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Abstract

Flexible rockfall barriers are protection systems against risks of falling rocks. Their complex

behaviour is still not well understood and the development of relevant models allowing for

quick calculations is a need toward the optimisation of such structures. The key issue is the

modelling of the so-called "curtain e�ect", where the cable net slides along the supporting

cables. The present paper proposes hence a model of sliding cable submitted to concentrated

forces. It addresses the stability conditions of the centred �nite di�erence scheme, especially

in the framework of the Dynamic Relaxation Method where estimates are found for the best

possible �ctitious masses at nodes. Expressions are derived in the general case, but also for

monotonically curved cables and looped cable elements or rings. Elementary problems are

shown for validation, before a case study based on experiments conducted during the French

National project C2ROP demonstrates the accuracy and the reliability of the proposed

methodology. The present study is however limited to quasi-static loadings and therefore

needs further developments to be extended to realistic dynamic cases which are discussed in

the conclusion.

Keywords: Discrete element method, numerical stability, sliding cable, dynamic

relaxation, ring element, anti-submarine net.
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1. Introduction

1.1. General context

The hazard of landslide, mainly in mountain areas, compromises the safety of inhabitants.

The need to protect them, their properties and infrastructures against this risk requires the

setting of protective structures. Rockfall barrier is an often used alternative because of

its low weight and its high capacity to absorb energy. It can be installed, by specialised

workers, on hard-to-reach areas. These structures are complex and involve non-standard

connections in civil engineering. Schematically, their behaviour can be described as follows:

a wire net (shown in Figure 1, but not necessarily) intercepts the rock trajectory. It then

deforms, sliding along the supporting cables which are attached to the posts or the cli�

by dissipating devices that undergo irreversible transformations by yielding, rubbing or

tearing. The dissipation of the rock kinetic energy is thus insured by the friction and plastic

deformation of the net itself and by the brakes distributed along the cables. The sliding of

the rings along each other and along the supporting cables is essential to the behaviour of

the barrier: it allows the members to be rearranged in such a way that the structure can

withstand the impact without stress concentration and adapt to any location of the impact.

The proper modelling of the sliding should give more insight into a very non-linear problem,

and help to improve the results of companies trying to get an agreement for their products.

It was indeed shown in [8] that one out of two tests at the French experimental testing

facility in Montagnole was negative.
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Figure 1: Top view of the rockfall barrier prototype developed in the framework of the french national

project C2ROP (Photo courtesy of NP C2ROP).

Figure 2: Pattern of a ASM4 ring net.
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Indeed, 2008, a European Technical Agreement (ETA) was set for �exible rockfall barriers

in order to align the design standards between the EU countries. This agreement is in

line with the recommendations of the technical guide ETAG 027, which is the reference

publication for the design of barriers [15]. To receive it, the structure must withstand

the fall of a block with a given energy with controlled deformation. The full-scale test

procedure, proposed by the ETAG 027, is largely driven by the previous experiments on

complete structures carried out by manufacturers and academics. We can notably mention

the experiments of D. Peila (1998), where the block is guided by a trolley before the impact

on the net [25] and the experiments of H. Grassl (2002) in partnership with the Swiss

company Geobrugg [18]. A product is hence approved for one critical energy level. Despite

the development of powerful computational tools in the last decades [19, 28, 7, 18], this

experiment is today the only recognised way to validate the performance of a �exible barrier.

1.2. The Dynamic Relaxation Method

The behaviour of the �exible barriers reveals strong geometric and material non-linearities,

so that their modelling is complex and their calculations are time consuming, especially

when the full dynamic simulation is conducted. The development of a modelling strategy

that would allow quick calculations and parametric studies would thus be of great help in

the comprehension of their complex behaviour and toward the development of new barriers.

The key issue is the modelling of sliding cables which is addressed here, with a focus on a

stability condition with the Dynamic Relaxation Method (DRM). The dynamic relaxation

method is a discrete numerical method used to determine the equilibrium state of a system
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submitted to mechanical loads which is very suitable for large displacement [13]. Its prin-

ciple consists in linearising the di�erential equation of the Newton's �rst law by an explicit

scheme of numerical integration. The static position of a structure is hence considered as

the result of a smoothed dynamical process.

If the forces are conservative, the dynamical behaviour of the system has no in�uence on

its equilibrium state. The dynamic parameters (damping and mass) can thus be chosen to

optimise the convergence of the algorithm. M. Papadrakakis proposed a general method to

identify the critical parameters of a structure [24], but it is relatively complex and does not

signi�cantly outperform other methods [27]. That's why an alternative arti�cial damping,

the "kinetic damping" proposed by P. Cundall, is used in the algorithm presented in this pa-

per [12]. It is based on the principle of mechanical energy conservation during an undamped

dynamic process. Considering that in this case, each minimum of potential energy coincides

with a maximum of kinetic energy, setting arti�cially the kinetic energy to zero at every

peak should lead progressively to the equilibrium state. This method is very popular among

others [5, 6, 14], so that in the rest of this paper, numerical simulations will be carried out

with a DR algorithm using kinetic damping.

This quasi-static modelling rely on the idea that the block will concentrate most of the

inertial forces and of the kinetic energy, as the mass of the block is generally �ve times greater

than the mass of the net and that initially only the block is moving. It also relies on the

fact that the brakes serve as fuses for the anchorages and surrounding cables or supporting

members, cutting o� peaks that may occur in usual impact problems. Therefore, a quasi-

static calculation of the equilibrium state should give a quick and reasonable estimate of
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the equilibrium con�guration after impact and hence provides to the engineer some useful

global information of the barrier, such as estimates of the residual height, the brakes stroke

or the depth of the net. The loading equivalence between static and dynamic loadings

would then be based on the dissipated energy, not on forces. These assumptions build

on preliminary results of the C2ROP research project [23] where similar quasi-static and

dynamic experiments were conducted and evidenced similarity in the barrier behaviour (see

the load-displacement curves of �gure 3, note that for the dynamic test the load is calculated

from the product mass time measured acceleration of the block.)

Figure 3: Comparison of quasi-static /dynamic experimental global behaviour of the C2ROP fence (by

courtesy PN C2ROP).

However the net itself is not protected by the brakes and their fuses role. Therefore it

needs to be underligned here that the dynamic aspects of the impact can not be predicted

by the proposed quasi-static analysis which would fail to estimate maximum forces in the
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net due to back lash as well as local stress concentration around the block, which is known

as "bullet e�ect" and tightly linked with the form and speed of the block (see for instance

[19]).

1.3. "Curtain e�ect" and sliding cable

As just said in the previous section, the modelling of the "curtain e�ect" is key to the

understanding of the structure behaviour: when a block impacts the interception structure,

the net slides along the support cables and tends to concentrate around the impacted zone.

The geometric reorganisation, created by the sliding of the net, allows to increase the motion

(in the vertical direction) of the complete structure, hence minimising the internal forces.

This phenomenon, illustrated in Figure 4, is called "curtain e�ect" and is commonly modelled

with a "sliding cable" [18], whose tension depends on the variation of its whole length. The

tension is hence constant in the cable and does not depend on the relative positions of

successive nodes.

Figure 4: "Curtain e�ect" due to block impact (by courtesy PN C2ROP).

