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ABSTRACT 

Like any industry, space activities generate pressures on the environment and strives towards more sustainable 

activities. A consensus among the European industrial stakeholders and national agencies in the Space sector is 

emerging on the need to address eco-design through the prism of the environmental Life Cycle Assessment (LCA) 

methodology. While the use of LCA is being implemented within the sector, the current scope disregards the 

potential environmental impact in term of debris generated by space missions on the orbital environment. The paper 

highlights the relevance of applying LCA holistically during the design phase of space systems, considering 

potential impacts occurring in the orbital environment during the utilisation and disposal stages of a space mission. 

Based on the comparison of two mission designs, the aim is to consider potential emission of space debris into the 

LCA framework as a way of measuring the resource security for orbits and potential environmental impacts 

occurring in case of collision. 

1 INTRODUCTION 

1.1 Environmental life cycle assessment (LCA) for space missions 

As highlighted during the COP21 in Paris, of the 50 essential variables used to assess Earth's climate, 26 are 

monitored from satellite observations [1]. Though, regarding environmental legislation, the industrial stakeholders 

of the space sector are not targeted by specific international binding commitments. Nevertheless, environmental 

performance has become a criterion in purchasing decisions. 

Considering guidelines for the evaluation of environmental impacts of space activities, several actors of or related to 

the European space industry, such as the European Space Agency (ESA) and its associated  ‘Clean Space initiative’ 

or ArianeGroup, have identified environmental Life Cycle Assessment (LCA), according to ISO14040/44, as the 

most appropriate methodology to measure and minimise their environmental impact [2]. Since the last three decades, 

the environmental LCA methodology is considered as a relevant methodology to support decision-makers in the 

evaluation of the environmental impacts linked to the design, manufacturing, transporting, and disposing of the 

goods and services [3]. It compiles and evaluates the inputs, outputs and the potential environmental impacts of a 

product system throughout its life cycle. As a multi-criteria methodology, LCA studies avoid the ‘burden-shifting 

pollution’ which consists of transferring impact from an environmental impact category to another, or from a life 

cycle stage to another. LCA shows how a specific functionality can be achieved in the most environmentally 

friendly way among a predefined list of alternatives, or in which parts of the life cycle it is particularly important to 

improve a product to reduce its environmental impacts. 

Contractual requirements have been placed in ESA’s funded projects to take into account their environmental 

impacts and promote the development of ‘green’ technologies through the implementation of the Life Cycle 

Assessment (LCA) methodology.  In particular, an LCA study of the new Ariane 6 launcher in exploitation phase is 

currently performed [4]. A requirement to perform such assessment from early phases of the project has also been 

included for two competing Earth Explorer 9 concepts (i.e. FORUM and SKIM) as well as for the standard platform 

for all future Sentinel missions in the frame of the Copernicus program. 

However, space systems deal with a strong particularity, which adds new aspects regarding the scope of the LCA 

framework (see Figure 1). Rocket launches are the only human activity that crosses all segments of the atmosphere 

and stays “out” of the natural environment. Environmental impacts of space systems could occur not only in the 

conventional Earth environment but also in the outer space, further referred to as the orbital environment. 
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Figure 1. Life cycle of a space mission. Potential impact regarding debris proliferation in the orbital environment is 

highlighted. 

Consequently, the scope of environmental LCA for space missions should be extended to cover the phases dealing 

with in-orbit operations, i.e. the use phase and the end-of-life (EoL) including post-mission disposal of the space 

missions. By analogy to conventional environmental impacts, the potential generation of fragments in the orbital 

environment is considered as an emission of an environmental stressor damaging the orbital resource. In this way, 

the potential impacts occurring in the orbital environmental should be assessed to provide a holistic analysis of space 

missions. 

1.2 Objectives and outline of the paper 

The objective of this paper is to demonstrate the relevance of integrating space-debris related impacts in the 

methodological framework of environmental LCA for space missions (see Figure 2). For such purpose, the LCA 

space debris indicator previously developed by Maury et al. [5] in compliance with the LCA standards [6] will be 

described and applied to a theoretical case study. For the first time [2], we propose to merge this approach dealing 

with space debris related impacts and the conventional Earth environmental impacts computed in LCA (such as 

climate change, toxicity, etc.) for a space mission. 

The chosen study case is the space mission of Sentinel-3 from the ESA, as its LCA has already been carried out in 

the frame of an eco-design study called ‘GreenSat’[7–9]. In this study, two design options concerning the choice of 

propellant were assessed: the use of (i) Hydrazine and then, (ii) LMP-103s as an eco-design measure [10]. This 

alternative solution would reduce obsolescence risks (due to the European REACH regulation) and could reduce the 

time the satellite needs to spend in the clean rooms. The LCA showed that the use of alternative LMP-103s could 

also decrease conventional environmental impacts such as climate change. Furthermore, the choice of propellant, 

due to its higher theoretical efficiency, also implies the possibility of re-entry of the spacecraft at the end-of-life life 

(with the same size of propellant tanks) and therefore its associated exposure to space debris. Thus, it is considered 

as an appropriate study case to include space debris related impacts in the LCA. 

After briefly presenting the LCA structure, the goal & scope of the study is defined with a particular focus on the 

two scenarios described in the ‘GreenSat’ study. Then, the inventory data collection and the impact assessment 

methods, including the space debris related impact used in the frame of this study are presented. Based on the 

previous system definition and calculation steps, the results obtained are exposed. Finally, the main outcomes, 

challenges and opportunities regarding the environmental impact assessment of space missions are exposed and 

discussed. 

2 MATERIAL & METHODS  

LCA is carried out in four distinct phases as defined in ISO 14040/44. It starts with an explicit description of (i) the 

goal and scope of the study before providing (ii) an inventory of flows from and to the environment for a product 

system during the life cycle inventory (LCI) phase. Inventory analysis is followed by (iii) impact assessment during 

the life cycle impact assessment phase (LCIA). This phase of LCA aims at evaluating the significance of potential 

impacts based on LCI flow results. Finally, (iv) the interpretation phase is based on the identification of the 

significant issues, limitations, and recommendations and shall be integrated systematically at each step of the LCA 

study. 

2.1 Goal & Scope of the LCA study 



Goal of the study. The goal of the study is to compare the environmental impacts, including space debris related 

impacts related to two design alternatives of the Sentinel-3B mission. 

 

Figure 2 - Life cycle impact assessment framework. A new impact category is added for LCA of space mission, 

corresponding to the potential generation of fragments in the orbital environment after a break-up (only collision 

risk is considered). 

Scope of the study. The original Sentinel-3 LCA study was performed following requirements of ESA Space 

system LCA guidelines [11] which require to consider all segments related to a space mission. Here, we only focus 

our analysis on space & ground segments as presented in Figure 3.  

The launcher represents around 99% and the spacecraft 1% of the mass of a complete space mission. Therefore, the 

environmental impacts related to the launcher (production, launch campaign, launch event) is the major hotspot [12]. 

However, in a first approach, we focus on the design, production, utilisation and disposal phases of the spacecraft 

only because the ecodesign options are exclusively targetting specific design choices related to the spacecraft. The 

potential mass increase due to design changes is considered as negligible and do not influence the launcher product 

system. The infrastructures are also disregarded because the ecodesign practices related to this segment are more in 

line with facility management optimisation, for instance, site management actions regarding the utilities, than 

assessment of space systems design and manufacturing processes.  

Considering the utilisation phase, the nominal operational lifetime for Sentinel-3 is expected to be 7,5 years. 

However, the amount of embedded propellant reaches 120 kg of hydrazine and can cover an extended timespan, 

ensuring on-orbit operation for 12,5 years. The expected Post-Mission Disposal (PMD) scenario is an uncontrolled 

re-entry thanks to the decrease of the perigee.  

