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Introduction

Gearboxes or gear reducers are mechanical units composed by series of gear pairs within a housing. Their main function is the alteration of torque and speed between a driving device like a motor and a driven load. Gearboxes are used in many applications including milling machines, wind turbines, aeronautics, industrial equipment, conveyors, and any rotary motion power transmission application that requires changes to torque and speed requirements. An analysis of gearbox applications gives an idea of the high service load they undergo and severe operating conditions. Therefore, gearbox health monitoring and early detection of gear faults allow proper scheduled shutdown and maintenance to prevent catastrophic failure, and consequently guarantees a safer operation and higher cost reduction [START_REF] Mohammed | Dynamic modelling of a one-stage spur gear system and vibration-based tooth crack detection analysis[END_REF]. Methods developed in the literature for gearbox failure diagnostics can be classified into data-driven methods and model-based methods [START_REF] Liang | Dynamic modeling of gearbox faults: A review[END_REF].

Data-driven methods use data acquired from the machine, such as vibration, current, voltage, acoustic, temperature, pressure, etc., to extract efficient indicators of the machine health. Many data-driven methods were developed for gearbox fault diagnostics [START_REF] Feng | Application of regularization dimension to gear damage assessment[END_REF], [START_REF] Bartelmus | A new feature for monitoring the condition of gearboxes in non-stationary operating conditions[END_REF], [START_REF] Bartelmus | Vibration condition monitoring of planetary gearbox under varying external load[END_REF]. Data-driven methods have been widely investigated in recent years because of the simplicity of their implementation, their large applicability and the fact that they do not need any pre-knowledge of the system's physics. However, the efficiency of data-driven methods generally depends on the amount of data collected from the machine. Another issue of these methods is how to deal with the noise in the collected data.

Model-based methods use mathematical models of the system developed and based on the system's physics understanding to simulate the system dynamic behavior in both healthy and faulty conditions. Many works have been published on gearbox dynamic modeling [START_REF] Bartelmus | Mathematical modelling and computer simulations as an aid to gearbox diagnostics[END_REF], [START_REF] Tian | Analysis of the vibration response of a gearbox with gear tooth faults[END_REF]. Model-based methods generally give more precise results than datadriven methods and permit better interpretability of these results. However, the efficiency of model-based methods for gearbox diagnostics depends greatly on the accuracy of the developed model; especially, the evaluation process of gear mesh stiffness.

Gear mesh stiffness is a key parameter in gear dynamic modeling. It describes the rigidity of gear transmission systems. Several studies have been done to evaluate gear mesh stiffness [START_REF] Kiekbusch | Calculation of the combined torsional mesh stiffness of spur gears with two-and threedimensional parametrical fe models[END_REF], [START_REF] Lei | A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears[END_REF], [START_REF] Saxena | Time varying mesh stiffness calculation of spur gear pair considering sliding friction and spalling defects[END_REF]. Some studies used a simple analytical expression based on square waveform to approximate gear mesh stiffness [START_REF] Kim | Dynamic analysis for a planetary gear with time-varying pressure angles and contact ratios[END_REF]. This method considers the change of tooth contact number but it neglects the effect of the contact point position. The magnitudes of the square waveform are basically estimated based on experience and the reduction in gear mesh stiffness due to gear faults is determined subjectively, based on the understanding of fault type and severity. A few researchers used the finite element method to evaluate time-varying mesh stiffness of gears [START_REF] Kiekbusch | Calculation of the combined torsional mesh stiffness of spur gears with two-and threedimensional parametrical fe models[END_REF]. The finite element method is capable of evaluating gear mesh stiffness for any type of gear profile and gear fault, but the result is sensitive to contact tolerances, mesh density and the types of finite elements selected [START_REF] Fernandes | Surface contact fatigue failures in gears[END_REF]. An accurate mesh stiffness evaluation with the finite element method requires the users to know both gear meshing theory and finite element modeling theory [START_REF] Liang | Dynamic modeling of gearbox faults: A review[END_REF]. Some experimental methods were proposed by researchers to evaluate gear mesh stiffness [START_REF] Li | Measurement of gear tooth dynamic deformation using dynamic speckle photography[END_REF], [START_REF] Amarnath | Experimental studies on the effects of reduction in gear tooth stiffness and lubricant film thickness in a spur geared system[END_REF], [START_REF] Pandya | Experimental investigation of spur gear tooth mesh stiffness in the presence of crack using photoelasticity technique[END_REF], [START_REF] Raghuwanshi | Experimental measurement of gear mesh stiffness of cracked spur gear by strain gauge technique[END_REF]. Several researchers designed experiments to evaluate gear mesh stiffness, but it is time and cost consuming to design and build the experiments [START_REF] Liang | Dynamic modeling of gearbox faults: A review[END_REF].

