . . , s}, by Lemma 2.1.

Now let
P := {q | q a prime, p | sp(q)}.

The set P of primes is infinite and it has positive density (see for instance
[16]).

From now on, we assume that q ∈ P.

Let G := Gp,q,psp(q)/p and recall that Q = FpN = Q0 ⊕ . . . ⊕ Qs with

Q0 = (
∑q−1

i=0 β
i)Fp. If we put

Ri = Qi ⊕ αQi ⊕ . . .⊕ αp−1Qi

for i ∈ {0, . . . , s}, then obviously

FpG = R0 ⊕ . . .⊕Rs.

Theorem 2.2. The structure of Ri is as follows.

a) All Ri are 2-sided ideals of FpG.

b) As a left FpG-module we have R0
∼= FpG/N . In particular, R0 is

uniserial of dimension p and all composition factors are isomorphic to
the trivial FpG-module.

c) For i > 0 all minimal left ideals in Ri are projective FpG-modules.
Thus Ri is a completely reducible left FpG-module for i > 0.
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d) Ri is indecomposable as a 2-sided ideal, hence a p-block of FpG. In
particular, Ri contains up to isomorphism exactly one irreducible left
FpG-module which is of dimension li = sp(q).

e) Ri
∼= Matp(Fpli/p) for i > 0 and Ri contains up to isomorphism exactly

one irreducible left FpG-module, say Mi, of dimension li = sp(q).

Proof. a) Clearly, Ri is a left ideal. It is also a right ideal since Qi = Q̂i by
Lemma 2.1, and αa = âα for a ∈ Q.
b) This follows immediately from representation theory (see for instance ([13],
Chap. VII, Example 14.10)).
c) Let F̄p ⊇ Fp be a finite splitting field for N ([13], Chap. VII, Theorem 2.6).
Thus every irreducible character χ of F̄pN is of degree 1. If χ is not the trivial
character, then, according to the action of α on β, the induced character χG

is an irreducible character for G, by Clifford’s Theorem. Furthermore χG is
afforded by an irreducible projective F̄pG-module ([13], Chap. VII, Theorem
7.17). Thus all non-trivial irreducible F̄pG-modules are projective. Now, let
M be an irreducible non-trivial F̄pG-module and denote by M0 the space M
regarded as an FpG module. Then, by ([13], Chap. VII, Theorem 1.16 a)),
M0⊗Fp F̄p is a direct sum of Galois conjugates of M , which are all projective
since no one is the trivial module. Finally, by ([13], Chap. VII, Ex. 19 in
Sec. 7), the module M0 is a projective FpG-module, and by ([13], Chap.
VII, Theorem 1.16 d)), M0

∼= W ⊕ . . .⊕W for some irreducible FpG-module
W . Thus W is projective. Since obviously all irreducible non-trivial FpG-
modules can be described this way we are done.
d) Note that Ri is not irreducible as a left module since Mi := Qi(1 +
α + . . . + αp−1) is a minimal ideal in Ri. Clearly, Qi

∼= Mi as a left FpN -
module. Thus Qi has an extension to the irreducible FpG-module Mi. But
all extensions are isomorphic since G/N is a p-group. Thus Ri has up to
isomorphism exactly one irreducible FpG-module and FpG has exactly s+ 1
non-isomorphic FpG-modules. If some Ri is a direct sum of two non-zero
2-sided ideals, then Ri contains at least two non-isomorphic irreducible FpG-
modules, a contradiction.
e) By c) and d), we know that Ri contains up to isomorphism exactly one
irreducible left FpG-module, say Mi, which has dimension li. Thus Ri

∼=
Mi ⊕ . . . ⊕ Mi with p components Mi. That Ri has the indicated matrix
algebra structure now follows by Wedderburn’s Theorem.

Lemma 2.3. For i > 0 we have

6



a) Zi := {a ∈ Qi | a = â} is a subfield of Qi.

b) #Zi = p
li
p = p

sp(q)

p .

Proof. a) This is obviously true.
b) Since α acts fixed point freely on N \ {1} we get dim{a ∈ Q∗ | â = a} =
q−1
p

. Now, it is sufficient to show that dimZ1 = dimZj for j ≥ 1, which
implies

dimZi =
q − 1

sp
=
sp(q)

p
=
li
p
.

