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Abstract

Democratization of sensing devices in industrial systems has made it possible

to collect a large amount of data of different types, which has led to the neces-

sity of handling complex analyses for knowledge extraction. The field of water

resources is of those areas which has drawn the attention of decision-makers

seeking to preserve human health and safety. Recent advances in Artificial In-

telligence, particularly in the domain of Machine Learning, have opened the

potential to leverage massive data to better address the issue related to the

relationship between water quality and human activities. However, high rate of

missing data and heterogeneity of the measurements are scientific issues that

cannot be solved by standard methods, especially when no prior knowledge on

the label of each observation is provided. In this article, Prognostics and Health

Management was implemented to detect and diagnose anomalies in water quality
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datasets, taking into account the uncertainties induced by the above-mentioned

issues. Fuzzy c-means was used to identify the different water quality classes,

while Random Forest was applied to determine the most influencing parameters,

with respect to potential contamination of water resources in the southwest of

France. The results suggest that multiple imputation methods can handle the

missingness issue, while the use of decision rules based on well-known water qual-

ity standards can solve the problem regarding the lack of labelled observations.

In addition, two potential sources of contamination (atrazine and nitrate) were

identified and then validated by hydrogeology experts, prior to further online

deployment of the proposed model.

Keywords: intelligent fault detection; diagnostics; water quality; uncertainty;

unsupervised learning; Fuzzy c-means; Random Forest.

1. Introduction

Before technological breakthrough in the field of data acquisition, collecting

measurements for systems monitoring was not straightforward (Sen and Bricka,

2009). Nowadays, this is quite the opposite, i.e. a large amount of data is avail-

able at a low cost. As a result, decision-makers are facing new issues, which5

are: how to make sense of the available data, and how to extract knowledge and

information in order to effectively monitor a system and suggest appropriate ac-

tions depending on its health state. Advances in Artificial Intelligence (AI) have

shown their ability to solve such issues, with less expert intervention and less

prior knowledge needed on the studied system. AI methods and techniques are10

indeed appropriate to handle massive data with complex relationships between

a high number of variables (Frank and Kppen-Seliger, 1997). However, studies

undertaken in the literature are usually conducted with complete, regular, and

friendly datasets. But, those conditions are rarely met in real-world contexts, as

it is the case in the present research work. Indeed, irregularities, such as outliers15

and missing values that make data non reliable and therefore unexploitable, can

occur; which may affect the performance of the learning algorithms. A general
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approach, allowing to take into consideration the whole lifecycle of the data

to handle those issues is then required. Prognostics and Health Management

(PHM) is such is one of the candidate approaches that has been successfully ap-20

plied in various industrial areas to monitor complex systems such as bearings,

motors or trains (Atamuradov et al., 2017; Gouriveau et al., 2016; Benkedjouh

et al., 2013). In those industrial domains, it has allowed effective maintenance

policies, since the maintenance is performed only when needed, based on analy-

ses of the health states of the system, resulting in less undesirable interventions25

to solve failures and reduced costs. The general goal of this research work is then

to transpose this approach into the field of water quality monitoring, focusing

on detection and diagnostics, and taking into consideration the specificities of

the water resource system.

Indeed, it is well known that water is the most important natural resource30

without which no life can exist. In today’s globalized world, where geostrategic

issues in relation with the quest for natural resources are gaining in importance,

any contamination, whether unintentional (e.g. due to the use of pesticides in

intensive farming) or intentional (e.g. in case of a terrorist act), can result in

dramatic consequences for humans, fauna and flora. Monitoring its quality has35

thus became a major concern that has been the subject of global, national or

local action plans, aiming at preserving human health and biodiversity. Due to

its chemical and physical properties, water is capable of dissolving many sub-

stances, which makes the chemistry of natural water very complex. In addition,

a simple measurement of the total solids content of a sample is not enough to40

determine its character (Tebbutt, 1997). So, to fully understand the nature of a

particular sample, especially in the context of pollution (which is the main scope

of this study), it is generally necessary to measure several different properties

by performing analyses under the broad frame of (1) physical characteristics

(e.g. turbidity, electrical conductivity), (2) organic contaminants (e.g. pesti-45

cides, volatile organic compound), (3) inorganic contaminants (e.g. aluminium,

nitrate) and (4) microbiologic contaminants (e.g. coliform bacteria). Within

this frame, mutual influences of parameters can occur, while the system itself
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Figure 1: The system “water and its environment”.

can interact with its environment, composed of human and industrial activities,

climate and soil evolutions (as depicted in Fig. 1). Although these interactions50

may have positive effect on a contaminated water to recover a healthy state, in

the current context of climate change, in conjunction with perpetual conflicts,

scarcity of natural resource has now received much public attention, while the

growing use of pesticides in intensive farming is putting pressure on politicians

and decision-makers in cities. Hence, this situation requires suitable decision55

tool allowing to early detect risks to humans, fauna and flora and to initiate

appropriate remediation actions.

In the specific context of this study, the number of observed parameters is

large (around 400), the missingness rate is high (around 84%) and no prior60

knowledge on the water state (good or bad) for each observation is available.

This makes the analysis difficult for providing insightful and reliable knowledge

to decision-makers. Therefore, the two first issues require to pre-process the raw

data to make them exploitable. Regarding the third issue, unlike the industrial

context, there is no universal indicator that can allow to determine the health65

state of the system, i.e. the water resource. Very often, Water Quality Indices
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(WQI) are used to identify different levels of quality, but they are not universal

and may not be relevant in some context (Tyagi and Singh, 2013).

