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Introduction

Let F be a finite field of characteristic p and let G be a finite group. By a group code or, more precisely, a G-code we denote a right or left ideal in the group algebra FG1 . Many interesting linear codes are group codes. For example, cyclic codes of length n are group codes for a cyclic group C n ; Reed-Muller codes are group codes for an elementary abelian p-group [START_REF] Berman | On the theory of group codes[END_REF][START_REF] Charpin | Une généralisation de la construction de Berman des codes de Reed-Muller p-aire[END_REF]; the binary extended self-dual [24, [START_REF] Grassl | Bounds on the minimum distance of linear codes[END_REF][START_REF] Charpin | Une généralisation de la construction de Berman des codes de Reed-Muller p-aire[END_REF] Golay code is a group code for the symmetric group S 4 on 4 letters [START_REF] Bernhardt | The extended Golay codes considered as ideals[END_REF] and the dihedral group D 24 of order 24 [START_REF] Mcloughlin | A group ring construction of the extended binary Golay code[END_REF]. Many best known codes are group codes as well. For instance, F 5 (C 6 × C 6 ) contains a [36, 28, 6] and F 5 (C 12 × C 6 ) a [72,62,[START_REF] Borello | Checkable codes in group algebras[END_REF] group code [START_REF] Jitman | Checkable codes from group rings[END_REF]. Both codes improved earlier examples in Grassl's list [START_REF] Grassl | Bounds on the minimum distance of linear codes[END_REF].

Already in 1965, Assmus, Mattson and Turyn [START_REF] Assmus | Cyclic codes[END_REF] asked the question whether the class of cyclic codes, i.e., the class of group codes over cyclic groups, is asymptotically good. The answer is still open. In [START_REF] Bazzi | Some randomized code constructions from group actions[END_REF], Bazzi and Mitter proved that the class of group codes over the binary field is asymptotically good. Using the trivial fact that by field extensions neither the dimension nor the minimum distance changes, group codes are asymptotically good in characteristic 2. In this note we use the ideas of Bazzi and Mitter to prove our main result.

Theorem. Group codes over fields are asymptotically good in any characteristic.

The proof mainly follows the lines of [START_REF] Bazzi | Some randomized code constructions from group actions[END_REF] and does not distinguish between the prime p = 2 and p odd for the characteristic of the underlying field.

Note that, very recently, it has been shown that metacylic codes are asymptotically good [START_REF] Borello | Asymptotic performance of metacyclic codes[END_REF]. In the present paper the codes considered are metacylic too and the characteristic of the field is related to the cardinality of the group, which is a sort of restriction. However, the results in [START_REF] Borello | Asymptotic performance of metacyclic codes[END_REF] rely on a variant of Artin's primitive root conjecture being true, which is currently only guaranteed on assuming the GRH, whereas the results of the present paper are unconditional.

For different primes p = q let s p (q) denote the order of p modulo q. In order to construct a sequence of particular binary group algebras over dihedral groups, in [START_REF] Bazzi | Some randomized code constructions from group actions[END_REF] the authors need a set of primes q with 2 | s 2 (q) which has positive density in the set of all primes. Such a set is obviously given by all primes q ≡ ±5 mod 8. For odd primes p the analog is far less obvious, but has already been proved by Wiertelak in 1977 (see [START_REF] Moree | On primes p for which d divides ord p (g)[END_REF]). In the following unified proof (i.e., p any prime) we heavily use results from modular representation theory.

In the following, FG = {a = g∈G a g g | a g ∈ G} always denotes the group algebra of a finite group G over F. The vector space FG with basis g ∈ G serves as the ambient space of linear codes C with the weight function wt(a) = |{g ∈ G | a g = 0}|. In particular dim FG = |G| and C has length |G|. Moreover FG carries in a natural way an F-algebra structure via the multiplication in G. More precisely, if a = g∈G a g g and b = g∈G b g g are given, then

ab = g∈G ( h∈G a h b h -1 g )g.
Thus we may look at those linear codes C in FG which are invariant under G from the left or right, i.e., the left or right ideals of FG which we call group codes or G-codes. Since the F-algebra antiautomorphism on FG given by g → g -1 defines a weight preserving map from the set of left ideals to the set of right ideals we may stick on the left ideals.