Description of the scenarios. In the frame of the GreenSat project, the replacement of Hydrazine propellant 

embedded in Sentinel-3B was identified as a potential ecodesign improvement. Due to its high human toxicity 

potential, the hydrazine is currently targeted by the European REACH regulation on chemical substances. It implies 

strong safety measures during handling and loading of the propellant into the spacecraft as well as the cleaning 

operations. The authors of the GreenSat study suggested replacing Hydrazine (N2H4) propellant by LMP-103s 

(composition: ~ 60% of Ammonium di-Nitrimide, ~20% Methanol, ~6% of Ammonia as well as water for mass 

balance). In term of performance, LMP-103s features a 6% higher specific impulse (Isp) than Hydrazine (235s vs 

220s) and a 24% higher density in liquid form (1.24kg/L vs 1kg/L), meaning that more propellant can be stored 

within the same tank volume. Therefore, we define the following scenarios: 

- Baseline scenario: use of Hydrazine as propellant 

- GreenSat redesigned scenario: use of LMP-103s as propellant 



 

Figure 3. System boundaries of a space mission according to the specific segments of a space mission based on [13]. 

For this specific study on Sentinel-3B, only Space & Ground segment were included in the scope. In the space 

segment, two different propellants are studied (Hydrazine vs LMP). Also, the disposal phase of the spacecraft is 

further explored in this paper. 

We analyse the delta-V budget needed to performed a 12,5-year mission followed by potential PMD manoeuvres to 

be considered during the disposal stage. The same approach was already proposed in [5,14] for Sentinel-1A 

spacecraft. We consider equivalent characteristics for both scenarios described above apart from the propellant used. 

It should be noted that we assume a negligible mass change for the propulsion system as stated in [10]. The potential 

PMD options are proposed hereafter in Table 1 based on the OSCAR tool simulations of the ESA-DRAMA v3 

software [15]. 

Table 1. Potential post-mission disposal options to be considered for Sentinel-3 spacecraft 

Sentinel-3 
Tot. ∆V  

budget (m/s) 

∆V  
12,5-year 

mission (m/s) 

∆V for direct  
deorbiting (m/s) 

Budget for delayed 
reentry < 25 years 

(m/s) 

Remaining ∆V for final 
boost (controlled 

reentry) 

Baseline 
120 kg Hydrazine 

238 

200 
203 

(too high for  
both scenarios) 

77 
(too high for  

the baseline sc.) 

0 

Alternative 
165 kg LMP-103s 

342 
65  

(not enough for full  
controlled reentry) 

Functional unit. The functional unit corresponding to space missions has been debated since the beginning of the 

LCA application to the space sector. Most of the time, a space mission is designed for a unique purpose (Earth 

observation, telecommunications, science). For this reason, obtaining a functional unit which enables the 

comparison based on the ‘function’ of a satellite is challenging guidelines [11]. To compare the environmental 

impacts of both space systems including manufacturing, operational lifetime in orbit (i.e. use phase) and PMD 

phase, the following functional unit was chosen: “Complete a 12,5-year mission for the Sentinel-3 spacecraft 

including the deorbit from its operational orbit (inc=98°, h=800 km) to the upper part of the atmosphere (h=120 

km)”. 

2.2 Life cycle inventory (LCI) data collection 

Conventional LCI. The ‘GreenSat’ study is based on a previous ESA-funded LCA study performed by Deloitte [8] 

for which four iterations in terms of industrial data collection were conducted. A fifth iteration was performed in the 

frame of ‘GreenSat’ by Thales Alenia Space (as prime contractor) and Deloitte to complete and improve the 

inventory model with specific industrial data. Also, the recent development and use of the ESA space-specific LCI 

database [16,17] brings an added-value, particularly dealing with propellant manufacturing. To answer the 

functional unit, the following propellant quantities (based on Table 1), are needed: (i) Baseline scenario, use of all 



the remaining hydrazine corresponding to 17 kg; (ii) GreenSat redesigned scenario, use of around 35kg of LMP-

103s to perform a 25-year reentry. 

LCI parameters for ‘degradative use of orbits’. The inventory corresponds to the orbital surface occupied by the 

product system under study (i.e. the spacecraft) multiplied by its respective on-orbit lifetime, expressed in m2·years. 

In addition, the launch mass of the spacecraft shall be considered. The inventory variables which correspond to 

design parameters are given by the Eq. 1.  

��������� 	 
� ∙  ∙ � ��
������

											 ��� ∙ �� ∙ ���� Eq. 1 


�  is the average cross-section area of the S/C. M is the launch mass of the spacecraft (in kg). The dwelling time in 

orbit �� 	is mainly dependent on the mission lifetime and the area-to-mass ratio which allows quantifying the effect of 

orbital mechanics perturbations. Besides, the mass of the spacecraft is also the main parameter involved in the 

calculation of the number of debris generated when a break-up occurs. ∑ ��� ������  expresses the sum of the dwelling 

time into each orbital cell i crossed by the trajectory of the spacecraft. This on-orbit lifetime covers the nominal time 

of the mission (use stage) plus the post-mission disposal duration representing the End-of-Life (EoL) phase.  

The trajectories for the mission lifetime and the theoretical PMD scenarios, as described in Table 1, are propagated 

thanks to the OSCAR tool of the ESA-DRAMA software v3 [15]. The results are shown in Figure 4. 

 
Figure 4. Semi-major axis of the spacecraft during the operational time of the mission and potential post-mission 

disposal obtained using the ESA-DRAMA software [15]. The delta-V values previously calculated for the PMD 

manoeuvres are indicated. The direct re-entry scenario is a discarded option because of the delta-V budget 

required. 

2.3 Conventional life cycle impact assessment (LCIA): selected indicators  

The selected LCIA indicators for ESA funded studies are broadly described in the ESA Handbook [11]. Most of 

them are based on the ILCD 2011 recommended methods [18]. Due to confidentiality aspects, we only present in 

this paper the relative impact contributions of the processes for the five indicators listed hereafter: 

− Global Warming Potential (in tonnes CO2 eq.) retrieved from CML2002 impact method [19] and based on 

the greenhouse gas quantification method proposed by the Intergovernmental Panel on Climate Change 

[20]. 

− Freshwater Aquatic Ecotoxicity Potential (in disappeared fraction of species)  and Human Toxicity 

Potential (in disability-adjusted life years) which quantify the severity of observed effects of substances 

emitted respectively in an ecosystem integrated over area and time and, on human health, giving more 

weight to death and irreversible problems than to reversible temporary problems (e.g. a skin or respiratory 



irritation). Both indicators are based on the USEtox consensus model [21].  

− Fossil Resources Depletion Potential (in giga-joules of fossil energy consumed) and Mineral Resources 

Depletion Potential (in kg Sb eq.) represent the Abiotic Depletion Potential of the CML2002 method [19]. 

This indicator characterises the depletion of energetic and mineral resources based on the extraction 

rate and the reserve base estimates. 

It should be noted that the Ozone Depletion Potential (ODP) is a key indicator in the space sector as the space 

activities are the only ones responsible for direct emissions within the ozone layer. Previous ESA LCA studies [12] 

showed that the launch event (which is part of the launch segment) is by far the main contributor on this indicator, 

i.e. close to 100%, of the impact for a complete space mission scope. Since the launch segment is not included in the 

scope of this paper, we choose to disregard this impact category. 

2.4 Specific LCIA indicator for ‘degradative use of the orbital resource’  

The methodology associated with the development of the LCIA indicator for space debris is widely addressed in 

[5,22]. We propose here to present the equations leading to the characterisation factors (CFs) presented in Figure 6. 

These CFs express the potential generation of space debris from a spacecraft, and are discretised for each orbital 

cell. CFs are computed as the product between (i) the exposure factor (XF) that depicts the risk that the spacecraft 

encounters a space debris, (ii) a ! coefficient that depicts the number of debris generated by a collision event 

depending of the mass of spacecraft and (iii) the severity factor (SF) that depicts the fate of the potential fragments 

generated (Eq. 2).  

"#� 		$#� 	�	α	�	&#�        [potential fragments∙years∙kg-1] Eq. 2 

Exposure factor (XF). We define the exposure factor ($#�) in Eq. 3 as the average flux of space debris passing 

through a targeted circular orbit i of the LEO region for one year. The orbital stress caused by space debris should 

be assessed for the LEO region to obtain spatially differentiated factors since each orbit presents a different state 

which allows to classify and differentiate them accordingly. It is done by computing the flux of the catalogued 

objects in each LEO orbits as done in previous studies [23–25]. It represents the background population (i.e. 

explosion and collision fragments, rocket bodies, dead and active spacecraft, etc.). 

$#� 	 '(,�*�,� 																				�#. �-�. ��-.� Eq. 3  

where	$# is the exposure factor for particular circular orbit i; ' is the relative flux of catalogued particles provided 

by the ESA’s reference model MASTER-2009 at a given altitude (h), inclination (inc) and interval of time (t) 

averaged on a 35-year period based on a ‘business-as-usual’ perspective. The 35-year period has been chosen with 

the aim of covering the orbital lifetime of a satellite completing a 10-year mission and a 25-year Post-Mission 

Disposal as required by the international standard [26]. All debris whose size is higher than 1 cm is accounted for. 

However, the size of the debris taken into account during the mission lifetime (i.e. utilisation phase) is only 1	0� <
$#�,2����3* < 10	0� representing non-trackable objects for which collision avoidance maneuver is not possible. 

Alpha coefficient (α). Using the NASA break-up model [27,28], it is possible to express the number of fragments 

>10 cm generated from a collision per kg of spacecraft depending on the initial launch mass. The relation is 

presented in Figure 5. Since the number of fragments/kg depends on the mass of the spacecraft, we propose to 

consider a fixed ratio (5 coefficient) for a given class of spacecraft (between 1.000 and 1.500 kg as for Sentinel-3): 

0.86 fragments/kg. 



 

Figure 5. Fragments > 10 cm released per kg of spacecraft according to the mass of the spacecraft using the NASA 

break-up model [27,28]. For sentinel-3 the class [1.000; 1.500] is chosen. 

Severity factor (SF). According to [29], the percentage of fragments > 10 cm released at an altitude h (km) and still 

on-orbit after a given time t (yrs) follows the Eq. 4: 

6��, ℎ 	 �-	 �
.�8.9-:.;8;8<�∙(=:.:::>?∙(@ 														�%�  Eq. 4 

Where 6 is the percentage of fragments (in %) still in orbit after a period � (in years) and h is the initial altitude of 

release (in km). 

The cumulative residence time of debris into orbits is obtained by the integral of 6��, ℎ  over a given interval of 

time. Here, we choose the following time interval: [0:200] yrs. The polynomial part of the Eq. 4 is later expressed as 

B and can be considered as a constant in the integral which is only time-dependent. Thus, the severity factor (&#�) for 

a break-up occurring in given orbit i, is given in Eq. 5. It represents the cumulative survivability of a fragment with 

respect to its altitude of emission expressed in years. 

&#�,�::	C�� 	 D �-	EF 		�::C��
:	C� G−I ∙ J-	KIL

	M	NOP

	QMM	NOP
 [years] 

 

Eq. 5 

CFs and computation of impact score (IS). Combining Eq. 3, Eq. 5 and the alpha coefficient, we obtain the CFs 

calculated for a given circular orbit i and presented in Figure 6. 

