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Abstract
Several approaches exist for the lateral control of autonomous vehicles. Among
them are the geometric approaches. They are shown to be robust to distur-
bances and able to manage complex tracks. Their main advantage lies on
the fact that they are explainable, in the sense that their behavior can be
analyzed to provide guarantees about their limitations. However, they do not
give the quality of results that can be obtained using other control principles,
mostly because of design issues. This paper aims to tackle these issues by
proposing a novel geometric approach based on FrenetâĂŞSerret formulas to
reach the level of quality proposed by the other approaches, while still ben-
efiting from the advantages of geometric approaches. A numerical analysis
of the proposed control approach show its advantage: Simulation results and
tests on a real autonomous car are provided.
Keywords: Autonomous vehicle, Lateral control, Path tracking, Simulation

1. Introduction
Researches about autonomous cars have now been a trendy topic for

the last three decades, notably because of the numerous expected outcomes
(increased safety, improved road capacity, shared vehicles, increased fuel effi-
ciency, etc. [1, 2]), but also because designing a fully autonomous car (reach-
ing SAE level 4 and 5 [3]) is still a challenging task [4]. Recently, a particular
attention is given to the interactions of the robot-driver either with the other
road users in the case of fully autonomous vehicles, or with the human-driver
for safety and acceptability reasons. However, the perquisite of testing the
emergent technologies is an automation driving system able to make the ve-
hicle respecting its planned path. Hence, driving automation solutions that
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can be easily deployed on a wide variety of vehicles and situations help for
saving a valuable amount of time needed for rapidly extending the scope of
the autonomous driving systems.

A key point of car driving automation is the ability to follow a predefined
path, which is known as “path tracking control” or “lateral control”. For
Ackermann-like vehicles (like cars), the problem of path tracking control is
to compute either the angle to apply on the steering wheel (i.e. the angle
of the front wheels) or the effort to apply on it, to keep the vehicle on a
predefined track. It is a famous and widely studied control problem [5]. The
challenges for the definition of path tracking control are to be able to manage
all possible tracks and to ensure passengers comfort and safety while being
robust to the latency (the delay between the perception and the action by
the control software), and the perturbations (the error in the data provided
by the sensors and the error in the application of the action).

To perform the path following task, several approaches have been pro-
posed that can be divided into the following categories: geometric con-
trollers, dynamic controllers, optimal controllers (LQR), adaptive and in-
telligent controllers (neural networks and fuzzy logic [6, 7]), model-based
controllers (MPC [8, 9]), and classical controllers (PID [10, 11]).

Each different category has its specific advantages and drawbacks. For
instance, nowadays, neural networks are giving really interesting results [12],
and can directly use as input the signal of a camera for lane-keeping [13]
(reducing the required amount of sensors), but the drawback is the limited
explainability of the command, making it hard to define the limits of the
command and to predict its behavior in every situation, and in the end
making it hard to get the legal approval required to use it on open roads.
Dynamic and optimal controllers are also efficient [14], but needs tuning, are
computationally demanding and requires a lot of data about the model and
the dynamic of the vehicles, which can be difficult to obtain accurately (the
vehicle’s split mass, the center of gravity location, the moment of inertia, the
cornering stiffness of tires). PID and MPC controllers are difficult to design
and to tune and are dependent on the track and the vehicles’ characteristics.
On the other hand, most of the geometric approaches are easy to understand,
study, and explain, and they are also known to be computationally efficient
and robust to perturbations, however, the given results are not as good as
the results provided by the other classes of solutions, and are also requiring
tuning, which may lead to over-fitting a specific track.

The current limits of the geometric approaches are leaving room for im-
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provement. A new geometric approach could provide better results while
requiring a limited amount of parameters and tuning, and not being track-
dependent. The contribution of this paper is to propose a new geometric
approach for lateral control, with the benefits of geometric approaches, while
overcoming some of their drawbacks.

Thus, after a quick overview of the common solutions for lateral control
(section 2), this paper proposes a contribution to the path tracking problem
with a new geometric approach to define the angle of the wheel as a function
of the state of the car (section 3.1). A numerical analysis of the command
is provided to highlight its characteristics (steady-state error, reaction-time,
overshoot, etc.) compared to the most common geometric approaches (sec-
tion 3.3). Then, to ensure the efficiency and the robustness of the command,
simulations are performed including simulated perturbations (with simulated
latency and inaccuracy of the sensors), and the results are compared to ex-
isting commands (section 4.1). Finally, to confirm the feasibility of the ap-
proach, implementation is made on a real autonomous car executing the
presented command, and the results are then discussed (section 4.2).