Another analytical method to estimate gear mesh stiffness is the potential energy method proposed in [START_REF] Yang | Hertzian damping, tooth friction and bending elasticity in gear impact dynamics[END_REF]. In this method, the gear tooth is approximated as a nonuniform cantilever beam and the different energies stored in the tooth and gear bodies are calculated. In the potential energy method, the effect of tooth stiffness reduction due to gear faults is generally modeled by a reduction in the effective surface contact length and the gear tooth cross-sectional properties [START_REF] Liang | Dynamic modeling of gearbox faults: A review[END_REF].

Several studies on gear surface defects modeling have been published recently. In [START_REF] Chaari | Effect of spalling or tooth breakage on gearmesh stiffness and dynamic response of a one-stage spur gear transmission[END_REF], [START_REF] Jiang | Dynamic characteristics of helical gears under sliding friction with spalling defect[END_REF] and [START_REF] Ma | Time-varying mesh stiffness calculation of spur gears with spalling defect[END_REF], the authors used a rectangular geometry to model the spall effect on gear mesh stiffness of spur gears. A comparison between the difference in mesh stiffness with gear tooth spall modeled with different shapes, rectangular, circular and V-shaped was proposed in [START_REF] Saxena | Time varying mesh stiffness calculation of spur gear pair considering sliding friction and spalling defects[END_REF]. In [START_REF] Liang | The influence of tooth pitting on the mesh stiffness of a pair of external spur gears[END_REF], pitting was approximated using circular pits with the assumption that the spalls are arranged in a straight line and do not overlap with each other. The number of pits was used to mimic the severity of the pitting. Recently, a probability method to model the number and depth change of pixel tooth spalls as the fault progressed in severity was proposed in [START_REF] Lei | A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears[END_REF]. Their probability method was based on the hypothesis that tooth spalls are round, uniformly distributed in the direction of tooth width, and normally distributed in the direction of the teeth length. In [START_REF] Luo | Evaluation of the time-varying mesh stiffness for gears with tooth spalls with curvedbottom features[END_REF], the authors proposed a curved bottom shape method to model gear tooth spalls with ellipsoid geometry. In [START_REF] Luo | A shape-independent approach to modelling gear tooth spalls for time varying mesh stiffness evaluation of a spur gear pair[END_REF], a shape independent method was proposed to model irregular shaped tooth spalls by using two defect ratios to describe the spall shape in the length and depth directions. A better understanding of both spalling and pitting phenomena is central to accurately model their effects on gear mesh stiffness. An investigation of these two phenomena is presented in the following sections.

Limitations of previous methods

One challenge in using the potential energy method to calculate gear mesh stiffness was the determination of contact points between mating gears at any rotation angle. This problem was solved previously by deriving the expressions of mesh stiffness components of a pair of gears as a function of pinion rotation angle [START_REF] Liang | Dynamic modeling of gearbox faults: A review[END_REF]. The duration of single pairtooth and double pair-tooth contact were calculated mathematically using pinion and gear geometrical parameters. The angular expressions solved the problem of locating contact points but made the modeling of gear tooth defects more difficult.

Another challenge was the derivation of the total tooth profile as a function of the pinion rotation angle. The expression of the perfect involute part of the tooth profile is easily obtained by using specific standards. The root area, however, is less standardized [START_REF] Chaphalkar | Analysis of gear root forms: A review of designs, standards and manufacturing methods for root forms in cylindrical gears[END_REF] and further studies showed that degradation of a gear tooth is highly dependent on tooth-root stress [START_REF] Pedrero | Calculation of tooth bending strength and surface durability of high transverse contact ratio spur and helical gear drives[END_REF]. Some researchers tried to derive its expression based on the trajectory of the cutter tip during the traditional manufacturing process [START_REF] Ma | Time-varying mesh stiffness calculation of cracked spur gears[END_REF]. However, modern manufacturing methods enable to design varying alternative root forms [START_REF] Chaphalkar | Analysis of gear root forms: A review of designs, standards and manufacturing methods for root forms in cylindrical gears[END_REF].

