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Computed Tomography Angiography (CTA) is a medical modality having the advantage to reveal anatomical accuracy essential for delivering a precise diagnosis and an appropriate patient's management for treating a cerebral aneurysm.

Segmentation of aneurysm shapes through CTA medical images is an important step for geometrical quantification and assessment of rupture risk of cerebral aneurysms. Despite intensive researches in image processing applied to image sequences, aneurysm segmentation remains a major challenge that depends on the geometry and positioning of the aneurysm into the brain. In this paper, the segmentation analysis is performed by using GAC and Euler's elastica models.

With Geodesic Active Contour model (GAC) giant aneurysms (Size > 25 mm) are segmented in high-contrast region, while Euler's elastica model estimates the missing boundaries caused for instance by the low contrast of a thrombus (clot within the cavity during endovascular aneurysm repair) with respect to the neighboring tissues. The experiments indicate that our original model is relevant for segmenting the aneurysm cavity and thrombus both with clear and distinct edges well providing an valuable tool for biological mechanisms understanding such as thrombosis into giant aneurysms, and medical validation.

Introduction

Cerebral aneurysms are localized dilation or blooning of cerebral arteries caused by the weakness of vessel wall and high blood pressure. These aneurysms incline to increase their volume over time. Studies indicate that the growth of the aneurysm volume is an essential risk factor associated with aneurysm rupture [START_REF] Jin | A systematic review and metaanalysis of risk factors for unruptured intracranial aneurysm growth[END_REF]). An aneurysm is shaped like a cavity made of the weakened vessel wall of a bulge cerebral artery, blood-filled circulating lumen and intramural thrombosis. Spontaneous thrombosis are found more frequently in giant aneurysm than in smaller ones. All or part of a thrombus may break off and cause a life-threatening cerebral embolism.

Computed Tomography Angiography (CTA) provides detailed anatomy information about the diagnosis treatment evaluation, and monitoring of cerebral aneurysms. Segmentation of aneurysm medical images from CTA images is an important step for the quantitative measurement and assessment of risk of aneurysms. We can cite many methods on medical image segmentation such as segmentation methods based on level set methods [START_REF] Gao | A relay level set method for automatic image segmentation[END_REF]Aslan et al., 2014Aslan et al., , 2013)), Fuzzy cmeans (FCM) [START_REF] Hung | A new weighted fuzzy c-means clustering algorithm for remotely sensed image classification[END_REF], Finite Gaussian Mixture Model (FGMM) (Athanasiadis et al., 2009), Lattice Boltzmann method (LBM) [START_REF] Chen | Segmentation of the thrombus of giant intracranial aneurysms from ct angiography scans with lattice boltzmann method[END_REF][START_REF] Chen | A lattice-boltzmann method for image inpainting[END_REF][START_REF] Chen | Lattice boltzmann method based medical image segmentation[END_REF], and Markov-Gibbs random field (MGRF) [START_REF] Farag | Precise segmentation of multimodal images[END_REF][START_REF] Soliman | Accurate lungs segmentation on ct chest images by adaptive appearance-guided shape modeling[END_REF].

Despite intensive researches on medical image segmentation, giant aneurysm (Lumen, Thrombus, and Parent Blood Vessels) segmentation remains a hard problem. This is mainly due to the fact: The objects to be segmented in this problem are not just the focal lumen (appearing as a focal object) but also its associated thrombus which appears as a diffuse object connected to the lumen (with low-contrast with respect to neighboring tissues, which renders their manual or automatic delineation difficult). Therefore, in CTA image, thrombus always looked like a blurred and indistinct region submerged or even disappeared in strong noise. Such complex spatial structure between lumen and thrombus makes them particularly difficult to be segmented. For example, the classical gradient or threshold based segmentation methods always fail because of the similar image intensity inside and outside of the thrombus; As some classical Level Set methods, such as the narrow band Level Set method [START_REF] Lefohn | A streaming narrowband algorithm: interactive computation and visualization of level sets[END_REF] and Geodesic Active Contour (GAC) model (Caselles et al., 1995;Bresson et al., 2007), the zero level set is more likely to "leak" outside the thrombus through the "gaps" caused by the low-contrast between the thrombus and its neighboring tissues.