For a specific spacecraft (i.e. product system) with a defined mission and PMD scenario (see Figure 4 & Eq. 1), we 

obtain the following impact score (IS) presented in Eq. 6:    

�&2����3* 	 
� ∙  ∙ ∑ �� ∙ "#�		3������ 	       [potential fragments∙years] Eq. 6 
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Figure 6. Potential fragments-year per kg generated as characterisation factors for the LCA indicator. The value of 

R equals 0,86 fragments·kg-1 as the interval [1.000-1.500 kg] is considered for the spacecraft.  Calculations are 

made for each of the 3330 discretised circular orbits. 

3 RESULTS 

3.1 Baseline Sentinel-3 environmental profile 

The relative contribution of the different stages under study are presented in Figure 7. The detailed definition, 

qualification and production stage contributes by around 50% for most of the impact categories, except mineral 

resource depletion potential (~100%) and space debris impact category (0%). Within the design and production 

phase, the office work (i.e. electricity and natural gas consumption) is by far the major contributor (>50% for all the 

impact categories) except for the mineral resource depletion driven by the materials used for satellites. This score 

(~100%) is lead by the production of the PV system (for solar cells) using Germanium which is the most important 

semiconductor material, in weight, of a spacecraft. Assembly, Integration and Testing (AIT) accounts for around 

20% of the global warming potential within the production stage. The scores related to the toxicity/ecotoxicity 

categories are driven by the production of the electronic components embedded in the payload that account for 

around 30%.  

The utilisation stage of the spacecraft contributes to 25 to 35%% of the environmental impacts for the overall 

categories including space debris generation potential. During this phase, the electricity consumption of the data 

centre and servers are majors contributors for the global warming potential, toxicity and ecotoxicity potential as well 

as fossil resource depletion. 

Others life cycle steps (i.e. phases A+B, E1a and F) have a low contribution to the conventional LCA impact 

categories. Electricity consumption for office work (related to R&D) during pre-design and design stages has a 

rather low contribution to the environmental indicators, mainly because of the highly decarbonised electricity mix in 

France and for the ESA Technical centre (where 100% of renewable electricity is used). It is also the case for the 

Phase E1a, which includes launch and early orbit phase (LEOP) and commissioning with activities at ESA 

Operation Center (100% renewable electricity too). 

Finally, the disposal phase contribution equals to zero on all conventional indicators because of the lack of model 

related to the emissions on the Earth surface and into the atmosphere during the spacecraft re-entry. 

Regarding the space debris related impacts (i.e. relative score on degradative use of orbits), 36% of the impact 

comes from the utilisation phase. The potential annual impact during the operational phase is more important than 

the disposal phase. It is mainly due to the coordinates of the operational orbit (i.e. SSO, 800 km, 98°) for which the 

Potential fragments·years·kg
-1

 



exposure factor faces one the highest value in the LEO region, even considering only 1cm<debris size<10cm to take 

into account collision avoidance manoeuvres for bigger debris. Also, the lack of efficient atmospheric drag at such 

altitude gives a high value in term of severity factor. Nevertheless, the small amount of propellant available at the 

EoL of the mission (17 kg) does not allow to target a 25-years reentry. As a consequence, the long duration of the 

disposal phase (around 89 years) compared to the initial lifetime of the mission results in a higher score (64%) of the 

disposal phase even if the exposure & severity factors of the orbits crossed during the PMD are lower. 

 
Figure 7. Environmental profile of the Sentinel-3 mission, including the relative contributions of utilisation and 

disposal phases in term of space debris potential.Impact scores for conventional categories are retrieved from [10].  