Another limitation of previous methods appears when trying to model local gear teeth faults like spalls and pits. Often, the geometry of these defects needs to be expressed as a function of the pinion rotation angle in order to incorporate it in the total formula of the mesh stiffness calculation. This is why almost all previous studies used specific geometries to model tooth defects such as rectangles, triangles, circles or ellipsoids. In addition, some studies neglected the effect of the removed amount of material at some components of the mesh stiffness, considering only the reduction in contact line length. 

Surface fatigue modes

Surface contact fatigue is the most common cause of gear failure [START_REF] Meagher | A comparison of gear mesh stiffness modeling strategies[END_REF]. Generally, there are two main types of surface contact fatigue: spalling and pitting. Spalling appears as deeper localized cavities on the tooth flank; whereas pits appear as shallow craters at the tooth flank [START_REF] Ding | Spalling formation mechanism for gears[END_REF]. The two phenomena are illustrated in Figure 1.

In most of the literature, spalling and pitting were used indiscriminately; some researchers used spalling and pitting to designate two different severities of surface contact fatigue. One difference between these two phenomena may return to the formation mechanism of each one of them. Another difference is related to the severity of damage caused by these two defects, where spalling is considered as the most destructive surface failure mode compared to pitting [START_REF] Ding | Spalling formation mechanism for gears[END_REF]. As shown in Figure 2, surface fatigue occurs generally in the middle zone of the tooth flank because this zone corresponds to the single tooth contact zone, where only one pair of teeth supports the whole charge. In addition, we can notice that spall and pit geometries are totally irregular; and so, approximating these defects in shape to rectangular or other regular shapes will not lead to the exact signature of them.

Based on the above review, this paper proposes a new approach to model the mesh stiffness of gears with tooth surface faults based on the potential energy method (Figure 3). This is achieved by discretizing the calculation process in both length and width directions of the gear tooth body, assuming that there is no interaction between neighbor slices of the tooth in the width direction. The whole tooth profile is considered in this work, including the root area. A circular filleted tooth root is considered since it is the most used in the design of the gear tooth root [START_REF] Spitas | Increasing the strength of standard involute gear teeth with novel circular root fillet design[END_REF]. Instead of using the angular expressions that include large mathematical equations and require large modifications in these equations for different gear geometries and defects, the gear mesh stiffness components formulas are expressed with linear variables and a contact detection algorithm (CDA) is developed to determine the location of contact points during the meshing process. This algorithm uses the introduced geometry of both pinion and gear to determine the number and the coordinates of contact points at each time step. Then a discrete integration is performed with respect to the introduced profile of the gear tooth to calculate the different components and the total value of the gear mesh stiffness. In addition, the effect of defect size and position on the final mesh stiffness deformation are investigated in this work. 

Contribution of the proposed method

The proposed method offers several advantages compared to traditional analytical methods used for gear mesh stiffness evaluation:

• Modeling completely irregular shaped spalls is more close to those observed in real gears without the need to make any assumptions for the defect geometry. In previous methods, a small change in the defect shape caused big transformations on the stiffness calculation, which was time and energy consuming.

• Modeling the gear defect geometrically instead of approximating its shape mathematically, which is highly expensive, difficult and never yields to the exact form of the defect. In addition, the effect of the removed amount of material is considered in this work.

• The developed CDA enables us to calculate the actual contact length and contact ratios of gear pairs instead of approximating it by mathematical formulas in previous studies. Also, their variation during the meshing process is considered.

• The proposed method enables us to consider any gear tooth profiles, without the need to know its mathematical expressions. A point cloud of the gear profile is enough to regenerate it. This makes it flexible and valid for all existing gears.

Gear mesh stiffness components

In the potential energy method, the gear tooth is assumed as a nonuniform cantilever beam and the beam theory is applied to evaluate gear mesh stiffness (Figure 4). The energies stored in a pair of considered mating gears are: Hertz energy at contact point; cantilever beam deformation energy of gear teeth including bending, shear, and axial compression; and deformation energy due to rotation of tooth base because of the flexibility of tooth foundation. In this study, gear mesh stiffness component expressions are derived as a function of linear variables instead of angular variables.

Hertzian component

In Hertzian theory, contact between gears teeth is approximated as a contact between two infinitely long parallelaxis cylinders; this assumption allows to linearize the relation between the applied load and the indentation depth [START_REF] Johnson | Contact Mechanics[END_REF]. Consequently, Hertzian stiffness ℎ can be approximated by a constant value depending on the tooth width and the mechanical properties of the gear material as follows:

ℎ = 4(1 -2 ) (1) 
where is the tooth width, is Young's modulus, and is the Poisson ratio. 

