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Abstract

In wave-structure interaction problems, the minimization of wave reflection at
boundaries is important for achieving accurate results and limiting the distur-
bances on the air/water interface. The present study compares a set of existing
wave outlet techniques which are commonly applied in free surface simulations
using a viscous flow solver. These techniques are stretched mesh, linear damping
source, increased viscosity, and relaxation schemes. The comparisons are per-
formed for test conditions which include propagation of regular incident waves
and damping of radiation waves.

Keywords: Wave propagation, wave outlet, mesh stretching, damping source,
viscosity outlet, relaxation, OpenFOAM
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1. Introduction

As computers become more and more powerful, Computational Fluid Dy-
namics (CFD) tools for solving free surface flows have gain more popularity
within the naval and offshore engineering community. One common application
is the analysis of wave-structure interactions. Typically ocean waves have peri-5

ods in the range of 6 ∼ 25 s and they travel long distances with very small energy
dissipation. For example, waves with a wavelength of 73.15 m (T = 6.84 s) will
travel 924 km in a day while their height only diminishes by one or two percent
because of friction [1, 2]. For practical reasons the computational domain needs
to be truncated to a manageable size. The far-field condition is replaced by wave10

outlet boundaries with specific numerical treatment in order to minimize reflec-
tion. Many numerical techniques have been developed to reduce wave reflection
at these boundaries. The simplest approach is to stretch the mesh toward the
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outlets which consequently yields varying performance depending on the config-
uration of the stretched mesh. Therefore it is attractive to develop more robust15

and efficient techniques. Israeli and Orszag (1981) showed that ”damping zone”
or ”sponge layer” techniques, introducing a source term in governing equations,
can be used to absorb waves effectively [3]. Another technique is to use a com-
bination of linear and quadratic vertical velocity sources in the sponge layer
(outlet zone) [4, 5, 6].20

The numerical treatments of wave outlets are complicated by the existence
of upstream propagated waves. These waves are usually generated by the in-
teraction between waves and structure in the computational domain. As a
consequence these scattering waves need to be absorbed at both inlet and out-
let. Among the outlet techniques, the approach of relaxation schemes appear25

to be able to satisfy this need [7, 8, 9, 10, 11]. Here, the simulated waves are
relaxed toward a given target in the sponge layer (also called relaxation zone
or blending zone). The relaxation schemes can be further categorized into im-
plicit and explicit relaxations. The implicit relaxation scheme adds equations
for the target flow field to the governing equations using a spatially distributed30

weight function. As a result, source terms appear in the momentum equations
[12, 11]. The explicit relaxation scheme performs the relaxation after solving
the governing equations [7, 8, 9]. A comparative study of relaxation schemes
with Dirichlet type boundary inlet-outlet and active wave absorption techniques
can be found in [13, 14]. Higuera et al. (2013) reported with an active wave ab-35

sorption technique wave reflection coefficients between 2% and 11% for a series
of waves below 3% of wave height over wavelength ratio [13]. The Sommerfeld
radiation condition, which can be viewed as a perfect non-reflecting boundary
condition for regular linearized waves, has been applied at the outlet by [15]. It
has been shown that the Sommerfeld radiation condition can be manipulated by40

approximation order at boundaries [15]. The higher-order Sommerfeld bound-
ary conditions have been used by [16, 17] to force waves to propagate outside
the boundary. In their approaches, an accurate evaluation of the varying phase
velocity at the boundary is essential to minimize reflection. Duz et al. (2013)
applied an approximated phase velocity with linearized Sommerfeld boundary45

condition in irregular wave simulation on staggered grids [18]. Later, Duz (2015)
extended the Sommerfeld boundary condition up to second order [19]. As this
condition is applied on the outlet boundary surface, the wave reflection obtained
is relatively more sensitive to the case than when using relaxation schemes over
the volumic domain. Other methods such as SWENSE (Spectral Wave Explicit50

Navier-Stokes Equations) can be applied to handle wave reflections in wave-
structure interaction problems. With the SWENSE method the difficulty of
propagating incident waves can be avoided. A comparative study with a similar
solver as the one used in the present study can be found in [20].

The present study aims at comparing existing outlet conditions for propa-55

gating waves in OpenFOAM [21, 22, 23] (an open-source GPL license library
mainly for solving partial differential equations using finite volume method).
The third party toolbox known as waves2Foam [24] has been used for wave
simulations and for the explicit wave relaxation scheme. First, a parametric
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study of the solver, named foamStar, is conducted in order to design a proper60

numerical setting for wave propagation with a cyclic lateral condition. Then,
two 2D test cases are proposed: a Numerical Wave Tank (NWT) with propa-
gating incident waves, and a 2D radiation problem. Results using the explicit
relaxation scheme with different target functions, mesh stretching techniques,
linear damping source, and increased viscosity in the outlet are compared in the65

present study. Parametric studies are conducted for each outlet configuration.
Note that non-reflecting conditions based on mathematical formulations applied
at the domain boundary, such as the Sommerfeld condition, are not considered
in the present study. In the present study, the 2D cases are only considered to
minimize the complexity of computations and the number of parameters to be70

considered.

2. Numerical solver

foamStar is an in-house code co-developed by Bureau Veritas and Ecole Cen-
trale de Nantes in the OpenFOAM framework for solving wave-structure interac-
tions problems. It is based on the standard multi-phase solver interDymFoam in75

the OpenFOAM package [23, 25]. Two special modules are introduced for wave-
structure interactions. The wave generation module is taken from waves2Foam

and the mechanical solver is devised to solve the dynamics of rigid and flexible
floating bodies in waves. Some examples of 3D wave generation of realistic sea
spectrum can be found in [26].80

2.1. Governing equations and solution algorithms

The fluid is assumed incompressible and the incompressible Navier-Stokes
equations are applied to describe flow. The governing equations are written as

∇ · u = 0 (1)

and

∂(ρu)

∂t
+∇ · (ρuuT )−∇ ·

[
µ
(
∇u +∇uT

)]
= −∇pd − (g · x)∇ρ (2)

where u, x and g = [0, 0−g]T are the fluid velocity, the position vector and grav-
itational acceleration vector, respectively. The dynamic pressure pd = p− ρg · x
is introduced [23]. The mixture density ρ and viscosity µ are given as

ρ = ρwα+ ρa(1− α) (3)

µ = µwα+ µa(1− α) (4)

where the subscript w and a represent water and air, respectively. α is the
Volume of fluid (VOF) phase fraction. For α = 1 the control volume (CV) is
totally wet and for α = 0 it is totally dry. The interface is inside the cell control
volume where α = (0, 1). The transport equation for α is written as

∂α

∂t
+∇ · (αu) + cα∇ · (unα(1− α)) = 0 (5)
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where the third term on the left-hand-side is the artificial compression term to
keep the interface sharp. un is the fluid velocity normal to the interface and cα
is the compression coefficient.

The solution algorithm of foamStar is shown in Fig. 1. In the time loop, the85

weight used to generate and absorb waves in the relaxation zone is updated. The
governing equations and α-transport equation are solved in the PIMPLE loop
(an implementation of combined SIMPLE and PISO algorithms supplied with
OpenFOAM). The body motion is solved in a mechanical solver and the com-
putational mesh is updated according to the displacement of the body-surface90

boundaries. After solving the α-transport equation, the relaxation scheme is
applied to impose the target α-field in the relaxation zones. After solving the
fluid velocity and pressure in the PISO algorithm, the fluid velocity is relaxed
toward the prescribed target velocity field in the relaxation zone. In the present
study, no turbulence model is considered. When it is required, however, the95

turbulence model is solved as the last step in the algorithm. Details of each
step in the solution algorithm are described in [27].

2.2. Finite volume discretization and definition

The collocated second-order finite volume discretization is applied to the
whole computational domain to solve the governing equations. The control100

volumes are arbitrary polyhedra with an example of the geometrical description
of a computational cell with index P shown in Fig. 2 [22]. The volume is VP .
Each cell face is either a boundary face or an internal face which is connected to
a neighbor cell of index N . The surface area of an arbitrary face f is represented
in terms of a normal vector Sf where its magnitude is equal to the surface area.105

The distance from cell P to its neighbor N is denoted as vector df = xN − xP .

2.3. Time integration scheme

A time integration scheme in OpenFOAM can be selected among Implicit
Euler (Euler), Crank-Nicolson (CN), and second-order backward differentiation
formula (BDF2). The supplied multiphase solver of OpenFOAM, interDymFoam,
uses a special module which is called Multidimensional Universal Limiter with
Explicit Solution (MULES) to solve the α-transport equation. MULES employs
a method based on predictor and corrector steps to ensure α boundedness. As
an example, when the Euler scheme is selected, the predictor step is as follows:

V n+1
P α∗P − V nP αnP

∆t
+

N∑
f

F bα,f = 0 (6)

where the superscripts ∗ and n denote the predictor and time iteration, re-
spectively. The time step between two successive time iterations is ∆t. The
equation flux is F bα,f where the superscript b denotes that the flux is bounded.

To ensure the boundedness, F bα,f is computed in the predictor step using a 1st-
order upwind scheme. The corrector step introduces a flux limiter λf such that
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Figure 1: The computational algorithm of foamStar [27]

the correction for the high-order flux Fuα,f does not cause unboundedness. The
correction is as follows:

V n+1
P αn+1

P − V n+1
P α∗P

∆t
+
∑
f

λf (Fuα,f − F bα,f ) = 0. (7)

The sum of equations (6) and (7) produces the original discretized α transport
equation. In summary, the Crank-Nicolson scheme in MULES algorithm is a
variation from the classical Crank-Nicolson scheme due to: the use of predictor110

and corrector steps; the existence of a flux limiter λf introduced to maximize
the α transportation while keeping the α boundness. The MULES algorithm
with the application of Crank-Nicolson scheme is given in Appendix A and a
detailed description of the algorithm including MULES can be found in [25].

For the Crank-Nicolson time integration scheme the predictor and the cor-
rector steps are formulated to account for the weight factor γ which exists in the
classical formulation of the Crank-Nicolson. For γ = 0, the scheme is equivalent
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Figure 2: Geometrical description of a computational cell in the framework of OpenFOAM

to the explicit Euler integration scheme and for γ = 1 the resulting scheme is
an implicit Euler time integration scheme. The classical formulation of the CN
scheme requires γ = 1

2 . In OpenFOAM, the implementation allows γ to be
selectable within a range of γ ∈

[
1
2 , 1
]
. To facilitate this selection, an off-center

coefficient (hereafter called the Crank-Nicolson off-center coefficient; c
CN

) is
used instead of γ. The relation is

c
CN

=
1− γ
γ

, c
CN
∈ [0, 1]. (8)

where c
CN

= 0 represents the implicit Euler integration, and c
CN

= 1 represents115

the classical Crank-Nicolson scheme. It is commonly recommended to use c
CN
≈

0.9 as a compromise between stability and accuracy [28].

2.4. Remarks on the V-scheme in OpenFOAM

The treatment of the convection term in the Navier-Stokes equations affects
the numerical dissipation and stability. One of the commonly used schemes
is the second-order upwinding scheme. In OpenFOAM it is selectable either
as linearUpwind or linearUpwindV. The latter is refered to as the V-scheme.
Differences exist when the scheme is applied to a vector field. The V-scheme
contains an additional limiter which is applied to all components of the vector
field [28]. The numerical details concerning linearUpwind and linearUpwindV

are outlined in the following. The finite volume discretization of the convection
term reads ∫∫∫

VP

∇ · (uf)dV ≈
N∑
f

(Sf · uf )(f)f =

N∑
f

φf (f)f (9)

where f is a vector field, u is the transport velocity, (f)f is the interpolated vector
at the face center xf , the face vector sf has the magnitude of the face area and
the flux is φf = Sf · uf . The index f represents the face index between cell P
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and N . The computation of (f)f using the second-order upwinding scheme is
as follows:

(f)f = fupwind + ∆f corr (10)

where fupwind is determined from the cell value in the upwinding direction using
the sign of the flux:

fupwind =

{
fP , φf > 0

fN , φf ≤ 0
(11)

The correction term ∆f corr differs when selecting linearUpwind or linearUpwindV.
The linearUpwind scheme proceeds as follows:

∆f corr = ∆f corr
o (12)

where

∆f corr
o =

{
(xf − xP ) · (∇f)P , φf > 0

(xf − xN ) · (∇f)N , φf ≤ 0
(13)

The gradients (∇f)P and (∇f)N are the cell averaged gradients computed sep-
arately by other means. The V-version of this scheme (i.e. linearUpwindV)
contains an additional limiter:

∆f corr = λlimiter
f ∆f corr

o (14)

where

λlimiter
f = min

(
1,

∆f corr
o ·∆f̂ corr

|∆f corr
o |2

)
(15)

with

∆f̂ corr =

{
(1− w)(fN − fP ), φf > 0

w(fP − fN ), φf ≤ 0
(16)

where w is the distance weight corresponding to a central difference linear in-
terpolation from cell-centered P and N to the shared face f . This linear inter-
polation is written as

(f)f = wfP + (1− w)fN (17)

The effect of λlimiter
f is to limit (f)f of Eq. (10) to be at most the same as Eq.

(17).120

3. Parametric study on wave propagation in a periodic domain

The parametric study is conducted with foamStar to find a proper numer-
ical setting for propagation of a regular wave with properties given in Table 1.
The simulations are performed in a two-dimensional domain with cyclic lateral
boundary conditions. The free surface and the wave kinematics are initialized125

at the initial time from a fully nonlinear stream function wave solution [29].
The schematic view of the problem, the initialized phase-fraction field (VOF)
and the computational mesh are shown in Fig. 3. The computational domain
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Table 1: Wave condition for the parametric study

Item Height (H) Period (T ) Depth (h) λ H/λ

Unit [m] [s] [m] [m] [-]

Value 0.0575 0.7018 0.6 0.8082 0.0712

(a) Computational domain (b) Initialized α-field (c) Computational mesh

Figure 3: Schematic view on the parametric study of propagating waves with the cyclic lateral
boundary conditions.

covers one wavelength (L = λ), and the height is taken to be two times the
water-depth (2h; h = 0.6m). The computational meshes use a uniform cell dis-130

tribution in the wave propagation direction with characteristic cell size of ∆x.
In the vertical direction, the cell distribution is specified in three zones: the air,
the free surface and the underwater zone. Unless otherwise indicated, the free
surface zone is limited to z ∈ [−H,H] with a uniform cell distribution of size ∆z
in the vertical direction. The air zone is above the free surface zone (z ∈ [H,h])135

and below is the underwater zone (z ∈ [−h,−H]). Cells outside the free surface
zone are stretched perpendicularly from the free surface. The level of stretching
is specified in term of a ratio between of ∆z of the first and the last cells.

3.1. Effect of time scheme

Simulations were performed with Crank-Nicolson off-center coefficient c
CN

=140

0 (Euler implicit), 0.5 and 0.95 in order to observe the effect of the time inte-
gration scheme. The time step is kept constant at ∆t = T/400, and mesh
parameters are fixed to ∆x = λ/100, ∆z = H/20, and stretching ratio 5. Fig. 4
compares the simulated wave elevations at the center of the domain with those
predicted by the stream function wave theory. Because the stream function145

wave theory provides a fully nonlinear solution of the potential flow waves, it
is used here as a reference for the simulated results. Noticeably, the simulated
wave amplitudes decrease gradually over time. The amount of the amplitude
decays are better evaluated by applying the moving window Fast Fourier Trans-
form (mwFFT) to time series [30]. The results are shown in Fig. 5 in terms150
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Figure 4: The measured wave elevation time series with respect to different Crank-Nicolson
off-center coefficients

(a) Harmonic amplitudes (b) Phase differences

Figure 5: Comparison of first harmonic wave amplitudes and its phase differences with respect
to Crank-Nicolson off-center coefficients (cCN )

of the first harmonics and the corresponding phases. The reference value, ob-
tained from the potential flow theory, is denoted as ”Ref.” in Fig. 5. The phase
differences between the CFD results and the stream function solution are sig-
nificantly larger for the low-order time integration scheme. While the numerical
errors in these simulations can be improved further through a refinement study,155

the present results show that for the same mesh parameters and same time step
sizes one may benefit significantly from using a highly accurate time integration
scheme. For the rest of the present study, the time integration scheme is set to
Crank-Nicolson with c

CN
= 0.95.
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Table 2: Mesh and time discretizations for the convergence tests.

Case λ/∆x H/∆z T/∆t Co Re∆

Mesh025-dt100 25 5 100 0.171 8836
Mesh050-dt200 50 10 200 0.171 4418
Mesh100-dt400 100 20 400 0.171 2209
Mesh200-dt800 200 40 800 0.171 1105

Mesh100-dt100 100 20 100 0.684 2209
Mesh100-dt200 100 20 200 0.342 2209
Mesh100-dt800 100 20 800 0.086 2209
Mesh100-dt1600 100 20 1600 0.043 2209

3.2. Mesh and time step convergence160

The computational mesh and time steps are tested to obtain the formal
convergence order of the discretization schemes. Mesh parameters are given in
Table 2 in terms of lateral spacing ∆x, vertical spacing in the free surface zone
∆z, and time step ∆t. The mesh stretching ratio in the air zone and in the
underwater zone is kept constant at 5. Representative Courant number (Co)
and cell-Reynolds number (Re∆) can be defined by using analytic wave fluid

velocities as Co =
√

Co2
x + Co2

z and Re∆ =
√

Re2
∆x + Re2

∆z where,

Cox =
uwave∆t

∆x
, Coz=

wwave∆t

∆z
, Re∆x =

uwave∆x

ν
, Re∆z=

wwave∆z

ν

and uwave and vwave are the maximum horizontal and vertical fluid velocities
given by stream function waves, respectively. The kinematic viscosity of water
is denoted by ν. Two series of tests are conducted. The first series varies the
cell size and consequently the cell-Reynolds numbers while the Courant number
is fixed by varying accordingly the time steps. In the second series, the cell-165

Reynolds numbers are fixed and the Courant numbers are varied. Fig. 6 shows
snapshots of velocity fields at time instants t = 20T and t = 40T . The results
using V-scheme remains smooth for at least 40T . Between times 20T and 40T
the distribution of the velocity field remains mostly unchanged with most visible
differences in phases and the position of the crests. Without the V-scheme, the170

velocity field remains smooth for a shorter duration whereafter large spurious
velocity appears in the vicinity of the free surface. Consequently, the free surface
is very erroneous without using the V-scheme for a long simulation duration.

Amplitudes of the first harmonic of wave elevations at the center of the
domain obtained over time for different Courant numbers and cell-Reynolds175

numbers are compared in Fig. 7. The results show that the additional limiter
introduced in the V-scheme, Eq. (14), leads to larger numerical dissipation than
in the case without applying the V-scheme. Without using the V-scheme, the
high disturbance of the interface leads to a stong decrease of the wave amplitude
for long simulations.180
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Figure 6: Snaphots of simulated velocity fields with/without the V-option in the convection
scheme, black colored line denotes α = 0.01, 0.99.

(a) Different Co (b) Different Re

Figure 7: Comparison of first harmonic wave amplitudes with different mesh and time dis-
cretizations (Simulation conditions are given in Table 2)

Before the large interface disturbance, errors of the first harmonics at 10T
and 20T are shown in Table 3 for Mesh100-dt400 with and without the V-scheme.
This mesh configuration (Table 2) corresponds to mesh parameters ∆x = λ/100,
∆z = H/20 and ∆t = T/400. The representative Courant number is 0.171 and
cell-Reynolds number is 2209. This shows that for short simulations, the V-185

scheme can lead to smaller wave amplitude.
The present results show that using the V-scheme is beneficial for a long

simulation duration by reducing the interface disturbance. Applying V-scheme
gives a slightly reduced wave amplitude, it is thought to be manageable and
insignificant for a long simulation time.190

Convergence analyses are performed for the first harmonics obtained during
the first ten wave periods. The orders of convergence are computed according to
the procedure of Eça and Hoekstra (2014) which applies a least square method
to get the order of convergence (p) and the associated uncertainty estimation
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Table 3: Errors of the first harmonics for Mesh100-dt400 (see Table 2)

t/T w/o V-scheme w/ V-scheme

10 2.33 % 3.84 %
20 5.55 % 7.41 %

(a) Co discretization, Coc = 0.043 (b) Re discretization, Rec = 1105

Figure 8: The convergence orders and uncertainties with respect to discretization of Co and
Re∆.

[31]. The results are shown in Fig. 8. The orders of convergence (p) for varying195

Courant and cell-Reynolds numbers and using the V-scheme are estimated to
be 1.14 and 1.60, respectively. Without using the V-scheme, the estimated
convergence order increases to 1.93 and 1.69.

Similar results are obtained by [32] where it is stated that the interface dis-
turbance can appear with the use of higher-order schemes to capture a sharp200

interface between liquid and gas. They also showed that the choice of time-
integration and convection schemes affect the interface shape and a combina-
tion of more or less diffusive schemes can improve the wave quality. However,
the choice of more or less diffusive schemes depends on the case, therefore the
upwind scheme which is reported as giving gradually decreasing amplitude but205

consistent results is selected in the present study. Further simulations are per-
formed without the V-scheme while the results are evaluated with more emphasis
on data up to 20T .

3.3. Mesh spacing in vertical direction

In deep water, the velocity field of propagating waves has an exponential pro-210

file in the vertical direction under the free surface. According to the potential
flow wave theory, the maximum velocity occurs at the free surface and it decays
rapidly going away from the free surface. Therefore, in the vertical direction,
meshes are generated using 3 zones: (1) underwater zone(z ∈ [−h,−H]), (2)
free surface zone(z ∈ [−H,H]) and (3) air zone (z ∈ [H,h]). The cell resolution215
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(a) Mesh-212 (b) Mesh-515(original) (c) Mesh-818

Figure 9: Different vertical mesh spacings of three divided zones with the geometric ratio.

(a) Amplitude (b) Phase differences in radians

Figure 10: The first harmonic amplitudes and phase differences with respect to vertical mesh
spacing.

is configured to be relatively dense inside and near the free surface zone and it is
coarsened gradually towards the bottom. To study the effects of this coarsening,
simulations are performed on several meshes with different stretching ratios. A
naming scheme is chosen: Mesh-ijk, where i, j, and k represents the stretching
ratio of zones: underwater, free surface and air, respectively. Here, the stretch-220

ing ratio is defined as the ratio between the maximum and minimum cell height.
Fig. 9 illustrates Mesh-212, Mesh-515 and Mesh-818. The cells are uniformly
distributed in the horizontal direction with ∆x = λ/100 and within the the free
surface zone with ∆z = H/20. As seen in Fig. 10, the first harmonic ampli-
tudes and the phases for all three meshes are almost identical. Therefore, the225

stretching ratio Mesh-515 which is applied throughout this study is thought to
be sufficient for the wave condition under consideration.
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4. Inlet/outlet condition

4.1. Relaxation zones

The wave generation and absorption method of foamStar is based on an
explicit scheme which relaxes the computed solution towards a given target
flow field [7, 8, 9, 24, 10]. The scheme requires a weight function which varies
between 0 and 1 in the relaxation zones. The relaxation is performed as follows:

χ = (1− w)χ+ wχTarget (18)

where χ is the computed flow field (i.e. either the VOF-field or the velocity230

field), w is the weight function and χTarget is the given target flow field. It
shall be noted that there exists an implicit relaxation scheme which performs
the relaxation directly in the governing equations [11, 12]. This study does not
cover this implicit approach due to its unavailablity in foamStar. Hence, only
the explicit relaxation scheme is considered.235

The choice of the weight function w is important to minimize wave reflec-
tions. A discussion on smoothness criteria for w was originally presented in [9].
Two common choices can be identified: a polynomial weight function [7, 9], and
an exponential weight function [7, 9, 24, 10]. Seng (2012) introduces further a
dynamic weight function wd defined as follows [10]:

wd = 1− (1− w)|u−u
Target|∆t/∆x (19)

where w is the original static weight and ∆x is the characteristic cell size [10].
The dynamic weight wd is recomputed at every time step and is changed locally
and adaptively based on the local differences between computed and target
velocity. The relaxation proceeds as in Eq. (18) using wd instead of w. The
static weight function w remains either a polynomial or an exponential function:

w(ξ) =


eξ

3.5 − 1

e− 1
, exponential weight

−2ξ3 + 3ξ2, polynomial weight

(20)

where ξ ∈ [0, 1] is a normalized coordinate in the relaxation zones. The present
study evaluates the explicit relaxation scheme using either exponential or poly-
nomial weight functions in combination with the static or the dynamic weight
formulation. In addition, the evaluation covers various sizes of the relaxation
zone which is considered as an important parameter to obtain an optimal com-240

promise between the computational cost and the amount of the reflected waves.
Miquel et al., (2018) reported 3 − 9% of wave reflection for regular waves us-
ing an explicit relaxation scheme with static exponential function [14]. Perić
and Abdel-Maksoud (2018) showed the wave reflection can be less than 1% for
Loutlet ≥ 2λ when a strength of relaxation factor is optimized and applied to245

the exponential weight function [33].
The target function is another important parameter. When a floating or

a fixed body exists within the incident wave field, radiation-diffraction waves
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are generated due to interactions of the wave field with the body. In numerical
computations using the relaxation schemes, the target flow field is usually set to
be either the incident wave field or calm-water because the radiation-diffraction
waves are unknown. Alternatively, the target wave field within the relaxation
zones can be estimated from the observed wave elevations and kinematics in
front of the outlet zone. When the wave amplitude decreases, the wavenumber
changes due to a nonlinear effect which is proportional to O

(
(k1A)3

)
in the

third-order theory. For slightly smaller waves, the change of wavenumber is
almost negligible. Therefore, it is assumed that the propagating waves do not
change their wave frequency and wave number, the amplitudes and phases of the
first harmonic of the observed waves are calculated using the Fourier transform
for corresponding ω and k1 as follows:

A′ =
2

T cos ∆φ

∫ t

t−T
ζ(x0, τ) cos(k1(x− x0)− ωτ)dτ (21)

and

tan(∆φ) = −
∫ t
t−T ζ(x0, τ) sin(k1(x− x0)− ωτ)dτ∫ t
t−T ζ(x0, τ) cos(k1(x− x0)− ωτ)dτ

(22)

where A′ is the amplitude of the first harmonic of the modified waves, ∆φ
is the phase between the incident and the modified waves and ζ(x0, τ) is the
measured wave elevation in front of outlet zone at x0. The modal wavenumber
k1 is obtained from nonlinear stream function theory [34]. Wave elevations and
fluid velocities of the modified waves are then given by

ζ =
A′

A

[
a0

2
+

Na∑
n=1

an cos(knx− ωt+ ∆φ)

]
(23)

u = ∇× [0,−ψ, 0]T (24)

ψ =
A′

A
×

[
b0z +

Nb∑
n=1

bn
sinh kn(z +H)

cosh knH
cos(knx− ωt+ ∆φ)

]
(25)

where Na and Nb are the numbers of truncated Fourier modes of stream function
waves and an and bn are the amplitudes of the Fourier mode for wave elevation
and for stream function, respectively. kn are the wavenumber. Details can be
found in [29, 34].250

4.2. Sponge layer method

Alternatively, the addition of linear and quadratic damping source terms
to the momentum equations can be used to damp waves [4, 6]. The approach
is known as a sponge layer method and was originally proposed by [3]. The
momentum equations with the source terms are

∂(ρu)

∂t
+∇ · (ρuuT )−∇ ·

[
µ
(
∇u +∇uT

)]
= −∇pd − (g · x)∇ρ+ S (26)
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where µ is a dynamic viscosity, pd = p − ρg · x is the dynamic pressure. The
source terms S include both the linear and quadratic damping sources and are
formulated to be applied to the vertical velocity components as follows:

S = [0, 0, ρ(C1 + C2uz)wuz]
T

(27)

where w is the weight function; C1 and C2 are the linear and quadratic damp-
ing coefficients, respectively. Through a parametric study, Perić and Abdel-
Maksoud (2016) reported wave reflection coefficients of less than 1% thanks
to an optimal choice of alternatively C1 or C2 [6]. They proposed a practi-255

cal recommendation for the simulation with exponential weight function and
the condition Loutlet ≥ 2λ. In the present study, only the linear damping is
considered with polynomial weight function. Hence, C2 is set to zero.

4.3. Other alternatives

Two other alternatives for wave damping are considered in this study due to
their simplicity: the mesh stretching and the increased viscosity. Mesh stretch-
ing introduces the desired wave damping and also additional dispersive effects.
The increased viscosity is a method where the viscosity is increased artificially
in the outlet zone. Wave damping occurs due to the increased energy loss caused
by the artificial viscosity. The momentum equation with increased viscosity in
the outlet is written as

∂(ρu)

∂t
+∇ · (ρuuT )−∇ ·

[
(µ+ µadd)

(
∇u +∇uT

)]
= −∇pd − (g · x)∇ρ (28)

where µadd is the increased viscosity in the outlet zone.260

5. Outlet study I: Numerical Wave Tank (NWT)

The aim is to assess the quality of waves in a numerical wave tank as a
prerequisite to perform a successful simulation involving wave-structure inter-
actions. Consequently the size of the domain is chosen to be representative of
typical cases and the quality of the simulated waves is assessed in time.265

5.1. Reflection coefficients

Waves simulated in numerical wave tanks are affected by the numerical dissi-
pation, the free surface instabilities, and the performance of the wave absorption
method at the outlet. The latter is often characterised through the use of a wave
reflection coefficient, which is defined as the ratio of amplitudes of propagating
and reflecting waves at steady state. For small wave amplitudes, the wave re-
flection coefficient is defined as in [35]:

CR =
amax − amin

amax + amin
(29)

where amax and amin are the maxima and minima of the wave envelope am-
plitude. This definition works well for linear waves. With no reflection, the
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amplitude modulation of the linear wave goes to zero. Hence, amax = amin

and the reflection coefficient becomes CR = 0. When the linear waves are fully
reflected, the amplitude envelope has amin = 0. Therefore, the reflection coef-
ficient becomes CR = 1. However, wave conditions used in the present study
are nonlinear and the above definition is no longer sufficient. Perić and Abdel-
Maksoud (2016) used the same definition as shown in Eq. (29) but the amplitude
is replaced by the wave height [6]. The reflection coefficient Eq. (29) can be
computed based on the first-order amplitudes ignoring the higher harmonics,
i.e. by means of the fast-Fourier transform (FFT). This definition was used in
[36, 37, 38] to quantify the reflection coefficient when the wave field is at quasi-
steady state. In the present study, the reflection coefficient is evaluated with
first-harmonic amplitude as in associated researches [36, 37, 38], but the FFT
is performed within a moving window in time to better capture the transient
nature of the present simulations. Given data within a window of one period,
the time-varying first harmonics at i-th wave gauge is computed as

ai(ω, t) =
2

T

∫ t

t−T
ζ(xi, t) cos(kxi − ωτ)dτ (30)

where the subscript i denotes i-th wave gauge. The present simulations contain
250 wave gauges distributed over 5λ centered within the inner zone, Fig. 11.

The original definition of the wave reflection coefficient CR as in 29 is intro-
duced with the assumption that the propagating and reflected waves are fully
established and no wave re-reflections are travelling back in the interval of in-
terest. Therefore, the time and spatial intervals selection should not affect the
result of the CR coefficient. However, considering the domain length and the
simulation duration considered in the present case, the re-reflection may ap-
pear before the reflected waves are fully propagated and generally time-varying
wave amplitudes will occur during the simulation with also interface distur-
bance which may appear affecting the results. Consequently, the coefficient of
accumulated wave reflection is introduced in the present study to observe the ac-
ccumulated wave reflection over the simulation time. This coefficient can still be
used to assess the quality in time of the waves observed in the domain. The coef-
ficient of accumulated wave reflection, κR(t), is defined using the first-harmonic
amplitudes obtained in (30):

κR(t) =
max[ai(t)]−min[ai(t)]

max[ai(t)] + min[ai(t)]
. (31)

5.2. Description of the case

The selected wave condition is as shown in Table 1 with the length of the270

domain set as in Fig. 11. The inlet relaxation zone is 1.5λ and 7λ is reserved for
the inner zone where waves are propagated according to the governing equations.
The outlet relaxation zones vary between 0.5λ to 6λ such that the coefficients of
accumulated wave reflection at various lengths of the outlet can be studied. The
vertical mesh spacing is Mesh-515. Waves are generated at the inlet boundary275

17



Figure 11: Schematic view of the NWT for a parametric study on the relaxation schemes.
Several cases are generated for outlets of length between 0.5λ to 6λ.

and within the inlet relaxation zone based on the nonlinear solution (up to
15th order) of the stream function wave theory. In total, 250 wave gauges
are uniformly distributed over 5λ centered within the inner zone (Fig. 11).
Hence, the first and last wave gauges are located 1λ away from inlet and outlet
zones, respectively. Free surface elevations read from these wave gauges are280

used in the evaluation of κR(t) as described previously in Section 5.1. It is
to be expected that the simulated waves while propagating through out the
computational domain may see their amplitude and phase vary due to numerical
dissipation. Consequently, the evaluation of κR(t) may have some dependency
on the selected distribution of the wave gauges. Theoretically, wave gauges285

shall cover at least 2λ in order to properly detect the complete envelope of the
standing waves. The nature of this dependency, however, is not studied in this
paper.

5.3. Results of using relaxation schemes

Four combinations of weight functions: static-exponential, static-polynomial,290

dynamic-exponential and dynamic-polynomial are studied implementing Eqs.
(18) to (20). Various lengths of the outlet (Loutlet = 1.5λ, 3λ and 6λ) are
considered for each of the four weight functions. In this parametric study the
target function in inlet and outlet is set to be the incident waves computed with
stream function theory.295

The resulting maximum Courant numbers Comax are shown in Fig. 12.
This number is associated with the interface disturbance because velocity spikes
happen around the free surface. Simulations with dynamic polynomial weight
(Fig. 12d) have a less varying and lower maximum Comax than those with
other choices for all cases with Loutlet ≥ 1.5λ. Furthermore, Comax is less300

sensitive to the length of relaxation zones though a significant change occurs
after approximately 20T for the outlet of 0.5λ. The results of the static and
dynamic exponential weight functions give varying but similar Comax evolution
for t ≤ 20T . Beyond this time, the results show that using a large outlet zone
does not necessarily reduce Comax. Overall, the maximum Courant number305

obtained using static polynomial weight is the highest.
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(a) Static exponential weight (b) Static polynomial weight

(c) Dynamic exponential weight (d) Dynamic polynomial weight

Figure 12: Maximum Courant numbers read from the entire computational domain in cases
where waves within the outlet zone is relaxed toward the stream function wave solution

The coefficients of accumulated wave reflection for different relaxation schemes
and various lengths of the outlet are compared in Fig. 13. It appears that κR(t)
generally is increasing until approximately t = 20T . Reducing the lengths of
the outlet zones from 1.5λ to 0.5λ increases κR. Beyond 20T , the growth seems310

saturated with variations due to the interface disturbance. Using the dynamic
polynomial weight with outlets of length greater than 1.5λ gives the smallest
variation of κR in time.

Fig. 14 shows κR(t) and the first harmonic amplitudes averaged over the
simulation time t ∈ [15T, 20T ]. Fig. 14a clearly shows that κR(t) increases315

significantly for outlets of length smaller than 1λ. As presented in Fig. 14b, the
first harmonic amplitudes obtained with static weights are closest to the refer-
ence value computed with the nonlinear stream function theory [34]. Specifically,
the averaged first harmonic amplitude obtained from the cases Loutlet ≥ 1.5λ
using the dynamic weight and the static weight are respectively 3.5% and 2.2%320

less than the reference value.
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(a) Static exponential weight (b) Static polynomial weight

(c) Dynamic exponential weight (d) Dynamic polynomial weight

Figure 13: Comparison of κR(t) with respect to different relaxation schemes and lengths of
the outlet

To summarize, even though the dynamic weight function gives slightly smaller
wave amplitude (around 1% less), the wave reflection is reduced so as the in-
terface disturbances. This is the setup chosen for comparison using relaxation
zones in the last section. The results demonstrate strengths and weaknesses of325

each combination of static, dynamic, exponential and polynomial weights used
in an explicit wave relaxation scheme.

5.4. Results of using stretched meshes

It is difficult to find a set of common parameters to generate stretched meshes
for wave propagations because the resulting damping properties may depend
strongly on the selected numerical schemes, the time step size and specific mesh
setups and configurations [39, 40]. For the purpose of the present study, mesh
stretching is performed length-wise in the propagation direction using a stretch-
ing ratio (rx) defined as

∆xn = rx∆xn−1 (32)
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(a) Time-averaged coefficients of accumu-
lated wave reflection

(b) Time-averaged first harmonic ampli-
tudes

Figure 14: Comparison of averaged wave amplitudes and κR(t) in t ∈ [15T, 20T ]

Table 4: Information of stretched mesh outlet for propagating waves.

Choice of rx Number of cells L/λ Loutlet/λ ∆xmax/λ
γ = 1.001 225,420 39.6 31.1 1.11
rx = 1.02 206,340 59.5 58.0 1.05
rx = 1.05 180,120 29.9 21.4 1.14
rx = 1.08 173,470 22.0 13.5 1.18

where ∆x represents the longitudinal length of the cell and the subscripts n
and n − 1 indicate the intermediate neighbours. Two types of stretching are
considered: the constant and the exponential stretching.

rx =

{
c, constant stretching; c = 1.02, 1.05 and 1.08

cosh(γn), exponential stretching; γ = 1.001
(33)

Cells within the outlet zone are stretched until the length of the last three cells is
larger than one wavelength (∆x ≥ 1λ). The properties of stretched mesh outlets330

are summarized in Table 4. The amount of stretching is visualized in Fig. 15. In
particular, the exponential stretching yields a significantly denser distribution
on one side of the outlet zone. In principle, the dense size is located at the
start of the outlet zone and the mesh is stretched so that cells are increased
in size in the propagation direction toward the end of the outlet zone. Table 5335

shows time-averaged κR(t) over t ∈ [15T, 20T ] at selected stretching ratios. The
constant ratio of rx = 1.02 gives the smallest time-average of κR(t). Hence, it
is selected to be representative for the stretched mesh outlet when comparing
with other numerical outlets.

21



(a) rx = 1.02 (b) rx = 1.05 (c) rx = 1.08 (d) γ = 1.001

Figure 15: Meshes near to the outlet with different stretching.

Table 5: The coefficients of accumulated wave reflection with respect to stretched mesh outlets,
time averaged values over t ∈ [15T, 20].

Choice of rx γ = 1.001 rx = 1.02 rx = 1.05 rx = 1.08

κR 0.0311 0.0286 0.0334 0.0361
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Table 6: The coefficients of accumulated wave reflection obtained using the linear damping
source outlet over t ∈ [15T, 20T ].

Loutlet
C1

30 20 10 5 1

1.5λ 0.0373 0.0287 0.0268 0.0936 -
3.0λ - 0.0202 0.0196 0.0226 -
6.0λ - - 0.0199 0.0190 0.0190

5.5. Results of using a linear damping source outlet340

Perić and Abdel-Maksoud (2016) showed that there is a need to appropri-
ately define the damping coefficient to obtain an optimal wave absorption [6].
The authors used a Froude scaling law to find a dependency of damping co-
efficients and showed that the linear and quadratic damping coefficients could
be scaled by wave frequency and wavelength, respectively. A static exponen-345

tial weight function was used in the outlet and the recommendation is to use
a linear damping coefficient, C1 = πω ≈ 28.1. They proposed a method to
estimate κR(t) by analyzing the wave equation with respect to the use of the
linear damping source. Applied to the present wave condition, the algorithm
predicts that the optimal linear coefficient for outlet of length 1.5λ is C1 ≈ 7.5350

and the estimated CR is 1.5%. It is noted that the algorithm assumes that the
wave field is damped towards calm-water in the outlet zone and the weight is
the static exponential function. Shen et al. (2016) used the linear damping co-
efficient of C1 = 20 with a second order polynomial weight function for irregular
wave simulations [41]. In the present study, the linear damping coefficient with355

cubic polynomial weight given in equation (20) is studied with different lengths
of the outlet, Table 6. The present results show that for the outlet of length
Loutlet = 1.5λ, using C1 = 10 yields the lowest κR(t). Hence, this result is se-
lected to be representative for the use of linear damping source outlet. It should
be remarked that the weight function considered in the present study is different360

from previous studies [6, 41], consequently it is able to make a difference.

5.6. Results of using increased viscous outlet

The increased viscous outlet imposes an artificially high viscosity in the
outlet zone. For a smooth change of viscosity, the added viscosity µadd is mul-
tiplied by the cubic polynomial weight function given in equation (20). Three365

different added viscosities are considered with the values µadd = 0.5, 0.2 and
0.1 kg.m−1.s−1, respectively. The resulting coefficients of accumulated wave
reflection at various lengths of the outlet are given in Table 7.

5.7. Comparison and Discussion

The final comparison is done using several types of outlets: stretched mesh,370

linear damping source, increased viscosity and relaxation schemes changing the
target wave field. The latter is set in turn to calm water, incident waves, and

23



Table 7: Coefficients of accumulated wave reflection with respect to the increased viscous
damp outlet.

Loutlet µadd[kg ·m−1 · s−1]
0.5 (500µwater) 0.2 (200µwater) 0.1 (100µwater)

1.5λ 0.0668 0.0470 0.0205
3.0λ 0.0315 0.0388 0.0254
6.0λ 0.0298 0.0391 0.0241

(a) Amplitude (b) Phase differences

Figure 16: Amplitudes and phases of the first harmonic of free surface elevations at the center
of the computational domain.

to the modified waves described in an earlier section. The representative setup
and results obtained from the parametric study for each outlet are used in the
comparison. The comparison is limited to the outlet length Loutlet = 1.5λ except375

for mesh stretching where the outlet is stretched as discussed in the dedicated
section.

The time evolutions of the wave first harmonic amplitude and phase differ-
ence to the reference solution are presented in Fig. 16. The maximum errors
with respect to the reference amplitude computed over 40 wave periods are be-380

low 7%. Amplitude modulations over the simulation time exists for all cases
but are smaller for relaxation schemes which target the incident waves and the
modified waves. Errors in the phase are around 3% using linear damping source
and increased viscosity outlets. However, phase differences are smaller with the
relaxation scheme outlets, around 1%. It appears that the phase difference is385

slowly approaching zero for the relaxation scheme using calm water as target
fields.

The coefficients of accumulated wave reflection for the different outlets tested
are plotted in Fig. 17. Initially, large κR(t) are observed for linear damping,
increased viscosity, and relax-to-calm-water outlets. This indicates that these390

outlets have an immediate effect on the initialized incident wave field. After the
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Figure 17: Evolution of κR(t) for different outlets.

Table 8: Time-averaged coefficients of accumulated wave reflection E[κR] computed over
various time intervals.

Outlet
E[κR(t/T ∈ [a, b])]

[15, 20] [25, 30] [35, 40]

Stretched mesh (rx = 1.02) 0.029 0.034 0.033
Linear damping source (C1 = 10) 0.027 0.034 0.037

Increased viscosity (µadd = 100µwater) 0.021 0.029 0.034
Relax to calm water 0.078 0.082 0.083

Relax to incident waves 0.020 0.029 0.032
Relax to modified waves 0.017 0.029 0.033

initial disturbance, κR(t) increases during the whole simulation with relax-to-
calm-water outlet, however κR(t) obtained from simulations with linear damping
and increased viscosity decreases toward a level similar to that of relax-to-waves
outlets (from t = 22T ). κR(t) gradually increases over simulation time with395

mesh stretching outlet and relax-to-incident/modified-waves outlets.
These results show that it is important to use an appropriate target wave

field in the relaxation zones. When the target wave field differs from the flow
entering the outlet, the wave reflection becomes apparent.

The averages of κR(t) computed over three distincts time intervals are tab-400

ulated in Table 8. In the time duration t/T ∈ [15, 20] which is before the
appearance of large interface disturbance, the smallest κR(t) is obtained for
relax-to-modified-waves. Apart from relax-to-calm-water, all approaches gives
κR(t) of about 2 − 3% over t ∈ [15T, 20T ]. The accumulated wave reflection
coefficients in the present study are similar to the wave reflection coefficients405

obtained by using static exponential weight function in [14]. Perić and Abdel-
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Figure 18: A schematic view of swaying Lewis form with different outlets.

Maksoud [33] showed that the wave reflection can be less than ≈ 1% introducing
a strength factor of relaxation.

The results shown here confirm that all wave outlet techniques can give
acceptable results if they are properly used. Outlet techniques using a linear410

damping source or an increased viscosity require a tuning step on parameters.
These parameters are C1 for the linear damping source outlet and µadd for
the increased viscosity outlet. Although [6] provides a means to estimate op-
timal values of C1 or C2 the proper tuning of these additional parameters still
represents additional work which must be performed on a case-by-case basis.415

Meanwhile, minimizing the wave reflection with the relaxation scheme requires
a parametric study on the weight function for a specific simulation condition.
Though the relax-to-incident-waves outlet gives the best results, it should be
considered to be case specific because out-going waves are here expected to be
the incident waves. Therefore this finding cannot be generalized to other cases420

where out-going waves contain expected disturbances, e.g., in the presence of
a body and consequent radiation-diffraction waves the performance of this tar-
get function may differ. On the other hand, the relax-to-calm-water outlet is
expected to give a performance consistent with what is shown in the present
study.425

6. Outlet study II: Radiation waves

6.1. Description

A swaying Lewis form in a two-dimensional domain is introduced to study
the effect of relaxation schemes and to compare different outlets. A schematic
view of the setup with different outlets is depicted in Fig. 18. In the mid-
dle of the domain, the Lewis form moves harmonically at amplitude As and
frequency ω. The mesh is moving rigidly with the Lewis form without deforma-
tion. Hence, the initial mesh quality is preserved during the whole simulation.
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Table 9: Selected sway frequencies and amplitudes for the Lewis form

Item
Frequency (ω)

2.4 rad/s 4.2 rad/s 7.0 rad/s

Swaying amplitude (As) 0.118 m 0.055 m 0.025 m
Wavelength (λ) 10.70 m 3.494 m 1.258 m

Wave amplitude (A) 0.102 m 0.089 m 0.050 m
Wave steepness (kA) 0.06 0.16 0.25

The underwater offset of the Lewis form is given as

x = M {(1 + a1) sin θ − a3 sin 3θ} (34a)

z = −M {(1− a1) cos θ + a3 cos 3θ} (34b)

with

a1 =
H0 − 1

2(M/d)
, a3 =

H0 + 1

2(M/d)
− 1

M

d
=

3(H0 + 1)−
√

(H0 + 1)2 + 8H0(1− 4σ/π)

4

where x, z and θ ∈= [−π/2, π/2] are the underwater offsets and the corre-
sponding angle [42]; M is a magnification factor; B and d are breadth and

draft, respectively; H0 = B/2
d and σ = S

Bd are a ratio of half breadth to draft430

and an area coefficient corresponding to the block coefficient of a ship. The geo-
metric coefficients of Lewis form used in this study are B/2 = 1.0 m, d = 1.0 m
and σ = 0.95. The offset above the free surface is generated by mirroring with
respect to z = 0. Sway motions at different frequencies and amplitudes have
been considered, Table 9. These amplitudes are selected such that the resulting435

radiation waves estimated at far-field have lengths, heights and steepness which
are suitable for a finite volume method discretization. Meshes are generated us-
ing the standard OpenFOAM meshing tool, snappyHexMesh, with refinements
in x- and z-directions matching λ/∆x ≥ 100 and H/∆z ≥ 20. Local split-hex
refinements near the body surface are applied up to level 4. An example of the440

computational meshes with Loutlet = 2.5λ is shown in Fig. 19.

6.2. Comparison of different outlets

From the results of the previous parametric study, parameters rx = 1.02,
C1 = 20 and µadd = 100µwater are selected for mesh stretching, linear damping
source and increased viscosity outlets, respectively. The target functions of
relaxation schemes are set to either calm water or linear potential flow. The
latter is available by Ursell-Tasai’s multipole expansion [43, 44, 45] with Wheeler
stretching. To determine the dependency on the size of inner and outlet zones,
the relaxation schemes are firstly tested with different zone sizes. The considered
domain sizes are given in Table 10. The domains are constructed between
z ∈ [−d− 0.75λ, 2 d] with the length of outlet and inner zones scaled relatively
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(a) One half of the total computational domain (b) Mesh near the body

Figure 19: An example of the computational meshes for harmonically swaying 2D Lewis form
ω = 4.2 rad/s, Linner = 1λ and Loutlet = 2.5λ.

Table 10: Different domain sizes and meshes which are considered in the present study

ω = 2.4 rad/s 4.2 rad/s 7.0 rad/s
Mesh name Linner Loutlet Ncell Ncell Ncell
P150R35 1.5λ 3.5λ 317,094 350,024 202,022
P100R35 1.0λ 3.5λ 273,996 313,784 172,666
P050R35 0.5λ 3.5λ 239,802 277,738 136,892
P025R35 0.25λ 3.5λ 219,020 254,010 131,968

P100R25 1λ 2.5λ 291,678 320,090 173,736
P100R20 1λ 2.0λ 283,824 323,276 174,260
P100R15 1λ 1.5λ 270,782 308,766 160,890

to the expected wavelength. Cells near the body surface are kept at a similar
size for all cases. Pressure force on the body surface is recorded at each time
step and added mass and radiation damping are extracted by Fourier transforms.
Normalized added mass a′22 and radiation damping b′22 coefficients are computed
as follows:

a′22 =
a22

ρ(B/2)2
, b′22 =

b22

ρω(B/2)2
(35)

where a22 and b22 are the added mass and radiation damping defined by

1

T

∫ t

t−T
F2(τ)eiωτdτ = As(ω

2a22 + iωb22), (36)

where F2(τ) is the horizontal force and T is period. An example of a′22 and b′22 for
frequency ω = 4.2 rad/s using mesh P100R25 (i.e. Linner = 1λ, Loutlet = 2.5λ)
is shown in Fig. 20. It is noticeable that the radiation forces converge on average
1.6 times faster when the target function of the relaxation scheme is set to the
known potential flow solution. The result which is labeled ”Long-CFD-domain”
is obtained on a mesh with the inner zone set to Linner = 12.5λ. This size cor-
responds to approximately 20 cgT where cg = dω

dk is the group velocity. The
outlet zone for this mesh is set to Loutlet = 5λ. The steepness (kA) of the
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(a) Normalized added mass (b) Normalized radiation damping

Figure 20: Time series of normalized radiation added mass and damping using the relaxation
scheme with the target flow set to either calm water or potential flow solution: The mesh is
P100R25 (see Table 10) with Linner = 1λ, Loutlet = 2.5λ and ω = 4.2 rad/s.

radiation waves are expected to vary between 0.06 and 0.25 which are in the
range of nonlinear waves. Hence, due to this nonlinearity the computed radi-
ation forces may deviate from the linear potential flow solution. The result of
Long-CFD-Domain is used here as a second reference in the comparison between
the different outlets and domain sizes. The results are summarized in Table 11
where it can be seen that the deviations between linear potential flow solution
and the results of the Long-CFD-Domain become larger as the wave steepness
increases. The relative deviations as shown in Table 11 are computed as follows:

Rel. dev. [%] := 100

∣∣∣Computed− Ref.
∣∣∣

Ref.
(37)

where ”Ref.” is the linear potential flow solution and ”Computed” is the sim-
ulated data of e.g. the Long-CFD-Domain. The average of these relative de-
viations among the three frequencies are shown in Fig. 21 where it can be445

observed that the results of the relax-to-calm-water are approaching the results
of the Long-CFD-Domain. The radiation forces are not so sensitive to the size
of the inner zone and the relative differences between relax-to-calm-water and
relax-to-potential-flow are in the range of deviations of the Long-CFD-Domain.

