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Abstract

Deep learning has achieved state-of-the-art performance on signal and image

processing. Due to the remarkable success, it has been applied in more challeng-

ing tasks, such as ground-penetrating radar (GPR) testing in civil engineering.

This paper reviews methods involving deep leaning and GPR for civil engineer-

ing inspection and provides a classification based on the data types that they

exploit. Based on the results of a comparison study, we conclude that methods

using A-scan data slightly surpass the models using B- and C-scan data, though

C-scan data is maybe the most promising in the further thanks to its complete

space information. Two current limitations of deep learning exploiting GPR

are its dependence on big data and overconfident decision-making. Therefore,

benchmark GPR data sets and cautious deep learning are required.

Keywords: ground-penetrating radar (GPR), nondestructive testing (NDT),

deep learning, data processing, intelligent inspection for civil engineering
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1. Introduction

Recent advancements in nondestructive testing (NDT) have made safety

inspection in civil engineering more effective and precise than ever. So far,
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there are many types of NDT devices for structural health monitoring (SHM),

mainly including infrared thermography, ultrasonic testing, ground-penetrating5

radar (GPR), and industrial radiography. Compared with other techniques for

SHM, GPR is considered as one of the most powerful because of its desirable

reliability and effectiveness.

The increasing precision of GPR data encourages the research community

to exploit this richer data for solving several SHM tasks, such as defect recog-

nition, location, even 3D reconstruction. Figure 1 presents a generic pipeline

for processing a group of GPR data. Structure Scan data contain thousands of

signals and/or points. Thus, some preprocessing methods are applied to reduce

noises and/or restructure data, such as Gaussian filter [1] and KD-trees [2].

Following, feature extractors (e.g., convolutional operator [3] and Sobel opera-

tor [4]) are adopted in order to identify features related to the inspection task.

After acquiring related features, recognition, location, feature point regression,

and segmentation are conducted using highly nonlinear mapping, such as neural

networks [5] and support vector machines [6]. In addition, feature points and

segmentation results provide the possibility of 3D buried object reconstruction,

such as structural cracks. In summary, traditional GPR inspection depends on

two factors: (1) precision of GPR devices; (2) effectiveness of feature extrac-

tors and nonlinear mapping algorithms. Precision of GPR devices has been

improved remarkably with the development of measurement technologies [7].

However, errors from feature extractors and nonlinear mapping algorithms are

still inevitable, owing to their shallow structures.

Until recently, the breakthrough from the work of Krizhevsky et al. [8]

tremendously changed the landscape of the GPR detection in civil engineering.

Deep learning (DL) models, especially deep neural networks, now dominate on

almost defect detection tasks using GPR devices, leading many NDT groups

to redesign their systems. Although the concept of neural network has been

proposed for a long time, the evolution of general processor units and the avail-

ability of large datasets make the main contribution to its recent tremendous

success [9, 10].
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Figure 1: Generic pipeline for processing a group of GPR data.
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In pace with the dominance establishment of DL in 1D and 2D data pro-35

cessing, it was soon adopted to combine with GPR techniques for SHM tasks.

Motivated by this evolution, this paper surveys the main studies and presents

an overview of existing DL models for civil engineering inspection tasks via

GPR. Section 2 provides related works of GPR technologies in civil engineering

to make the paper more self-contained, followed by a introduction to the con-40

ception of deep learning and the architectures used so far in the problems of

GPR data processing in Section 3. Afterward, the advances of DL with GPR

as the main body of this paper is presented in Section 4. Finally, conclusions

are discussed in Section 5.

2. Ground-Penetrating Radar in Civil Engineering45

In this section, we start from a brief recall of GPR principles and main

configurations so far in civil engineering in Section 2.1. Further, we review the

traditional methods for GPR data processing in Section 2.2, including signal-

based processing (Section 2.2.1) and image-based processing (Section 2.2.2).

Finally, the current trends of GPR data processing are discussed in Section 2.3.50

2.1. GPR Principles and Main Configurations

GPR, as a geophysical inspection technique, transmits electromagnetic waves

that can penetrate building structures. The transmitted electromagnetic waves

are reflected by subsurface boundaries at which there are electrical property

contrasts. Then, the reflected waves are received by an antenna and used for55

SHM.

There are mainly two types of GPRs used in the field of civil engineering

based on their antenna configurations. A GPR system that uses a short wave-

length pulse signal with ultra-wide bandwidth in the frequency domain is called

pulsed radar, while the one transmits impulses with individual frequencies is60

named stepped frequency continuous-wave radar. In general, the applications of

GPR in civil engineering is mostly related to the use of pulsed radar because of
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its major easiness of usage and data interpretation. Furthermore, pulsed radar

can be classified into two groups: ground-coupled and air-coupled. In the first

group, the GPR antenna directly contacts with the ground, while the antenna65

kept a constant height with the surface in the second case.

The selection of antenna frequency, as another main configuration, can be

considered as a compromise between the maximum detection depth and the ex-

pected object resolution. Expected object resolution means the minimum visible

size of an object that a GPR can detect. Figure 2 provides a rough overview.70

Generally, higher frequencies can give a higher resolution but can penetrate a

medium shallower than lower frequencies. In addition, the selection of the fre-

quency range also should take the attenuation effects in various mediums into

account.