Bending, axial compression and shearing components

The development process of bending, axial compression and shear stiffness is explained in Appendix A. The final expressions as a function of linear variables are:

1 = ∫ 0 sin 2
(2)

1 = ∫ 0 (( -) cos -sin ) 2 (3) 
1 = ∫ 0 1.2cos 2 (4) 
where , , and are illustrated in Figure 4, is the shear modulus, and are respectively the cross-sectional area and moment of inertia.

Fillet foundation component

The fillet foundation deflection is caused by the gear body torsional deformation due to the moment generated by the contact force. Its analytical expression was developed in [START_REF] Sainsot | Contribution of gear body to tooth deflections-a new bidimensional analytical formula[END_REF] based on the theory of Muskhelishvili of circular rings [START_REF] Muskhelishvili | Some Basic Problems of the Mathematical Theory of Elasticity[END_REF]:

1 = cos 2 * ( ) 2 + * ( ) + * (1 + * tan 2 ) (5) 
Coefficients * , * , * , * and parameters , , are detailed in [START_REF] Sainsot | Contribution of gear body to tooth deflections-a new bidimensional analytical formula[END_REF]. Once all components of gear mesh stiffness are calculated, the total stiffness of mating gears can be determined by the following formula:

= ∑ =1 1 1 ℎ + ∑ ( 1 , + 1 , + 1 , + 1 , ) (6) 
where is the number of contact points, refers to the contact point, and refers to the pinion and gear. For one pair of teeth in contact, the stiffness of the contact element can be seen as being equivalent to each component stiffness connected in series, whereas the resulted stiffness in the case of two contact points is the sum of the two contact elements because it is equivalent to two springs connected in parallel.

Proposed method

Gear tooth discretization

A double discretization of the gear tooth body is performed in both length and width directions as shown in Figure 5 (a) to form the gear tooth surface matrix × , where and denote respectively the sample number in the tooth width direction (slices) and the length direction. Each element of matrix contains the height value corresponding to the element of coordinates ( , ). Then a discrete integration is applied with respect to each line of (the profile of each slice) to evaluate the mesh stiffness components of each slice of the gear tooth (Figure 6). For each slice, the tooth profile variation in the width direction is neglected and we adopt the median profile represented in Figure 5 (b) along the whole slice width. Finally, the total mesh stiffness value at each time step is calculated by performing a summation following the width direction. This discretization process allows to consider the variation of the defect depth in the two directions of tooth surface as shown in Figure 6. Consequently, it permits to handle completely irregular surface defects without need to derive their mathematical expressions.

Contact detection algorithm

During the meshing process, there is an alternation between single contact period where one pair of teeth is in contact and a double contact period where two pairs of teeth are in contact. Figure 7 (a) gives the scenario of two pairs of teeth in contact. In order to compute the mesh stiffness of slices of the gear tooth, the number and the coordinates of the contact points between the mating gear slices should be determined at each time step.

With the method developed here, these points are determined directly from a CDA presented in Figure 7 (b). The inputs of this algorithm are the time instant and the geometry of both pinion and gear teeth. By minimizing the distances separating the teeth profile points in the contact zone, the developed algorithm allows us to detect the number of contact points and their coordinates in the local frames of each engaged tooth slice. We can prove geometrically that the contact zone of two mating gears is limited by the two addendum circles of both pinion and gear and is always in the action line as illustrated in Figure 7 (a). Therefore, at each time step, the rotational speed of both pinion and gear is used to calculate their angular positions and their active side profiles. Then the contact zone specified previously is swept to detect the contact points between the two gears by minimizing the distance separating each pair of points.

In this work, each pinion and gear mating slices are modeled by two matrices 1× ×2 , 2× ×2 ; where 1, 2 are respectively the teeth number of pinion and gear, is the samples number of one tooth profile, and the last index refers to and coordinates. Each line of and contains the coordinates of the pinion and gear slice teeth profiles.

Gear tooth profile generation

To build a gear matrix, its complete tooth profile should be determined first. Three different options are proposed to accomplish this task: Analytically: by using mathematical formulas of the tooth profile parts; this method was widely used in previous studies.

Numerically: by using a computer-aided design software to extract the tooth profile if the gear 3D model is available.

Experimentally: by using reverse engineering tools such as noncontact 3D scanners or coordinate measuring machines.