In the next section we analyze the algebra structure of F p G where F p is a field of prime order p and G is a particular group of order qp for a prime q = p. In particular, we determine all minimal left ideals. In F p G we look at the set I of left ideals I q = M 1 ⊕ • • • ⊕ M s where the M i are irreducible and taken from the different p-blocks of F p G. Choosing the prime q carefully with q 1 < q 2 < • • • and taking the M i randomly we are able to find in Section 3 ideals I q i all with minimum distance at least δ > 0 and dimension at least

1 p -1 pq 1 > 0.
2. The structure of the group algebra F p G p,q,m Let p be a fixed prime and let q be a prime such that p divides q -1 (there are infinitely many such q, by Dirichlet's Theorem). For m ∈ N such that m ≡ 1 mod q and m p ≡ 1 mod q, we define the group G p,q,m by

G p,q,m := α, β | α p = β q = 1, αβα -1 = β m = β α . (1) 
Note that G p,q,m is a nonabelian metacyclic group. In the case p = 2 and m = q -1 the group G 2,q,q-1 is a dihedral group which has been considered in [START_REF] Bazzi | Some randomized code constructions from group actions[END_REF] to prove the Theorem over the binary field F 2 .

Next we put N := β and Q := F p N . Any element r of F p G p,q,m can uniquely be written as

r = r 0 + αr 1 + • • • + α p-1 r p-1 with r 0 , . . . , r p-1 ∈ Q. If a = q-1 i=0 a i β i (with a i ∈ F p ) is an element of Q, we define â by â := q-1 i=0 a i β i•m
Clearly, the mapˆ:

Q → Q is an F p -algebra automorphism. From the relation αβ = β m α we get αβ i = β i•m α for all i ∈ {0, . . . , q -1}, so that αa = âα for all a ∈ Q. Now we realize Q as F p [x]/ x q -1 .
Since Q is a semisimple algebra by Maschke's Theorem ( [START_REF] Alperin | Groups and representations[END_REF], p. 116), we have, due to Wedderburn's Theorem ( [START_REF] Alperin | Groups and representations[END_REF], Chap. 5, Sect. 13, Theorem 16), a unique decomposition

Q = s i=0 Q i into 2-sided ideals Q i , where each Q i is a simple algebra over F p . If x q -1 = s i=0 f i is a factorization of x q -1 into irreducible polynomials f i ∈ F p [x], then Q i = x q -1 f i ∼ = F p [x]/ f i ∼ = F p deg f i .
We may suppose that f 0 = x -1, so that Q 0 = 1 + . . . + x q-1 ∼ = F p . Now let ζ q be a primitive q-th root of unity in an extension field of F p . It is well-known by basic Galois theory that, for every i ∈ {1, . . . , s}, there exists exactly one coset A i in F × q / p such that

f i = a∈A i (x -ζ a q )
and the map f i → A i is one-to-one. Furthermore, deg f i = s p (q), which is the multiplicative order of p in F × q . In particular,

dim Q i := l i = s p (q)
for i ∈ {1, . . . , s}. The automorphism ˆmaps each Q i to some Q j . More precisely, Qi corresponds to the coset mA i . In particular, Qi =

Q i iff mA i = A i .
In what follows we need to understand which conditions on q and m imply Qi = Q i for all i ∈ {1, . . . , s}. Note that obviously Q0 = Q 0 .

Lemma 2.1. The following conditions are equivalent.

1. Qi = Q i for all i ∈ {0, 1, . . . , s}. 2. There exists i ∈ {1, . . . , s} such that Qi = Q i . 3. m ∈ p ≤ F × q .
Proof. Clearly (1) implies [START_REF] Assmus | Cyclic codes[END_REF]. By the discussion above, Qi = Q i for some i ≥ 1 iff mA i = A i , which happens iff m ∈ p ≤ F × q . So (2) implies (3). Obviously (1) follows from (3).