Thus, the specific goal of this study is to develop a general and effective model

that can make it possible to detect contamination of water resource and then70

diagnose the associated causes, taking into consideration the complexity and

uncertainties induced by the above-mentioned issues. As with any system mon-

itoring, a first major step (concerned with this work) is to validate the proposed

model by human experts (in the field of hydrogeology), prior to deployment in

production, using an online monitoring process (which is not in the focus of75

the present study). To mitigate the outlined complexity and uncertainties, the

novelty of this paper concerns (i) the development of a method allowing to han-

dle the high rate missingness (that cannot be solved with traditional methods),

combined with (ii) the definition of a decision rule based on water quality stan-

dards, to allow the implementation of effective detection and diagnostic methods80

(since no prior knowledge on the state of the collected samples is available). The

rest of the article is organized as follows: section 2 reviews studies related to

water quality, section 3 describes the proposed methodology and section 4 pro-

vides its implementation to a case study, the theoretical background and the

main principles of the implemented methods, along with associated discussions85

on the results. Finally, section 5 concludes the work and gives directions for

further improvements.

2. Related work

This section reviews the relevant previous research works in the field of water

quality, focusing on the detection and diagnostics issues that are related to the90

main scope of this study. Following Tubbett (Tebbutt, 1997), it is worth noting

that all natural waters contain a variety of contaminants, due to erosion, leaching

or weathering processes. In addition to this natural contamination, two other

types can be noted: the first one is prompted by domestic and industrial wastes,

the second one is due to the use of pesticides in intensive farming (which is the95
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context of this study). However, any amount of water is capable of assimilating a

certain amount of pollution without serious effects, because of dilution and self-

purification processes (Tebbutt, 1997); which makes it hard to provide universal

method for analyzing water quality. This high variability in the character of

water led to diversity in approaches and techniques of analysis, as reflected in100

the associated research works literature summarized in the following subsections.

2.1. Water quality detection

In this study, as mentioned above, water quality detection relates to the de-

tection of its pollution, with regard to potential groundwater contamination by

human activities in intensive farming. In the following, the term anomaly will105

then refer to a pollution detected in a given sample. In the literature, two main

approaches for detecting anomalies in water have been proposed: model-based

and data-driven. Model-based approach comprises methods that are established

on the basis of mathematical formalization of the physics of the system under

study, while data-driven one includes methods that take into consideration pa-110

rameters of interest that go beyond the physics of the system. In practice, both

require data to be implemented. However, while in the first approach few data

are needed and used only in an identification purpose to set the physical model,

in the second one, a large amount of representative data is required to explore

all the possible states of the system, using data analytics.115

Traditional model-based techniques include spectrophotometry (Abbas and

Mostafa, 2000), electrochemical analyses (Denuault, 2009) or chromatography

(Lamb et al., 2006). Unlike those methods, Raman’s spectroscopy has high

precision and short detection time (Li et al., 2015). The parameters of this

method are different, depending on the type of pollutant which can be organic,120

inorganic or biological. Although there are many applications of Raman’s spec-

troscopy (Li et al., 2014), few challenges have emerged, that require further

works, particularly in the area of instrumentation and for determining the right

type of spectroscopy technique for each pollutant. In most studies using a

model-based approach, a specific pollutant is targeted. For example, in (Eli-125
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ades et al., 2015) the authors used real-time estimates of chlorine concentration,

at the lower-bound and multi-level thresholds, to reduce false positive alarms

in an existing event detection system. Although significant number of these

studies have shown convincing results in the analysis of the water state, they

have been conducted almost exclusively on the basis of a relatively small num-130

ber of parameters of interest, focusing on the water phenomenology. Likewise,

their contexts of application are not representative of all the variations that can

characterize the very frequent evolution of the character of water (as mentioned

above). In a context of scarce water resources (due in particular to the effects

of climate change), combined with an era of intensive farming (to meet human135

food demand) that is increasingly exposed to health risks that have received

public attention, all possible health states of water should be explored, so as

to better explain the impact of human activities. In this direction, advances in

sensing devices have opened a promising channel to collect large amount of data

from high number of parameters of interest, while the development of AI pro-140

vides suitable models and methods that allow complex analyses of high number

of variables, in order to extract insightful knowledge to decision-makers, in a

reasonably low processing time.

Data-driven studies undertaken in the field of water pollution can be orga-

nized into two main categories: those using a synthetic quality indicator (i.e.145

WQI), and those related to knowledge extraction from data, i.e. based on Ma-

chine Learning (ML). As in the case of model-based methods, studies using a

synthetic quality indicator are generally carried out with few parameters, i.e. a

real value is determined to summarize the overall water quality, usually based

on a weighted combination of parameters of interest. Several WQI have been150

proposed in such a way (Balan et al., 2012; Lumb et al., 2006; Cude, 2001), each

distinguished by the parameters used in the associated formula, the weights as-

signed to each parameter, and the aggregation method. In (Vasanthavigar et al.,

2010), for instance, an index has been proposed to assess groundwater quality

in India. This index is based on 12 parameters and uses Indian Water Quality155

Standards, along with human expertise to determine the weights of each param-
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eter. In such a study, an advantage of using human expertise is to solve the issue

regarding the lack of knowledge, allowing to label the samples, and to provide

a method to take into consideration the variety of the water purposes. How-

ever, the choice of the parameters of interest remain questionable and may not160

be relevant to another country. Besides, data considered in the above-mention

study are complete and periodic (namely biannual), which does not meet the

requirement of high missingness rate, as it is the case in this research work.

In the field of ML, two main categories of methods have been applied to wa-

ter pollution to address the detection issue: supervised methods (i.e. samples165

are labelled according to their quality level), and unsupervised methods (i.e. no

prior knowledge is avalaible to assign labels to the data samples). Supervised

methods, such as Artificial Neural Networks (ANN) and Support Vector Ma-

chine (SVM) (Castillo et al., 2016), have been successfully used to assess water

quality, whereas deep learning methods usually provide best results (Dogo et al.,170

2019). However, the closest data-driven methods that meet the specific context

of this study are unsupervised ones (since no prior knowledge on the state of

each sample of the dataset is available). Within the frame of these methods,

the most common techniques implemented are those aiming at determining wa-

ter quality classes. The idea behind such techniques is that, by discriminating175

samples into different classes, one may be able to isolate contaminated ones.