In this study, the first option is adopted because the two other options need specific software and machines. A circular root curve is adopted for the tooth profile. Equation 7 is used to generate the involute part of the tooth profile ( , ) and Equation 8is used for the root curve ( , ). = (cos + sin ) = (sin -cos )

= cos = sin [START_REF] Kiekbusch | Calculation of the combined torsional mesh stiffness of spur gears with two-and threedimensional parametrical fe models[END_REF] where is the base circle, is the involute generating angle shown in Figure 9, is the root thickness and is the root generating angle.

The two generated curves are assembled to get the tooth total profile ( 0 , 0 ) and then rotated with the tooth half angle taken from the base circle (Figure 9) given by Equation 9to get the final profile of the gear tooth ( 1 , 1 ).

= 2 + tan 0 -0 ( 9 
)
where 0 is the pressure angle.

The final adopted coordinates of the tooth profile ( , ) are obtained by fitting ( 1 , 1 ) with a constant sampling rate (this operation is needed for integration precision and for tooth defect inclusion).

Gear matrices formation and contact detection

The profile coordinates of other teeth are obtained by rotation of the first profile as follows:

, , = cos 2 sin 2 -sin 2 cos 2 , , (10) 
where refers to the tooth index and to the point index. Therefore, the gear matrix is formed as follows:

× ×1 = , × ×2 = , ( 11 
)
After forming the two matrices and , the gear matrix is translated in the direction with 0.5( 1 + 2 ), where 1 and 2 are the pitch radii. Once the two gears are determined, the contact points are determined by minimizing the distances between each couple of points × and × as follows (Figure 8):

min , , , | | | , , , | | | (12)
where |⋅| denotes the Euclidean distance between each couple of points from the pinion and the gear matrices. To make the detection process more efficient, we limited the search area to the zone delimited by the two addendum circles of both pinion and gear, since the contact takes place always in this area. Once the contact points are detected, indices , are used to derive the positions of the couple of teeth in contact: ( , ) = 2 ( , )∕ + , where is the rotation angle of the designed gear; these angles are used to get the coordinates of the contact point ( , ) in the local frame of each tooth.

= cos , -sin , sin , cos , - 0 (13) 
where is the distance from the gear center to the tooth root base. Then for the next time step, the pinion rotation speed is used to get the rotation angle ( , ) , and then the two matrices are updated using the two rotation angles of both pinion and gear as follows (the rotation angle of the gear is calculated with ( , ) = -( , ) . 1∕ 2):

× ×1 × ×2 + = cos sin -sin cos × ×1 × ×2 (14) 
Gear mesh stiffness of gears with surface fatigue The minimization process is repeated to get the new contact points coordinates at + . In the case of faulty gear, the defected tooth (teeth) for each slice is replaced in the pinion or gear matrix by the corresponding profile from the defected tooth matrix * , and then the process of detection is performed with the same manner.

Another important parameter needed to compute the different mesh stiffness components is the contact force direction at each contact point defined by the angle . The expression of is derived as a function of the contact points coordinates and the geometric parameters of the gear as follows:

= - 2 - ( 0 ) (15) 
where: 2 + 1 = ( ) 2 + ( ) 2 .

Flowchart of gear mesh stiffness evaluation

Figure 10 shows the flowchart of gear mesh stiffness evaluation proposed in this work. First, geometries of both pinion and gear are updated with actual teeth profiles including teeth surface defects. These geometries are then introduced with the time step and the slice index in the CDA to determine the number of contact points and their coordinates in the local frame of gear tooth ( , ); the corresponding force direction is calculated using Equation 15. After this, equations 1, 2, 3, 4, 5 are applied to compute the different components of the meshing stiffness ( , ) , ( , ) , ( , ) , ( , ) , ℎ , corresponding to fillet foundation, axial compression, bending, shear and Hertzian component, respectively. These components are assembled with Equation 6 to get the meshing stiffness of the slice : . This operation is repeated until all the tooth slices are swept. Finally, the total stiffness at this time step is evaluated by summation. The whole process is repeated until the finish time is reached.

Gear faults modelling

The real contribution of the proposed method occurs when modeling irregular shaped surface defects on the gear tooth flank. This approach allows us to consider surface defects without the need to know their mathematical expressions since the model is completely discretized. Observations of gear teeth defects (spalls and pits) have shown that they are of completely irregular shapes.

For modeling spalls and pits in the gear tooth surface, firstly, a localized spall shape is generated using a MATLAB function that provides a two-dimensional random rough surface with a Gaussian height distribution (see Figure 11). Then the generated surface of the defect is fitted to the data containing the gear tooth surface coordinates in . Finally, the result matrix of the spall surface is subtracted from the healthy surface matrix to form the matrix * of the defected tooth surface. Notice that we assume that only the active side of the tooth is defected, the other side of the tooth is supposed to be perfect and its surface matrix is then -.