We can �nd a few models of such elements in the literature. The list of works presented
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here is not exhaustive. B. Zhou developed in 2004 a 3-nodes sliding cable model for an

application to parachute systems [29]. A generalisation is proposed by C. Chen for a digital

implementation in a FEM software in the purpose of studying the resistance of a dome [9].

L. Ghoussoub [17] also proposed a generalisation of the sliding model of B. Zhou to n-nodes

cable [29].

An alternative approach of the sliding of the cable through the post head was also

proposed using dedicated Master and Slave nodes by Gentilini et al [16] and Tran et al [26],

while Albaba et al proposed a rigid closed loop connections, formed by four nodes, and

through which the cable passes [1].

Another part of its �eld of use is also the case of cables passing through pulleys. This

system is widely used in the industry to transfer loads on long and complex path. The

particularity of pulleys is that they can apply a friction force on the cable so that tension

is di�erent on each side of it. M. Aufaure proposed a �rst �nite element model of a cable

passing through one pulley to describe the deformation of a power line [2, 3]. This work

was then extended by F. Ju to identify the tangent sti�ness matrix of a cable passing

through n pulleys. While staying in the framework of pulleys system, K. Hincz conducted

a nonlinear analysis with the DR method to determine the geometry of an arch-supported

cable net roof [20] and A. Bel Hadj et al proposed a model taking into account a friction

force [5, 6]. J. Coulibaly used also this approach to propose a model adapted to rockfall

barriers and included friction forces [10]. In Coulibaly et al [10] as well as in Bel Hadj et al

[6], the parametric studies show that friction might have a signi�cant in�uence on the static

equilibrium and dynamic of lightweight structures.
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However, in the speci�c case studied here, the experiments on the rockfall barriers con-

ducted in [23] have shown that the sliding occurs at the very beginning of the impact, so

that it occurs on a con�guration with low angles between cable successive elements (θ) and

with low forces in cables (T ). Therefore one might estimate that the friction evaluated from

the friction coe�cient µ as T (exp(µθ)− 1) is low and that the associated dissipated energy

is negligible compared to the energy dissipated by the brakes. Also the fact that the sliding

cables are always linked with brakes at each end ensures that the magnitude of the tension

in the cable end is �xed by the brakes threshold which is quickly reached during the impact

and almost independently of the friction coe�cient. A frictionless sliding cable should thus

be able to capture the behaviour of the barrier at leading order.

1.4. Summary of contributions

The next two sections are hence dedicated to the discrete modelling of frictionless sliding

cables and its numerical stability within the framework of a dynamic explicit scheme, with

application to n-nodes monotonic supporting cables and ring nets. Some computations are

carried in the fourth section on simple examples to assess the accuracy and stability of

the numerical models. Finally, a case-study on a quasi-static experiment on a whole barrier

prototype is proposed and demonstrates the interest of the frictionless proposed model. Some

perspectives on the limitation of the present study and possible extensions will conclude the

paper.
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2. Modelling of a sliding cable element

As presented in introduction the "curtain e�ect" is currently modelled by means of a

sliding cable element. Cables are connected to the rings along each edge of the net. In

view of the diameters of cables and rings, a single contact point can be considered between

these two elements. Such cables can either be modelled as continuous elements submitted

to concentrated forces, or discretely as an ordered set of nodes linked together by spring

interactions. The main purpose of this section is to identify the tangent sti�ness matrix

of a frictionless sliding cable, which is necessary to determine a stability condition of the

centred �nite di�erence scheme [24]. In a �rst subsection, the expression of the internal

forces vector will �rst be identi�ed as a function of displacements from the equilibrium of a

continuous cable submitted to n concentrated forces. This straightforward approach is well-

known and will allow us to correctly introduce the notations required to de�ne the discrete

internal forces vector. Moreover, it will be demonstrated that, with this case of concentrated

forces, results do not depend on the description of the problem (continuous or discrete). The

second subsection will be dedicated to the identi�cation of the tangent sti�ness matrix of a

sliding cable. From its expression, a stability condition of the �nite di�erences scheme will

be proposed in a third section, easily calculable, in order to reduce computation costs.

2.1. Equilibrium of a sliding cable submitted to concentrated forces

2.1.1. De�nition

We propose to write the equilibrium of a cable loaded by n concentrated forces (which

may represent n rings connected to the cable in a rockfall barrier). A cable of length l
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is represented as a uni-dimensional element and parametrised by its arc-length, so that

∀ s ∈ [0; l], the position of a point s along the cable is given by: s→ x(s). We also consider

the n forces f
i
applied on the points of curvilinear abscissa: s1 < ... < sn with s1 = 0 and

sn = l.

xi

xi+1xi−1

x1 xn
t1

−ti−2

ti

−ti

−tn−1

f
1

f
i−1

f
i

f
i+1

f
n

−ti−1

ti−1
ti+1

−t1

x1

t2

xn−1f
n−1

tn−1−tn−2

Figure 5: Equilibrium of a sliding cable under concentrated forces (assuming ti = −t(s−i+1) = t(s+i ))

.

In the rest of this section, the following assumptions will be considered:

• The function s→ x(s) is piece-wise di�erentiable. The tangent vector is hence de�ned

on each interval where f is di�erentiable by: t : s→ dx(s)
ds

.

• Since the bending and compression sti�ness are considered as null, the cable can only

undergo tensile forces.

• The tensile force is uniform along the cable and given by: T (s) = Tt(s) with s ∈ ]0, l[

when t is de�ned.
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• Considering the large displacements of the cable, all the equilibrium equations are

established on the deformed geometry.

Let dsi ∈
]
0, min

(
1
2
||x(si)− x(si−1)|| , 1

2
||x(si+1)− x(si)||

) [
. Firstly, we write the equi-

librium of a cable segment between two consecutive forces. The segment [si + dsi, si+1 − dsi]

is not loaded by any external force and its equilibrium is simply given by:

Tt(si + dsi) = Tt(si+1 − dsi) (1)

The cable is thus necessarily straight between two concentrated forces and

t(s+
i ) = t(s−i+1) =

x(si+1)− x(si)

||x(si+1)− x(si)||
(2)

Then, the equilibrium of any segment [si − dsi, si + dsi] on which the force f
i
is applied

gives the change of tangent direction at the node:

T
(
t(s+

i )− t(s−i )
)

= f
i

(3)

Finally, to describe the equilibrium of the whole cable, it still remains to write the equilibrium

of its two extremities:

−Tt(s+
1 ) = f

1
and Tt(s−n ) = f

n
(4)

The deformed geometry of the cable is hence piece-wise linear and it is completely given by

the position of the points on which the forces are applied (see Figure 5). The equilibrium
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of the whole cable F int = F ext writes hence:

T



t(s+
1 )

...

t(s+
i )− t(s−i )

...

−t(s−n )


+



f
1

...

f
i

...

f
n


= 0 (5)

The transition from the equilibrium of a continuous cable under multiple concentrated

forces to the discrete model is thus obvious. The discrete model is completely determined

by the ordered set of the n nodes positions [x(s1) . . . x(si) . . . x(sn)] of the continuous cable

which now will be simply noted [x1 . . . xi . . . xn] for a discrete cable. The tangent vectors

can always be de�ned in the same way but for the sake of clarity, only the right side tangent

will be considered:

ti =
∆xi
li

with ∆xi = xi+1 − xi and li = ||xi+1 − xi|| (6)

The components of the vector ti in the direct orthogonal system (e1, e2, e3) are respectively

noted: t1,i, t2,i, t3,i.