But the problem is that (since samples are not labelled), after performing clus-

tering, human expertise is needed to characterise each class, so as to find the

contaminated ones. Cluster analysis was, for instance, applied in (Machiwal

and Jha, 2015) where the data considered are regular, with the characterization180

of classes from “poor” to “excellent”, manually determined by an expert. On

their side, the authors in (Balderas et al., 2017) have performed clustering on

a dataset composed of 72 pollutants and biological indicators, with 9.70% of

missing data. An imputation-based method, namely Multiple Imputations by

Chained Equations (MICE), has been applied to handle the missingness issue,185

while outliers have been replaced using k-Nearest Neighbours (kNN). Water

quality levels (characterized from “clean” to “very polluted”) were derived on
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the basis of the amount of pollutants present in the targeted site. The authors

concluded that the results obtained on the pre-processed datasets were more

consistent than those on the non-preprocessed ones. Indeed, an interesting fea-190

ture of MICE is that missing values are imputed taking into consideration the

relationships among the variables of the observations under study, leading to

a preservation of the overall behavior of the original dataset. However, when

this method is applied in its standard form, linear relationships are used by

default, which may not be relevant to any context, especially the one concerned195

with the present study that is characterized by a high number of variables, in

conjunction with a high rate missingness.

To summarize, on one hand, indicator-based methods applied to address

water pollution are usually implemented with few paramters, chosen in a specific

context, and using specific standards that are relevant only in the country or area200

for which they are defined. On the other hand, ML-based methods (including

unsuperivsed methods that are close to the context of the present research work)

are generally performed using friendly datasets and/or focus more on analysis

than on data processing. Even when imputation methods are implemented to

address the missingness issue, possible complex relationships among variables205

(rather than linear ones) are not taken into consideration, which is strongly

required in case of high number of variables. As a consequence, the main issues

addressed in this study, for an efficient detection of water pollution (as defined

in the introduction), remain poorly or partially solved by the works reported in

the literature.210

2.2. Diagnostics of water anomalies

In this study, diagnostics of water anomalies refers to the process of deter-

mining the possible causes of water pollution (particularly in relation to the

use of pesticides in intensive farming). Similar to the detection issue, two main

approaches exist in the literature: model-based and data-driven.215

In the first approach, modeling the contaminant’s reactivity and transport

can be conducted in order to determine the causes of water pollution. In (Al-
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masri and Kaluarachchi, 2007), for instance, the authors proposed a modeling

framework integrating both point and non-point sources of pollution, by con-

sidering soil nitrogen dynamics and groundwater flow, along with nitrate and220

transport, to study the impact of land use on nitrate pollution. The method

allowed a better understanding of the behavior of nitrate in groundwater and

provided decision support for water management. In order to identify nitrate

sources and transformations, isotopes of nitrogen and oxygen, along with a

Bayesian mixing model, were successfully implemented in (Zhao et al., 2019).225

Once again, although convincing results have been obtained for water pollu-

tion diagnostics, it appears that high chemical expertise is strongly required.

Moreover, the associated methods are more contaminant-oriented and, there-

fore, do not take into consideration non-chemical parameters that may be of

great interest for the analysis. Besides, these methods are undertaken on the230

assumption that the possible causes of the pollution are known, at least sus-

pected with regard to the observation of the state of the water resource. This

does not correspond to the context of this study, where analyses must be carried

out in a blind way and which are not easy to achieve, given the large number

of parameters to consider. For all these reasons, data-driven methods are more235

appropriate.

Data-driven methods for identifying the main causes of water pollution pre-

dominantly consist in combining Hierarchical Cluster Analysis (HCA) and Prin-

cipal Component Analysis (PCA) (Simmonds et al., 2017; Machiwal and Jha,

2015). In (Mastrocicco et al., 2017), for instance, chlorate origin in groundwater240

is associated to variation in nitrate, volatile fatty acids and oxygen reduction

potential. PCA allowed then to significantly reduce the dimension, but was

applied only on the parameters that were measured at each campaign (with

no missing values). It is widely acknowledged that PCA does not preserve

distances between observations in the reduced space, which can result in the245

discarding of discriminating information. Moreover, PCA is recognised to out-

perform competing methods only in case of small training datasets (Martinez

and Kak, 2001), which is not the case in this study. Despite its unsupervised
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nature that meets the requirement regarding the lack of knowledge on each

sample, this method is not suitable to answer the pollution diagnostics issue, in250

the context of the present research work. Indeed, this latter requires a method

allowing to strongly discriminate pollutant and non-pollutant samples in order

to better diagnose pollution causes.

To sum up, according to this review of the previous studies related to detec-255

tion and diagnostics of water pollution, the following findings can be noted.

• Data-driven methods, which are suitable for water pollution detection and

diagnostics, are generally applied to complete and regular datasets. In ad-

dition, studies that have addressed the issue related to missing values have

been undertaken on datasets with low rate missingness. Therefore, meth-260

ods allowing to preserve the behavior of the raw data after imputation,

i.e. taking into consideration complex relationships among a high

number of variables, are required.

• Algorithms performance is improved after pre-processing the raw data.

Therefore, a systematic application of the pre-processing step is needed265

in order to provide, in a low processing time, relevant answers to the

issues addressed.

• The above discussions have also shown that the main problem addressed

is unsupervised in nature (samples are not labelled).