2. Related Works

As stated before, the choice is made to put the focus on geometric ap-
proaches for lateral control. This field has produced a lot of work and pro-
vides several solutions, which are considered standards nowadays thanks to
the quality of results they provide while being explainable and thus exposing
their benefits and their limits.

These geometric approaches are based on the geometric bicycle model
(Fig. 1), which is a simplification of an Ackermann steered vehicle [15]. In
this model, the considered parameters are the radius of curvature of the
trajectory R (meters), the wheel base of the vehicle E (meters), and the
angle of the front wheel δ (radians).

Relying on this model to describe the movement of the car, the principle
of these geometric lateral control solutions is to define the angle δ(t) to be
applied to the front wheels of the vehicle at the instant t. This depends on
the geometrical characteristics of the vehicle (notably its wheelbase E), the
trajectory to follow (commonly modeled as function of R −→ R2), and the
current state of the car, which generally includes the position, the heading,
and the speed, and can be extended to include the vehicle velocity, the ac-
celeration, and the slipping forces (if the control solution expects to manage
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Figure 1: Geometric bicycle model: a model for computing the radius of curvature R and
the vehicle trajectory knowing the angle of the front wheels δ and the wheelbase E [16]

vehicles clearly out of the pure rolling conditions). For the sake of simplicity,
the movement of the rear wheels is considered, given that the position of the
rest of the vehicle can be inferred from the position of the rear wheels.

The model proposed in Fig. 1 is the basis of geometric approaches. It
works perfectly for low speeds. As the vehicle speed increases, several forces
make wheels slip. This has prompted many studies to move towards the linear
differential equation model of forces (kinematic model). However, even if the
kinematic model seems satisfactory for controlling slight rotation at high
speed, the hypotheses remain just as difficult to check. Several forces are
present in practice due to road inclination [17], wind [18], tire conditions 1

and so on. In addition, today’s vehicles are equipped to prevent slipping [19]
and even adapt the rear wheels rotations accordingly.

The objective is to present an explainable approach on a widely used
model in such a way that the solution can be easily tuned according to the
vehicle characteristics. Moreover, the control can later be adjusted according
to the detected errors due to forces by using artificial intelligence techniques.
Hence, in the following, for the purpose of designing a geometric lateral

1The entries of the transfer matrix of models are based on the wheel stiffness
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control of the vehicle in urban area, we assume that the model presented by
Fig. 1 holds in normal urban traffic conditions.

From the classification proposed by Snider et al. [16], the most common
solutions and the ones being the most widely adopted, with a focus on geo-
metric approaches, are discussed more in detail further.

2.1. Pure-pursuit
The pure-pursuit was at first applied to the pursuit of a missile to a target

[20]. Later, it was applied in the robotics field [21] before being applied to
cars [22]. Since then, it is a widely used solution for lateral control of robots
or vehicles [23]. Its principle and implementation are simple: the position
of the vehicle is projected on a reference trajectory, then a point is defined
upstream of this projection on the trajectory, the vehicle determines the angle
of the steering wheel so that that the trajectory of the vehicle reaches this
point. Given the radius of curvature R of the circle passing through the rear
axle of the vehicle and the target point, and admitting the line directed by
the vehicle direction as a tangent, the angle δ is given by Eq. (1).

δ(t) = tan−1
(
E

R

)
(1)

The position of the target point greatly influences the quality of the mon-
itoring. It is common to place this point at a distance d upstream of the
vehicle, with d0 being a minimum value for the distance of the point, v(t) the
speed of the vehicle, and k a dimensionless multiplier of R+ (often belonging
to [0.5, 2.0]):

d = max(d0, k × v(t)) (2)

2.2. Stanley’s method
The method of Stanley (Thrun et al. [24]) was used during the DARPA

challenge. The angle of the wheels is defined by Eq. (3), with θe(t) the differ-
ence between the direction of the vehicle and the direction of the trajectory,
efa(t) the lateral error, vx(t) the speed of the vehicle and k a dimensionless
gain parameter.