Let s p (q) denote the order of p modulo q and suppose that p | s p (q). Thus s p (q) = pu for some u ∈ N. We may take m := p u in the definition of G p,q,m , since m ≡ 1 mod q and m p ≡ 1 mod q. In this case we have Qi = Q i for i ∈ {0, 1, . . . , s}, by Lemma 2.1.

Now let

P := {q | q a prime, p | s p (q)}.
The set P of primes is infinite and it has positive density (see for instance [START_REF] Moree | On primes p for which d divides ord p (g)[END_REF]).

From now on, we assume that q ∈ P.

Let G := G p,q,p sp(q)/p and recall that

Q = F p N = Q 0 ⊕ . . . ⊕ Q s with Q 0 = ( q-1 i=0 β i )F p . If we put R i = Q i ⊕ αQ i ⊕ . . . ⊕ α p-1 Q i for i ∈ {0, . . . , s}, then obviously F p G = R 0 ⊕ . . . ⊕ R s . Theorem 2.2. The structure of R i is as follows. a) All R i are 2-sided ideals of F p G. b) As a left F p G-module we have R 0 ∼ = F p G/N .
In particular, R 0 is uniserial of dimension p and all composition factors are isomorphic to the trivial F p G-module.

c) For i > 0 all minimal left ideals in R i are projective F p G-modules.

Thus R i is a completely reducible left F p G-module for i > 0.

d) R i is indecomposable as a 2-sided ideal, hence a p-block of F p G. In particular, R i contains up to isomorphism exactly one irreducible left F p G-module which is of dimension l i = s p (q). e) R i ∼ = Mat p (F p l i /p ) for i > 0 and R i contains up to isomorphism exactly one irreducible left F p G-module, say M i , of dimension l i = s p (q).

Proof. a) Clearly, R i is a left ideal. It is also a right ideal since 

Q i = Qi
i := {a ∈ Q i | a = â} is a subfield of Q i . b) #Z i = p l i p = p sp(q) p .
Proof. a) This is obviously true. b) Since α acts fixed point freely on N \ {1} we get dim{a

∈ Q * | â = a} = q-1 p . Now, it is sufficient to show that dim Z 1 = dim Z j for j ≥ 1, which implies dim Z i = q -1 sp = s p (q) p = l i p .
Let Fp be a splitting field for G. To prove that dim

Z 1 = dim Z j for j ≥ 1 first note that Q i ⊗ Fp Fp = V 1 ⊕ . . . ⊕ V l i , where V j = ( 1 |N | x∈N χ j (x -1 )
x) Fp and χ j is a linear non-trivial character of Fp N . Thus α acts regularly on the set {V 1 , . . . , V l i }, which proves that the fixed point space of α on V 1 ⊕ . . . ⊕ V l i has dimension l i p . This implies that the fixed point space on W i also has

dimension l i p , i.e. #Z i = p l i p .
In order to determine all minimal left ideals in R i we need the following notation. For b ∈ Q × i we denote by [b] the image of b in the factor group

Q × i /Z × i .
Lemma 2.4. For i > 0 we have the following.

a) For b ∈ Q × i , the space Q i (1 + α + . . . α p-1 )b is a minimal left ideal in R i . b) Q i (1 + α + . . . α p-1 )b = Q i (1 + α + . . . α p-1 )b iff [b] = [b ]. c) Each minimal left ideal of R i is of the form I i [b] = Q i (1 + α + . . . α p-1 )b with b ∈ Q × i . Proof. a) This is clear since αa = âα for a ∈ Q and Qi = Q i . b) Suppose that 0 = a(1 + α + . . . α p-1 )b = a (1 + α + . . . α p-1 )b with a, a , b, b ∈ Q × i . Thus x(1 + α + . . . α p-1 )y = (1 + α + . . . α p-1 )
with x = a -1 a and y = bb -1 . Since

x(1 + α + . . . α p-1 )y = xy + xŷα + ŷα 2 + . . . ≤ r(t) • log 2 (p r(t) -1) ≤ r(t) 2 • log 2 (p) << t log t .
By the Prime Number Density Theorem, we have π(n) ∼ n/ log n. Thus the set P (r) is infinite, even dense in the set of all primes.