In comparison the segmentation of the lumen (white part in the treated image) is not difficult to estimate. The segmentation of the cavity of an aneurysm is useful for certain medical researches when the aneurysmal cavity volume/lumen volume ratio is required for estimating the growing volume of the thrombus during the follow-up of a patient along the healing process. Also in numerical simulation, the segmentation of the whole aneurysm geometry with associated parent vessels, allows to simulate the blood flow and associated biological phenomena such as thrombosis for mimicking the formation of a clot into the aneurysmal sack.

In this paper, we propose to deal with the aneurysm segmentation problem using GAC model and Euler's elastica model. Euler's elastica can estimate the missing aneurysm boundaries and keep continuity of the zero level set. Under the effect of Euler's elastica model, the zero level set of GAC model is constrained inside the thrombus, and a complete boundary is captured. The paper is organized as follows. In section 1, we introduce briefly the well-known fundamentals of Euler's elastica, and then a new model using Euler's elastica and GAC model is developed. In section 2, the numerical scheme is derived. Subsequently, four examples of cerebral aneurysm segmentation are presented in section 3 1 . The influence of the parameters settings to the behavior of Euler's elastica is also analyzed tin this section. Section 4 is the discussion followed by the conclusion in section 5.

Models and algorithms

Basically, a level set function is evolved such that its zero level set locates the aneurysm boundary. To this end, the first problem is: how to estimate the aneurysm boundary in low-contrast regions ? In our model, we assume the boundary in the low-contrast regions is a smooth curve without high curvature junctions. In other words, the rigidity of the contour should be enhanced.

However, the second problem arises; how to drive the contour to the high curvature points in high-contrast regions? The aim of our model is to solve this contradiction.

Euler's Elastica problem and model

The elastica energy is first introduced by Euler in 1744 for modelling torsionfree elastic rods. In recent decades, it has many successful applications in various fields, e.g. computer vision [START_REF] Mumford | Elastica and Computer Vision[END_REF][START_REF] Tai | A fast algorithm for euler's elastica model using augmented lagrangian method[END_REF], image inpainting (Chan et al., 2002), illusory contour detection [START_REF] Zhu | A variational model for capturing illusory contours using curvature[END_REF], machine learning [START_REF] Lin | Total variation and euler's elastica for supervised learning[END_REF][START_REF] Lin | Supervised learning via euler's elastica models[END_REF] etc.

A smooth curve C is said to be Euler's elastica problem if it is the equilibrium curve of the elasticity energy:

E(C) = C (a + bk 2 )ds (1) 
where constant a, b are non-negative weights, k is the scalar curvature, and ds denotes an infinitesimal arc length element. The ratio a/b indicates the relative importance of the total length versus total squared curvature [START_REF] Chan | Image Processing And Analysis: Variational, Pde, Wavelet, And Stochastic Methods[END_REF]. In our model, the curve C is embedded as the zero level set of distance function in domain Ω, then (1) can be rewritten as follows:

E(C) = Ω (a + bk 2 ) • |∇H(φ)|dxdy (2)
where H is the Heaviside function:

H(x) =      1 x ≥ 0, 0 x < 0.
(3)

In fact, a regularized Heaviside function is used in the experiments:

H ε (x) = 0.5 1 + 2 π arctan x ε . ( 4 
)
The gradient of the Heaviside function H is:

∇H(φ) = ∇φ • δ(φ). (5) 
Then, formula (2) can be rewritten as:

E(C) = Ω (a + bk 2 ) • |∇φ|δ(φ)dxdy. (6) 
Formula ( 6) embeds curve C into a higher dimensional surface, and evolves the surface such that the zero level set converges on the boundary of the object to be segmented. The closed boundary is consisted by real boundary, which can be detected by various methods, and missing boundary. By minimizing formula (6), we can use Euler's elastica model to complete the missing boundary.

Our models

In the research of Zhu and Chan [START_REF] Zhu | A variational model for capturing illusory contours using curvature[END_REF], the Euler's elastica model is used to capture illusory contours which are not explicitly present in the binary image. Their model is quite different with us. This is mainly caused by the fact that the CTA image is of gray scale. In binary image, the edges are actually known knowledge. It is very easy to determine where the Euler's elastica term should take effect. However, in gray scale image, for the uncertain edges, the Euler's elastica may affect the level set evolution globally. This will cause crude segmentation in high contrast region.