Pitting defect is treated with the same way, the only difference is that instead of generating a local nonuniform defect geometry, the previous function is used to generate uniformly distributed pits in the surface of the tooth. Since past observations have shown that the pitted zone is always in a narrow area below the pitch line which is the single contact area between the two mating gear teeth, the pits are randomly distributed at this zone of the gear tooth surface as shown in Figure 12. Then the corresponding defected surface tooth matrix * is derived with the same way as a spall defect.

Results

An advantage of the method presented in this work is that it allows us to visualize the simulation process of the CDA and the corresponding calculated stiffness values; the visualization interface at different time steps is shown in Figure 13. On the left side, the meshing process is illustrated, the position of both pinion and gear during simulation and the coordinates of contact points evaluated by the CDA are presented at each time step. Only the active surface sides of both pinion and gear teeth are presented in this interface. This interface constitutes a preliminary method to validate the results of the CDA developed in this work by tracking the contact point location and number and the corresponding calculated mesh stiffness values. On the right side, the evolution of the gear mesh stiffness curve during meshing process is presented and updated at each time step.

Healthy gear

For the validation of the proposed method, a comparison with the analytical and finite element results of [START_REF] Chaari | Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness[END_REF] for the healthy case is done. The same parameters used in this study and listed in Table 1 were introduced to the proposed model. These parameters are adopted for simulation purposes in the rest of this paper. Figure 14 shows the simulation results.

The validation of the proposed method can be performed from two sides: the validation of the CDA developed in this work and the validation of the mesh stiffness evaluation. For the CDA, a preliminary visual verification can be done by analyzing the simulation process in the visualization interface. In addition, the two periods of single and double tooth contact are compared by calculating the durations expressed by Equations 16 and 17. The calculated periods are = 6.325 × 10 -4 s and = 3.675 × 10 -4 s, which are similar to the results shown in Figure 14. For the mesh stiffness evaluation, the developed method gives similar results than those of the finite element method and the analytical method of [START_REF] Chaari | Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness[END_REF]. (

= tan(cos -1 1 cos 0 1 + 2 )- 2 1 -tan ⎡ ⎢ ⎢ ⎢ ⎣ cos -1 1 cos 0 √ ( 2 + 2) 2 + ( 1 + 1 ) 2 -2( 2 + 2)( 1 + 1 ) cos(cos -1 2 cos 0 2 +2 -0 ) ⎤ ⎥ ⎥ ⎥ ⎦
) = 2 1 - 16 

Gear with surface faults 4.2.1. Spalling

Firstly, a rectangular shape of the spall was considered at the tooth flank and was introduced at the gear tooth surface as explained in subsection 3.4. The spall parameters are illustrated in Figure 15.

For perfect slices, the simulation process is similar to the healthy case of Figure 13. Spalled slices are those responsible of the deformation of the gear mesh stiffness. Figure 16 shows the CDA performance for defected slices. The presence of a spall on the tooth profile reduces the total contact length and consequently reduces the stiffness value.

Then the flowchart of gear mesh stiffness calculation is executed to evaluate the associated gear mesh stiffness. The amount of reduction in the total gear mesh stiffness of mating gear pairs is presented in Figure 17. We can see that for a uniform spall shape, the amount of reduction is constant along the defected area. Also, as shown in Figure 17 (b), we can notice the reduction of the gear mesh stiffness in all periods where the spalled tooth is in contact, even when the spall is not in the contact zone. This reduction is caused by the removed amount of material from the tooth body.

(a) (b) (c) (d) (e) (f) 
Since the spall volume is very small compared to the total volume of the tooth, this reduction is tiny and appears only with big spalls. Secondly, the effect of both location and size of the spall defect at the gear mesh stiffness is investigated. Three different locations of the spall were considered to study the effect of the spall position in the gear meshing stiffness. The different locations are illustrated in Figure 18 (a), where the effect of the longitudinal position is considered. Figure 18 (b) shows that the longitudinal position of the spall affects the location of the reduced part of the total meshing stiffness. In Figure 19, the effect of the longitudinal spall length on the gear mesh stiffness is presented. Simulation results showed that the duration of the reduced amount is directly proportional to the spall length. From Gear mesh stiffness of gears with surface fatigue (a) Finite element method and analytical method of [START_REF] Chaari | Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness[END_REF] Figure 20, one can see that the reduction degree of the stiffness magnitude is directly proportional to the spall width. Finally, Figure 21 shows the effect of the removed amount of materials on the gear mesh stiffness out of the spalled zone. One can see that the reduction is proportional to the removed volume of material.