3.2 Comparison of the impact score for the baseline and ‘GreenSat’ considering the ‘degradative 

use’ of the orbital resource 

Figure 8 shows the potential number of fragments�years generated by both scenarios. We observe that the impact is 

2.3 times higher for the baseline scenario which considers 120 kg of hydrazine than with the redesigned ‘GreenSat’ 

scenarios using 165 kg of LMP-103s. Alternatively, we also compute the probability of collision only considering 

the relevant XFs. We obtained the following probabilities of collision (conservative approach): 6,6%, 10,5% and 

27,4%, respectively for a 12,5-year mission with direct deorbiting (discarded option due to the delta-V budget), with 

a delayed reentry in less than 25 years (i.e. ‘GreenSat’) and with a lowering perigee manoeuvre with remaining 

propellant (i.e. Baseline scenario). Besides, we notice that, in the case of GreenSat, the contribution of the utilisation 

phase corresponds to around 87% of the overall impact (versus 36% previously). It is due to a shorter PMD lifetime 

in the orbital environment while the operational time remains the same. 
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Figure 8. Comparison of the impact scores obtained for the baseline (i.e. PMD duration 89 years) and the 

‘GreenSat’ scenarios (i.e. PMD <25 years). The difference between both “E2 – Utilisation phase” comes from the 

launch mass increased in the ‘GreenSat’ scenario (1195 kg vs 1150 kg for the baseline scenario with hydrazine).  

3.3 Global comparison of the LCA results 

While the replacement of hydrazine by LMP-103s significantly reduces the potential impact on the orbital 

environmental, the scores obtained for conventional environmental impacts in both scenarios are retrieved from [10]  

and compared in Figure 9. The results show that no significant burden shifting (i.e.transferring environmental 

impact from one category to another) occurs. Even if the impacts related manufacturing stage is higher in the case of 

the new LMP-103s propellant (due to the larger amount of propellant by +32%), the difference when considering the 

full scope of the study is compensated mainly by a shortened launch preparation into clean rooms. It stems from 

more limited safety measures regarding ‘GreenSat’ scenario during the loading propellant operations and cleaning 

processes. Indeed, hydrazine is targeted by the REACH regulation, which is not the case for the LMP-103s. 

 

Figure 9. Comparative environmental impacts of Sentinel-3B at mission level for Baseline and ‘GreenSat scenario’. 

The figure highlights the absence of a noticeable ‘burden shifting’ between the impact categories. Hence, the 

GreenSat scenario can be considered as a relevant ecodesign improvement.  

4 CONCLUSION & PERSPECTIVES 

This LCA study demonstrates the added value of holistically addressing the environmental performance of space 

mission, i.e. not only in term of conventional environmental impacts but also assessing the potential impact on the 

orbital environment. Based on the previous results obtained in the frame of the ‘GreenSat’ ecodesign study and the 

scores computed for the potential degradative use of the orbital environment, the replacement of the Hydrazine by 
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LMP-103s propellant appears as a relevant ecodesign improvement for the sentinel-3 mission. The full 

environmental profile computed represents a relevant input to be used by decision-makers at the early design stage 

of space mission.  

Having more propellant dedicated to the PMD would also help the satellite to initiate a controlled re-entry aiming to 

comply with the casualty risk threshold required by the space debris mitigation standards. Nevertheless, additional 

investigations should be carried out for a detailed comparison of both propulsion systems.  Sentinel-3 spacecraft was 

designed with “light” 1N hydrazine thrusters, while LMP-103s propulsion system could require new thruster 

equipment and addition of a re-pressurisation module to cope with the needs of a controlled re-entry.  

Going further, relevant mission parameters could be taken into account to perform a comprehensive multi-criteria 

optimisation when designing space missions and the associated spacecraft. For instance, minimum performance 

thresholds should be considered when defining the functional unit of the system. It is particularly the case for the 

reliability rate (e.g.  90% reliability at the end of the mission) as it could greatly influence the use phase and the EoL 

durations (e.g. when mission extensions are decided) [30]. It is also the case for the casualty risk related to the 

atmospheric re-entry as mentioned above. 

Finally, as stated by Donella Meadows [31]: “indicators arise from values (we measure what we care about), and 

they create values (we care about what we measure)”. The need of consistent metrics for space sustainability 

assessment is a raising concern among the aerospace community as demonstrated by the on-going work of Letizia et 

al. [32]. In this context, the LCA methodology should be considered as a starting point guiding ecodesign effort for 

space systems in a broader space sustainability perspective. 
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