Remark 3.2. Since P has positive density, there are infinitely many q ∈ P such that s p (q) grows faster than log p (q). Lemma 3.3. If Ω l be the set of left ideals in Q of dimension l, then #Ω l ≤ q l/sp(q)+1 .

Proof. Recall that Q 0 , Q 1 , . . . , Q s are the irreducible modules in Q where dim Fp Q 0 = 1 and dim Fp Q i = s p (q) for i ∈ {1, . . . , s}. An ideal of dimension l is a direct sum of at most l/s p (q) + 1 of these irreducible modules. There are at most (s + 1) l/sp(q)+1 such sums and the assertion follows from s

+ 1 ≤ q = s p (q) • s + 1. Let Q * = s i=1 Q i and let Q * × be the multiplicative group of units of Q * . Lemma 3.4. If f ∈ Q * such that dim f Q = l and U = Q * × f (1 + α + . . . + α p-1 )Q * × , then #U ≥ p 2p-1 p l .
Proof. We may decompose f = s i=1 f i , with

f i ∈ Q i and put S := {i | f i = 0}. Since f i Q × i = Q × i for i ∈ S (recall that Q i is isomorphic to a field), we get U = i∈S Q × i (1 + α + . . . + α p-1 )Q × i .
By Lemma 2.4, we have

Q × i (1 + α + . . . + α p-1 )Q × i = [b]∈Q × i /Z × i I i [b] \ {0}, where #I i [b] = p l i and #Q × i /Z × i = #{irreducible left ideals in R i } = p l i -1 p l i /p -1 . It follows #(Q × i (1 + α + . . . + α p-1 )Q × i ) = p l i -1 p l i /p -1 • (p l i -1) ≥ p (p-1)l i /p • p l i . Finally, #U ≤ i∈S p (p-1)l i /p • p l i = p 2p-1 p l , since l = i∈S l i .
In order to prove Theorem 3.6 we need the following result which is a special case of ( [START_REF] Fan | Thresholds of random quasi-abelian codes[END_REF], Theorem 3.3). Let us recall that a group code is a balanced code, as observed in [3, Lemma 2. where each I i is taken uniformly at random among the 1+p l i /p +. . .+p (p-1)l i /p non-zero irreducible left ideals of R i .

If 0 < δ ≤ p-1 p satisfies h p (δ) ≤ p-1 p 2 - log p (q)
p•sp(q) , then the probability that the minimum relative distance of I is below δ is at most

p -p•sp(q)• p-1 p 2 -hp(δ) +(2p+1) log p (q) .
Proof. Since every irreducible left ideal I i is of the form given in Lemma 2.4, the above randomized construction is equivalent to consider

I [b] = Q(1 + α + . . . + α p-1 )b = Q * (1 + α + . . . + α p-1 )b where [b] is selected uniformly at random from Q * × /Z with Z := {a ∈ Q * × | â = a}. Since Q * × is a group, we have Q * × = aQ * × for all a ∈ Q * × , hence I [b] = aQ * (1 + α + . . . + α p-1 )b for all a ∈ Q * × . Let P = Pr(d(I [b] ) ≤ pqδ) = #{I [b] | d(I [b] ) ≤ pqδ} #(Q * × /T ) = = #{(a, b) | d(aQ * (1 + α + . . . + α p-1 )b) ≤ pqδ} #(Q * × ) 2 .
By definition of the minimum distance, we have that

P ≤ f ∈Q * ,f =0 Pr (a,b)∈(Q * × ) 2 (0 ≤ wt(af (1 + α + . . . + α p-1 )b) < pqδ).
We can partition Q as

Q = q l=sp(q) {f ∈ Q | dim Fp f Q = l} =D l and Q * = q l=sp(q) D l ∩ Q * =D * l , so that P ≤ q l=sp(q) #(D * l ) max f ∈D * l Pr (a,b)∈(Q * × ) 2 (0 ≤ wt(af (1 + α + . . . + α p-1 )b) < pqδ).
Let Ω l be the set of left ideals in Q of dimension l. Then

#(D * l ) ≤ #(D l ) ≤ p l • #(Ω l ) ≤ p l • q l/sp(q)+1
by Lemma 3.3. For any l and any f ∈ D * l , we can define