The simulation results showed that the gear mesh stiffness deformation caused by a spall defect is highly dependent on the position and the size of the spall. Varying the spall location in the length direction of the gear tooth affects the Gear meshstiffness (N/m) position of the deformed part in the gear mesh stiffness curve. The present approach of gear mesh stiffness calculation does not consider the effect of the spall location in the width direction of the gear tooth. The spall width affects the reduction magnitude of the gear mesh stiffness at each time step because the corresponding total contact length is reduced and the spall length affects the width of the reduction amount duration because it is related to the time needed to sweep it. Finally, the spall depth causes a reduction in the gear mesh stiffness magnitude in all the periods where the defected tooth is in contact. Thirdly, a nonuniform shaped spall is considered to see its associated deformation in the gear mesh stiffness; the spall generation and incorporation mechanism was explained in subsection 3.4. Figure 22 shows the spall geometry generated and the shape of the tooth flank after applying the generated defect.

Three different severities were considered to illustrate the evolution of the reduction amount in the gear mesh stiffness with the spall propagation at the tooth flank; the spall is assumed to propagate randomly in all directions as shown in Figure 23.

The reduction in gear mesh stiffness resulting from the presence of a nonuniform spall with different severities is illustrated in Figure 24. One can see that the reduction amount in gear mesh stiffness is no more regular. Also, the effect of the removed amount of material is more important even in the part where the spalled part is not engaged because of the volume of material that has been removed from the tooth body. Finally, the reduction in the mesh stiffness magnitude is directly proportional to the spall size, which was expected, because increasing the spall size reduces the contact length and the total integration area of the stiffness components.

Pitting

The flowchart proposed previously is also used to evaluate the mesh stiffness deformation due to pitting defect. Uniformly distributed pits shown in Figure 25 (a) are generated and applied around the pitch line of pinion teeth flanks From the first observation, one can notice that the deformation of the mesh stiffness is nonuniform and periodic because the same pitting geometry was considered for all pinion teeth. In addition, the reduction degree in the mesh stiffness magnitude is proportional to the pitting severity, which can be explained by the variation of the amount of material removed from the tooth body at each pitting stage and the reduction in the total contact length between the mating gear teeth. The mean value of the gear mesh stiffness of mating gears with a pitting defect on the pinion teeth surfaces at different stages are presented in Table 2. As expected, the reduction percentage becomes more important with advanced severities of the pitting defect. It should be noticed here that this indicator is relevant only if the contact ratio stays unchanged. The proposed method offers a big reduction in simulation time compared to FEA methods. In fact, The computation time of the proposed method depends on the discretization resolution and the chosen simulation step. There is a compromise between the computation time and the discretization resolution. The sampling rate in the length direction is maximized since it affects directly the value of the discrete integration for gear mesh stiffness components calculation. For localized spalls, the sampling rate in width direction was refined around the spall zone to optimize the resolution and the computation time. For the nonuniform spall at stage 3 of Figure 23 and for a resolution of 1 µm in the length direction and 10 µm in the width direction in the spall zone, the computation time was 2 min. For pitting defect of Figure 25 (a) and for the same resolution, the computation time was 8 min. Simulations were executed on a PC with I5 CPU and 8G RAM. The simulation time for pitting defect is relatively long because it is distributed on all the tooth width, and so the refinement was applied in all tooth width. The computation time could be reduced by adjusting the discretization resolution in both width and length directions.

Conclusion

In this work, a new approach is proposed to evaluate the gear mesh stiffness of spur gears with nonuniform surface defects such as spalls and pits. A discretization of the gear tooth profile performed in two directions allowed us to consider the irregularity of the surface defects. A contact detection algorithm to extract the contact point locations during the meshing process is developed and verified with healthy and defected gear tooth profiles, and a modified potential energy method was used to evaluate the gear mesh stiffness components of the mating gear teeth. A computational flowchart was proposed to calculate the value of the gear mesh stiffness at each time step during the meshing process. The method proposed in this work simplifies greatly the mesh stiffness evaluation process of gears with surface defects because it does not need to formulate the defect geometry mathematically; which was a big challenge in considering gear teeth surface faults.