2.2. Data Processing Techniques in GPR75

From the first utilization of GPR in tunnel investigation in the 1970s [11],

the GPR applications have extended to the assessment of damage conditions

[12, 13], the evaluation of structure thickness [14], the detection of buried ob-

jects and defects [15, 16], the analysis of soil characteristics [17, 18], even novel

perspectives of the possible to characterize mechanical properties of structures80

and materials based on their reflected electromagnetic waves [19, 20]. Data pro-

cessing techniques are the key of the GPR data interpretation for these applica-

tions. The traditional techniques can be classified into two parts: signal-based

methods and image-based methods. In this section, we present a recall of the

two parts.85

2.2.1. Signal-based processing

In the signal-based methods, researchers focus on reducing the effects of

background noise and interference phenomenon owing to inhomogeneous medi-

ums. The processed data are used to interpret A-scan data. The signal-based

methods can be classified into band-passing filtering [21, 22], time-varying gain90

[23, 24], and resolution improvement [25, 26].
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Figure 2: A compromise between penetrations depth and the target resolution for a frequency

range.
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However, these methods with promising performance always require desir-

able knowledge of both electromagnetic waves and SHM. It leads these methods

cannot be widely used in SHM. For example, Li et al. [27] utilized Hough

transformation to recognize objects with approximately 80% accuracy, but the95

operators are required to be familiar with the effects of object sizes and orien-

tation on the randomized Hough transform algorithm.

2.2.2. Image-based processing

In the image-based methods using B-scan data, researchers trend to image

the received waves by background removal [28] and velocity analysis [29]. For100

example, Chang et al. [30] tried to remove the backgrounds in the GPR images

to locate reinforcing steel bars in concrete. The extended common midpoint

method based on the velocity analysis, proposed in [29, 31], processes the B-

scan data collected by an air-coupled antenna array to measure the thicknesses

of asphalt pavements.105

Image-based methods have also been applied to C-scan data, in which a series

of 2D grid GPR images are transformed into 3D data. Compared with B-scan

data, C-scan data can provide more space information about buried objects.

However, the complexity of processing C-scans exceeds those for B-scans since

the background in C-scan data is more complex [32]. For example, Klęsk et110

al. [33] proposed a fast analysis of C-scan data via 3D Haar-like features with

the application to landmine detection. Jing and Vladimirova [32] presented a

feature-based algorithm for building 3D images of buried objects using GPR

signals.

Although the imaging techniques in GPR have been calibrated with high115

precision based on electromagnetic properties of building materials, the utility

of GPR systems still mainly depends on human experiments. For example,

Tong et al. [34] proved that the traditional methods with no human assistance

could not handle the complexity background in GPR images under various real-

world conditions. Therefore, It is necessary to improve these methods to handle120

the background in GPR data and requires little experience in electromagnetic
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waves.

2.3. Current Trend

From the literature review of the two types of the data processing techniques,

a gradual transition from unsupervised-based models (e.g., rule-driven methods)125

to supervised-based methods (e.g., data-driven methods) has been observed

during the last few years, even though rule-driven and unsupervised studies are

still important to fully understand GPR. Since 2012, more and more works are

reported to address tasks involving signal processing (e.g., Jiang et al. [35]) and

image processing (e.g., Higuchi et al. [36] and Tong et al. [37]) via supervised-130

based methods, especially DL. The combination of DL and GPR has been the

current trend in SHM.

Recently, a few review papers have indicated that it is feasible to utilize DL

to process signals and images theoretically [38, 39, 40, 41]. In the review of Deng

[39], the DL models are divided into three categories (generative architectures,135

discriminative architectures, and hybrid architectures) and their applications in

signal and image are reviewed. In the work of Guo et al. [40], the architectures of

convolutional neural networks (CNNs), restricted Boltzmann machines (RBMs),

autoencoders, and sparse coding and their applications in signal and image are

reviewed. Additionally, the timeline from artificial neural network to deep neural140

network is conducted by Schmidhuber [41].

Despite there are rich publications cited in the previous paragraph providing

their overviews on DL, all of them present current developments of the classic

issues about 1D and 2D data but do not consider any GPR case. This paper

contributes to this void by reviewing the set of solutions that are based on a145

DL framework and providing the current issues on the set.

3. Background on Deep Learning

DL, as a subset of machine learning, attracts more and more attention after

its first remarkable winning in the 2012 ImageNet challenge [8]. So far, some DL
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models have been constantly reported state-of-the-art performance on signal and150

image processing. In general, the DL architectures used in GPR detection can

be classified to two categories based on their outputs [39]: discriminative and

generative methods. Discriminative models compute a probability distribution

when given an input, while generative architectures establish an input-output

joint distribution. In the application of GPR, CNNs and recurrent neural net-155

works (RNNs) are the most popular discriminative methods, while autoencoders

and deep belief neural (DBNs) are two typical examples of generative methods.

3.1. CNNs

CNNs, first proposed by LeCun et al. [42], are the most widely-used DL

models in GPR and have achieved tremendous success in several fields. Figure160

3 presents a typical architecture of CNN, whose hidden layers are a combination

of three main layers: convolution layers, pooling layers, and fully connected

layers. A convolutional layer consisting of several filters is utilized to convolve

the input data or the previous layer’s output. The outputs of the layer then

pass through a nonlinear activation layer (e.g., ReLU [43] and sigmoid [44]) and165

a pooling layer (e.g., stochastic pooling [45] and fractional max-pooling [46]) in

sequence. The outputs of the convolutional and pooling layers stack are mapped

to a high-dimension space by one or more FC layer. The mapped outputs are

then imported into a classifier or a regressor layer to generate a response to

the initial input data. Specific weights in each convolutional and FC layer are170

learned by feedforward algorithms (e.g., stochastic gradient descent [47]).

Convolutional layer is the most important structure in CNNs because of its

weight sharing. It denotes that each filter is employed to convolve each patch of

the input data or the previous layer’s output and not just in a specific location

as it happens in a traditional neural network, which reduces the model’s storage175

requirements and improves its invariant to translation. In a GPR task, there are

main two convolutional filters as shown in Figure 4. Traditional convolutional

filters (illustrated in Figure 4a) are mainly used in the image processing, such as

GPR B-scan images [34, 37], while another type of filters, named one-dimension
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Figure 3: A typical CNN architecture for GPR [37].
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convolutional filter (illustrated in Figure 4b), are mainly used in the processing180

of GPR signals [48, 49], which can be regarded as a specific form of traditional

convolutional filters. As implied by their name, the dimension of one-dimension

convolutional filters is 1. In addition, their principle is the same as traditional

convolutional filter.

Recently, more and more state-of-the-art techniques have reported to im-185

prove the performance of CNNs. For example, a novel convolutional layer

termed as Network in Network [51] achieved state-of-the-art results in several

classic classification tasks, such as CIFAR-10 and CIFAR-100. Generalizing

pooling functions [52], layer-sequential unit-variance initialization [53], all con-

volutional networks [54], and so on have also been reported to improve the190

performance of CNNs. Unfortunately, there is little study employing these

techniques for GPR systems. Thus, transfer applications of these techniques

for GPR systems will be a trend to improve the performance of CNNs in future.

It will be further discussed in Section 4.4.

3.2. RNNs195

RNN is another widely-used DL architecture for processing sequential data

(e.g., signals [55] and sounds [56]). Each RNN consists of three weight matri-

ces (input-to-hidden, hidden-to-hidden, and hidden-to-output) and three bias

vectors (hidden, output, and the initial bias vector) [57], as shown in Figure 5.

RNNs can be thought of as a series of networks linked together, such as three200

networks in Figure 5. They often have a chain-like architecture, in which the

outputs of a network are imported into the next one. Thus, the next network

outputs depend on both its inputs and the outputs of its previous network.

Compared to CNNs whose inputs and outputs are independent of each other,

RNNs have a “memory” which remembers all information about what has been205

calculated.

The remarkable performance of RNNs benefits from their “memory” capac-

ity of iterating weights based on new information and updating the outputs.

The capacity has been employed well in the processing of signal data in civil
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engineering. For example, Pathak et al. [58] utilized an RNN and IRT for210

air leakage detection in residential homes and the reported results showed the

method could be used to estimate different A/C usage characteristics with 0.85

F-measure. Zhang et al. [59] present a method for pixel-level pavement crack

detection via long short term memory (LSTM) and 3D NDT data.Recently,

the applications of RNNs on the image domain have been reported and showed215

promising results [60, 61], and some advanced RNNs have also been used in the

domain, such as LSTM [62, 63], ReNets [64], and gated RNNs [65, 66, 67, 68].

However, there is little study employing these RNNs for exploiting GPR data.

Thus, transfer applications of these techniques for GPR systems may be a trend

in the further years.220

3.3. Autoencoders

Autoencoder [70] is a type of generative models. An autoencoder consists

of two parts: encoder and decoder, as shown in Figure 6. The function of a

encoder is to map the input data to a hidden form via weight matrixes, biases,

and a nonlinear activation function (e.g., logistic sigmoid) , while the decoder is225

used to map the hidden code back to the input data resulting in a reconstruction

version. The optimal weight matrixes and biases are adjusted by minimizing the

reconstruction error, whose performance is always evaluated by a cross-entropy

loss.

Autoencoders have been used for denoise and data reconstruction in the230

signal and image processing tasks. For example, Huang et al. [72] employed

autoencoders to improve the quality of portable ultrasonic B-mode images from

32 channels to 128 channels. The simulation results revealed that the utilization

of autoencoders improved the system performance, making superiority to the

conventional CNNs and RNNs. Picetti et al. [73] presented a convolutional235

autoencoder for landmine detection and reported state-of-the-art and robust

results of a wide variety of targets. Interestingly, Tong et al. [74, 75] gener-

alized fully convolutional networks into autoencoders in the NDT for carbon

fiber distribution characterization in cement-based composites. Until recently,
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Figure 5: A typical RNN architecture [69].
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Figure 6: A typical autoencoder architecture [71].
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Figure 7: A typical DBN architecture [80].

a large number of variants of autoencoders have been reported, such as sparse240

autoencoder [76], denoising autoencoder [77], and contractive autoencoder [78].

These variants show their potential in denoise and data reconstruction in the

application of GPR data in civil engineering.

3.4. DBNs

DBN [79], as a type of generative models, is the first proposed DL model and245

have the potential to address several NDT tasks, especially in the processing B-

scan data. DBNs consists of multiple layers of stochastic hidden variables [39],

as shown in Figure 7. All layers in a DBN interact with directed connections

except for the top two, which form an undirected bipartite graph.

As the first DL method, DBNs have been widely used in the processing of250

GPR signals and images. For example, Becker et al. [81] proposed a false alarm

rejection method in forward-looking GPR images. The results indicated the

probability of exploiting both the L-band and X-band using DBNs. Timothy et

al. [82] used DBNs in forward-looking explosive hazard detection. The DBNs

showed an 85% improvement in the overall detection and classification method.255

As learning in densely connected [83], the performance of DBNs in the NDT

tasks is not as reasonable as the performance of CNNs and RNNs, though a

layer-by-layer training method [84, 85] was proposed for solving the problem in

some degree.

4. Advances in Deep Learning with GPR260

After the huge popularity of DL in several data processing tasks, DL has

been employed to exploit signal and image data in GPR systems and achieved

tremendous success. In order to review this success and existing issues, we divide
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the existing approaches into three groups, conduct an experimental comparison

among the three categories, and provide current issues: (i) The first group265

includes approaches using 1D raw signal data as input to the DL models (Section

4.1); (ii) The models in the second category exploit GPR images generated from

raw data (Section 4.2); (iii) Deep architectures have access to exploit the 3D

data form the third group (Section 4.3); (iv) State-of-the-art DL models for

GPR data processing are compared (Section 4.4); and (v) The current issues of270

the combination between DL and GPR are discussed (Section 4.5).

4.1. DL Architectures Exploiting A-scan Data

A-scan data, as 1D amplitude-time GPR records, are the fundament of the

GPR inspection. In the DL architectures exploiting A-scan data, a common

practice is to approximate the low-level representations of the latent concepts275

related to an inspection task, then provide them as input to a deep neural

network (DNN) to map useful high-level representations.

He et al. [86] extract low-level representations from the time-frequency dis-

tribution of A-scan data to represent the high-level representations related to

the buried regions in the tunnels. More specially, 1200 GPR point data was280

first transformed by Wigner distribution to get the map of the time-frequency

joint distribution. Afterward, the joint distribution was adopted to approx-

imate the tunnel-region representations by the processing of several convolu-

tional and pooling layers. The representations were provided as input data to

a DNN for assigning the data into one of the buried region types. Experiments285

demonstrated the proposed method’s superior performance in comparison to

the support vector machine-based and DBN-based methods indicating that the

high-level representations generated by the DNN are more informative and dis-

criminative. Besides, it also implied that the CNN-based method was better

than the DBN-based method in the processing of the complex background and290

noise in the A-scan data. In the work of Wang [87], a stacked denoising autoen-

coder was adopted to extract the high-level representations under imbalanced

sample conditions by a layer-by-layer greedy training method. The outputs from
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the first and second hidden layers of the autoencoder can be considered as the

middle- and high-level representations. Afterward, the final high-level repre-295

sentations were imported into a classifier for human detection in the buildings.

Regularization restrictions and dropout technology were also adopted. The au-

toencoder was considered as an unsupervised algorithm and a dimensionality

reduction method. Therefore, it was compared to other unsupervised methods

like the k-nearest neighbor algorithm and the J48 decision tree. The experi-300

ment results demonstrated that the extracted high-level representations from

the autoencoder are more discriminative than the representations provided by

humans, leading to top enhanced recognition performance.

DL architectures also have the capacity of object measurement using A-scan

data. In the work of Tong et al. [88], a variant of CNN, named Network in305

Network [51], was adopted to measure the pavement defects using A-scan data.

In the architecture, multilayer perceptron layers were considered as extractors

to represent low-, middle-, and high-level features related to the defect shapes.

The experiment results indicated that the proposed model achieved a 2.15 mm

measurement error and had a distinct superiority in the effectiveness of the310

defect measurement. Further, Giannakis et al. [89] proposed a GPR forward

solver based on DNN and A-scan, and its novelty and computational efficiency

were evaluated in the application on determining the locations and diameters

of reinforcement bars in concrete. More specially, the solver was made up of

two sections, with each section further divided into 40 steps. The first section315

was used to predict the first principal axis for A-scan using neural networks.

Each step could be considered as a representation of the principal component.

The first section final generated a full set of predicted principal components

after the 40 steps. Then the second section was designed to establish a causal

relationship between the errors in the predicted values concerning the actual320

principal axes and the parameters of the model. Through the numerical and

real experiments, working for full-waveform inversion, it showed that the solver

estimated the radius of the rebars with a maximum error of ≈ 6mm for the

given antenna and the obtained position of the rebar and the water content of

18



the concrete.325

4.2. DL Architectures Exploiting B-scan Data

Compared with the DL architectures exploiting A-scan data, the DL mod-

els exploiting B-scan data have become more popular in the last few years. It

benefits from the development of the DL frameworks (e.g., Caffe [90] and Ten-

sorFlow [91]) in the field of image processing. In general, there are mainly three330

directions of the DL architectures exploiting B-scan data in civil engineering:

patch-based models, region-based models, and autoencoders.

In the first direction, GPR images or other B-scan data are cropped into

small patches with a fixed size, which are provided as input data for a DL

model in a classification task. Xiang et al. [92] adopted an improved CNN,335

named AlexNet, to detect rebars using small patches of GPR images. The ex-

periment results demonstrated that AlexNet achieved a higher level of accuracy

in recognizing the rebar in actually constructed facilities, though the accuracy

heavily depended on the patch sizes. In the work of Tong et al. [34], a cascade

CNN was proposed to recognize pavement subgrade defects using cropped GPR340

images. A cascade connection was used to distinguish low-resolution images

from high-resolution ones. The low- and high-solution images were classified

by two different CNNs. The two CNNs were trained by the low- and high-

resolution datasets, respectively. The experiment results indicated the strategy

using a cascade connection improved the robustness of defect recognition in low-345

resolution images obtained at low transmitting frequencies, though this problem

was still not solved well. A deep learning-based architecture, called deep dictio-

nary learning, was proposed to detect buried objects [93]. Each basic dictionary

deep learning model was designed to calculate a Euclidean distance between a

pattern and a dictionary, then all of the distances were used as representations350

for classification. The computation of the Euclidean distance provided a novel

thinking to solve a shortcoming of the application of DL and GPR in civil en-

gineering, and it will be discussed in Section 4.5. In addition, in the studies of

Lameri et al. [94] and Ishitsuka et al. [95], the desirable performances of patch-
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based methods for detecting characteristic hyperbolic signatures were reported.355

In general, the DL architectures have desirable performance in the classification

tasks using small patches of B-scan data.

The second direction, named region-based approach, generates a region of

interest (ROI) from a GPR image and assigns it into one of the classes. Com-

pared to the first direction using cropped images with a fixed size, ROI areas in360

a region-based approach are flexible. As a flexible ROI is a rectangle box trying

to describe an object location by its center coordinates and size, the second

direction can detect objects in B-scan data more precisely than the first direc-

tion. The primary algorithms for generating an ROI are rule-driven methods.

For example, in the work of Dinh et al. [96], a “match filter” was developed365

to generate potential areas surrounding rebar peaks in B-scan images and the

potential areas were classified by a well-trained CNN. The results of its applica-

tion on the rebars detection in twenty-six concrete bridge decks demonstrated

the excellent performance of the method with an accuracy greater than 95.75%.

Besaw et al. [97] extracted ROIs from the GPR B-scans by using a 2D median370

filter and a zeros score component analysis. The extracted ROIs were classified

by a deep CNN for the buried explosive hazard detection. The reported results

indicated that, given meaningful ROIs, a CNN had the capacity of classifying

complex signatures contained in GPR B-scans.

With the development of deep learning, data-driven approaches raised to375

generate ROIs. One of the successful cases is Faster Region Convolutional Neu-

ral Network (Faster R-CNN) [98], in which a region proposal network (RPN)

is designed to generate potential ROIs, and a CNN is used to classify them.

Notably, the RPN and the CNN share the convolutional and pooling layers

to avoid the repeating computation and reduce the running time. For exam-380

ple, Lei et al. [99] employed a Faster R-CNN to identify potential hyperbola

regions. More specially, a Faster R-CNN with a data augmentation strategy

was used to detect rectangle regions containing traces of buried objects. Then

those regions were transformed into binary images, and hyperbolic signatures

in the regions were separated. Finally, downward opening hyperbola fitting was385
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carried out using those signatures, and their respective peaks were obtained.

The experiment results demonstrated that the Faster R-CNN had the desirable

performance on extracting ROIs from the GPR B-scan autonomously and effi-

ciently, which had the potential in the analysis of synthetic and on-site GPR

data sets. Xu et al. [100] improved the Faster R-CNN framework by feature390

cascade, adversarial spatial dropout network, and soft-nonmaximum suppres-

sion for the railway subgrade defect detection. Feature cascade means that the

low-, middle-, and high-level representations are combined to form new multi-

sized features. It has been proved useful for detecting small objects [101]. The

adversarial spatial dropout network can be considered as a learning strategy for395

generating hard positive samples to reduce the unbalance in the B-scans dataset.

In the soft-nonmaximum suppression, the confidence levels of bounding boxes

are reduced according to their overlapping area instead of directly suppressing

the boxes whose confidence levels are higher than a threshold. The detecting

results showed that the improved Faster R-CNN achieved an mAP of 83.6%400

for subgrade defect detection, which was higher than the mAP of the baseline

Faster R-CNN. In addition, a comparison study demonstrated the superiority

of the proposed model on the robustness to the baseline Faster R-CNN thanks

to the three improvements. In the work of Pham et al. [102], the success of a

Faster R-CNN on buried objects detection using GPR images is also reported.405

In general, we find that the data-driven algorithms for region-based mod-

els outperform the rule-driven algorithms. This is because the rules provided

by humans for ROI extraction are always not as complete as the knowledge

summarized from a big dataset by a data-driven algorithms. Unfortunately, as

the work principles of data-driven algorithms (e.g., neural network) are still de-410

scribed as a “black box”, these knowledge cannot be summarized as some forms

easy for humans to understand. The development of the explanation of “black

box” [103] may be helpful to generate the understandable rule to identify hy-

perbola regions. In the future, it is potential to transform this knowledge into

rules to facilitate the GPR system, even promote the development of the use of415

Fresnel law, which governs EM wave reflection and refraction.
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The third direction based on autoencoder is to map GPR B-scan data to

more clear descriptions, in which the objects are easier to be interpreted and

detected. Alvarez and Kodagoda [104] proposed an autoencoder network to in-

terpret the real shapes and locations of the buried objects based on the B-scan420

data of synthetic aperture radars. The architecture of the proposed network can

be divided into two part: (a) an encoder used to downsample and compress the

B-scan data to the latent representations, and (b) an decoder designed to trans-

form the representations to sub-surface permittivity maps, in which the shapes

and locations of the buried objects can be interpreted easily. The evaluation425

results indicated that the autoencoder network achieved a 0.7782 structural sim-

ilarity index between the network outputs and the ground truths. Structural

similarity index is a widely-used metric for measuring the pixel-level difference

between two images [105]. Besides, the comparison results demonstrated the

autoencoder’s superiority in the effectiveness and simplicity over other state-430

of-the-art deep learning architectures, such as conditional adversarial network

and U-net. In the work of Picetti et al. [73], three different autoencoder ar-

chitectures were developed to provide a novel description of B-scans, in which

landmine trances were considered as anomalies. The three architectures N1−N3

are symmetric but have different convolutional filters. In the experiments, the435

receiver operating characteristic (ROC) curves, representing the probability of

correct and false detection by spanning all possible values of a threshold Γ, were

used to compare the performance of N1 −N3. The ROC results demonstrated

that optimal architecture N1 can represent the landmine areas as an anomaly.

4.3. DL Architectures Exploiting C-scan Data440

C-scan GPR data, obtained from a multichannel GPR system, can be con-

sidered as a space combination of several B-scan data. Although C-scan data

are more informative, there are only a small number of studies exploiting C-

scan data using DL owing to the complexity of the C-scan GPR data and the

limitation of the DL architectures exploiting 3D data [80].445

Kim et al. [106] proposed a DL-based method for underground object clas-

22



sification using C-scan GPR data. More specially, 3D GPR signals collected by

a multichannel GPR system are first cropped by a 3D window box. Then, B-

scan and C-scan images are extracted from the cropped 3D data. These B-scan

images and C-scan slides are transformed into a 2D orthogonal grid map, which450

is used as input data for a deep CNN for buried object classification. In the

experiment of the field data collected from urban roads, the performance of the

proposed method was better than the traditional methods only using B-scan

data in the classification of cavities, pipes, manholes, and subsoil background.

It indicated that the C-scan GPR data contained more information concerning455

the class membership than the B-scan data. Similarly, in the work of Tong et

al. [37], 3D GPR data was transformed into 2D data, and a CNN-based model

used these 2D data for feature point extraction. These feature points were used

to describe the contour profiles of pavement cracks for its 3D reconstruction. It

can be found that the main idea of these methods is to transform the 3D data460

into 2D data. The transformation always leads to information losses. Thus, the

utilization of the state-of-the-art DL architectures exploiting 3D data directly

can be a way to solve the problem.

4.4. Overview and Comparison of the DL Architectures

In the past decade, DL models have been designed and successfully applied to465

three types of GPR data. In order to further understand these models, the works

described in Section 4.1 - 4.3 are compared using a pavement GPR dataset.

The dataset was collected from four highways in China using two transmitting

frequencies 300 MHz and 1.2 GHz. Two types of pavement defects (cracks and

uneven settlements) are labeled. Complete information can be found in Data470

Availability. The comparison study only presents a fair competition of these DL

architectures in the pavement defect detection. More works can be performed

in the future to compare the performance of these DL architectures in the entire

field of civil engineering. Table 1 summarizes typical cited works, classifies them

into the types of the input data, and presents the DL architectures along with475

some necessary details. Two metrics, classification accuracy and intersection
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over union (IoU), are used to evaluate the performance of deep-learning models

in pavement defect detection. Classification accuracy is the percent of defects

in a GPR dataset that are correctly classified, while IoU is to take the ratio

of the intersection between predicted results and ground truth labels over the480

union between these two sets. Thus, classification accuracy and IoU are used to

evaluate the performance of the deep-learning models in defect recognition and

location, respectively. From Table 1, we can find:

• Compared with the architectures exploiting B- and C-scan, the ones ex-

ploiting A-scan have a slight advantage in defect class recognition and485

location computation. It is because some necessary pre-processing (e.g.,

filtering and information compress) is conducted on GPR data for the uti-

lization of B- and C-scan as the input. These pre-processing procedures

sometimes lead to feature and information loss. In the DL architecture

using A-scan data, the raw GPR signals are directly used as inputs, which490

reserve all useful and useless information. Considering the DL’s powerful

capacity of filtering features not related to the detection task, the useless

information in the input has limited effects on the final performance.

• We should also consider the integrity of scanning information when choos-

ing DL algorithms. For example, the information retrieved from A-Scans495

is localized while C-Scans provide a three-dimensional map, even though

the DL architectures exploiting A-scans trend to use several sequent sig-

nals to improve their representativeness. Thus, DL architectures exploit-

ing C-scan are the most promising, though their performances now are

not as desirable as the performance of the architectures exploiting A-scan.500

Compared with A- and B-scan data, C-scan data contains complete space

information of concealed defects in the pavements. It means more repre-

sentations and features can be extracted from C-scan data than A- and

B-data, which are essential to further improve the performance of DL ar-

chitectures exploiting GPR data. Unfortunately, to our best knowledge,505

now no DL architectures use C-scan data without pre-processing proce-
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dures. The state-of-the-art DL architectures [80] should be considered to

exploit C-scan data directly in the future.

• RNNs outperform CNNs and autoencoders in the use of A-scan data be-

cause of their temporal dynamic behavior. This indicates that RNNs can510

take the input data sequence into account, while CNNs and autoencoders

are not. The sequence of input data, especially A-scan data, is an essential

feature of GPR data.

• Some techniques are useful and essential for improving the precision and

generalization of DL architectures exploiting GPR data. The first is data515

augmentation, including cropping, rotating, and flipping input images. It

can reduce overfitting and improve the generalization of DL architectures

because it can be considered as noises in the training. A gradient descent

algorithm tends to balance the negative effects of the noise to minimize

the overall error. In practice, this type of noise is common, such as ob-520

ject incline, rotation, and angulation. Another is prior knowledge, such as

hand-crafted features and transfer learning. It can increase the training ef-

fectiveness because the pre-training phase is compressed. We also find that

data-driven features from transfer learning work better than hand-crafted

features because the prior knowledge learning from a desirable data set is525

better than the one provided by humans. In addition, dictionary learning

and spatial dropout also have positive effects on DL’s performance.

4.5. Current Issues

From the literature review and the comparison study, we find two inherent

defects of DL limiting its application on exploiting GPR data: (a) the depen-530

dence on the big data for training a desirable DL model, and (b) the arbitrary

decision-making of DL model for classification tasks.

4.5.1. Dependence on big data

It has been widely known that the performance of a DL model heavily de-

pends on the quality of its learning dataset. Insufficient sample number, sample535
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unbalance among the class membership, and label corrosion always lead a poor

capacity of a DL model, such as overfitting, low generality, and unacceptable

robustness. Unfortunately, GPR datasets for training a DL model are not as

ample as the benchmark datasets for developing a DL model to solve classic

issues, such as the CIFAR-10 [109], ImageNet [110], and “For Music Analysis”540

[111] datasets. Many previous studies mentioned in Section 4.1 - 4.3 reported

that their DL models were trained by a small number of GPR-data samples,

less than 104. To make matters worse, the unbalance in these GPR datasets is

inevitable because some data are not easy to collect in practice.

Now, there are main three solutions to the issue. The first solution is the545

use of transfer learning in the pre-training phase. Transfer learning is a tech-

nique applying the knowledge acquired while solving one issue to a different

but related problem. In the work of Bralich et al. [112] and Reichman et al.