We assume then that the behaviour of the element is linear elastic and characterised by

Hooke's law. Noting respectively E , S and ε, the Young's modulus, the cross section and

the uniform strain of the cable, the tensile force is simply given by:

T = ESε (7)

where ε can be evaluated from the deformed length of each segment and the global rest
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length l0 :

ε =
1

2

(∑n−1
i=1 li
l0

)2

− 1

 with l0 =
n−1∑
i=1

lresti (8)

Considering the previous notations, the expression of the internal forces vector (5) in fric-

tionless cables can be rewritten on the nodal displacements basis:

F int = ESε



−t1,1
...

t1,i−1 − t1,i

t2,i−1 − t2,i

t3,i−1 − t3,i
...

t3,n−1



(9)

2.1.2. Remarks

Before proceeding with the determination of the tangent sti�ness matrix, it is interesting

to discuss the form of the internal forces vector (9).

Eulerian vs Lagrangian. As explained in the introductory paragraph of this section, similar

studies to identify the tangent sti�ness matrix of a sliding cable have been already carried

out. B. Zhou [29], C. Chen [9] and L. Ghoussoub [17] have established an expression of

the tangent sti�ness matrix for a 3 or n nodes sliding cable respectively; the developments

of C. Chen and L. Ghoussoub being a generalisation of the problem dealt by B. Zhou.

Through their demonstration, they naturally identify an internal forces vector F int
ante which
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can be compare to the present internal force vector F int
present , such that:

F int
present =

(
lfinal/linitial

)2
F int
ante (10)

The expressions of the internal forces vector (9) developed in the present paper thus

di�er from the one de�ned by C. Chen and L. Ghoussoub by the square of the lengths

ratio. The study of the three demonstrations indicates that, while writing the virtual work

of the element, a confusion between the Eulerian and the Lagrangian strains had been

made, as well as in the choice of the reference con�guration for the Cauchy stress tensor,

with the consequence for the whole scheme not to be consistent. Indeed the Cauchy stress

tensor σ lies in the deformed (Eulerian) con�guration while the deformation considered by

previous authors corresponds to the Lagrangian deformation tensor ε which is built on the

initial con�guration. The strain energy considered is thus an hybrid product of one Eulerian

object and one Lagrangian object which is not consistent. To be correct, it requires to take

into account the metric changes between Eulerian and Lagrangian deformation
(
ds′

ds

)2
=(

linitial/lfinal
)2

which would cancel the additionnal term in (10). It is thus claimed that

the actual formulation is the correct one. Moreover the consistency of the present model is

highlighted by the fact that, in the case of concentrated forces, the discrete model becomes

fully equivalent to the continuous description.

Discrete normal vectors. The main assumption of a sliding cable model involves that, the

external forces are orthogonal to the cable tangent in the deformed geometry. The demon-

stration is relatively simple in the case of distributed forces and was done above for concen-

trated forces. The cable being not continuously di�erentiable, it is impossible to de�ne the
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normal vector to the curve wherever a concentrated force is applied, but a discrete normal

vector can be de�ned. Actually one of the usual approaches is to set it as the direction given

by the bisector of two successive tangents (see Figure 5):

ni =
ti+1 − ti
||ti+1 − ti||

(11)

The norm of ti+1 − ti depends on the discrete turning angle θ, which is the angle between

ti+1 and ti:

||ti+1 − ti|| = 2| sin θ
2
| (12)

Comparing (11) with (9), we notice that the intensity of the internal forces depends on the

local discrete normals of the cable. Therefore, in order to simplify notations in the rest

of this section, even if the internal forces at the points x1 and xn are not directed by the

discrete normal (which can not be de�ned at these points), we will note N the vector such

that: F int = ESεN in (9), so that N is de�ned by:

NT = [−t1,1, . . . , t1,i − t1,i−1, t2,i − t2,i−1, t3,i − t3,i−1, . . . , t3,n−1] (13)

2.2. Identi�cation of the tangent sti�ness matrix

The expression of internal forces in a sliding cable as a function of its nodal displacements

have been identi�ed in the previous section. It should be noted that the description of the

cable equilibrium was only a way of achieving this result and the expression can be extended

to any kinematically admissible displacement. This section is dedicated to the identi�cation

of the sliding cable tangent sti�ness matrix. It is currently calculated from the expression

of the internal forces vector (9) by:

K = gradU(F int) (14)
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where U is the vector of the actual or eulerian nodal displacements. F int and U are vectors

of size 3n and, to avoid any confusion, their components will be indexed with the index

j ∈ [1, 3n], whereas the nodes of the discrete cable are indexed with the index i ∈ [1, n].

For example, considering that j = 3i and using the expression (9) it will be noted:

F int
j = ESεNj = ESε (t1,i−1 − t1,i) , F int

j−1 = ESε (t3,i−2 − t3,i−1) , F int
j+1 = ESε (t2,i−1 − t2,i)

(15)

The same notations are considered for the nodal displacements, and the components of the

matrix K can now be expressed:

Kjk =
∂F int

j

∂Uk

= ES

[
Nj

∂ε

∂Uk

+ ε
∂Nj

∂Uk

]
(16)

In order to simplify the rest of the development, K is considered as the sum of two square

matrices: the elastic sti�ness matrix and the geometric sti�ness matrix, respectively noted

K
E
and K

G
:

KE,jk = ESNj
∂ε

∂Uk

, and KG,jk = ESε
∂Nj

∂Uk

(17)

It remains now to calculate the two partial derivatives. Firstly, we determine the expression

of K
E
. The uniform strain of the cable is given by (8), which depends on the deformed

length of each segment. According to the notations introduced in (6), it can be expressed

as:

li =
√

∆x2
1,i + ∆x2

2,i + ∆x2
3,i (18)

We can hence write:

∂ε

∂Uk

=
l

l20

n−1∑
i=1

[
1

2li

(
∂∆x2

1,i

∂Uk

+
∂∆x2

2,i

∂Uk

+
∂∆x2

3,i

∂Uk

)]
(19)
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Now we use the nodal displacement indexing and Kronecker symbol δjk to develop this

expression:

∂ε

∂Uk

=
l

l20

3n−3∑
j=1

[
xj+3 − xj

lj

(
∂xj+3

∂Uk

− ∂xj
∂Uk

)]
=

l

l20

3n−3∑
j=1

[
xj+3 − xj

lj

(
δ(j+3)k − δjk

)]
(20)

Finally, the coe�cients of the K
E
matrix are de�ned as follows:

KE,jk =
ES

l0
Nj


− l

l0

xk+3−xk

lk
if k ∈ [1, 3]

l
l0

(
xk−xk−3

lk−3
− xk+3−xk

lk

)
if k ∈ [4, 3n− 3]

l
l0

xk−xk−3

lk−3
if k ∈ [3n− 2, 3n]

(21)

The expression of the discrete normal N is recognised in the expression after the bracket, so

that:

K
E

=
ES

l0

l

l0
N ⊗N = K0

l

l0
N ⊗N (22)

The second part of the sti�ness matrix K
G
depends on the coe�cients

∂Nj

∂Uk
. The global

indexing is still used and, to clarify the rest of the developments, we consider that j is a

multiple of 3, even if there are no di�culties of computation in the other cases. We consider

the general case where j ∈ [4, 3n− 3] and once again di�erent sub-cases must be considered.