The simulation results showed that the deformation of the gear mesh stiffness caused by nonuniform spalls and pits is completely different from that of a regular defect geometry; the deformation is irregular and more realistic. Propagation scenarios of the gear tooth spalls and pits were proposed and the simulation results showed that the reduction amount of the gear mesh stiffness is directly proportional to the defect severity. Finally, the simulation results showed that the size and longitudinal position of a localized gear tooth defect have a direct impact on the final mesh stiffness deformation. In addition to teeth surface defects modeling, the proposed method offers several perspectives of modeling other gear failure modes or gear design purposes. However, the gear mesh stiffness results of this method for nonuniform defects should be investigated to determine their signatures in the vibrational, electrical and other measured parameters useful for gearbox monitoring.
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 1 Figure 1: Schematic illustration of pitting and spalling phenomena [28].

Figure 2 :

 2 Figure 2: Photographs of spalling and pitting phenomena [29].
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 3 Figure 3: Overall organigram of the developed method.
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 4 Figure 4: Tooth modeling in beam theory.
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 5 Figure 5: Discretization of the gear tooth body.

  (a) Samples in width direction
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 6 Figure 6: Discretization of a spalled gear tooth.
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 7 Figure 7: Contact detection.
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 8 Figure 8: Contact between gear teeth.

Figure 9 :

 9 Figure 9: Geometrical parameters of the gear tooth

Figure 10 :

 10 Figure 10: Global flowchart of the gear mesh stiffness evaluation: refers to the contact point number, to the pinion and the gear, is the time step, and is the simulation final time.

  Gear mesh stiffness of gears with surface fatigue (a) 3D view (b) Projection view
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 11 Figure 11: Illustration of a nonuniform spall.
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 12 Figure 12: Distribution of pits on the gear tooth surface [9].
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 13 Figure 13: Interface of the CDA and the gear mesh stiffness evolution visualization at different time steps.
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 14 Figure 14: Validation of the proposed method with perfect gear.
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 15 Figure 15: Gear tooth with a rectangular spall.
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 16 Figure 16: Contact detection process for a gear tooth with rectangular spall.
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 17 Figure 17: Gear mesh stiffness of a gear with rectangular spall.

  (a) Spall positions: 1 = 2.5 , 2 = 3.4 , 3 = 4.3 .

  Associated gear mesh stiffness.
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 18 Figure 18: Effect of spall position on the gear mesh stiffness.

  Associated gear mesh stiffness.
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 19 Figure 19: Effect of spall length on the gear mesh stiffness.
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 20 Figure 20: Effect of spall width on the gear mesh stiffness.
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 21 Figure 21: Zoomed view of the mesh stiffness reduction due to the removed amount of material.
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 22 Figure 22: Illustration of a nonuniform spall.
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 23 Figure 23: Propagation scenario of the generated irregular spall.
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 2425 Figure 24: Gear mesh stiffness of irregular shaped spall evolution with the spall propagation.

Table 1

 1 Parameters of the spur gear.

	Parameter	Unit	Value
	Teeth number	∕	1 = 30, 2 = 25
	Module	mm	2
	Teeth width	mm	20
	Pressure angle	( • )	20
	Young modulus	N∕mm 2	2 × 10 5
	Poisson's ratio	∕	0.3
	Input frequency	Hz	33.33

Table 2

 2 Mean value of gear mesh stiffness of different pitting severities.

	Pitting stage	Stiffness mean (N∕m)	Reduction (%)
	Perfect gear	3.0427 × 10 8	∕
	Micro pitting	3.0218 × 10 8	0.69
	Moderate pitting	2.9740 × 10 8	2.26
	Macro pitting	2.9146 × 10 8	4.21

Appendix A

The beam theory is applied to get the mathematical expressions of the energies stored in the tooth subjected to the contact force ; these energies are bending energy, axial compression energy and shearing energy.

The work of a force is given by the following formula:

where ⃖⃖ ⃗ is the force vector and ⃖⃖ ⃗ is the corresponding induced displacement. Let consider the axial compression component of the contact force applied at the contact point, the amount of energy stored in the tooth body due to is:

where is the elementary displacement caused by , it is related to the stress by the tensile behavior of materials formula:

where is the strain and is the cross section area. Substituting the expression of in the previous equation gives:

In similar way, the expressions of bending and shear energies stored in the tooth body are:

where , and are shown in Figure 4, = ( -). -. and * = 5∕6 in the case of a rectangular cross section, is the shear modulus and is the area moment of inertia.

where ℎ is the tooth height and the tooth width. Substituting the quantities , and by the corresponding expressions gives:

On the other hand, the expression of the elastic energy as a function of the stiffness is given by: