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Abstract

This paper proposes a new distributed model predictive control (DMPC) for positive Markov jump systems subject

to uncertainties and constraints. The uncertainties refer to interval and polytopic types, and the constraints are

described in the form of 1-norm inequalities. A linear DMPC framework containing a linear performance index,

linear robust stability conditions, a stochastic linear co-positive Lyapunov function, a cone invariant set, and a linear

programming based DMPC algorithm is introduced. A global positive Markov jump system is decomposed into

several subsystems. These subsystems can exchange information with each other and each subsystem has its own

controller. Using a matrix decomposition technique, the DMPC controller gain matrix is divided into nonnegative

and non-positive components and thus the corresponding stochastic stability conditions are transformed into linear

programming. By virtue of a stochastic linear co-positive Lyapunov function, the positivity and stochastic stability of

the systems are achieved under the DMPC controller. A lower computation burden DMPC algorithm is presented for

solving the min-max optimization problem of performance index. The proposed DMPC design approach is extended

for general systems. Finally, an example is given to verify the effectiveness of the DMPC design.

Keywords: Distributed model predictive control, Positive Markov jump systems, Linear programming, Cone

invariant set

1. Introduction

Positive systems have drawn an increasing interest due to their interesting properties in theory and importance

in practical applications [1–5]. This class of systems can model dynamic processes containing nonnegative quantities

such as communication and traffic congestion [6], water systems [7], medical treatment [8], etc. Positive Markov

jump systems (PMJSs) consist of positive subsystems and a Markov process. As a special class of positive systems,

PMJSs are paid attention since they have powerful ability to model abrupt changes from operation environment,

components, subsystems interconnections, and so on. Different from Markov jump systems (MJSs) without the

positivity [9–13], PMJSs motivate new research approaches owing to the positivity requirement. In [14], it was shown

that the mean square stability of PMJSs is equivalent to 1-moment stability and linear programming can be used

to check the stability conditions. Some linear programming based necessary and sufficient conditions were derived

for stochastic stability and `1 performance filter of PMJSs in [15]. In [16], a stochastic linear co-positive Lyapunov

function was constructed and control synthesis of PMJSs was explored in terms of linear programming. Some mean

square stability conditions were also presented in [17] for PMJSs with homogeneous transition probability by analyzing
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the time evolution of the first-order moment of the state. As we all know, the states of positive systems are kept

in the nonnegative orthant. Based on the property, traditional Lyapunov stability theory with quadratic Lyapunov

functions is replaced by the one with linear Lyapunov functions [18]. Accordingly, linear programming was used to

check the corresponding conditions [19–21]. These properties of positive systems also bring some new research issues

such as optimal control of PMJSs. Generally, the optimal control law of general systems was obtained by solving

some Riccati equations [22] and Hamilton-Jacobi-Bellman equations [23]. However, these optimization approaches

may not be valid for positive systems since the obtained optimal control cannot guarantee the positivity of positive

systems. In addition, co-positive Lyapunov functions integrated with linear programming are more effective than

quadratic Lyapunov functions integrated with linear matrix inequalities. Up to now, the optimal control of PMJSs is

still an open issue.

Model predictive control (MPC) is extensively used to handle the constraints of systems [24–28]. MPC is a step-

by-step optimization technique, in which an optimal control input is obtained at each time instant by solving an

optimization problem. To deal with the optimal control of positive systems, a linear centralized MPC framework

was established in [29–31]. As described in above positive systems literature, linear Lyapunov functions and linear

programming are used in the linear MPC framework. It is also necessary to point out that the centralized MPC may

be impractical and unsuitable for large-scale systems. PMJSs contain two classes of states: one is the continuous-time

state x(k) and the other one is the jump mode rk. The MPC of PMJSs considers not only the performance of each

mode but also the interconnection of subsystems. Practical positive systems such as communication networks [6],

water systems [7], and medical treatment systems [8] are typical large-scale systems. These imply that the MPC may

not be effective for PMJSs though there have been some MPC results on MJSs [32–35]. To overcome the drawbacks of