∂Nj

∂Uk

=
∂

∂Uk

(
xj − xj−3

lj−3

− xj+3 − xj
lj

)
(23)

After developments,

∂Nj

∂Uk

=
δjklj−3 − ∂lj−3

∂Uk
xj

l2j−3

−
δ(j−3)klj−3 − ∂lj−3

∂Uk
xj−3

l2j−3

−
δ(j+3)klj − ∂lj

∂Uk
xj+3

l2j
+
δjklj − ∂lj

∂Uk
xj

l2j
(24)

Using (18), the coe�cients are given by:

• k = j:

∂Nj

∂Uj

=
l2j−3 − (xj − xj−3)2

l3j−3

+
l2j − (xj+3 − xj)2

l3j
(25)
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• k = j − 3:

∂Nj

∂Uj−3

=
(xj − xj−3)2 − l2j−3

l3j−3

(26)

• k = j + 3:

∂Nj

∂Uj+3

=
(xj+3 − xj)2 − l2j

l3j
(27)

• k = j − 2:

∂Nj

∂Uj−2

=
(xj − xj−3)(xj+1 − xj−2)

l3j−3

(28)

• k = j − 1:

∂Nj

∂Uj−1

=
(xj − xj−3)(xj+2 − xj−1)

l3j−3

(29)

• k = j + 1:

∂Nj

∂Uj+1

= −(xj − xj−3)(xj+1 − xj−2)

l3j−3

− (xj+3 − xj)(xj+4 − xj+1)

l3j
(30)

• k = j + 2:

∂Nj

∂Uj+2

= −(xj − xj−3)(xj+2 − xj−1)

l3j−3

− (xj+3 − xj)(xj+5 − xj+2)

l3j
(31)

• k = j + 4:

∂Nj

∂Uj+4

=
(xj+3 − xj)(xj+4 − xj+1)

l3j
(32)

• k = j + 5:

∂Nj

∂Uj+5

=
(xj+3 − xj)(xj+5 − xj+2)

l3j
(33)

• k /∈ [j − 3, j + 5]

∂Nj

∂Uk

= 0 (34)
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The extension of previous calculations to the next two lines allows to construct the following

3× 3 matrix, whose coe�cients are written with the index i running from 1 to n.

Ai = − 1

l3i


∆x2

1,i − l2i ∆x1,i∆x2,i ∆x1,i∆x3,i

∆x2
2,i − l2i ∆x2,i∆x3,i

sym ∆x2
3,i − l2i

 (35)

The matrix K
G
of size 3n× 3n is thus sparse and writes in accordance with the sub-matrix

A
i
as follows:

K
G

= ESε



A
1

−A
1

0 · · · 0

A
1

+ A
2
−A

2
0 · · · 0

. . . . . . . . . · · · ...

A
i−1

+ A
i
−Ai 0 · · · 0

sym
. . . . . . · · · ...

A
n−2

+ A
n−1

−A
n−1

A
n−1



(36)

This �nishes the determination of the tangent sti�ness matrix of a n-nodes sliding cable.

2.3. Stability condition of the Dynamic relaxation scheme

2.3.1. De�nition of a general condition

M. Papadrakakis proposed a general method to identify the critical parameters of a

structure made of springs in the framework of the dynamic relaxation algorithm [24]. This

method has been taken over by many authors, including M. Barnes who formulated a simple
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expression insuring the stability of the algorithm with kinetic damping [4]:

mi ≥
∆t2

2
Ki

max (37)

where mi is the �ctitious mass of node i , ∆t the time step and Ki
max corresponds to the

highest sti�ness value of the spring elements connected with the node i.

2.3.2. About segments of vanishing length

As previously described, in the deformed geometry the external forces are directed toward

the bisectors of the angles formed by two successive tangents. It is then easy to prove from

this equilibrium condition that if two successive concentrated forces have the same direction,

in the deformed geometry, their two points of application coincide (see Figure 6). Yet, as

it will be proved further (see expression (51)), the critical �ctitious mass of nodes depends,

for a sliding cable element, on the inverse of the minimal length between two consecutive

points. To avoid numerical instability due to the vanishing of a segment, a series of springs,

which depend on the length of each segment, are introduced. The sti�ness of those springs

is chosen in the form of a barrier function equal to zero when the length is above 5% of

the initial segment length, and then equal to a logarithmic function of the length for lower

values of the actual length. This numerical artefact helps convergence, avoids the collapse of

any segment and visually does not a�ect the equilibrium shape (which can not distinguish

between a 100% sliding and a 95% sliding).

2.3.3. Development of the stability condition

Hence, the sti�ness matrix K is de�ned as the summation of two real symmetrical ma-

trices. K is thus diagonalisable and all its eigenvalues are real. In order to establish a simple
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Figure 6: Limit of the frictionless sliding model under parallel forces.

analytic expression ofKi
max, the spectral radius ofK

E
andK

G
, ρ
(
K

E

)
and ρ

(
K

G

)
respec-

tively, are separately determined. Indeed, in the particular case of a real and symmetrical

matrix, the spectral radius is equal to the matrix 2-norm, so that the triangle inequality

leads to:

ρ
(
K
)

= ρ
(
K

E
+K

G

)
≤ ρ

(
K

E

)
+ ρ

(
K

G

)
(38)

To evaluate these two spectral radii we �rst establish that K
E
is a positive de�nite matrix.

Let X be a non-zero vector of size (3N). We may write:

XT ·
[
N ⊗NT

]
·X =

[
XT ·N

] [
NT ·X

]
= < N,X >2 (39)

N being a strictly positive vector, K
E
is real and positive de�nite. Because all its eigenvalues

are positive we have the obvious following upper bound:

ρ
(
K

E

)
< tr

(
K

E

)
(40)
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From the analytic expression of NT (13), we obtain:

tr(N⊗NT ) = 2+
n−1∑
i=2

[(
∆x1,i

li
− ∆x1,i−1

li−1

)2

+

(
∆x2,i

li
− ∆x2,i−1

li−1

)2

+

(
∆x3,i

li
− ∆x3,i−1

li−1

)2
]

(41)

By developing the sum:

tr(N ⊗NT ) = 2 + 2
n−1∑
i=2

(
1− ∆x1,i−1

li−1

∆x1,i

li
+

∆x2,i−1

li−1

∆x2,i

li
+

∆x3,i−1

li−1

∆x3,i

li

)
(42)

Considering the series (θi) of angles between two consecutive vectors along the cable (see

Figure 7), we may write the previous expression as follows:

tr(N ⊗NT ) = 2

[
n− 1−

n−1∑
i=2

cos(θi)

]
= 2

[
n− 1−

n−1∑
i=2

(
1− 2 sin2

(
θi
2

))]
(43)

Because the sinus values range from −1 to 1:

tr(N ⊗NT ) ≤ 2

[
1 + 2

n−1∑
i=2

∣∣∣∣sin(θi2
)∣∣∣∣
]

(44)

The expression (44) corresponds to the general case, where the nodes of the cable have three

degrees of freedom in translation. And as it is, it can be implemented in the algorithm. In

order to reduce the computational time, it is also possible to make simplifying assumptions

and therefore to establish a simpler expression. In practice, the sliding cable is almost planar

and its rotation angle θ is almost continuously increasing.. The value of its total curvature

is thus lower than π (see Figure 7). Considering these assumptions, we know that all values

of θi are in the range of 0 to π and hence all values of sin (θi) are positive. Moreover, a

current upper bound for the sinus is its argument. Therefore the expression (44) becomes

in this particular case:

tr(N ⊗NT ) ≤ 2

[
1 +

n−1∑
i=2

θi

]
(45)
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Then by using the regularity of the cable's curvature, we establish a simple upper bound of

the spectral radius of the K
E
matrix:

ρ
(
K

E

)
≤ 2K0

l

l0
(1 + π) (46)

x1 xn

xi
xi+1

θi

Figure 7: Sliding cable with continuously increasing rotation angle θ.

Now it remains to determine an upper bound for the spectral radius of K
G
de�ned in

(36). To do this, we may use the Greshgorin circle theorem, which allows to calculate an

upper bound of each eigenvalue of a diagonalisable matrix from its coe�cients:

ρ
(
K

G

)
≤ K0εl0 max

i∈[1;N−1]

{
n∑

j=1

∣∣∣A
j

∣∣∣} (47)

which can be developed using (36):

ρ
(
K

G

)
≤ K0εl0 max

i

{
3∑

k=1

(
2
∣∣Ai,(jk)

∣∣+ 2
∣∣Ai−1,(jk)

∣∣)} (48)

Then, using the expression (35) of the A
i
matrix, we get:

ρ
(
K

G

)
≤ K0εl0 max

i

{
2

(
2

li
+

2

li−1

)}
(49)
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By introducing lmin the length of the smallest segment, the following obvious upper bound

can be established:

ρ
(
K

G

)
≤ 8K0ε

l0
lmin

(50)

Finally by grouping the upper bounds of the two spectral radii, we �nd the following in-

equality:

Kmax ≤ 2K0

[
4ε

l0
lmin

+ (1 + π)
l

l0

]
(51)

According to (37), the optimal nodal masses of a sliding cable in the dynamic relaxation

scheme are thus de�ned by:

mopt ≥ ∆t2K0

[
4ε

l0
lmin

+ (1 + π)
l

l0

]
(52)

Note that, conversely, the optimal time step of a sliding cable with n equal sliding masses

in a centred explicit dynamic scheme would be de�ned by:

1

∆topt
≥
√
K0

mi

[
4ε

l0
lmin

+ (1 + π)
l

l0

]
(53)

3. The ring cable model

A second application of the sliding cable model is proposed in this section. The ASM4

ring net is indeed composed of interlaced rings whose behaviour can be reproduced with a

discrete model of a looped sliding cable (the square drawn in red in Figure 8). The discrete

model used here is inspired from those of A. Volkwein and D. Coulibaly [28, 11] in which

the ring is composed by the four contact points with the neighbour nodes.

The behaviour of one of these rings undergoing a two points tensile test is presented in

Figure 8 taken from [22]. During the �rst stage its perimeter remains the same and only
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Figure 8: Experimental tensile test [22] and discrete ring model.

bending occurs. In the second stage, the length of the ring changes and axial sti�ness of the

rope is activated. The bending of the ring can be reproduced thanks to diagonal struts as

in [28] but the strut sti�ness is di�cult to evaluate. Therefore we prefer here to integrate

directly the bending sti�ness in the tensile sti�ness of the ring which will hence become

nonlinear as in [11]. This kind of element will be called "ring element" in the rest of this

paper and its characteristics will be identi�ed in section 5.3.2.

The calculations allowing the determination of the ring cable tangent sti�ness matrix are

practically the same as those carried out in the case of the sliding cable. The only di�erence

with (13) is the expression of the normal vector N for the �rst and last node which becomes:

NT = [t1,n − t1,1, . . . , t1,i−1 − t1,i, t2,i−1 − t2,i, t3,i−1 − t3,i, . . . , t3,n−1 − t3,n] (54)

with:

tn =
x1 − xn
||x1 − xn||

(55)
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Taking into account this modi�cation, the new expression of the
∂Nt

∂U
matrix becomes:

∂Nt

∂U
=



A
n

+ A
1

−A
1

0 · · · 0

A
1

+ A
2
−A

2
0 · · · 0

. . . . . . . . . · · · ...

A
i−1

+ A
i
−A

i
0 · · · 0

sym
. . . . . . · · · ...

A
n−2

+ A
n−1

−A
n−1

A
n−1

+ A
n


(56)

where the A
i
matrices are de�ned as previously in (35).

The upper bound of K
G
spectral radius is the same as previously. However, due to

changes in the expression of N , the calculation of the upper bound of ρ(K
E

) is a little

di�erent. By keeping the same notations, we may rewrite the trace of N ⊗NT :

tr(N ⊗NT ) = 2
n−1∑
i=2

(1− cos θi) (57)

There is no obvious simplifying assumption in the case of a n-nodes ring (a looped sliding

cable with n nodes). In particular, the ring curvature may not be monotonic and the ring's

convexity isn't ensured. Hence, the stability condition of a ring element depends on the

number of its nodes:

tr(N ⊗NT ) ≤ 8n (58)

Therefore, as previously the spectral radius of the tangent sti�ness matrix may be estimated
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by the following expression:

Kmax ≤ 2K0

[
4ε

l0
lmin

+ 4n
l

l0

]
(59)

Then by injecting this expression of Kmax in (37), we can determine the critical �ctitious

mass in the case of a 4-nodes ring cable:

mopt ≤ 4∆t2K0

(
ε
l0
lmin

+ 4
l

l0

)
(60)

From these two relations on the spectral radius of the sliding cable and the ring cable, we are

able to ensure the stability of these two elements implemented inside a dynamic relaxation

code. The modelling and the computations of a whole barrier does not present other major

di�culties. In the next section, we hence propose two simple case studies to verify the results

given by the sliding cable model and to assess the accuracy and e�ciency of the method.

Then, a more elaborated example will be shown in the �fth section.

4. Two simple examples of structures using sliding cables

4.1. Equilibrium of a module sliding along a cable

4.1.1. Presentation of the structure and analytic model

The structure studied here was already used as elementary problem by A. Volkwein and

L. Ghoussoub in their PhD [28, 17]. It is formed by a four points sliding cable and a module

transporting a load. This module is �xed to the two middle points of the cable and represents

the loading undergone by a net during a block impact. The whole structure is hold by the

two extremities of the sliding cable as shown in Figure 9. The module is formed by two bars
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of length h holding a beam of length d. The initial length of the sliding cable (which can be

prestressed) is l0.

l0

d

h

h

d

T
T

θ

P P
(a) (b)

Figure 9: Analytic model before and after loading.

We assume that the members sti�ness of the module are much higher than the one of

the sliding cable, and thus the module's member can be considered non-deformable.

The equilibrium state of this structure can thus be analytically determined. The equi-

librium of one of the sliding points is given by:

P = 2T sin(θ) (61)

Moreover, the tensile load in the cable can be expressed according to its deformation and

prestress by:

T = K∆l + T0 (62)

where K is the sti�ness of the cable, ∆l its elongation and T0 the initial prestress. By

writing the cable deformation according to the angle θ (cf. Figure 9):

l = f(θ) (63)
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∆l = f(θ) (64)

and injecting this expression in equation (61), we �nd the relation between the weight of

the module and the geometric deformation of the cable:

P = K tan(2θ) (1 + cos(2θ)) (d− 2h cos(θ)− l0) + T0 sin(2θ) (65)

4.1.2. Comparison between analytic and numerical results

The structure presented in previous paragraph is modelled with its loading inside the

dynamic relaxation tool. Simulations are carried out for di�erent values of the load P to

observe the evolution of the system. The initial length of the cable is l0 = 40m and its

sti�ness is K = 1250N.m−1, the dimensions of the module are h = 11m and d = 14m. In

the �rst simulations series the sliding cable is not prestressed (T0 = 0). Figure 10 shows the

evolution of the P load according to the θ angle for the numerical and analytic results. We

remark that for a non-prestressed cable the numerical results perfectly correspond to the

analytic results, with an almost 0.3% error on the whole load path.