With respect to different outlets a relative comparison can be made from450

tabulated data in Table 12. The increased viscosity outlet (µadd = 100µwater)
does not damp the radiation waves sufficiently and the time series of the ra-
diation forces have modulation which increases dramatically due to reflection.
These are marked as ”-” in Table 12. It appears that the increased viscosity
outlet may not be sufficiently good to treat the out-going waves without having455

its parameters tuned specifically for the particular case and for the wave fre-
quency under consideration. Fig. 21c,d shows that the relative deviations for
all outlets can be improved by increasing the size of the outlet zone. Clearly,
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Table 11: Radiation force coefficients obtained from using various domain sizes (Table 10)
with target function set to calm water. The relative deviation is as defined in Eq. (37).

Coef. a′22 b′22

ω [rad/s] 2.4 4.2 7.0 2.4 4.2 7.0
kA 0.06 0.16 0.25 0.06 0.16 0.25

Potential theory 1.304 0.136 0.365 2.169 0.798 0.156
Long CFD domain 1.297 0.144 0.388 2.162 0.780 0.148
Rel. deviation [%] 0.54 5.88 6.30 0.32 2.26 5.13

P150R35 1.279 0.129 0.386 2.190 0.779 0.146
P100R35 1.283 0.129 0.380 2.194 0.781 0.146
P050R35 1.278 0.129 0.391 2.192 0.781 0.146
P025R35 1.312 0.146 0.382 2.136 0.743 0.140

P100R25 1.281 0.115 0.375 2.194 0.788 0.149
P100R20 1.276 0.103 0.372 2.209 0.802 0.154
P100R15 1.276 0.096 0.368 2.248 0.832 0.162

Table 12: Radiation coefficients which are obtained by using different outlets (the mesh is
P100R20 where Linner = 1.0λ and Loutlet = 2.0λ)

Coef. a′22 b′22

ω [rad/s] 2.4 4.2 7.0 2.4 4.2 7.0

Relax to calm water 1.276 0.103 0.372 2.209 0.802 0.154
Relax to potential flow 1.316 0.141 0.392 2.185 0.798 0.151
Linear damping source 1.270 0.121 0.384 2.263 0.782 0.148

Increased viscosity - 0.154 0.388 - 0.842 0.147

the resulting radiation forces are more sensitive to the size of the outlet zone
rather than to the size of the inner zone. If the relaxation scheme is applied460

with a target function very close to the actual outgoing waves, the size of inner
and outlet zones can be reduced.

7. Conclusion

Different methodologies for wave outlets (relaxation zones with various tar-
get functions, damping layer, mesh stretching) are compared using two numer-465

ical setups. All tests are run on collocated unstructured finite volume method
meshes. The first numerical setup tests the propagation and absorption of a
regular wave and the second aims at computing radiation forces exerted on
a harmonically surging Lewis form. Each of the outlets needs specific input
parameters so dedicated parametric studies are conducted.470

For the wave propagation case, a first parametric study with periodic domain
confirms that a time integration scheme of second-order accuracy is necessary
to maintain the wave amplitude for a long duration. It also shows that intro-
ducing an additional flux limiter with the V-scheme in OpenFOAM, gives more
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(a) Added mass vs. domain sizes (b) Damping vs. domain sizes

(c) Added mass vs. outlet sizes (d) Damping vs. outlet sizes

Figure 21: Relative deviations with respect to the linear potential flow solution. The presented
data is averaged among the three frequencies in consideration.

dissipation but less disturbance on the interface, which is beneficial for the wave475

propagation simulation over long time. The first test case used for comparing
outlet performances consists in propagating regular waves from inlet to outlet
through a 7 wavelengths long domain where only the two-phase Navier-Stokes
equations apply. The assessment of the wave quality is done comparing the first
harmonic amplitude of the simulated waves with the fully nonlinear solution480

obtained from stream function theory and through a newly introduced coeffi-
cient of accumulated reflection. The study shows that if the different outlets
are tuned properly the coefficients of accumulated wave reflection obtained are
similar and about 3 %.

The use of a relaxation scheme with the explicit dynamic polynomial weight485

gives a robust and consistent result with sufficiently large size of outlet com-
pared with other relaxation scheme for considered problem. However, it should
be noted that the measured wave amplitude in the inner zone with application
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dynamic polynomial weight has less amplitude than the case with static ex-
ponential weight which is important for a practical case. The wave reflection490

increases if the target fields in the outlet are very different from the solution
entering the outlet with relaxation scheme (variation from 8 % using calm water
to 1.7 % using tuned solution). The results obtained are also relevant in showing
interface disturbance issues for simulation durations larger than 20 periods.

In the second numerical setup, the computed radiation forces on the swaying495

Lewis form provide an indicator for how much the computational domain can be
reduced when using the different outlets. Similarly to what is shown in the wave
propagation case, the parametric study performed with various domain sizes and
the outlet length confirms that a convergence towards known references (both
analytic solution from linear potential flow model and numerical results with500

large computational domain) can be obtained for all outlet methodologies if the
input parameters are properly tuned and the size of the outlet zone is sufficiently
large. With the relaxation scheme method, setting the target function close to
the actual outgoing waves reduces considerably both the number of steps to
achieve steady state and the length of the outlet zone, consequently saving505

simulation time.
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Appendix A. Crank-Nicolson time scheme with MULES

The Multidimensional Universal Limiter with Explicit Solution (MULES)
algorithm based on the FCT (Flux Corrected Transport) technique is used in
OpenFOAM to solve the Volume of Fluid (VOF; α) transport equation [25, 46].
The application of the Crank-Nicolson scheme to the discretized α-transport
equation in the Finite Volume method (FV) with second-order accuracy yields

(VPαP )n+1 − (VPαP )n

∆t
+
∑
f

[
CnF

n+1
α,f + (1− Cn)Fnα,f

]
= 0. (A.1)

where the superscript n represents the value at n-th time step, the subscript P
represents the owner cell, V and f are the cell volume and faces surrounding the
cell, respectively. Cn is computed from the Crank-Nicolson coefficient cCN =515

(1 − Cn)/Cn, cCN ∈ [0, 1] where (cCN = 0;Cn = 1) and (cCN = 1;Cn = 0.5)
represent the implicit Euler and classical Crank-Nicolson time scheme, respec-
tively. Fα,f = αφf ( φf = Sf ·uf ) is the α flux defined at the face f . In MULES
algorithm, equation (A.1) is solved in two steps: (1) predictor and (2) corrector.
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In the predictor step, the predicted α∗ is introduced with the implicit Euler
time scheme and bounded flux which is ensured from the low order convection
scheme, usually taken as the first-order upwind scheme:

(VPαP )∗ − (VPαP )n

∆t
+
∑
f

F bα∗,f = 0 (A.2)

where the superscript ∗ represents the value in the predictor step and F bα∗,f is520

the bounded α flux.
In the corrector step, the α-transport equation is solved iteratively with the

corrected flux as follows:

(VPαP )∗∗ − (VPαP )∗

∆t
+
∑
f

λf
[
FCNα,f − F bα∗,f

]
= 0 (A.3)

with
FCNα,f = CnF

n+1
α,f + (1− Cn)Fnα,f (A.4)

In the equation (A.3), FCNα,f −F bα∗,f represents the flux contribution from higher-
order scheme. The flux limiter λf ∈ [0, 1] is computed from α∗ in the predictor
step, or in the previous corrector step if the iterative correction is considered.
The corrector step can be solved iteratively by updating α∗ = (α∗∗)prev and525

the bounded flux F bα∗,f = (F bα∗,f )prev + (λf )prev(F
CN
α,f − F bα∗,f )prev where the

subscript (·)prev represents the previous corrector step. After the corrector step,
αn+1 is taken from the α∗∗.

The computed αn+1 from the MULES algorithm can be different with αn+1

from the classical Crank-Nicolson scheme given in (A.1) due to the existence of530

flux limiter λf which introduced to maximize the α-transportation while keeping
the boundness.
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