Let F̄p be a splitting field for G. To prove that dimZ1 = dimZj for j ≥ 1 first
note that Qi ⊗Fp F̄p = V1 ⊕ . . .⊕ Vli , where Vj = ( 1

|N |
∑

x∈N χj(x
−1)x)F̄p and

χj is a linear non-trivial character of F̄pN . Thus α acts regularly on the set
{V1, . . . , Vli}, which proves that the fixed point space of α on V1 ⊕ . . . ⊕ Vli
has dimension li

p
. This implies that the fixed point space on Wi also has

dimension li
p
, i.e. #Zi = p

li
p .

In order to determine all minimal left ideals in Ri we need the following
notation. For b ∈ Q×i we denote by [b] the image of b in the factor group
Q×i /Z

×
i .

Lemma 2.4. For i > 0 we have the following.

a) For b ∈ Q×i , the space Qi(1 + α + . . . αp−1)b is a minimal left ideal in
Ri.

b) Qi(1 + α + . . . αp−1)b = Qi(1 + α + . . . αp−1)b′ iff [b] = [b′].

c) Each minimal left ideal of Ri is of the form I i[b] = Qi(1 +α+ . . . αp−1)b

with b ∈ Q×i .

Proof. a) This is clear since αa = âα for a ∈ Q and Q̂i = Qi.
b) Suppose that 0 6= a(1 + α + . . . αp−1)b = a′(1 + α + . . . αp−1)b′ with
a, a′, b, b′ ∈ Q×i . Thus

x(1 + α + . . . αp−1)y = (1 + α + . . . αp−1)

with x = a′−1a and y = bb′−1. Since

x(1 + α + . . . αp−1)y = xy + xŷα + ˆ̂yα2 + . . .
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we obtain xy = 1 = xŷ, hence y = ŷ. It follows

y = bb′−1 ∈ Z×i ,

hence [b] = [b′]. Conversely, if [b] = [b′], then obviously Qi(1+α+. . . αp−1)b =
Qi(1 + α + . . . αp−1)b′.

c) Since #Zi = p
li
p by Lemma 2.3, we have constructed so far exactly pli−1

pli/p−1
minimal left ideals. According to Lemma 2.2 e) we have Ri

∼= Matp(Fpli/p). It
is well-known that there is a bijection between the set of minimal left ideals
in Matp(Fpli/p) and the set of 1-dimensional subspaces in a p-dimensional

vector space over Fpli/p , which has cardinality pli−1
pli/p−1 .

3. Asymptotically good group codes

In this section we prove that group codes are asymptotically good in
any characteristic. We set here G := Gp,q,psp(q)/p and we consider the group
algebra FpG. All the notations are as in Section 2.

Lemma 3.1 (Chepyzhov [9]). Let r : N −→ N denote a non-decreasing
function and let

P (r) = {t prime | sp(t) ≥ r(t)}.

If r(t) <<
√
γ · t/ logp t, with γ = logp(e) · logp(2), then P (r) is infinite

and dense in the set of all primes. In particular, if logp(t) << r(t) <<√
γ · t/ logp t, then the set of primes t such that sp(t) grows faster than logp(t)

is infinite and dense in the set of all primes.

Proof. Let Bn be the set of primes t less than n which are not in P (r) (i.e.,
if π(n) is the set of primes less than n, then π(n) = Bn t (P (r) ∩ π(n))).
Since sp(t) is the multiplicative order of p modulo t, there exists, for every t
in Bn, two integers a ∈ N and k ∈ N such that

0 < a < r(t) and pa − 1 = kt.

Thus

#Bn ≤ #{(a, k) | 0 < a < r(t) and (pa − 1)/k is prime} ≤

≤ r(t) · max
0<a<r(t)

#{prime factors of pa − 1}
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≤ r(t) · log2(p
r(t) − 1) ≤ r(t)2 · log2(p) <<

t

log t
.

By the Prime Number Density Theorem, we have π(n) ∼ n/ log n. Thus the
set P (r) is infinite, even dense in the set of all primes.

Remark 3.2. Since P has positive density, there are infinitely many q ∈ P
such that sp(q) grows faster than logp(q).

Lemma 3.3. If Ωl be the set of left ideals in Q of dimension l, then #Ωl ≤
ql/sp(q)+1.

Proof. Recall that Q0, Q1, . . . , Qs are the irreducible modules in Q where
dimFp Q0 = 1 and dimFp Qi = sp(q) for i ∈ {1, . . . , s}. An ideal of dimension
l is a direct sum of at most l/sp(q) + 1 of these irreducible modules. There
are at most (s+ 1)l/sp(q)+1 such sums and the assertion follows from s+ 1 ≤
q = sp(q) · s+ 1.

Let Q∗ =
⊕s

i=1Qi and let Q∗× be the multiplicative group of units of Q∗.

Lemma 3.4. If f ∈ Q∗ such that dim fQ = l and

U = Q∗×f(1 + α + . . .+ αp−1)Q∗×,

then #U ≥ p
2p−1

p
l.

Proof. We may decompose f =
∑s

i=1 fi, with fi ∈ Qi and put S := {i | fi 6=
0}. Since fiQ

×
i = Q×i for i ∈ S (recall that Qi is isomorphic to a field), we

get

U =
∑
i∈S

Q×i (1 + α + . . .+ αp−1)Q×i .

By Lemma 2.4, we have

Q×i (1 + α + . . .+ αp−1)Q×i =
⊔

[b]∈Q×
i /Z

×
i

I i[b] \ {0},

where #I i[b] = pli and #Q×i /Z
×
i = #{irreducible left ideals in Ri} = pli−1

pli/p−1 .

It follows

#(Q×i (1 + α + . . .+ αp−1)Q×i ) =
pli − 1

pli/p − 1
· (pli − 1) ≥ p(p−1)li/p · pli .
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Finally,

#U ≤
∑
i∈S

p(p−1)li/p · pli = p
2p−1

p
l,

since l =
∑

i∈S li.

In order to prove Theorem 3.6 we need the following result which is a
special case of ([11], Theorem 3.3). Let us recall that a group code is a
balanced code, as observed in [3, Lemma 2.2.].

Lemma 3.5. Let C be a [n, k]p group code. Then

Aw(C) := #{c | c ∈ C, wt(c) = w} ≤ pk·hp(w/n)

for all 0 ≤ w ≤ p−1
p
· n, where

hp(x) := −(1− x) logp(1− x)− x logp

(
x

p− 1

)
is the p-ary entropy function.

Theorem 3.6. Let R := FpG and consider the unique decomposition R =⊕s
i=0Ri into the p-blocks Ri described in Theorem 2.2.
Now we choose a left ideal I of R as

I =
s⊕
i=1

Ii

where each Ii is taken uniformly at random among the 1+pli/p+. . .+p(p−1)li/p

non-zero irreducible left ideals of Ri.

If 0 < δ ≤ p−1
p

satisfies hp(δ) ≤ p−1
p2
− logp(q)

p·sp(q) , then the probability that the

minimum relative distance of I is below δ is at most

p
−p·sp(q)·

(
p−1

p2
−hp(δ)

)
+(2p+1) logp(q).
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Proof. Since every irreducible left ideal Ii is of the form given in Lemma 2.4,
the above randomized construction is equivalent to consider

I[b] = Q(1 + α + . . .+ αp−1)b = Q∗(1 + α + . . .+ αp−1)b

where [b] is selected uniformly at random from Q∗×/Z with Z := {a ∈ Q∗× |
â = a}. Since Q∗× is a group, we have Q∗× = aQ∗× for all a ∈ Q∗×, hence

I[b] = aQ∗(1 + α + . . .+ αp−1)b

for all a ∈ Q∗×. Let

P = Pr(d(I[b]) ≤ pqδ) =
#{I[b] | d(I[b]) ≤ pqδ}

#(Q∗×/T )
=

=
#{(a, b) | d(aQ∗(1 + α + . . .+ αp−1)b) ≤ pqδ}

#(Q∗×)2
.

By definition of the minimum distance, we have that

P ≤
∑

f∈Q∗,f 6=0

Pr(a,b)∈(Q∗×)2(0 ≤ wt(af(1 + α + . . .+ αp−1)b) < pqδ).

We can partition Q as

Q =

q⊔
l=sp(q)

{f ∈ Q | dimFp fQ = l}︸ ︷︷ ︸
=Dl

and Q∗ =

q⊔
l=sp(q)

Dl ∩Q∗︸ ︷︷ ︸
=D∗

l

,

so that

P ≤
q∑

l=sp(q)

#(D∗l ) max
f∈D∗

l

Pr(a,b)∈(Q∗×)2(0 ≤ wt(af(1 + α + . . .+ αp−1)b) < pqδ).