δ(t) = θe(t) + tan−1
(
kefa(t)
vx(t)

)
(3)
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2.3. Linderoth’s method
The Linderoth et al. [25] method is a geometric approach expressing the

angle δ(t) with the relation in Eq. (4).

δ(t) = tan−1
(
−cos(eθ(t))e⊥(t)− (l1 + l2)sin(etheta(t))
l1 − (l1 + l2)cos(eθ(t)) + sin(eθ(t))e⊥(t)

)
(4)

2.4. Vector pursuit
Another solution to the path-following problem is the vector pursuit [26],

based on the theory of screws. Similarly to the pure pursuit, a look-ahead
point is computed, but it uses both its position and its orientation (i.e. the
tangent to the track at the look-ahead point). Even though this algorithm
performs better than the pure pursuit algorithm, it suffers from similar draw-
backs as it ignores the influence of the vehicle speed on the path-tracking
performance: a look-ahead point placed too close from the vehicle will still
induce oscillations when speed increases, while a look-ahead point placed too
far will induce too much anticipation in path tracking (i.e. the car will start
turning before a curve).

2.5. Overview
Table 1 sums up this breve overview of the main geometric approaches

that can be found in the literature. This Table 1 also includes the Linear
Quadratic Regulator with Feed-Forward from Cho and Kim [29], which serves
here as a reference for non-geometric approaches.

For autonomous cars, the robustness to perturbations is a requirement
as the positioning system (mostly GPS) suffers from a lack of precision and
accuracy even when relying on an augmentation system (such as Differen-
tial GPS or Real-Time Kinematic). Moreover, it is also required to work
on a track with sharp curves and rapidly changing curvature, making the
solutions well-suited for highway driving un-adapted to the more general sit-
uation. Considering these requirements, the pure pursuit has been chosen
as a basis for the proposed approach. However, it was important to reduce
the drawbacks of the pure pursuit, i.e. the “cutting corners” effect and the
implied limited speed. Therefore, researches have been made to improve this
solution, taking into account the curvature of the trajectory.
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Tracking method Robustness
to distur-
bances

Path re-
quirements

Cutting
corners

Over-
shooting

Steady-
state error

Good ap-
plications

Pure pursuit [27] Good None with
reason

Significant
as speed
increases

Moderate
as speed
increases

Significant
as speed
increases

Slow driv-
ing and/or
on discon-
tinuous
path

Stanley [24] Fair Continuous
curvature

No Moderate
as speed
increases

Significant
as speed
increases

Smooth
highway
driving
and/or
parking
maneuvers

Linderoth [25] Fair Continuous
curvature

Moderate
as speed
increases

Significant
as speed
increases

Significant
as speed
increases

Smooth
highway
driving

Kinematic [28] Poor Continuous
curvature
through
2nd deriva-
tive of
curvature

No Moderate
as speed
increases,
significant
during
rapidly
changing
curvature

Significant
as speed
increases

Smooth
parking
maneuvers

LQR with FF [29] Poor Continuous
curvature

No Significant
during
rapidly
changing
curvature

Minimal
until much
higher
speeds

Smooth
high speed
driving, ur-
ban driving
at speed

Preview [30] Fair Continuous
curvature

Moderate
in rapidly
changing
curvature
and/or
speed

Moderate
in rapidly
changing
curvature
and/or
speed

Minimal
until much
higher
speeds

Highway
driving at
relatively
constant
speed

Table 1: Overview of the existing solutions, adapted from Snider et al. [16]
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3. Geometric Lateral Control with Curvature Following

3.1. Parameters and relation with the angle of the front wheels
To apply the existing solutions to real autonomous cars, the limits of

the sensors and the actuators of the vehicles must be considered. All of the
sensors will suffer from latency (e.g. an RTK GPS can only provide a position
at 10Hz) and inaccuracy (e.g. around 10cm for RTK GPS), and the same is
true for the actuators.

Thus, the lateral control strategy must be robust and bear a certain
latency and inaccuracy, regarding the measure of the state of the vehicle
(position, speed), and the application of the command. Simulation tests
showed that under these constraints most of the existing solutions did not
give satisfactory results.