MPC, distributed MPC (DMPC) is proposed and has received many concerns [36–38]. Under the DMPC framework,

the plant mode is divided into several subsystems and then the controller of each subsystem is designed to reach

a global performance. The collapse of the controller of some subsystem may not affect the stability of the systems

since the controllers of other subsystems are still normal. DMPC reduces the computation burden of the MPC

scheme of complex systems and increases the safety of systems. DMPC of stochastic systems has also been paid

some attention. A DMPC method for the case that the states are not measurable was given in [39] by converting the

probabilistic constraints into deterministic constraints. For the systems with parameter uncertainties, a stochastic

DMPC algorithm based on generalized polynomial chaos expansions was developed in [40]. A DMPC design approach

with Jacobi iterative algorithm was introduced for MJSs in [41]. Considering the systems with randomly occurring

and Markov packet dropouts [42, 43], an output feedback DMPC and a DMPC saturation control were proposed in

terms of linear matrix inequalities, respectively.

By the above observation, it is clear that DMPC is powerful for dealing with the optimal control of complex

systems and some significant achievements have been addressed in terms of linear matrix inequalities. Thus, two

questions naturally arise: (i) whether the DMPC is available to PMJSs and (ii) how to establish a DMPC framework

of PMJSs if the answer of (i) is positive. To the best of the authors’ knowledge, there exist three challenges to solve the

DMPC of PMJSs. First, the traditional DMPC may be unavailable. It has been shown in aforementioned literature

that a linear approach is more tractable for positive systems. Most DMPC frameworks in literature are described in

a quadratic form. Second, existing control approaches of PMJSs cannot be developed for the DMPC of PMJSs. How
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to guarantee the positivity of a system is one of difficult issues of positive systems. Under the DMPC framework, the

underlying systems contain the input term of some subsystem and the input terms of other subsystems correlated to

the subsystem. In this case, the positivity of the systems is more complex than general control synthesis of positive

systems. Third, the DMPC algorithm involving linear matrix inequalities is less efficient for the DMPC of PMJSs.

Computation burden has always been one obstacle of MPC applications in practice. Owing to the complexity of

optimization algorithms involving linear matrix inequalities, it will lead to heavy computation burden and reduce the

efficiency of MPC applications. The computation burden is still kept high though DMPC is introduced. These issues

motivate us carry out the work.

This paper investigates the DMPC of PMJSs with interval and polytopic uncertainties, respectively. First, a

linear performance index is introduced. Then, interval and polytopic uncertainties and linear constraints in the form

of a 1-norm inequality are presented. Using a linear stochastic co-positive Lyapunov function, the DMPC controller

of PMJSs is designed in terms of linear programming. A cone is constructed to guarantee the invariant property of

the systems. Finally, a DMPC algorithm based on linear programming is provided. The contribution of the paper

has three aspects: (i) a new DMPC framework is established for PMJSs, (ii) a linear programming based DMPC

algorithm is presented, and (iii) the presented DMPC framework can be applied for MJSs and other issues of positive

systems. The remainder of the paper is organized as follows. Section 2 describes the problem formation and gives

some preliminaries of positive systems. Section 3 consists of four subsections: The performance index, uncertainties,

constraints, and a stochastic stability condition are presented in the first subsection; In the second subsection, the

DMPC controller of PMJSs is designed; The third subsection handles the constraints; The last subsection explores

the stochastic robust stability of PMJSs. In Section 4, the presented approach in Section 3 is developed for general

systems. An example is provided in Section 5. Section 6 concludes the paper.