[113], the prior knowledge learning from the CIFAR-10 dataset was transferred

to the CNN model for buried target detection in the pre-training phase. Then550

the pre-trained CNN model is fine-tuned by a small GPR dataset. In the study

of Enver and Yüksel [114], the learned weights in the imagenet-matconvnet-

vgg-f model trained on the Imagnet Large Scale Visual Recognition Challenge

(ILSVRC 2012) data [115] was transformed to a CNN for buried wire detection.

Unfortunately, a transfer learning strategy can only help a DL model learn some555

low-level representations from these benchmark datasets, such as lines and gray

scales. This is because the latent middle- and high-level representations related

to the class membership in these benchmark datasets are very different from

the targets in GPR data, such as outlines and waveforms. In addition, there are

commonly two different and distinct phases in the training of DL: pre-training560

and fine-tuning. Schwartz-Ziv and Tishby [116] indicated that the fine-tuning

phrase could be considered as compressing the internal representations under

the training error constraint, which is mainly responsible for the absence of over-

fitting in DL. Thus, we can conclude that transfer learning in the pre-training

phase has limited help for the problem because the procedure of compressing565

low-level representations to middle- and high-level representations in the fine-
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tuning phase still raises overfitting owing to the lack of training samples.

The second solution is semi-supervised learning. It means that humans

provide some hand-crafted representations before training a DL-model. For

example, Malof et al. [117] proposed to construct a CNN architecture that570

closely emulates successful hand-crafted feature designs for GPR buried object

detection. The experiment results indicated the feasibility and effectiveness of

this approach for training a DL-model. However, the problem is that it is not

easy for humans to summary all useful representations related to the buried

object detection formally, especially high-level representations.575

The third approach is to enlarge the dataset using simulation data or data

augmentation. In the works of Pham et al. [102] and Sonoda and Kimoto [118],

thousands of GPR images were generated using finite-difference-time-domain

simulation. Veal et al. [119] proposed a generative adversarial network-based

method to impute new data based on limited and class imbalance GPR data.580

These works reported improvement of accuracy and robustness because of the

reduction of class and condition unbalance in the training datasets. Unfor-

tunately, a problem still exists that the developed DL model has undesirable

stability on noises and backgrounds. This is because the simulation conditions

are simpler than the real-world conditions, especially noise patterns and elec-585

tromagnetic properties and distributions of the mediums. In addition, data

augmentation, as a widely-used technique to avoid overfitting [120], is also used

to reduce the dependence of big data in the GPR DL architectures, such as the

study of Reichman et al. [113], though it has limited help to solve the problem

of the class imbalance.590

In summary, from the findings of this section, we can conclude that the

dependence of big data in the training of DL architectures exploiting GPR data

is still not solved well because of the limitations of the three solutions. As a large

number of the publications reported their well-developed CNN for exploiting

GPR data, we think the optimal solution for the problem is to share the data595

from the GPR researchers in the world to build a benchmark GPR dataset.

The similar works are standard in the field of deep learning [109, 110, 111], even
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computer science, but cannot be found in the field of NDT. As a pioneer, we

provide our GPR dataset of pavement defect inspection used in Section 4.4. It

is the first step for our proposed solution.600

4.5.2. Arbitrary decision-making of DL models

As for the second inherent defects of DL, we would like to explain it start-

ing with defining DL as a prediction function F̂ : X 7→ Y with a minimum

error
∑

Yi 6=F̂ (Xi)
E
(
Yi, F̂ (Xi)

)
, i = 1, . . . , n, once given a learning set χ =

{(X1, Y1) , . . . , (Xn, Yn)}, where X is a p-dimension representation space R
p; Y605

is a assignment space {y1, . . . , yk} with k class; and E() is a cost function. For a

new sample with an input-label pair (x, y), a DL model describes the new sample

as an estimate of a conditional distribution F̂ (x) = {p1(y1|x), . . . pk(yk|x)} and

assign it to class ya with a = maxj=1,··· ,k pj(yj |x). This often results a hubristic

bias: overconfidence in the assignment of a definite class [121]. Exactly, a DL610

model is forced to assign the new sample to one of the k classes, even though its

input x includes some conflict and confusing information. For example, x pro-

vides confusing information indicating the DL model should classify the sample

to y1 or y2 but cannot make a precision decision between the two classes. How-

ever, no existing DL can perform it. Additionally, conflict information exists if615

the sample includes two or more classes, such as a B-scan GPR image with two

types of pavement distresses. However, traditional DL models ignore conflict

information and make a arbitrary decision.

This problem should not be neglectful in the applications of DL in GPR

for civil engineering. As discussed in Section 4.5.1, the observations in a GPR620

dataset usually are concentrated on a small volume. Still, a DL architecture

is expected to provide definite predictions for the entire space. For instance,

some buried objects are made of different materials but have the same shape,

which are difficult to distinguish from GPR images as their signatures look very

similar. The same object buried in different soils shows different signatures in a625

GPR image. In addition, some detection objects usually exist in the same area,

which means an abnormal signal in A-scan data or a hyperbolic signature from
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a B-scan image may contain information representing more than one object.

Therefore, the hubristic bias raises a problem of arbitrary decision-making.

One approach to solve this problem is to fuse the data from different sources630

to make a decision. In the work of Sakaguchi et al. [122], three strategies for

fusing data from L-band and LIDAR GPR were proposed. The first strategy

is data-level fusion, where the two types of data are stacked and used as in-

put data, while the second one is also data-level fusion, which is realized by

concatenating the side of the images by the side. The final one is feature-level635

fusion, in which the output features from two CNNs were concatenated one by

one for classification. The experiment results indicated that the second strat-

egy achieved the best performance for the buried object detection, while the

worst performance was from the third one. The authors imputed it to the poor

optimization owing to the additional parameters in the third model. However,640

we believe that the third strategy is promising if a desirable fusion method is

adopted instead of the simple concatenation, such as Dempster-Shafer theory

[123] and contextual reliability evaluation [124].