We then carry out the same simulations adding prestress to the cable with a tension

of T0 = 2000N . Once again, we observe that the numerical results are in good agreement

with the analytic model, and this time, the average error is less than 0.1%. The sti�ening

e�ect of the prestress is well reproduced by the model. For this case study (with or without

prestress) the computational tool reproduces successfully the geometrical non-linearities due

to the large vertical deformation of the cable.
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(a) (b)
Figure 10: First case study "simple cable": comparison between analytic and numerical results with and

without prestress.

4.2. Study of a symmetric structure comprising multiple sliding cables

4.2.1. De�nition of the model

The accuracy of the model is tested here for a problem where several sliding cables are

connected while allowing relative sliding between them. The structure is presented in Figure

11. It is formed by two symmetrical pairs of sliding cables: the long ones, drawn in red,

connect six points: (P1, A,B,C,Bbis, P2bis) for the left side and (P2, B, C,Bbis, Abis, P1bis) for

the right side, and the short ones, drawn in blue, connect each one three points (P1, A, P2)

and (P2bis, Abis, P1bis) for the left and the right sides respectively. In addition to these four

cables there are two symmetrical bars (A,B) and (Bbis, Abis), drawn in black.

The two cables pairs, which constitute the structure, have the same sti�ness. The sti�-

ness of the two bars is variable in the study: it actually controls the relative sliding between

the cables. The equilibrium state of this system is solved on one hand with the dynamic

relaxation tool and on the other hand with a non-linear solver implemented in the soft-
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ware matlab R© and using a trust-region algorithm (see J. Moré 1983 [21]). The problem

is controlled in displacement by the vertical motion of the point C. The position of points

P1, P2, P2,bis and P2,bis are �xed. The resolution of the problem by the trust-region algorithm

consists simply in solving a four-dimensional non-linear system, given by the equilibrium

equations of points A and B and in which the unknown parameters are the positions of

these two points.

P1 A P2 B Bbis P2,bis Abis P1,bis

A

B

C

Bbis

Abis

2T1

T1

T1 + x

T1 + x

T2

T1 + T2

Figure 11: Second case study: Multiple sliding cables model.

The relaxed lengths are given by the initial geometry which is described below, by taking

into account the symmetry of the problem:

P1C = 7.5m, P2C = 2.5m, AC = 4.25m, BC = 1.75m (66)

The four cables have the same bi-linear elastic behaviour with two sti�nesses respectively

before and after the threshold: kc1 = 106 kN.m−1 and kc2 = 3, 6 kN.m−1. They have also

the same threshold: εlim = 2.3%, so that the lateral cables reach it for a twice lower tensile

stress. These bi-linear behaviours mimic the side cables in rockfall barrier which are generally

linked with dissipating energy devices conferring to the set "cable + brakes" this material
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non-linearity. The bar's behaviour is elastic with a sti�ness of: kb = 0, 8 kN.m−1 for the �rst

two computation series whose results are presented in the �gures 12 and 13. It illustrates

the role of the cable net in the control of the sliding cable geometry.

4.2.2. Comparison of results

This simpli�ed model of rockfall barriers presents some key aspects of their behaviour,

especially the connection of two sliding cables via the net (here modeled by the bar AB).

Graphs in Figure 12 present the comparison of computation results obtained with the trust-

region and the DR algorithms. We can observe that the kinematics of the structure given

by the four unknowns of this static problem (Graph (b) and (c) of Figure 12) are identical

with an error smaller than 0.1%. For very small vertical displacement of the structure

(Yc < 20cm), we observe that motions of A and B are larger than during the rest of the

loading path. It can also be noted that A moves away from the loaded zone during this �rst

displacement, while it moves toward the loaded zone afterwards.

Another signi�cant result concerns the whole behaviour of the structure (Graph (a) of

Figure 12): the second phase of the behaviour, after passing the threshold of the central

cable, is remarkably linear. Figure 13 highlights this impact of the yielding of the two

central cables. The sti�ness of the whole structure increases until the central cables reach

their threshold. After the threshold and during this linear phase, the apparent sti�ness

remains constant. Thus we observe that, even if the tensile force in lateral cables is not

negligible compared to the one in central cables (almost 50%), its in�uence on the whole

behaviour remains limited as it changes little the structure's geometry.
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(a) (b) (c)

threshold of
central cable

threshold of
central cable

threshold of
side cable

threshold of
central cable

Figure 12: Comparison of the DR method with a non-linear algorithm implemented in matlab.

(a) (b)

Figure 13: Cables load path for increasing displacements in the multiple sliding cables model.
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4.2.3. Convergence of the DR algorithm

The purpose of this last paragraph is to present some issues about the convergence and

the stability of the DR algorithm. The calculations of the �ctitious masses are given by

the expression (52) and the current safety coe�cient g = 1.05 ([4, 14]). The parameters

of the �rst simulations series are used. We consider the equilibrium of the structure for a

given vertical displacement of the point C: YC = 5m. The calculations are carried out by

applying to the structure a given displacement or a given force. In each loading case, the

load is reached in two di�erent ways: in a series of 25 "incremental steps" (the step length

is 0.2m for the study in displacement and 5.0kN for the study in force) and in a single step.

The results of these four series of simulations are presented in Table 1 and compared with

the result given by the trust region method. We see that whatever the loading mode, the

calculation converges toward the same solution with a high accuracy which highlights the

relevance of dynamic relaxation when only one equilibrium positions is looked for.

Fresultant (kN) YC (m) XA (m) YA (m) XB (m) YB (m)

trust region method 124.6 5.00 5.89 0.73 0.53 4.38

incremental displacement 124.6 5.00 5.89 0.73 0.53 4.38

one step displacement 124.6 5.00 5.89 0.73 0.53 4.38

incremental force 124.6 5.00 5.89 0.73 0.53 4.38

one step force 124.6 5.00 5.89 0.73 0.53 4.38

Table 1: Comparative convergence study with DRM.
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4.2.4. Parametric study of the bar sti�ness

In a second simulations series, we propose to study the impact of the parameter kb

(the sti�ness of the bar) on the behaviour of the structure. The vertical positions of the

point C is �xed at the altitude YC = 5m and the sti�ness parameter changes in the range

103N < kb < 108N . Once again the computations are carried out with the two algorithms.

The results are presented in Figure 14. We see that the increase of the bar sti�ness has

signi�cant in�uence on the equilibrium geometry but relatively little on the reaction force.

Points A and B slide towards each other, so that the lengths of the two central sliding cables

increase as the lengths of the bars decrease.