– As noted in (Tebbutt, 1997), examining the various standards and270

guidelines that are used to specify water quality for various uses can

help characterizing the state of each sample, so as to determine de-

cision rules for labelling them. Since no universal health indicator is

available in the field of hydrogeology, expert knowledge is needed to

provide relevant water quality sub-classes. This will help transform-275

ing the problem from unsupervised form into supervised.
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– To provide relevant sub-classes of water quality, a method allowing

strong and clear separation between the resulting sub-classes

is required, which will reduce the need of expert intervention for

validating the proposal.280

In order to meet the above mentioned requirements, a general method al-

lowing to take into consideration the whole lifecycle of the data should be es-

tablished. For this purpose, the transposition of PHM steps (Fig. 2) to water

quality could be one of the suitable candidates. The main phases shown in Fig.

2 are shortly described hereafter.285

1. Phase I: data acquisition. This phase initializes the method by provid-

ing the raw data that will later be subjected to various analyses. In this

study, data were collected from a catchment well. A part of these data

were obtained from sensors and the other part from lab chemical analyses.

Detailed information on the organisation and operation of the considered290

well is provided in the subsection describing the case study.

2. Phase II: data pre-processing. It is concerned with tasks that are

performed to clean up the raw data in order to make them reliable and

exploitable for relevant analyses. To this end, among others, issues such

as heterogeneity of measurement periods, missingness, dimensionality (in295

case of high number of parameters of interest), followed by feature extrac-

tion, are addressed.

3. Phase III: data analyses. It is at this phase that water quality analyses,

in relation to detection of anomalies and diagnostics of their underlying

causes, are undertaken. In addition, PHM provides a specific analysis task,300

allowing to anticipate failures of the system under study. For this purpose,

prognostics methods are developed. However, this prediction step is out

of scope of this paper.

4. Phase IV: decision support. As its name suggests, this phase aims at

providing support to decision-makers in order for them to keep the system305
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Figure 2: PHM framework applied to water quality analysis.

in a healthy state, usually in the form of recommendations for actions to

be taken. Among others, data acquisition strategy, allowing for instance

to focus on the most influencing parameters, can be provided.

As shown in Fig. 2, only pre-processing, detection and diagnostics

are considered in the scope of the present study. The proposed PHM-based310

methodology, to handle these issues, and its associated results will be presented

and discussed in the following sections.

3. The proposed methodology

This section describes the proposed methodology to handle detection and

diagnostics of water pollution, in relation to human activities in intensive farm-315

ing. It is an instanciation of the PHM framework presented above. One aim is

to show how it can better address the three main issues specific to the context

of this study. These issues are: (1) high rate missingness, (2) high number of
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parameters of interest and (3) unlabelled samples (i.e. no prior knowledge on

their state). A first sub-section outlines the main steps of the methodology,320

followed by a sub-section describing the theoretical background and the main

principles of the implemented methods.

Figure 3: The proposed methodology for detection and diagnostics of water pollution.

3.1. Main steps of the methodology

Fig. 3 highlights the seven main steps implemented and the underlying tasks

which are structured into two main phases: pre-processing and analyses.325

A. Pre-processing

• Step 1. It can be noted that the raw data of the study were provided

with some unnecessary measurements to handle the above mentioned is-

sues. Thanks to the intervention of hydrogeology experts, combined with
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some exploratory analyses, the observations gathered were then cleaned330

up. To this end, outliers, observations within a period where measure-

ments techniques were judged not reliable and parameters that were rarely

monitored have been removed.

• Step 2. The raw data of the study were also provided with a large number

of missing values. In fact, some measurements were not conducted because335

chemical analysts may have found them unnecessary at some times when

environmental conditions were quite good. But the problem, for the data

analyst, is that this can lead to a loss of information and introduce bias.

It was then necessary to fix this issue. Since the rate of missingness of

the dataset considered was very high (more than 80%), missing values340

were filled using an algorithm described in (Ratolojanahary et al., 2019),

combining MICE with Support Vector Regression (SVR). Indeed, among

other competing methods, SVR gave the best results and was suitable to

build non-linear relationships between the variables. A model selection

methodology was proposed for that purpose.345

• Step 3. Following the recommendations resulting from the literature

review, a major choice was made at this step to handle the issue regarding

the lack of knowledge allowing to label the data samples. As suggested in

(Tebbutt, 1997), european Water Quality Standards (WQS) were used, so

as to transform the unsupervised nature of the problem into an supervised350

one. As already discussed, this can refine the results of the detection and

diagnostics procedures. To this end, decision rules were defined as follows:

if at least one parameter does not comply with the underlying threshold,

the associated sample was labelled non-compliant, otherwise compliant.

• Step 4. It is worth noting that dimensionality reduction is important355

to mitigate uncertainties induced by redundancy, presence of unnecessary

parameters, and also to speed up the processsing time. To cope with the

necessity to properly discriminate pollutant and non-pollutant samples (as

discussed in the literature review), Linear Discriminant Analysis (LDA)
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was adopted for feature extraction. Since it is a supervised method, its360

use in conjunction with the samples labelling of step 3 is therefore suitable

to handle the dimensionality reduction issue addressed in this study.

• Step 5. Once the samples are labelled, a trick in using LDA is also to

provide a mechanism to handle the detection issue. Indeed, since the

samples are labelled (step 4), LDA will generate sub-classes of compliant365

water quality and the same for non-compliant observations. Thus, given

a new observation, the underlying model will be able to predict the sub-

class to which it belongs. The left side of Fig. 4 outlines this procedure.

In order to guide this mechanism, data are divided into compliant and

non-compliant categories, using decision rules elaborated from european370

WQS.

Figure 4: Detailed operation of the data analysis phase.

• Step 6. The previous step resulted in two sets of data composed of compli-

ant and non-compliant samples, each used for clustering. Since the corre-

sponding samples are labelled (using WSQ), clustering will actually result

in sub-classes of compliant observations and those of non-compliant ones.375

This will make it possible to precisely determine several sub-categories

of water quality, beyond a simple separation of data into compliant and
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non-compliant observations. Considering sub-classes obtained with non-

compliant data, one can then gather insight on water pollution causes,

by characterizing their most influencing parameters. In order to fine-tune380

this procedure (as expected for relevant diagnostics), a fuzzy-based clus-

tering method was implemented: Fuzzy c-means (FCM). Thus, for each

given observation, it was possible to predict to what extent it belongs to

a given class, using a membership function that gives the probability of

belonging.385

B. Analyses

• Step 7. The inputs of this step are the different sub-classes of water

quality obtained in the previous step. Although the trick introduced in

step 6 has provided us with different classes of compliant observations,

and others of non-compliant ones, this does not indicate which parame-390

ters characterize each of these classes. To cope with this issue, a decision

tree-based method was adopted. Among the competing methods of the

literature, Random Forest (RF) (Breiman, 2001) is the one which can

solve this issue. Among its main features, it should be noted that RF is

robust against overfitting. In addition, the test procedure on top of which395

it is built allows to explore all the classes, preventing the model from bad

performance in case of imbalanced classes. Furthermore, in practice, its

implementation allows computing variables’ importances that are of great

interest for diagnostics. The right side of Fig. 4 outlines the underlying

process.400

Considering the resulting sub-classes within the non-compliant observations

and their corresponding variable importances (computed through RF), it be-

comes possible to define the most influencing parameters of water pollution.

These conclusions are then confronted with hydrogeology experts for valida-405

tion, before deployment in production through online monitoring (which is out

the scope of the present study).
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3.2. Theoretical background and principles of the implemented methods

Multiple Imputations by Chained Equations (MICE), Linear Discriminant

Analysis (LDA), Fuzzy c-means (FCM), Random Forest (RF) and Genetic Algo-410

rithm (GA) are the main methods required to implement the proposed method-

ology. For simplicity, the following presentation focuses on their key features.

3.2.1. MICE

According to the literature, there are 3 different mechanisms to describe

what can lead to missing values (van Buuren, 2018): (1) Missing Completely At415

Random (MCAR), i.e. the probability of missingness is independent of both the

observed variables and the variables with missing values; (2) Missing At Ran-

dom (MAR), i.e. the probability of missingness is due entirely to the observed

variables and is independent of the unseen data; (3) Not Missing At Random

(NMAR), i.e. the missing value is related to the actual values. As shown in420

(Ratolojanahary et al., 2019) our study relates to the MAR category. It should

be noted that MICE was used to handle the missingness, due to its ability to

preserve the overall behavior of the original data, and to take into consideration

the relationships between the variables of interest. Indeed, simplistic imputa-

tion (such as mean or median) may not be relevant. For instance, imputing425

the missing value of a temperature with the mean of the samples may not be

consistent if the imputed sample in question was collected in winter whereas

most existing samples were collected in summer. Such a choice would generate

an unfortunate bias that can lead to inappropriate decision making.

3.2.2. LDA430

The main principle of LDA is to search for the feature space in which com-

pliant and non-compliant water samples are the best separated (as shown in

Fig. 5). To this end, eigenvectors based on covariance matrices of between and

within classes are determined. To choose the number of linear discriminants,

the cumulative percentage of explained variance is then calculated.435
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Figure 5: Classes separation in Linear Discriminant Analysis.

3.2.3. FCM

FCM, initially developped by Dunn (Dunn, 1973) and improved by Bezdek

(Bezdek, 1981), was adopted for that purpose. Its main principle is to assign

each observation to a given cluster with a degree of membership (i.e. a coeffi-440

cient) (Bezdek, 1981), guided by the follwing procedure:

• Choose a number of clusters c;

• Assign randomly to each point, degrees of membership to each cluster;

• Repeat until convergence, i.e when the coefficients change between two

iterations is lower than a predefined threshold ε :445

– Compute the centroid for each cluster using Eq. (1):

ck =

∑c
i=1 w

m
ij x∑c

i=1 w
m
ij

, (1)

where wij is the degree of belonging of the observation i to the cluster

j, and m is the fuzzifier;

– Compute the new coefficient for each point using Eq. (2):

wij =
1∑c

i=1
||xi−cj ||
||xi−ck||

2
m−1

(2)

19



3.2.4. RF450

The main objective of RF is to build several weak learners (shallow decision

trees) in parallel in order to produce a stronger classifier. The key is to choose a

large number of uncorrelated trees that will together outperform any individual

model. The underlying reason of this powerful feature is that uncorrelated

models (i.e. trees) will protect each other from their individual errors. The455

main steps of RF are the following:

(a) Select a random sample of the observations with replacement;

(b) Select a set of variables randomly;

(c) Choose the variable providing the best split;

(d) Repeat step (c) until all nodes are pure or the maximum depth is reached;460

(e) Repeat steps (a)-(d) until the specified number of trees is reached;

(f) Decide upon a majority vote.

For diagnostics purpose, the importance score of each feature is computed

by averaging the difference in out-of-bag error, before and after the permutation

over all trees. The score is then normalized by the standard deviation of these465

differences (Zhu et al., 2015). In order to provide good results, RF has to be

fine-tuned by setting its hyperparameters. These latter are the parameters that

have an influence on the quality of the algorithm (in contrast, parameters refer

to those that define the underlying model, used to predict the result for a new

observation).470

Hyperparameters such as the number of variables (n var) to consider at each

split, the criterion (crit) for choosing the best split while constructing the trees,

the maximum depth of the trees (max depth) and the number of trees (n trees)

are those concerned with a tuning procedure. The combinatorial nature of their

respective choice makes it hard to provide good performance. To address this475

issue, Genetic Algorithm (GA) (Ng and Perera, 2003; Goldberg and Holland,

1988) was combined with RF.
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Indeed, a well-known issue in supervised learning is the misclassification

due to (1) underfitting, which reflects the bias issue, or to (2) overfitting, which

pertains the variance issue. To handle such problems, the choice of the hyperpa-480

rameters of the implemented methods becomes crucial and falls within the frame

of combinatorial optimization. One of the basic methods for hyperparameter

tuning is grid search: it consists in building a model for each of the combination

of the parameters provided, which makes it simple to implement. However, the

size of the search space can increase exponentially, leading to a high processing485

time. A randomized version of grid search allows exploring larger search space,

picking randomly one combination of values in each iteration. But the way

it operates cannot guarantee the most appropriate choice of hyperparameters,

since it is not an optimization method. In (Dhaenens and Jourdan, 2019), the

authors investigated several metaheuristics for data mining, among which, GA,490

Particle Swarm Optimization (PSO), and their hybridization. Following the

authors, and to the best of our knowledge, no single method can outperform

the others in all cases: the performance depends on the search space defined

to fine tune the hyperparameters, and on the data themselves, regarding their

size, their variety, their veracity and their velocity (within the broad frame of495

big data concerns).

3.2.5. GA

It should be noted that, in the context of the present research work, big data

concerns do not matter. Among the metaheuristics provided in the literature,

GA, which has shown good performance in many cases, has then be chosen for500

the present work in order to improve a basic or randomized grid search. Briefly,

given an optimization problem, GA operates through these main steps:

(a) Create an initial population, composed of individuals that are potential

solutions of the problem (usually, randomly selected);

(b) Compute the fitness score of each individual (which is a criterion allowing505

to find the “best” individuals for the next generation);
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(c) Select the best fitted individuals;

(d) Perform a crossover of each pair of parents from step (b), so as to randomly

introduce new features in the next generation;

(e) Perform mutation (with a low probability) to maintain diversity and pre-510

vent premature convergence;

(f) Repeat steps (c)-(e) until convergence or until a specified number of gen-

erations is reached.

In this study, each individual is set as a vector of size 4, corresponding to the

hyperparameters to optimize (n var, crit, max depth, n trees), and the fitness515

score is the AUC (Area Under the ROC Curve) of the derived RF model. The

search spaces defined for these hyperparameters are given in the following:

• nvars = {“auto′′, “sqrt′′, “log2′′, None};

• crit = {“gini′′, “entropy′′};

• max depth = {5, 10, 15, 20};520

• n trees = {100, 101, . . . 500}.

4. Implementation of the proposed methodology

This section presents an implementation of the proposed methodology to

address detection and diagnostics of water pollution, in relation to human ac-

tivities in intensive farming. As noted earlier, the raw data used hereafter were525

acquired from a catchment well located in the southwest of France.

4.1. Case study : catchment well at Oursbelille (France)

This case study is concerned with a real-world groundwater dataset collected

from a catchment well at Oursbelille, in the southwest of France. Fig. 6 shows

the corresponding geographical localisation (left side of the figure) and the op-530

eration principle of the catchment(right side of the figure).
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• (1) Groundwater is first pumped and treated with active charcoal which is

the most effective mean for removing chlorine, particles such as sediment,

volatile organic compounds (VOCs), taste and odor from water;

Figure 6: Location of the case study and operation principle of the catchment.

• (2) Pre-treated water is then temporarily kept in storage tanks;535

• (3) On demand, the stored pre-treated water is brought back for pH mon-

itoring. Let us recall that pH is the measurement of how acidic or alkaline

(basic) a solution is. It corresponds to the balance of the amount of acid

and base chemicals in that solution. In drinking water, its values range

from 0 to 14: 7 is neutral (i.e. there is a balance between acid and al-540

kalinity), a value below 7 means acid is present and above 7 means the

solution is basic (or alkaline). Among the various types of measurements

that are available, in this case study, sensing devices were adopted;

• (4) Finally, before sending water to the inhabitants, it is chlorinated and

then routed to a distribution center. This final treatment is usually carried545

out as primary or residual disinfection.

In 2008, farming practices have increased the level of nitrates and pesticides

23



in that area, which has led to a territorial action plan. To that end, mea-

surements of 414 water quality parameters (including chemical, physical and

biological) were acquired from 1991 to 2018. It is worth noting that monitoring550

is still made at several levels of the studied area, but the data used for this study

are those concerned with the measurements at the source (i.e. before sending

the water to the inhabitants). In order to deepen the understanding of these

data, in relation to their correlation with water pollution, preliminary statistical

investigations were conducted.555

4.2. Data exploration

The main idea behind the exploration made was to understand the data

acquisition strategy and then analyse its consistency. In that purpose, the

number of measurements per parameter was considered. As outlined by Fig. 7,

only few parameters were frequently measured. In other words, the number of560

measurements per variable is very unequal, ranging from 1 to 127.

Figure 7: Number of parameters per measurement.

To deepen this first analysis, the number of measurements per year was also

considered. As shown by Fig. 8, monitoring has become regular and more

consistent from 2002. For example, the statistics of three parameters, namely

nitrate, pH and sum of pesticides are given in Table 1: the table shows565

that, on average, the values of these parameters are out of their corresponding
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Table 1: Statistics of 3 parameters.

Nitrate pH Sum of pesticides

unit mg/L none µg/L

count 127 97 29

mean 43.74 6.73 0.37

std 4.03 0.20 0.19

min 28.70 6.40 0.05

25% 41.00 6.60 0.22

50% 44.00 6.70 0.39

75% 46.00 6.80 0.50

max 55.00 7.70 0.79

tolerance < 50 [6.5, 9] < 0.5

tolerance ranges (i.e. under 50 mg/L, between 6.5 and 9 and under 0.5 µg/L,

respectively).

Figure 8: Number of measurements per year.