Notation: Let <,<n,<n+, and <n×n be the sets of real numbers, n-dimensional vectors, n-dimensional nonnegative

vectors, and n × n matrices, respectively. Denote by N and N+ the sets of nonnegative and positive integers,

respectively. For a vector x = (x1, . . . , xn)T , x � 0 (� 0) and x � 0 (≺ 0) mean that xi ≥ 0 (xi > 0) and xi ≤ 0

(xi < 0), ∀i = 1, . . . , n, respectively. For a matrix A = [aij ] ∈ <n×n, the inequalities A � 0 (� 0) and A � 0

(≺ 0) mean that aij ≥ 0 (aij > 0) and aij ≤ 0 (aij < 0), ∀i, j = 1, . . . , n, respectively. The matrix I is the

identical matrix with proper dimensions. The symbol Co refers to the convex hull. Let en = (1, . . . , 1)T ∈ <n and

e
(i)
n = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

)T . The symbol ‖x‖1 =
∑n

i=1 |xi| denotes the 1-norm of vector x = (x1, . . . , xn)T . E{x}

stands for the expectation of stochastic variable x. Throughout the paper, the dimensions of vectors and matrices

are assumed to be compatible if not stated.

2. Preliminaries

Consider a class of discrete-time time-varying stochastic systems:

x(k + 1) = A(rk)x(k) +B(rk)u(k), (1)

where x(k) ∈ <n and u(k) ∈ <m are the system state and the control input, respectively. The system matrices are

unknown with A(rk) ∈ <n×n and B(rk) ∈ <n×m. Let rk be the mode and {rk, k ∈ N} be a jumping process taking
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values in a finite set S = {1, 2, . . . , S}, S ∈ N+ with the transition rates: P (rk+1 = q|rk = p) = πpq, where πpq ≥ 0

and
∑S

q=1 πpq = 1, p, q ∈ S. For convenience, denote by Ai and Bi the system matrices for rk = i.

In the following section, we introduce some preliminaries on positive systems and stochastic systems.

Definition 1 ([1, 2]) A system is positive if its state is nonnegative for any nonnegative initial state and any

nonnegative control input.

Lemma 1 ([1, 2]) A discrete-time system x(k + 1) = Ax(k) +Bu(k) is positive if and only if A � 0 and B � 0.

Lemma 2 The system (1) is positive if Ai � 0 and Bi � 0, ∀i ∈ S.

Lemma 2 is a direct extension of Lemma 1. Lemma 2 implies that a Markov jump system is positive if all its

subsystems are positive.

Lemma 3 ([1, 2]) For a matrix A � 0, the following two conditions are equivalent:

(i) A is a Schur matrix;

(ii) There exists a vector v � 0 such that (A− I)T v ≺ 0.

Give a positive system x(k + 1) = Ax(k). By Lemma 1, A � 0. Choose a linear function V (x(k)) = x(k)T v,

where v is defined in Lemma 3. It is clear that V (x(k)) is positive definite since x(k) � 0 and v � 0. Denote

the difference of V (x(k)) by ∆V (x(k)) = V (x(k + 1)) − V (x(k)). By the term (ii) in Lemma 3, it is clear that

∆V (x(k)) < 0,∀x(k) 6= 0. Then, V (x(k)) is a Lyapunov function of the considered positive system. Such a linear

function is called linear co-positive Lyapunov function and will be used later to reach the stability of the systems

considered in the paper.

Definition 2 ([3]) The positive system (1) with u(k) = 0 is mean-square stable if for given initial state x(k0) and

initial mode r0, E{‖x(k)‖1 : x(k0), r0} → 0 as k →∞.

3. DMPC of PMJSs

This section is divided into four subsections. In the first subsection, the global system is decomposed into several

subsystems. A linear performance index is constructed and uncertainties and constraints are introduced. The second

subsection proposes the DMPC controller design. In the third subsection, the constraints are handled. The last

subsection addresses the stochastic stability of PMJSs.