U = Q * × f (1 + α + . . . + α p-1 )Q * ×
as in Lemma 3.4. Using this we get

Pr (a,b)∈(Q * × ) 2 (0 ≤ wt(af (1 + α + . . . + α p-1 )b) < pqδ) = = r∈U,0≤wt(r)<pqδ Pr (a,b)∈(Q * × ) 2 (af (1 + α + . . . + α p-1 )b = r) ≤ ≤ max r∈U Pr (a,b)∈(Q * × ) 2 (af (1 + α + . . . + α p-1 )b = r) • • w 1 ,...,wp≥0,w 1 +...+wp<pqδ #(f Q (w 1 ) ) • . . . • #(f Q (wp) ),
where f Q (w) is the set of elements of weight w in f Q.

It is easy to see that each r ∈ U can occur with the same probability as af (1 + α + . . . + α p-1 )b, so that the above probability is independent of r.

Thus we have Pr

(a,b)∈(Q * × ) 2 (af (1 + α + . . . + α p-1 )b = r) = 1 #U ≤ p -2p-1 p l , by Lemma 3.4.
Moreover, f Q is a [pq, l] p group code, so that, by Lemma 3.5, we have

#(f Q (w) ) ≤ p l•hp(w/pq)
for all w ≤ (p -1) • q (which is true, since δ ≤ p-1 p ). Putting together all previous inequalities we have P ≤ q l=sp(q) p -p-1 p l • q l/sp(q)+1 • w 1 ,...,wp≥0,w 1 +...+wp<pqδ p l• p i=1 hp(w i /pq) , so that, by the convexity, P ≤ q l=sp(q)

p -p-1 p l •q l/sp(q)+1 •(pqδ) p •p l•p•hp(δ) ≤ q l=sp(q) p l•p• hp(δ)-p-1 p 2 + log p (q) p•sp(q) +p+p log p (q) .

Finally, if h p (δ) ≤ p-1 p 2 -log p (q) p•sp(q) , then P ≤ p -p•sp(q)• p-1 p 2 -hp(δ) +(p+1) log p (q)+p ≤ p -p•sp(q)• p-1 p 2 -hp(δ) +(2p+1) log p (q) . Corollary 3.7. Group codes over finite fields are asymptotically good.

Proof. We have to prove the assertion only for prime fields. The general case then follows by field extension (see ( [START_REF] Faldum | Codes of small defect[END_REF], Proposition 12)). According to Lemma 3.1 and Remark 3.2, we may choose a sequence of primes q i in P such that q 1 < q 2 < . . . and sp(q i ) log p (q i ) -→ ∞ for i -→ ∞. Let 0 < δ ≤ p-1 p with h p (δ) ≤ p-1 p 2 -log p (q 1 ) p•sp(q 1 ) . Thus the assumption in Theorem 3.6 is satisfied for all q i and we can find a left ideal I q i in F p G p,q i ,p sp(q i )/p with relative minimum distance at least δ. Furthermore, dim I q i = s • s p (q i ) = q i -1. Thus dim

I q i pq i = 1 p - 1 pq i ≥ 1 p - 1 pq 1 .
This shows that the sequence of the left ideals I q i is asymptotically good.

Remark 3.8. Note that the groups G p,q,m are p-nilpotent with cyclic Sylow p-subgroups. Thus the asymptotically good sequence we constructed in Corollary 3.7 is a sequence of group codes in code-checkable group algebras [START_REF] Borello | Checkable codes in group algebras[END_REF]. In such algebras all left and right ideals are principal.

  2.].Lemma 3.5. Let C be a [n, k] p group code. ThenA w (C) := #{c | c ∈ C, wt(c) = w} ≤ p k•hp(w/n) for all 0 ≤ w ≤ p-1 p • n, where h p (x) := -(1 -x) log p (1 -x) -x log p x p -1is the p-ary entropy function. Theorem 3.6. Let R := F p G and consider the unique decomposition R = s i=0 R i into the p-blocks R i described in Theorem 2.2. Now we choose a left ideal I of R as I = s i=1 I i

  by Lemma 2.1, and αa = âα for a ∈ Q. b) This follows immediately from representation theory (see for instance([13], Chap. VII, Example 14.10)). c) Let Fp ⊇ F p be a finite splitting field for N ([START_REF] Huppert | Finite Groups II[END_REF], Chap. VII, Theorem 2.6). Thus every irreducible character χ of Fp N is of degree 1. If χ is not the trivial character, then, according to the action of α on β, the induced character χ G is an irreducible character for G, by Clifford's Theorem. Furthermore χ If some R i is a direct sum of two non-zero 2-sided ideals, then R i contains at least two non-isomorphic irreducible F p Gmodules, a contradiction. e) By c) and d), we know that R i contains up to isomorphism exactly one irreducible left F p G-module, say M i , which has dimension l i . Thus R i ∼ = M i ⊕ . . . ⊕ M i with p components M i . That R i has the indicated matrix algebra structure now follows by Wedderburn's Theorem.

G is afforded by an irreducible projective Fp G-module (

[START_REF] Huppert | Finite Groups II[END_REF]

, Chap. VII, Theorem 7.17). Thus all non-trivial irreducible Fp G-modules are projective. Now, let M be an irreducible non-trivial Fp G-module and denote by M 0 the space M regarded as an F p G module. Then, by

([13]

, Chap. VII, Theorem 1.16 a)), M 0 ⊗ Fp Fp is a direct sum of Galois conjugates of M , which are all projective since no one is the trivial module. Finally, by (

[START_REF] Huppert | Finite Groups II[END_REF]

, Chap. VII, Ex. 19 in Sec. 7), the module M 0 is a projective F p G-module, and by (

[START_REF] Huppert | Finite Groups II[END_REF]

, Chap. VII, Theorem 1.16 d)), M 0 ∼ = W ⊕ . . . ⊕ W for some irreducible F p G-module W . Thus W is projective. Since obviously all irreducible non-trivial F p Gmodules can be described this way we are done. d) Note that R i is not irreducible as a left module since

M i := Q i (1 + α + . . . + α p-1 ) is a minimal ideal in R i . Clearly, Q i ∼ = M i as a left F p Nmodule.

Thus Q i has an extension to the irreducible F p G-module M i . But all extensions are isomorphic since G/N is a p-group. Thus R i has up to isomorphism exactly one irreducible F p G-module and F p G has exactly s + 1 non-isomorphic F p G-modules. Lemma 2.3. For i > 0 we have a) Z

In the literature a block code is often also called a group code if the underlying alphabet is a finite group.
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we obtain xy = 1 = xŷ, hence y = ŷ. It follows

p by Lemma 2.3, we have constructed so far exactly p l i -1

minimal left ideals. According to Lemma 2.2 e) we have R i ∼ = Mat p (F p l i /p ). It is well-known that there is a bijection between the set of minimal left ideals in Mat p (F p l i /p ) and the set of 1-dimensional subspaces in a p-dimensional vector space over F p l i /p , which has cardinality p l i -1 p l i /p -1 .

Asymptotically good group codes

In this section we prove that group codes are asymptotically good in any characteristic. We set here G := G p,q,p sp(q)/p and we consider the group algebra F p G. All the notations are as in Section 2. Lemma 3.1 (Chepyzhov [START_REF] Chepyzhov | New lower bounds for minimum distance of linear quasi-cyclic and almost linear cyclic codes[END_REF]). Let r : N -→ N denote a non-decreasing function and let P (r) = {t prime | s p (t) ≥ r(t)}.

If r(t) << γ • t/ log p t, with γ = log p (e) • log p (2), then P (r) is infinite and dense in the set of all primes. In particular, if log p (t) << r(t) << γ • t/ log p t, then the set of primes t such that s p (t) grows faster than log p (t) is infinite and dense in the set of all primes.

Proof. Let B n be the set of primes t less than n which are not in P (r) (i.e., if π(n) is the set of primes less than n, then π(n) = B n (P (r) ∩ π(n))). Since s p (t) is the multiplicative order of p modulo t, there exists, for every t in B n , two integers a ∈ N and k ∈ N such that 0 < a < r(t) and p a -1 = kt.