These exploratory analyses illustrate the complexity for implementing a

data-driven approach: it requires studies that go beyond the physics of the570

system under consideration and a variety of influencing factors should be taken

into account. In this case study, more than 400 parameters were identified as

potential water pollution factors of contamination, but only few were regularly
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Table 2: Basic statistics of datasets resulting from pre-processing.

Raw data Cleaned Imputed Reduced

Numb. of observations 156 133 133 133

Numb. of features 414 58 58 3

Time span 1991-2018 2002-2018 2002-2018 2002-2018

Missing data 84% 60% 0% 0%

measured, resulting in high rate missingness (within the whole period of mea-

surements). This is why a robust imputation mechanism was required during575

the pre-processing phase to provide relevant conclusions.

4.3. Implementation

The implementation of the proposed methodology was carried out according

to a general procedure summarized in Algorithm 1. Each step of each phase is

described in the form of a pseudo-code, including (A) pre-processing and (B)580

data analysis phases of the PHM general framework.

4.3.1. Implementation of the pre-processing phase

According to the procedure described earlier, the pre-processing consisted

in cleaning up the raw data (step 1), imputing the missing values (step 3) and

reducing the dimension (steps 3 and 4) in order to make the data exploitable.585

The main results of the pre-processing are summarized in Table 2. After the

first cleaning step, only 58 variables out of the 414 provided were retained.

Fig. 9 illustrates the trend of some parameters after imputation. The blue

lines represent the (partial) trend of the raw data, the red ones show the trend of

the imputed data, and the dashed horizontal lines indicate the threshold of the590

corresponding parameter (as defined in WQS). As the figure suggests, the im-

puted data tend to follow the overall behavior of the original data, and therefore

provide visual validation of the consistency of the imputation procedure (step

2). In addition, other analyses (which are out of the scope of this study) have
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Algorithm 1 Implementation of the proposed methodology

Input: Raw data (incomplete, no labels).

Output: Data with labels (water quality level).

(A) Pre-processing

(1) Clean up the data using expert knowledge and exploratory analysis

(2) Impute missing values using MICE+SVR

(3) Add labels using WQS

for all o ∈ observations do

label(o) = compliant

for p ∈ parameters do

if o(p) /∈ toleratedrange(p) then . According to european WQS

label(o) = non compliant

end if

end for

end for

(4) Reduce the dimension using LDA

(B) Analysis

(5) Divide the data into compliant and non compliant samples

(6) Determine water quality sub-classes

for data ∈ {compliant samples, non compliant samples} do

Cluster the data using FCM . Gives model Φ1 for compliant samples and Φ2 for

non-compliant ones

end for

Given a new sample, say xnew, compute Φ2(xnew) . Degrees of membership of xnew to

non-compliant sub-classes

(7) Identify the cause of anomalies

Perform RF classification . On imputed data (before dimensionality reduction)

for all determined clusters do

Find the most influencing parameters through RF

end for
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shown that the natural cycle of water contamination was preserved; which was595

also validated by hydrogeology experts involved in the present research work.

Figure 9: Variation of some parameters over time.

The application of water quality standards gave 60 compliant samples and

73 non-compliant ones (step 3). Using LDA (as required in step 4), the samples

were projected into a three-dimension space, showing the good performance of

LDA: 100% of the variance explaining the difference between compliant and600

non-compliant observations was retained (Fig. 10).
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Figure 10: Representation of the data in the linear discriminant space.

4.3.2. Implementation of the detection phase

Once the raw data are pre-processed, it is possible to apply water quality

analyses to provide relevant detection results. Detection is first carried out to

specify the membership (polluted / non-polluted) of each single data sample.605

As explained in the presentation of the proposed methodology, the trick was

to determine strongly discriminated sub-classes, each characterised by a certain

level of contamination, thanks to the LDA implementation (step 4). To this

end, the data were divided in two learning sets, compliant and non-compliant

samples. In both sets, FCM was applied for clustering, using the following610

hyperparameters (step 6): the fuzzifier index m = 2, which is the recommended

value (Bezdek, 1981), and the number of clusters c is determined using the

silhouette score which suggests 2 clusters for both compliant and non-compliant

samples (see Fig. 11). Indeed, the trick introduced in step 6 for detection

provided 2 models (through FCM clustering), Φ1 and Φ2, characterising the615

compliant and the non-compliant samples (respectively). These models can then

be used to deeply investigate the characterization of the sub-classes. Given a

new observation, say xnew, the computation of Φi(xnew) (i = 1, 2) gives the

respective degrees of belonging of xnew to each of the 4 sub-classes.
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Figure 11: Silhouette score diagram for the non-compliant samples.

The result of the clustering implementation shows 2 sub-classes that charac-620

terise the water pollution (non-compliant samples), which is a fine-tuned analy-

sis suggesting 2 possible causes of water pollution. Fig. 12 illustrates the overall

4 resulting sub-classes: the compliant sub-classes are represented in shades of

green and the non-compliant ones in shades of red. To obtain these results,

an euclidean metric was arbitrary used to compute the distance between ob-625

servations. The right side of the figure shows the number of observations per

cluster, which is overall imbalanced, justifying the appropriate choice of RF for

diagnostics (step 7).
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Figure 12: Water quality sub-classes.

4.3.3. Implementation of the diagnostics phase

Following the general rule set to characterize the samples, if the results of630

step 6 provide strong evidence that a new observation belongs to one of the

2 non-compliant sub-classes, it is declared abnormal. But this does not yet

explain the reasons of this anomaly, which is the goal of the diagnostics task.

To this end, following step 7, a classification problem using RF and the 4 sub-

classes obtained in step 6, is performed. The most influencing parameters of635

the sub-classes are then computed.

To define a classification problem, a column named class was added to the

cleaned imputed data: it corresponds to the 4 sub-classes found in step 6. For

each class c, the following steps were finally applied to diagnose any detected

anomaly:640

• Create a new categorical variable equal to 1 if the observation belongs to

the class c, 0 otherwise;

• Build a RF to discriminate that new variable;

• Retrieve the most influencing parameters to determine the class member-

ship.645
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Table 3: Optimal choice of RF hyperparameters per water quality class

class 1 class 2 class 3 class 4

n var log2 sqrt log2 log2

crit Gini entropy entropy entropy

max depth 10 7 4 7

n trees 287 307 358 471

To optimize the RF operation, an hybridization with GA was performed,

resulting in the choice of the hyperparameters values presented in Table 3.

It is worth noting that, while LDA allowed to reduce the dimensionality

before applying the FCM for detection, RF was implemented on imputed data

(see Table 2). The main reason of this choice was to perform RF on data650

containing original parameters, so as to be able to characterise each resulting

sub-class accordingly.

Figure 13: Most influencing variables per water quality class.

The process of retrieving the most influencing parameters in RF consists in
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Figure 14: Characterization of the resulting water quality classes.

searching, for each class, those that discriminate most the current class from the

others: these are the parameters with the most predictive power. They are the655

drivers of membership in their corresponding class, since they have significant

impact on its characterization. In contrast, the low importance parameters are

less significant and can even be omitted from the model without loosing its

predictive power, making it more simple and faster.

In the present research work, it has been decided to compute not a single660

influencing parameter (i.e. the top ranking), but the five first ranking ones (as

depicted in Fig. 13). In this figure, the color code remains the same as above (i.e.

shade of green for compliant observations and shade of red for non-compliant

ones).

To investigate the characterization of the resulting water quality classes, Fig.665

14 gives the values of the most influencing parameters per class using those of the

average individual (i.e. the centroid of each class), thus providing hydrogeology

experts with enough knowledge to validate the diagnostics.

• Compliant samples

– Class 1 includes observations with relatively low concentrations of670

conductivity, lead, copper and manganese, but higher concentration

of bromide than in the other classes.
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– Class 2 corresponds to observations with higher concentrations of

nitrite, nitrate and atrazine than those in class 1. In addition, the

copper concentration is also higher and the amount of free dioxide675

carbon is lower than that of class 1. Based on this information, class

2 appears to be less compliant than class 1.

• Non-compliant samples

– Observations of class 3 are characterized by high conductivity, with

atrazine, tetrachloroethylene and trichloroethylene being more con-680

centrated than the other classes. The chloride concentration is lower

than that of classes 2 and 3.

– Finally, class 4 contains observations with lower levels of nitrite, ni-

trate, tetrachloroethylene and trichloroethylene than class 3. Free

dioxide carbon is higher than that of class 3.685

In summary, parameters that are likely to exceed the threshold defined by

the Water Quality Standards are atrazine and nitrate in class 3 and exclusively

atrazine in class 4. Other parameters, such as conductivity, also indicate water

quality deterioration even if their value complies with the standards.

4.3.4. Discussion690

In view of the above results, the following observations can be made:

• The results from pre-processing as well as the classes characterization have

been validated by hydrogeology experts. Any automation would have been

possible to compute the diagnostics. As in any system monitoring study,

it is necessary to have the model validated by a human expert from the695

studied domain, prior to deployment in production.

• The most important variables that characterize the 4 water quality classes

were obtained through correlation analyses. But correlation does not nec-

essarily imply causality. A counter-example is given in class 4 where the

two most discriminating parameters are nitrites and nitrates. However,700
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their concentration level is lower in class 4 than in the other classes (as

shown in Fig. 15). Thus, a complementary analysis, for instance, a confir-

matory analysis using Structural Equation Modeling (SEM), is necessary

to validate the causality suspected, unless human expertise is used (if

available).705

Figure 15: Distribution of nitrites and nitrates per class.

• The number of influencing parameters per class was arbitrarily set to

5. Instead, an automation could be used, such as the elbow method for

instance. As illustrated in Fig. 16, only the first 3 parameters show

evidence of their influence.

Figure 16: Elbow method applied to the influencing parameters of class 1.

• The most influencing parameters, obtained through diagnostics, are con-710

sequently representative of the quality of water resource. Therefore, it
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may be recommended to monitor them closely and reduce the effort in

collecting unnecessary data, so as to save time and costs of analyses. This

may allow developing a generalizable and effective model.

5. Conclusion715

In this paper, a PHM-based methodology for detection and diagnostics of

water quality anomalies was proposed. This methodology allowed to obtain rel-

evant results (validated by hydrogeology experts), using heterogeneous dataset,

with high rate missingness and without prior knowledge on the health state of

the samples collected. It performed good results for detection, thanks to the im-720

plementation of LDA that perfectly separated compliant and non-compliant ob-

servations. Concerning the diagnostics issue, an indirect method was proposed,

using european WQS that allowed to switch from an unsupervised problem to a

supervised one. Thanks to RF implementation, significant results to determine

the 4 resulting water quality classes were provided, so as to allow deep investi-725

gation on their characterization. Nitrate and atrazine were finally declared the

main sources of water pollution (more precisely, the sources of water quality

disqualification), which was validated by hydrogeology experts involved in this

research work. Such validation is commonly required in systems monitoring,

prior to online deployment, which is planned for a further study. In addition,730

the characterization of the resulting classes allowed to recommend which pa-

rameters should be closely monitored, so as to mitigate the complexity induced

by the number of parameters of interest.

Further studies to improve this work include using a fuzzy rule for labelling

the samples and taking into consideration expert knowledge, combined with735

multi-criteria decision method, within the frame of a group decision. A second

direction of improvement will consist in considering the time dimension in order

to predict the future state of the water, that is, implementing the prognostics

phase of PHM. Several methods like neural networks and time series prediction

can be applied to this end.740
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