Generally, our energy reads:

E(C) = E 1 + E 2 + E 3 = λ 1 Ω a + bk 2 • |∇φ|δ(φ)dxdy + λ 2 Ω 0.5 (|∇φ| -1) 2 dxdy + λ 3 Ω g(x, y)δ(φ)|∇φ|dxdy (7)
where g is a monotone decreasing edge function of image gradient, thus E 3 will drive the motion of zero level set to image edges. Energy E 2 is a distance regularization term to keep level set function φ as an approximate distance function [START_REF] Li | Level set evolution without reinitialization: A new variational formulation[END_REF][START_REF] Li | A Variational Level Set Approach to Segmentation and Bias Correction of Images with Intensity Inhomogeneity[END_REF]. Energy E 1 represents the Euler's elastica component. In fact, model ( 7) is a GAC model plus Euler's elastica energy term.

Minimizing energy function ( 7), we obtain the Euler Lagrange equation as following:

∂φ ∂t = λ 1 δ(φ)∇ • V + λ 2 φ -div ∇φ |∇φ| + λ 3 δ(φ) div g ∇φ |∇φ| + cg (8) 
where

V = (V 1, V 2) = a + bk 2 n - 2b |∇φ| ∂(k |∇φ|) ∂ t and n = ∇φ |∇φ| , t = - φ y |∇φ| , φ x |∇φ| , k = ∇ • ∇φ |∇φ| . Thus V 1 = (a + bk 2 ) φ x |∇φ| + 2bφ y |∇φ| 3 φ x ∂(k|∇φ|) ∂y -φ y ∂(k|∇φ|) ∂x V 2 = (a + bk 2 ) φ y |∇φ| + 2bφ x |∇φ| 3 φ y ∂(k|∇φ|) ∂x -φ x ∂(k|∇φ|) ∂y .
However we cannot get the desired result based on equation (8). As indicated in figure 1, the first row in figure 1 shows the case of the segmentation of a Cshape object, and the second row a triangle case. shows the initial zero level set defined artificially. Figure 1.b (the second column)

gives the result in steady state (after 10,000 iterations) with the initial level set defined in Figure 1.a. Obviously, in Figure 1.b, although the zero level set is very smooth, over-segmentation happens. This is mainly due to the Euler's elastica term which can constrain the curve to generate points of high curvature, for example, the corners. This performance means formula (8) will produce smooth but coarse segmentation.

To overcome such defect, we need to deal with one problem: Euler's elastica term should play important role in the low-contrast region, while no effect in high-contrast region. In low-contrast region, pixel values are similar with each other over relatively large region. However in the high-contrast, pixel values always vary dramatically. This inspires us to apply the image gradients as a switcher to control Euler's elastica influence on level sets. According to this idea, we modify the energy term E 1 in formula (7) as follows:

E(C) = E 1 + E 2 + E 3 = λ 1 Ω g(x, y) a + bk 2 • |∇φ|δ(φ)dxdy + λ 2 Ω 0.5 (|∇φ| -1) 2 dxdy + λ 3 Ω g(x, y)δ(φ)|∇φ|dxdy (9) 
where

g(x, y) = 1 1 + |∇(F * I)| p .
Index p is positive; F is a Gaussian filter and I the image to be segmented.

g is a monotone decreasing function of the gradients of the smoothed image (filtered by F ). Minimizing energy function (9), we get:

∂φ ∂t = λ 1 δ(φ)g∇ • V + λ 2 φ -div ∇φ |∇φ| + λ 3 δ(φ) div g ∇φ |∇φ| + cg . (10) 
According to Zhao's study [START_REF] Zhao | A variational level set approach to multiphase motion[END_REF], to remove the stiffness near the zero level set and speed up the evolution speed, function δ(φ) in front of ∇ • V can be substituted by |∇φ|:

∂φ ∂t = λ 1 |∇φ|g∇ • V + λ 2 φ -div ∇φ |∇φ| + λ 3 δ(φ) div g ∇φ |∇φ| + cg . (11) 
In figure 2, we present the example of segmentation by formula (10). Obviously, Figure 2 gives more precise result compared with Figure 1 in particular the corners are captured much well. b) Compared with Figure 1, a better result is achieved in steady state (10,000 iterations).

Numerical scheme 107

For simplicity, formula (11) can be rewritten as:

∂φ ∂t = λ 1 L 1 (φ) + λ 2 L 2 (φ) + λ 3 L 3 (φ). ( 12 
)
The left hand side of the formula ( 12) is approximated by the forward difference, thus the numerical scheme is expressed through the following iteration

φ k+1 i,j = φ k i,j + ∆t λ 1 L 1 (φ k i,j ) + λ 2 L 2 (φ k i,j ) + λ 3 L 3 (φ k i,j ) (13) 
L 2 and L 3 are approximated by central difference, while L 1 is discretized in the same way as document [12]. In practice,

L 1 (φ k i,j ) = ∇ • (V 1, V 2) = (V 1 i+0.5,j -V 1 i-0.5,j ) + (V 2 i,j+0.5 -V 2 i,j-0.5 ) (14) 
Taking the half point (i + 0.5, j) for instance:

k i+0.5,j = minmod(k i+1,j , k i,j ) (15) 
where minmod(x, y) = sign(x, y) 2 min (|x|, |y|) . φ x(i+0.5,j) = 0.5(φ i+1,j -φ i,j ) ( 16)

∂(k|∇φ|) ∂x = 0.5 (k i+0.5,j |∇φ| i+0.5,j -k i,j |∇φ| i,j ) (17) 
φ y = minmod(φ i+1,j+1 -φ i+1,j , φ i,j+1 -φ i,j ) (18) ∂(k|∇φ|) ∂x = minmod ((k|∇φ|) i+1,j+1 -(k|∇φ|) i+1,j , (k|∇φ|) i,j+1 -(k|∇φ|) i,j ) (19) 
where |∇φ| can be discretized by upwind scheme.

The proposed numerical scheme in general is a time complexity O(n 2 ) scheme which is mainly affected by L 1 .

Experiment

All the experiments are implemented on a PC with Intel(R) Core(TM) i7-4702MQ CPU, 8G RAM, with MATLAB 2016. In figure 3, we show 3 examples of aneurysm segmentation by our method in 3 rows respectively. The first column in each row are the initial zero level set defined artificially, while the second rows give the segmentation results in the steady state. Due to the strong noise usually presented in medical image, the test images are Gaussian filtered as image preprocessing. Table 1 gives the fixed parameters in the experiments.

In Example 1 (first row in Figure 3), the test image is relatively less noisy, and the aneurysm's boundary is intact. In this case, the GAC model can segment In figure 4, we show another example (example 4). The behavior of our method in the estimation of invisible boundary is tested by an "extreme" example, in which a large part of the aneurysm boundary is invisible (no lumen nor surrounding tissues). The segmentation is related to the wall calcifications (the bright bowl-shaped slender region nearby the initial curve) which are lacking in most of aneurysms. The left image in figure 4 is the initial curve. The right of figure 4 shows the segmentation which looks good. Table 3 gives the fixed parameters in the experiments. marked by the dotted circle inside which Figure 7(a) showed a small curve of negative curvature. Actually, this small curve is composed of two approximate straight lines, and the junction is attracted to the false edges by E 3 . In the case of b=0, E 1 reaches the minimum on the two approximate straight lines, and only has effects on the junction. However, if b is increased, the effect of E 1 on the total small curve is increased,and overcomes that of E 3 . Thus the zero level set will cross the false edges to keep higher curvature.

Discussion

The zero level set is affected both by GAC model and Euler's elastica model.

GAC model is used to find the local minimum in images. However, in the low-contrast regions, some important information are lost.

The boundaries are disturbed by the noise, or even lost. In the case of lost boundaries, the accurate segmentation of the aneurysm boundaries is impossi- for decades [START_REF] Conti | Semi-automatic spline fitting of planar curvilinear profiles in digital images using the hough transform[END_REF]Browne and Gaydecki, 1987). In the case of weak boundaries which are disturbed by the noise, both E 1 and E 3 contributes to the segmentation. This means the segmentation is not fully "estimated". E 3 makes the model immune to noise. In the case of strong boundaries which are very clear, parameter g comes to be very small, thus the contribution of Euler's elastica vanishes. The proposed model is equivalent to GAC model. Moreover, the high curvature junctions have less influence on the estimation of the aneurysmal cavity volume, similarly on the aneurysmal cavity volume/lumen volume ratio which is required for estimating the growing volume of the thrombus during the follow-up of a patient along the healing process.

As same as GAC model, our model also depends on the position of an initial contour. We suggest setting the initial contour close to the object boundary. By this means, we can also shorten the evolution process. Although our algorithm is semi-automatic, it can be improved to become a full automatic algorithm. The main idea is to perform an initial segmentation followed by our method. The initial segmentation can be obtained by various method such as Atlas method or by using the segmentation of the previous adjacent frames in CTA image sequence.

In particular, the time-of-flight magnetic resonance angiography (MRA) is the most widely used technique to assess aneurysms (giant or not) in clinical practice because it is associated with no-radiation exposure. Although we used the CTA image in our experiments, the proposed model is independent of the imaging modality. The proposed model has the capacity to treat relevantly time-of-flight MRA images in which the slowing flow within the giant aneurysm lumen can cause low contrast region at the boundaries.

Conclusion

In for validation of biological models of thrombus formation within the cavity of cerebral aneurysms [START_REF] Malaspinas | A spatio-temporal model for spontaneous thrombus formation in cerebral aneurysms[END_REF] and validation of a patient specific endovascular treatment [START_REF] Eker | Mr derived volumetric flow rate waveforms of internal carotid artery in patients treated for unruptured intracranial aneurysms by flow diversion technique[END_REF].

As mentioned in the discussion section, the segmentation performance depends on the position of an initial contour which should be defined closed to the object boundary. However, the initial contour can be obtained automatically by various segmentation method. This solution will lead to a full automatic segmentation algorithm. The Euler's Elastica also can be applied to estimate the missed boundary in the segmentation or registration of various noisy images (e.g., ultrasonic image) in which the boundary is embedded in the noise. This will be the future research work we will focus on.
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Figure 1 :

 1 Figure 1: Segmentation based on formula (8). Smooth but imprecise results are shown. a) Artificially defined Initial zero level set (red curves). b) Zero level set in steady state (after 10,000 iterations).

  Figure 2: Segmentation based on formula (10). a) Artificially defined initial zero level set (red curves).

  Figure 3: Three examples of aneurysm segmentations.

Figure 4 :

 4 Figure 4: Segmentation by using Euler's Elastica to estimate the missing boundary. Left: initial curve. Right: segmentation.

Figure 5 :

 5 Figure 5: Four examples with different b values (From left to right:a=0.01 and b=0, 0.2, 0.4, 0.6 respectively).

Figure 7

 7 Figure 7 shows the segmentation by Euler's elastica with 2 different b values (b=0 and b=0.1). Similar to the experiments shown in figure 5 and figure 6,

Figure 6 :

 6 Figure 6: A positive correlation between the contour curvature and parameter b -The level set curvature increases with the increase of parameter b.

  Figure 8(a)-(b) gives

Figure 7 :

 7 Figure 7: The segmentation of a CTA image with 2 different b values (b=0 and b=0.1).

Figure 8 :

 8 Figure 8: The segmentation by GAC model.

Table 1 :

 1 Fixed parameters.

		Iteration number	TTE (seconds)	TPI (seconds)
	Example 1	3500	66	0.0189
	Example 2	10000	218	0.0218
	Example 3	1500	60	0.04

Table 2 :

 2 Execution time.

Table 3 :

 3 Fixed parameters.

  this paper, we propose a new model using GAC associated with Euler's

	elastica model for the segmentation of giant aneurysms in CTA images. With
	GAC model, aneurysms in high-contrast region are segmented, while Euler's
	elastica estimates the missing boundaries caused by the low contrast of the
	thrombus in respect with the neighboring tissues. The experiments indicate
	that our model can segment aneurysm qnd giant aneurysm both well. The
	presented original method based on Euler's elastica model and the associated
	results can contribute to optimized 3D reconstruction geometries of aneurysm
	cavity and associated thrombus; precise reconstructions are also of high interest
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