Let Ωl be the set of left ideals in Q of dimension l. Then

#(D∗l ) ≤ #(Dl) ≤ pl ·#(Ωl) ≤ pl · ql/sp(q)+1

by Lemma 3.3. For any l and any f ∈ D∗l , we can define

U = Q∗×f(1 + α + . . .+ αp−1)Q∗×

11



as in Lemma 3.4. Using this we get

Pr(a,b)∈(Q∗×)2(0 ≤ wt(af(1 + α + . . .+ αp−1)b) < pqδ) =

=
∑

r∈U,0≤wt(r)<pqδ

Pr(a,b)∈(Q∗×)2(af(1 + α + . . .+ αp−1)b = r) ≤

≤ max
r∈U

Pr(a,b)∈(Q∗×)2(af(1 + α + . . .+ αp−1)b = r) ·

·
∑

w1,...,wp≥0,w1+...+wp<pqδ

#(fQ(w1)) · . . . ·#(fQ(wp)),

where fQ(w) is the set of elements of weight w in fQ.
It is easy to see that each r ∈ U can occur with the same probability as
af(1 + α + . . . + αp−1)b, so that the above probability is independent of r.
Thus we have

Pr(a,b)∈(Q∗×)2(af(1 + α + . . .+ αp−1)b = r) =
1

#U
≤ p−

2p−1
p

l,

by Lemma 3.4.
Moreover, fQ is a [pq, l]p group code, so that, by Lemma 3.5, we have

#(fQ(w)) ≤ pl·hp(w/pq)

for all w ≤ (p − 1) · q (which is true, since δ ≤ p−1
p

). Putting together all
previous inequalities we have

P ≤
q∑

l=sp(q)

p−
p−1
p
l · ql/sp(q)+1 ·

∑
w1,...,wp≥0,w1+...+wp<pqδ

pl·
∑p

i=1 hp(wi/pq),

so that, by the convexity,

P ≤
q∑

l=sp(q)

p−
p−1
p
l·ql/sp(q)+1·(pqδ)p·pl·p·hp(δ) ≤

q∑
l=sp(q)

p
l·p·
(
hp(δ)− p−1

p2
+

logp(q)

p·sp(q)

)
+p+p logp(q).

Finally, if hp(δ) ≤ p−1
p2
− logp(q)

p·sp(q) , then

P ≤ p
−p·sp(q)·

(
p−1

p2
−hp(δ)

)
+(p+1) logp(q)+p ≤ p

−p·sp(q)·
(

p−1

p2
−hp(δ)

)
+(2p+1) logp(q).
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Corollary 3.7. Group codes over finite fields are asymptotically good.

Proof. We have to prove the assertion only for prime fields. The general
case then follows by field extension (see ([10], Proposition 12)). According
to Lemma 3.1 and Remark 3.2, we may choose a sequence of primes qi in P
such that q1 < q2 < . . . and sp(qi)

logp(qi)
−→∞ for i −→∞. Let 0 < δ ≤ p−1

p
with

hp(δ) ≤ p−1
p2
− logp(q1)

p·sp(q1) . Thus the assumption in Theorem 3.6 is satisfied for

all qi and we can find a left ideal Iqi in FpGp,qi,p
sp(qi)/p with relative minimum

distance at least δ. Furthermore, dim Iqi = s · sp(qi) = qi − 1. Thus

dim Iqi
pqi

=
1

p
− 1

pqi
≥ 1

p
− 1

pq1
.

This shows that the sequence of the left ideals Iqi is asymptotically good.

Remark 3.8. Note that the groups Gp,q,m are p-nilpotent with cyclic Sy-
low p-subgroups. Thus the asymptotically good sequence we constructed in
Corollary 3.7 is a sequence of group codes in code-checkable group algebras
[6]. In such algebras all left and right ideals are principal.

Acknowledgement. The first author was partially supported by PEPS
- Jeunes Chercheur-e-s - 2018. We are very grateful to Pieter Moree who
brought to our attention his paper [16]. Thanks also goes to anonymous
referees who pointed out some inconsistencies in an earlier version.

References

[1] J.L. Alperin and R.B. Bell, Groups and representations, Graduate
Text in Math., Springer Verlag 1995.

[2] E.F. Assmus, H.F. Mattson and R. Turyn, Cyclic codes, Report
AFCRL-65-332 of the Appl. Res. Lab., Sylvania Electronic Systems
1965.

[3] L.M.J. Bazzi and S.K. Mitter, Some randomized code construc-
tions from group actions, IEEE Trans. Inform. Theory, vol. 52, pp.
3210-3219, 2006.

[4] S.D. Berman, On the theory of group codes, Kibernetika, vol. 3, pp.
31-39, 1967.

13



[5] F. Bernhardt, P. Landrock and O. Manz, The extended Golay
codes considered as ideals, J. Comb. Theory, Series A, vol. 55, pp.
235-246, 1990.

[6] M. Borello, J. de la Cruz and W. Willems, Checkable codes
in group algebras, arXiv: 1901.10979, 2019.

[7] M. Borello, P. Moree, P. Solé, Asymptotic performance of
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