During these tests, the strategy that gave the best results was pure pur-
suit. This is due to a higher tolerance to disturbances and lower prerequisites
for the accuracy and response time of the system. Nevertheless, pure pursuit
tends to cut the curves by the inside, and this, all the more as the speed in-
creases. To overcome this, the tracking strategy can integrate the curvature
of the trajectory into the equation. A first approach has been proposed in
[31], which is refined in this paper by proposing a new command described
by Eq. (5). This equation is, later on, referred to as “improved curvature
following” or “improved CF”.

δt = s× tan−1


2Ecos(et − tan−1( d

ed
))

√
e2
d + d2


+ sin−1

(2E
L
sin−1κ

2

)
(5)

Fig. 2 represents a vehicle (illustrated by a box of length E) trying to
follow the curvilinear trajectory represented below. The relative position and
orientation of the vehicle to the target trajectory leads to the definition of
several parameters, which are used to compute the desired wheel angle δ
(according to Eq. (5)).

The parameters of Eq. (5) (illustrated in Fig. 2) are:

• s a value being 1 if the vehicle is on the left side of the trajectory or -1
if it is on the right side

• et the angle between the direction of the vehicle and the tangent to the
trajectory
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Figure 2: Illustration of the parameters of Eq. (5) - the car is illustrated as a box with
two wheels (geometric bicycle model) trying to follow the trajectory below

• d the distance to the target point with d = 2τ × v(t), τ being the
estimated reaction time of the system (technically the delay between
two subsequent acquisitions of a position) and v(t) the velocity of the
vehicle ; the choice of this value for d is discussed in 3.2

• ed the signed distance between the vehicle and the trajectory

• ~t the incoming direction of the trajectory

• L the look-ahead distance for the curvature following part, which can
be defined by L = 2v(t) with a minimal value of some meters (like it
is commonly done with the pure-pursuit) being at least Eπ

• κ the norm of the vector being the difference between the tangent at
the target point ~t and the direction of the vehicle, it is a signed value
whose sign is the sign of the angle between ~t and the direction of the
car

Eq. (5) is formed by the addition of two members. The first member
corresponds to the application of the pure pursuit to the point P. The second
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member corresponds to the application of the curvature of the trajectory
(taken upstream, to take account of the reaction time of the system). Its
purpose is to reduce the steady-state error of the pure-pursuit when there is
a curvature in the trajectory, as the presence of a curvature will increase the
command. This assumption is verified through a numerical analysis of the
command in section 3.3.

3.2. Defining the look-ahead distance
The command from Eq. (5) relies on a look-ahead distance. To ensure

the convergence of the command, this look-ahead distance d must satisfy the
property d ≥ 2vτ (with v being the speed).

The proof for this affirmation is given below, under the following assump-
tions:

1. The curvature κδ from the command satisfies κδ ≤ 0.25m−1

2. The command aims to keep the vehicle on the track, thus ed and et
stay within an acceptable limit which is discussed thereafter

3. The track can physically be followed by the vehicle

This being stated, the command can be expressed under the following
form:

κδ = κc + κ̂ (6)
Where κ̂ is the curvature of the track to follow and κc the correction

which can be approximated by:

κc ≈ 2d sin et + ed cos et
e2
d + d2 (7)

Using numeric integration, the trajectory of the vehicle can be approached
by:

Xk+1 =



a
x
y



k+1

=



a
x
y



k

+ s




−κδ
cos

(
αk − sκδ

β

)

sin
(
αk − sκδ

β

)


 (8)

With β ∈ [1,+ inf], α, x, y the angle of the vehicle and its coordinates in
a Cartesian coordinate system, and s = vτ where v is the speed and τ the
sampling time.

Replacing κδ of (6) into (8) gives:
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

α̂
x̂
ŷ



k+1

+



et
ex
ey



k+1

=



α̂
x̂
ŷ



k

+



et
ex
ey



k

+ s




−κc − κ̂
cos

(
α̂k + et − s(κc+κ̂)

β

)

sin
(
α̂k + et − s(κc+κ̂)

β

)


 (9)

Where α̂, x̂ and ŷ are the ideal coordinates. By developing (9), the
following can be written:





ˆαk+1 + etk+1 = α̂k + etk − sκc − sκ̂

Yk+1 =

x̂
ŷ



k+1

+

ex
ey



k+1

=

x̂
ŷ



k

+

ex
ey



k

+ sR(et − sκc
β

)

cos

(
α̂κ − sκ̂

β

)

sin
(
α̂κ − sκ̂

β

)



(10)

Where R(Ψ) is a plane rotation of angle Ψ: R(Ψ) =
[
cos(Ψ) − sin(Ψ)
sin(Ψ) cos(Ψ)

]
.