Note that, with the parameters (sti�ness and geometry) chosen here, the range under

10 kN is not accessible with the two algorithms. Indeed, the positions of points P1, P2 and

C form a minimum sliding angle which is reached when the bar is completely elongated

and points A and P1 as well as B and P2 coincide respectively (see Figure 15). Considering

this minimum angle and the tensile force in the central cables, it is possible to de�ne the

minimum force the bar has to apply to the point B to balance it. To this end, we write

the equilibrium of the point B located at the same place as the point C. Considering the

notations of the Figure 15, where the force x applied by the bar to the point B and the

angle α3 are the two unknown parameters of the system:
T1 cos(α1) + (T1 + x) cos(α2) = 2T1 cos(α3)

T1 sin(α1) + (T1 + x) sin(α2) = 2T1 sin(α3)

(67)

Considering this �nal geometry, we �nd that the equilibrium of the point B can be

ensured by the force x = 3, 09 kN and the angle α3 = 42˚. At this point, two remarks
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should be made. First, this force is indicative and in practice the variations of the bar

sti�ness change the equilibrium geometry presented in Figure 15. Second the geometry of

Figure 15 is the exact solution of the problem corresponding to the limit case (for which the

sti�ness of the bar is null). Due to the nature of the sliding cable which ensures the same

tension between each couple of nodes and because in practice two points can not perfectly

coincide, this limit case can not be reached numerically.

Increasing
stiffness

Increasing
stiffness

(a) (b) (c)

Figure 14: In�uence of the bar sti�ness on the behaviour of the structure.

P1 P2

α2 α1

T1 + x
B

α3

C
2T1

T1

Figure 15: Limit equilibrium with a very low sti�ness of the bar.
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4.3. Conclusion

Through these two comparative studies, we have tested on simple cases the accuracy and

the stability of our numerical models of sliding cables. For both comparisons with analytic

models (4.1) or with computations carried out with another algorithm (4.2), the results of

the numerical simulations are in perfect agreements. This allows us to con�dently model a

complete barrier.

5. A case study: numerical simulation of a full-scale experiment

5.1. Structure description and presentation of the experimental conditions

In this section, we present the numerical simulation of one of the experiments carried

out in the framework of the French national project C2ROP (www.c2rop.fr) which brings

together many public and private partners around the topics of landslide risk and protection

devices. The numerical tool, initially developed in the laboratoire Navier for elastic gridshells

[14], works within the framework of Rhinoceros 3D and its plugin Grasshopper.

5.1.1. Barrier architecture

The scheme of the tested barrier is presented in Figure 16 and has been detailed in [10].

A three-modules barrier is anchored perpendicularly to a vertical cli�. The whole fence is

2.75m high and 15m long (5m for each modulus). This fence consists of 10 support cables

(4 on each edge parallel to the cli� and 1 on each lateral edge). With this layout, the sliding

of the net is possible along each edge. Because of the large span of such structures, the

wiring along the edge is generally complex. It is presented in Figure 17. It is symmetric
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between the upstream and downstream edges. The two lateral cables (in green in Figure

17) hold the small edges of the net. The two external cables link the lateral anchor with

the head of the central post (cables A and Abis in blue) and two central cables connect the

head of the �rst and third posts (cable B and Bbis in red). Each cable holds partially the

net and is free near the post's head to avoid stress concentration. With this assembly, the

net is hold by two cables in the centre of the modulus and by a single cable near posts. The

set formed by the net and the support cables is hold to the cli� by 4 steel posts (modelled

by beam elements). Finally, the head of each post is maintained by 3 cables (two upstream

and one downstream), anchored to the cli� (see Figure 16). Brake elements (so called snake

brakes in which a cable winds rubbing along a set of screws) are connected in series with

each support cable.

Upstream

Downstream

Bsup
bis

Binf
bis

H2

H1

Binf

Bsup
Hlat

Figure 16: Technical drawing of the tested barrier (Courtesy of PN C2ROP).
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B A Bbis B Abis Bbis

B A Bbis B Abis Bbis

Figure 17: Support cables nomenclature and weaving principle scheme.

5.1.2. Loading

The position of every post foot is �xed but the rotation of the post is free. The positions

of all cable anchors on the cli� are also �xed. The links between cables and posts or cables

and brakes are hinges. The sliding of the net on the surrounding cables is free.

A quasi-static loading is then applied to the structure. A 740kg normalised polyhedral-

shaped concrete block is maintained by a winch and slowly placed in the middle of the net

until the barrier reaches equilibrium under dead-weight and block load. Then, another winch

is hooked on the bottom part of the block and pulled orthogonal to the net (see Figure 18).

Its vertical displacement is controlled and step by step increased so that the loading can be

considered as quasi-static. Several load cells are put on the fence components enabling the

stresses in all the support cables and in some anchoring ropes to be recorded (see black �ags

in Figure 17). The resultant load applied to the winch is also recorded.
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Figure 18: Front view of the quasi-static experiment on the rockfall barrier prototype (Courtesy of PN

C2ROP).
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5.2. Superstructure and loading modellings

The experimental loading being monotonic, the behaviour of all the elements is con-

sidered reversible (elastic but not necessarily linear). The relaxed length of each barrier

component is given by the initial geometry of the structure (no prestress is taken into ac-

count). The sti�ness are identi�ed from preliminary experiments on the components (brake,

cable and net) separately. The behaviour of the ring net is studied in detail in section

5.3.2. Sliding cables and brakes being set in series in the experiment, they are merged in

the numerical model into a unique bi-linear sliding cable element for simplicity reasons. The

�rst sti�ness corresponds to the sti� behaviour of the brake (before its scrolling), the second

sti�ness is low in comparison and corresponds to the brake's scrolling. The behaviour of

anchoring cables is simply modelled thanks to a linear law giving the stress according to

the relative displacement of the two cable endpoints. The steel posts are modelled as truss

elements with a similar linear law.

The block shape used for the numerical simulations is not polyhedral but spherical. Its

diameter is 0.85m and corresponds to the sphere tangent to the edges of the polyhedron.

Contact is modelled with many bar elements, which work only in compression and whose

relaxed lengths correspond to the block radius. The tensile sti�ness is null and the behaviour

is linear elastic in compression. The sti�ness is determined according to the maximum

tensile force applied to the structure and the tolerance of the interpenetration level. With a

maximum force of almost 210kN and a tolerance of 1cm, the sti�ness of the block bar is set

to: Kblock = 5.106kN/m. As in the experiment, the simulations are carried out by imposing

the block displacement (the convergence is quicker than by imposing a force on the block).
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5.3. Numerical modelling of the ring net

5.3.1. Experimental setup

Unlike the case studies carried out previously on the sliding cable, the ring cable model

is calibrated thanks to a comparison with a plane tensile experiment. This experiment was

also carried out in the framework of the french national project C2ROP. The experimental

setup consists of a square ring net (three by three) which is pulled in one direction and

maintained in the perpendicular one (cf. Figure 19). The test is driven in displacement and

load cells measure reaction forces in the two directions. The results are given according to

the axial displacement of the moving edge (see Figure 20).

Figure 19: Experimental setup of the plane tensile test on a ASM4 ring net (Courtesy of PN C2ROP).
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5.3.2. Numerical simulation and description of the ring model

The basic pattern of a single ring is described in Figure 8. By assuming that the ring

deformation is uniform in the square net, the tensile behaviour of a single ring can be

identi�ed from the experimental results in the loading direction. Indeed, by referring to

Figure 20, the equilibrium of the point A gives the tensile force in the ring, while its strain is

calculated from the axial displacement. The constitutive law is then continuously identi�ed,

thanks to the least squares method, by a �ve order polynomial:

K0(ε) = 3.56.109ε5 − 6.80.108ε4 + 3.95.107ε3 − 4.07.105ε2 + 3.55.103ε (68)

where ε is the strain of the ring, which is de�ned according to dring, the initial diameter of

a ring, and ∆L, the overall axial elongation.

ε =

√
d2
ring + (dring + ∆L

3
)2 −
√

2dring
√

2dring
(69)

We note that a 5 degree polynomial is enough to correctly reproduce the curve behaviour.

However this polynomial �ts the experimental behaviour only for the strains reached during

the test. The behaviour modelled numerically is extended by the tangent at the maximum

strain really allowed for larger strains (the rupture of the elements is not taken into account

in the numerical computations). We remark then that the behaviour �t on the axial load is

also in accordance with the experimental results in the transverse direction. Indeed, for small

axial displacements, it is obvious that the Poisson's ratio is close to one for both continuous

real ring and discrete model (see Figure 20). Moreover, since for large displacements, the

deformed geometry of the real ring and discrete model are the same, the Poisson's ratio
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observed in the simulations is always in agreement with the experiment. The material

sti�ness of the ring is linearly linked to its dimensions so that the expression (68) of the

constitutive law does not depend on the net density, which is practically the same as the

one of the real net.
T3A

N

L0

L0 + ∆l

(a)
(b)

Figure 20: Experimental results of the plane tensile test.

All information relative to the elements sti�ness can now be regrouped in Table (2).
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Component behaviour Characteristics

sliding cable + brake bi-linear before threshold threshold level after threshold

(upstream/downstream) in traction ES = 1140kN 25kN ES = 35kN

sliding cable + brake bi-linear before threshold threshold level after threshold

(lateral cables) in traction ES = 1190kN 25kN ES = 35kN

12 anchoring cables traction only ES = 1260kN

rings polynomial 5th degree, �t on the plane tensile test (68)

bars of the block compression only ES = 107kN

Table 2: Synthese of all barrier components sti�ness.

5.4. Comparison with the numerical simulation

This section compares the experimental results and the numerical simulations for the

overall response of the barrier (the resultant force applied to the winch) and also for the

tensile load in two barrier components (support cables). In all this section we will refer to

the drawing (17) which gives a nomenclature of the barrier components.

5.4.1. Overall barrier behaviour

Rather than comparing the resultant force applied to the block centre to the experimental

force applied to the winch, we prefer here to consider the global stored elastic energy. Exper-

imental results are thus integrated to the vertical displacement of the winch (see Figure 21).

We observe that the numerical simulations are in good agreement with the experiment. For
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both, experimental and numerical results, the resultant force applied to the winch increases

almost linearly according to the block's vertical displacement. This result is surprising. In-

deed the large displacements in the structure and the sliding of the net along the support

cables involves necessarily geometrical non-linearities. Moreover, the mechanical behaviour

of the support cables is also non-linear. The complex overall behaviour of this structure,

which is nevertheless well reproduced by the numerical model, requires more data to be

more accurately described including the evolution of the local stress according to the actual

geometry of the barrier. Detailed investigation of the behaviour is foreseen in a next paper.

(a) (b)

Figure 21: Experiment test vs. numerical simulation.

5.4.2. Tensile stress in the central support cables

The tensile stress is recorded for the two (upstream and downstream) central cables

called B in Figure 17 and located on the left side of the barrier. Because the experimental

model is not completely symmetric there is a signi�cant di�erence between the tensile stress
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in the cables B and Bbis (probably because of some asymmetry in the prestress level). For

this reason, we prefer to compare an average of the tensile stresses in the two upstream and

downstream cables (see Figure 22). Further on, names of cables will refer to the Figure 18.

(a) (b)

Figure 22: Central support cables behaviour: experiment test vs. numerical simulation. (a) : Resultant

force applied to the block, (b) : Elastic strain energy of the whole structure.

We can observe that, for the two edges, the measures on the cables B and Bbis give

relatively remote results, particularly for the second stage of the behaviour during which

the brakes scroll. The slight asymmetry of the structure has a limited impact on numerical

results. We can also note that the e�ective threshold levels are di�erent from the expected

value of 25kN , in particular for the downstream support cables. This is probably due

to existing prestress in the experimental structure prestress which is not taken into the

simulation but which is implemented in the model and could in principle be introduced

into the simulation). The comparison between the experiment and the simulations is hence

carried out from the averaged results. For the downstream cables, the threshold of the

brakes elements seems to happen for the same displacement of the block and the behaviours

after it are similar. However, the �rst sti�ness are di�erent between both curves: in the
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experiment, during a �rst stage the net is the only barrier component which is activated and

the forces are then faster transferred to the support cable, whereas this transfer is gradual in

the numerical simulations. Regarding now the tensile load in the upstream support cables,

we observe that, this time, the results are close, even if the sti�ness before and after the

thresholds of the brakes are slightly di�erent.

The numerical results presented here are thus in good agreement with the experimental

results. The dynamic relaxation method associated with frictionless cable reproduces well

the behaviour of the whole structure and gives good results for the components considered

separately. This validates a posteriori the hypothesis that, for the type of structures tested

here, the friction does not have a signi�cant in�uence on the equilibrium con�guration and

in the forces in the supporting members. It can thus be considered as a valuable alternative

to �nd very quickly equilibrium shapes of rockfall barriers in an early design phase and to

test the behaviour of a large variety of alternative designs.

Furthermore, we recall here that this result is also a consequence of the existence of

brakes attached at the end of the sliding cables that cut o� dynamic peaks in the supporting

structure. As said in the introduction, the net is not protected by the brakes and thus see

the dynamic e�ects of the loading. Therefore, in early phase design, we advise that the

engineer complete the quasi-static simulations by a veri�cation of the bullet e�ect following

for example [19]. Then, for detailed design of the barrier, only full dynamic simulations with

friction along the sliding cables will give the required accuracy for a reasonnably optimised

sizing of the structural members. At this late design phase, there sould no more be any need

for testing of alternative structures and the computational cost of the complete dynamic
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simulations should not be a problem.

6. Conclusion

In this paper we proposed a continuous model for frictionless sliding cables and its dis-

cretization. It was used for a simple estimation of the sliding cable mass parameters ensur-

ing the stability of the �nite di�erence scheme in the framework of the dynamic relaxation

method. This estimation was determined by evaluating an upper bound of the spectral ra-

dius of the tangent sti�ness matrix for two speci�c cases: the n-nodes sliding cable and the

ring cable which is formed by closing a sliding cable. The numerical performance of these

two elements have been tested and the numerical simulation of a quasi-static loading test

on a complete barrier prototype was shown. Although quasi-static experiments on whole

structure are rare in the literature, they are a necessary step to carry out dynamic simu-

lations, because they allow to verify the assembly of the barrier components model, which

are frequently calibrated by means of quasi-static tests. Hence in these case-studies, the

simulations have shown very good agreement with reference problems.

In further work, dynamic simulations will be carried out by extending the proposed sta-

bility conditions to estimate the maximum time step ensuring the numerical stability. The

extension is straight forward if lumped mass matrices are assumed, but requires some devel-

opments in the general case. The �nal aim of the study would be to conduct a comparative

study between the quasi-static and the dynamic calculations to further investigate the simi-

larities and di�erences of the two approaches and to produce equivalent acceleration models

for the design of these structures.
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