Another approach is to design cautious or evidential classifiers for exploiting

GPR data. A cautious or evidential classifier means it can provide imprecise645

and ambiguous classification, such as assigning a sample to a multi-class set

{y1, y2} or making a rejection decision, while a traditional DL algorithm can

only make a precise classification. The assignment to a multi-class set {y1, y2}

means that a classifier believes a sample belongs to class y1 or y2 but do not

know which one, while rejection indicates that the classifier does not know650

which class the sample belongs to. Yotam et al. [125] proposed cautious deep

learning allowing for ambiguous rejection by replacing p(yj |x) with p(x|yj) since

p(yj |x) = p(x|yj)p(yj)/p(x) the prediction involves the balance between between

p(yj) and p(x|yj), j = 1, . . . , k. More specially, the method first finds an esti-

mate p̂(x|yj) of p(x|yj) and an appropriate scalar t̂y. Then the method assigns655

the sample x to class yj iff C(x) = {yj |maxj=1,··· ,k pj(yj |x) > t̂y}. Otherwise,

the method makes ambiguous rejection. In practice, only in the special case

that all of the k classes have the same probability p(yj) in the real-world con-
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ditions, the negative effects of p(yj) on p(yj |x) can be ignored. However, in the

GPR detection for civil engineering, the frequencies of different buried objects660

are obviously different. For example, the number of cracks is much more than

the number of uneven settlements in a pavement. Thus, p(ya) are different from

p(yb) for ya and yb ∈ {y1, . . . , yk}. Therefore, there are significant advantages

to use p(x|yj) to build a DL classifier for exploiting GPR data by taking p(yj)

into account and tieing the prediction of an observation x with the likelihood665

of observing that class.

Tong et al. [126] proposed a distance-based DL allowing for ambiguous

rejection, called ConvNet-BF classifier or evidential DL. In the method, the

distances between a pattern x and some prototypes are computed and used to

build mass functions based on Dempster-Shafer theory. The mass functions670

are used for assigning the sample to one of the classes or rejecting based on an

evidence-theoretic rule [127]. Interestingly, ConvNet-BF classifiers can make set-

valued assignments [128], which are a subclass of imprecise classification. A set-

valued decision is defined as assigning a sample to one of the non-empty subsets

in the assignment space {y1, . . . , yk}. For example, a ConvNet-BF classifier has675

capacity of assigning a sample to set {y1, y2} if conflict information exists in

the sample. It seems to have the generalized potential to solve the problem

of the arbitrary decision-making of DL models. From the view of the GPR

detection for civil engineering, the proposed method can perform multi-class

prediction when two or more detection objects exist in the same area. Multi-680

class prediction is a assignment to a non-empty subset whose cardinality is larger

than one. ConvNet-BF classifier can also indicate the uncertainty from GPR

data (e.g., the same object buried in different areas showing different signatures

in GPR data) using its additional output mass functions m(Ω). The conflicts

in GPR data can be characterized by two near values of output mass functions685

(e.g., two different types of the buried objects with similar signatures from GPR

data). The maximal conflict corresponds to m({yi}) = m({yj}) = 0.5. For

complete introduction, readers are invited to refer to Denœux’s original work

[129] and its extension to DL [126]. However, little has been done to combine
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recent techniques of cautious and evidential DL with GPR data. It will be an690

important issue for the combination of GPR and DL for civil engineering.

5. Conclusions

The progressive evolution of GPR techniques with desirable capabilities

poses unique chances, as well as new challenges, to NDT for civil engineering.

DL managed to revolutionize many classification and regression tasks achieving695

or even exceeding the human-level precision, and it currently began to be em-

ployed in the field of GPR. Even though GPR devices provide precise and stable

representations of buried objects and backgrounds, its intricate data structure

leads the exploitation using DL architectures not easy. In this survey, we di-

vided DL architectures exploiting GPR data into three groups from the view700

of the scanning types of GPR. In general, the experiment results indicated a

slight advantage of DL architectures exploiting A-scan data for the GPR detec-

tion in comparison to those using B-scan images. The recent works managed

to achieve promising performance utilizing C-scan data; however, more complex

architectures or pre-processing procedures were required.705

The dependence of big data, a current research issue of combining DL and

GPR for civil engineering detection, is currently attracting a lot of interest.

There are three directions to reduce the dependence, transfer learning, semi-

supervised learning based on hand-crafted representations, and enlargement a

dataset using simulation data or data augmentation. However, the possibility710

of overfitting and low generalization are still not solved well owing to a small

volume of the real observations in a GPR dataset. The optimal solution for the

problem is to share the data from the GPR researchers in the world to build

a benchmark GPR dataset. Another current research problem is the arbitrary

decision-making of DL models raised by its overconfidence in assigning a GPR715

sample to a definite class. Fusing data from different types of GPR devices, even

other NDT techniques, is an effective solution. In addition, novel evidential DL

has the generalized potential to solve the problem. From the view of the GPR
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detection for civil engineering, an evidential DL architecture can provide a multi-

class and imprecise prediction when conflict and uncertainty exist in GPR data.720

However, little has been done to combine evidential DL techniques with GPR

data. It will be an essential issue for the application of DL on GPR detection

for civil engineering.

Data Availability

All GPR data used in Section 4.4 in the form of B-scan are available in725

Googly Drive via Developing GPR data set.
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