From (10) and because it’s an orthogonal projection, the following can be
deduced:





etk+1 = etk − sκc
ex
ey



k+1

=

ex
ey



k

+ s(R(et − sκc
β

)− I)

cos

(
α̂k − sκ̂

β

)

sin
(
α̂k − sκ̂

β

)

 (11)

Where I is the identity matrix. Thus, as ed is an orthogonal projection
on the tangent to the track to follow, this leads to:

[
et
ed

]

k+1
=
[
et
ed

]

k

+ s


 −κc

β

sin
(
etk − sκc

β

)

 (12)

So:

[
et
ed

]

k+1
=
[
et
ed

]

k

+ s




−2d sin etk+edk cos etk
e2
dk

+d2

sin
(
etk − s 2

β

d sin etk+edk cos etk
e2
dk

+d2

)


 (13)

Under the following hypotheses:

1. d ≥ 2 and d > |ed0|
2. ed0et0 ≤ π

6
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3. s < 5m
4. l =

√
e2
dk

+ d2

The system described by (13) can be approximated by the second order
Taylor expansion like this:

[
et
ed

]

k+1
=
[

(1− 2 s
l
) −2 s

l2

s(1− 2s
lβ

) (1− 2s2

βl2 )

] [
et
ed

]

k

+
[
o(e2

t )
o(e2

d)

]
−→

[
et
ed

]

k+1
≈ A

[
et
ed

]

k

(14)
And by diagonalization of A:

A = Q


1− s s+β2l−ϕ

β2l2 0
0 1− s s+β2l+ϕ

β2l2


Q−1 (15)

With ϕ =
√
−β4l2 + (4β3 − 2β2)ls+ s2. To ensure the convergence to 0

of the system described by Eq. (14), the constraint ‖1− s s+β2l±ϕ
β2l2 ‖ < 1 must

be satisfied, which implies:

l > 2 s
β

(16)

Thus:

d > 2s (17)

3.3. Numerical analysis
A numerical analysis of the Eq. (5) is proposed to observe the following

properties of the relation:

• Convergence: is the lateral error asymptotically converging to a real
value?

• Steady-state error: what is the difference between the asymptotic value
of the lateral error and 0 in steady-state?

• Reaction time: how much time is required to reach the asymptotic
value?

• Overshoot: how much is the asymptotic value exceeded before reaching
the steady-state?
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For this purpose, the relation is applied upon two representative trajec-
tories. They represent a straight line (Eq. (18)) and a circle (Eq. (19)),
respectively.

Tline =



x(t) = t

y(t) = 0
(18)

Tcircle =



x(t) = R× cos(t)
y(t) = R× sin(t)

(19)

The car state S is defined by the position of the rear wheel in R2, its
speed in R+ and its orientation in [−π, π], thus S ∈ R2 × R × [−π, π]. The
state of the vehicle at a given time is given by S(t) with t ∈ R.

To compute the next state knowing the current state and the wheel angle
δ, the discrete geometric bicycle model is used. Thus, knowing S(t) and the
angle of the front wheel δ(t), the recurrence relation giving S(t+ ∆t) is:

S(t+ ∆t) = S(t) +




R(t) cos θ(t)
R(t)(sin θ(t) + 1)

a(t)∆t
θ(t)


 (20)

Using this relation, the evolution of the error being defined by the distance
between the vehicle and the trajectory is computed for both trajectories.
The acceleration a(t) is set to 0. The initial state of the vehicle is S0 =
(x0, y0, v0, θ0).

Eq. (20) representing the bicycle model is only a description of the move-
ment of the vehicle for a given wheel angle δ. Then, the wheel angle δ must
be computed using a control solution. In the following, the Equation 5 is
used to compute δ; the pure pursuit and Stanley’s command are also used
for reference.

The application of the recurrence formula using Eq. (5) to compute the
angle of the front wheels δ gives the curve in Fig. 3 and Fig. 4 where the
lateral error is measured as a function of the time, considering respectively
a straight-line and a circle for the trajectory to follow. The reference curves
are computed with the following parameters: the initial velocity is 10 m/s,
the distance to the target point is k × v(t) = 20m (with k = 2) for the
pure-pursuit, the gain for Stanley’s command is k = 5.
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Figure 3: Application of the command at various speeds considering a straight-line tra-
jectory

Figure 4: Application of the command at various speeds considering a circular trajectory
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From the numerical analysis, the following can be noted about the com-
mand given by Eq. (5):
• Convergence: In all scenarios (for both trajectories, and the different

considered speeds), there is a convergence of the lateral error.

• Steady-state error: There is no steady-state error when the tra-
jectory is a straight-line, this result is similar to what can be observed
with the pure-pursuit or Stanley’s command; a small steady-state error
can be observed when the trajectory is a circle, which tends to increase
when the speed increases, the measured steady-state error is small com-
pared to the steady-state error observed with the pure-pursuit (16,28x
smaller) and Stanley’s command (4,17x smaller) (based on the scenario
V = 10 m/s)

• Reaction time: the considered reaction time is the time τ5% required
to be under 5% of the difference between the initial lateral error and
the final lateral error; according to the chosen initial conditions for the
straight-line trajectory it is 1.36 times the reaction time of Stanley’s
command and 0.54 times the reaction of the pure-pursuit, for the cir-
cular trajectory it is 1.23 times the reaction time of Stanley’s command
and 0.53 times the reaction time of the pure-pursuit.

• Overshoot: the considered value for the overshoot is the quantity of
overshoot to the final lateral error relative to the total range of the
lateral error, considering the case V = 10 m/s for the straight-line it
is 0.0% for the command (5), 2.3% for the pure-pursuit and 4.2% for
Stanley’s command; for the circle, it is 1.1% for the command (5),
10.1% for the pure-pursuit and 9.3% for Stanley’s command

Even though, the presented results are interesting, the numerical analysis
only focuses on the characteristics of the formula (5) without any consid-
eration for the physical limitations of the car or the sensors. To study the
behavior of the command in more realistic scenarios, simulations must be
performed.

4. Experiments and results
4.1. Simulations

Simulations have been carried out to compare the proposed solution with
the existing strategies. These simulations consist of following a predefined
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Strategy LQR Linderoth Improved PP Improved CF Stanley
Without latency 3.06E-2 5.08E-1 2.13E-1 2.87E-2 4.01E-2
With latency 4.36E-1 4.89E-1 1.97E-1 8.67E-2 4.81E-2
Latency, error 4.79E-1 5.19E-1 2.02E-1 1.13E-1 1.47E-1

Table 2: Mean lateral error over the entire track (expressed in meters)

track using the different strategies mentioned above. To reproduce the con-
straints of the real system two perturbations are introduced:

• An inaccuracy on the position of the vehicle

• A latency on the application of the calculated command

Three scenarios are established to evaluate the performance of the vehicle
under the following conditions:

• No latency: Without imprecision and with low latency

• Latency: With latency and without inaccuracy

• Latency, error : With latency and inaccuracy

Numerous tests have been carried out, for different reference tracks, dif-
ferent values of inaccuracy on the position and different latency values. For
the sake of brevity, the results shown are limited to an asymmetric 8-shaped
track, presenting straight-lines and changing radius of curvature, including a
sharp one, making it a typical continuous track.

Thus, on the track defined by Fig. 5, the results given by the figures Fig.
6, Fig. 7 and Fig. 8 were obtained, respectively for scenarios 1, 2 and 3.
For these measurements latency (when present) was set to 400 ms and the
positional inaccuracy was fixed to 10cm for the position (the position used
by the vehicle to determine its control was a randomly and uniformly chosen
value around the actual value and within a radius of 10cm) and at ±5 deg
for the direction (also uniformly around the actual value).

The command referred to as “improved PP” is an improved version of the
pure-pursuit defined in [31], which is basically the pure-pursuit with a gain.

In the figures, the usage of the “improved CF” command (in yellow)
shows a reduced lateral error and a better stability compared to the other
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Figure 5: Track used in simulation for the given results

Figure 6: Instantaneous lateral error in the case of a simulation without positional inac-
curacy and without latency

commands, with only Stanley’s command (in green) and LQR (in blue) ap-
proaching the quality of results of “improved CF”. However, when latency
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Figure 7: Instantaneous lateral error in the case of a simulation without positional inac-
curacies and with latency on the application of the control

and errors are introduced, the LQR’s results are far from those given by
“improved CF” and Stanley. In this later case, the results provided by “im-
proved CF” are still better than the results provided by Stanley. For clarity,
the mean lateral errors and the relative mean lateral error are given by the
tables 2 and 3. They show the significant gain provided by the proposed
solution, even when there are latency and inaccuracy.

For reference, an implementation of the simulation environment is avail-
able online at https://alexandrelombard.github.io/lateral-control,

Strategy LQR Linderoth Improved PP Improved CF Stanley
Without latency -6.29% -94.35% -86.49% 0.00% -28.42%
With latency -80.11% -82.27% -56.04% 0.00% 80.18%
Latency, error -76.43% -78.21% -44.16% 0.00% -23.02%

Table 3: Relative error compared to the proposed solution (5) - The color of the cells goes
from red to green, with the greener the cell, the better the gain
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Figure 8: Instantaneous lateral error in the case of a simulation with inaccuracy of posi-
tioning and with latency on the application of the control

which allows users to compare different lateral control strategies under sev-
eral constraints (errors, latency), while allowing them to propose their own.

To highlight the differences between Stanley’s command and the proposed
improved CF, simulations have been performed on the online simulator with
another eight-shaped track. The evolution of the lateral error along the track
is given in Fig. 9. In this figure, the average absolute error along the track is
11.2× 10−2m for improved CF and 12.4× 10−2m for Stanley (−9.08%). The
maximum absolute error is 0.906m for Stanley and 0.813m for improved CF
(−10.2%). Due to longer straight sections (where both Stanley and improved
CF show good results) the improvement in the average lateral error seems
less important, yet the Fig. 9 shows clearly reduced peaks of the lateral error
with improved CF.

Also, according to [32], a weak point of Stanley’s command is its poor
performance at high-speed, thus simulations have been performed at 50m.s−1

(which is not physically realistic given the track, but allow us to study how
the commands would theoretically react at higher speeds). The results are
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Figure 9: Detailed comparison of the evolution of the lateral error between Stanley and
improved CF

presented in Fig. 10 showing the benefits of improved CF: average error of
0.542m for improved CF against 0.689m for Stanley (−21.4%).

To confirm these results obtained with simulations, real tests have been
performed which are described thereafter.

4.2. Real tests
In a second step, the control was tested in real conditions on a robotic

vehicle (Renault Scenic III) and equipped with an RTK GPS. The dimensions
of the vehicle are given by table 4.

The positioning system used was a GNSS RTK ProFlex 500 to have a pre-
cise position (usually below 0.1 meters) every 100 ms. Our experimentation
has shown an error less than 5 cm under the condition of a good commu-
nication between the RTK base and the RTK rover. For the sake of safety,
we managed to make the vehicle brake when the RTK rover had positioning
issues or communication issues with the RTK base. Therefore the vehicle
was only allowed to move if the mode was “RTK fixedâĂİ or “RTK float”
with a maximal communication delay of 4 seconds in this second case. Our
experimentation protocol was then close to the one used in the simulations:
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Figure 10: Detailed comparison of the evolution of the lateral error between Stanley and
improved CF at high speed (the vehicle position is initialized at around 3m of the track
with an angle of -0.6 rad)

the goal was to follow a saved track on an eight-shaped circuit. The first
step of the experimentation was to record the points of the track by making
manually a first passage on the track. The second step was to let the car try
to follow the track without any human intervention.

Fig. 11 refers to the reference circuit used in red and the circuit realized
by the vehicle during three turns made using the autonomous lateral control
(only acceleration and braking were manually controlled). The minimum
radius of the curvature of the reference path is estimated to 8.2m according
to GPS data.

Parameter Value
Length 4344 mm
Width 1845 mm
Wheelbase 2703 mm
Turning radius 5645 mm
Front track 1546 mm
Rear track 1547 mm

Table 4: Dimensions of the Renault Scenic III used for the tests
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Regarding the delay between the reception of the position and the ap-
plication of the command, they have been estimated by Eq. (21), with δgps
being the age of the position in the worst-case scenario (i.e. 100 ms according
to the update frequency of the GPS RTK), δlink the delay of transmission of
the position from the GPS to the computer calculating the command, δcpu
the time required to process the data from the GPS, compute and transmit
the corresponding command, and δcommand the time required to apply the
command on the steering wheel.

∆ = δgps + δlink + δcpu + δcommand (21)
δlink have been considered insignificant, and δcpu+δcommand has been mea-

sured as approximately 300 ms. This has lead to an estimated overall delay
∆ = 400ms.

Figure 11: GPS track of the reference trajectory in red, and GPS tracks made according
to the autonomous lateral control

Fig. 13 shows the lateral error (orthogonal distance to the reference
track) measured as a function of time for each circuit. The speed is controlled
manually and varies throughout the circuit and is on average between 4.5m/s
(in turns) and 10m/s (in straight-lines).

An error limited to 1m ± 0.05m can be observed in the corners and a
0.2m ± 0.05m error in straight-lines. Remark: as the GPS RTK is used
to measure the distance of the vehicle with the reference track, and that
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Figure 12: Screenshot of the video of the experiment: the full video is accessible at
https://youtu.be/uCctBc-eFio

it suffers from at most 5 cm of error, all the error measurements must be
considered with a margin of 5 cm.

The results are slightly worse than those obtained in simulation (for which
the error was limited to 0.5m± 0.05m). This is due in part to a shift in the
steering wheel control (the 0 deg command corresponded to a real steering
wheel angle of about 15 deg). This problem was observed during the first
two runs, then compensated in the latter, which allowed the error to be
limited to 0.8m ± 0.05m in turns and 0.1m ± 0.05m in straight-lines. For
the remainder, the additional error is due to an underestimation of the error
of the orientation of the vehicle in simulation (±10 deg in real instead of the
±5 deg considered in the simulation).

Overall, the error is contained, and the behavior is relatively close to
the estimations previously obtained in simulation: low error in the straight-
lines, slightly more important in the corners, and no oscillations. And, more
importantly, the real tests ensures the feasibility of the implementation of
the command.
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Figure 13: Lateral error measured during the experiment in real conditions with the lateral
control

5. Conclusion

This paper presents a contribution to geometric approaches for the lateral
control of autonomous cars. The proposed approach benefits from the advan-
tages of the existing geometric approaches (studiability, robustness and low
requirements on sensors, etc.) while overcoming some drawbacks of the exist-
ing solutions (better results, no specific tuning according to a given track).
The results have been checked with a numerical analysis of the proposed
command, exposing its main characteristics, simulations with simulated er-
ror and latency, and on a real robotized vehicle to ensure its feasibility and
to validate the results obtained through simulation.

In the context of the development of autonomous cars, the geometric
approaches are interesting as they can be easily used and implemented by
manufacturers, deployed on any car, and it requires a small number of dedi-
cated sensors. Moreover, the analysis of the command allows us to accurately
expose its behavior in any situation compared to other kind of approaches.
This gives better insurance on the behavior of the command, and make it
safer than other approaches, so its approval would be easier to obtain. Fol-
lowing this idea, it could also be used as a fallback solution to the more
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sophisticated methods, to certify these by providing strong guarantees.
Compared to existing approaches, the simulations shown better results

for the proposed solution. Among the other geometric approaches, only the
Stanley’s command was giving results comparable to the proposed approach,
yet the average lateral error of the proposed command was still 23% smaller
than the average error of Stanley’s command when the simulations included
latency and positional error (to reproduce the limitations of the system used
in the real tests). Stanley’s command was being advantaged only if the
simulations were including latency without simulated positional error. It can
also be noted that the proposed command does not rely on parameters which
may lead to overfitting a specific trajectory, as opposed to other geometric
approaches.

The real tests presented in this article are using a GPS RTK as the only
required sensor needed to compute the command. In further work, it could
be interesting to perform other tests using different positioning systems (like
SLAM [33]) to ensure it works in every scenario. Also, the problem of the in-
tegration of path planning and path following is still ongoing. The presented
tests use a predefined trajectory, but further tests are required to study how
the system would work with a dynamically computed trajectory, and eventu-
ally a dynamically changing trajectory. Given that the pure-pursuit, which
serves as a basis of the proposed command is known to manage well dis-
continuous tracks, it can be expected to have interesting results. Finally,
the lateral control solution has to be associated with a longitudinal control
solution to build a complete lane-keeping system.
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