3.1. Linear DMPC Framework

Two classes of uncertainties are considered for system (1). The first class is interval uncertainty:

Ω1(rk) := {[A(rk) B(rk)]
∣∣A(rk) � A(rk) � A(rk), B(rk) � B(rk) � B(rk)}, (2)

where A(rk) ∈ <n×n, B(rk) ∈ <n×m and A(rk) ∈ <n×n, B(rk) ∈ <n×m are the lower and upper bound matrices,

respectively, and satisfy that A(rk) � 0, B(rk) � 0. The second one is polytopic uncertainty:

Ω2(rk) := Co{[A(1)(rk) B
(1)(rk)], . . . , [A

(L)(rk) B
(L)(rk)]}, (3)

where A(`)(rk) ∈ <n×n, B(`)(rk) ∈ <n×m, ` = 1, 2, . . . , L are the vertex matrices and satisfy that A(`)(rk) �
0, B(`)(rk) � 0.
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The model (1) can be decomposed into N subsystems:




x11(k + 1)
...

xii(k + 1)
...

xNN (k + 1)




= Ai(r(k))




x11(k)
...

xii(k)
...

xNN (k)




+ (B1(r(k)), . . . , Bi(r(k)), . . . , BN (r(k)))




u1(k)
...

ui(k)
...

uN (k)




(4)

where xii(k) ∈ <nii and ui(k) ∈ <mi . Then, the distributed systems with PMJSs can be given as:

xi(k + 1) = Ai(r(k))xi(k) +Bi(r(k))ui(k) +
N∑

j=1,j 6=i
Bj(r(k))uj(k), (5)

where xi(k) ∈ <n and ui(k) ∈ <mi are the state and control input of the ith subsystem, respectively, and m =
∑N

i=1mi. It should be pointed out that the state xi(k) = (x11, . . . , xii, . . . , xNN )T contains all states of the system

(4), Ai(r(k)) = A(r(k)), and Bi(r(k)) is the ith column of B(r(k)). By (2) and (3), the uncertainties of the system

matrices in (5) are rewritten as:

Ω1(rk) = {[Ai(rk) Bi(rk)]
∣∣Ai(rk) � Ai(rk) � Ai(rk), Bi(rk) � Bi(rk) � Bi(rk)}, (6)

and

Ω2(rk) = Co{[A(1)
i (rk) B

(1)
i (rk)], . . . , [A

(L)
i (rk) B

(L)
i (rk)]}. (7)

In the MPC and DMPC literature [32–34, 41–43], polytopic uncertain has been extensively employed to describe the

uncertainty of systems owing to its powerful in modeling time-varying and nonlinear processes. In this paper, we

first follow the polytopic uncertainty used in literature. On the other hand, we also introduce interval uncertainty to

PMJSs. Interval uncertainty can model a large class of uncertain systems by giving the lower and upper bounds of

system matrices. Give a system x(k + 1) = Ax(k), where A � A � A. Suppose that A � 0 and A is a Shur matrix.

First, we have A � A � 0, which implies that the considered system is positive. By Lemma 3, there exists a vector

v � 0 such that (A− I)T v ≺ 0. Thus, (A− I)T v ≺ (A− I)T v ≺ 0. This reveals that the considered system is stable.

In summary, the positivity and stability of an interval positive system can be reached by guaranteeing the positivity

of the lower bound of the system and the stability of the upper bound of the system, respectively. This is a good

property of interval positive systems whereas it is not for general interval systems (non-positive). Some statements

about interval uncertainty can refer to [30]. The challenge to tackle the interval uncertainty lies in how to design a

controller for guaranteeing either the positivity of the lower bound of interval uncertain systems or the stability of

the upper bound of interval uncertain systems.

For general systems, the constraint conditions are usually presented based on the Euclidean norm [25, 26]. Note

the fact that the states of positive systems are nonnegative. Thus, the following constraint conditions are introduced

for the system (5):

||xi(k)||1 ≤ δ, (8a)

||ui(k)||1 ≤ η, (8b)

where δ > 0 and η > 0 are given constants. Some similar constraint conditions have also been used in [29] and [30].
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The objective of this paper is to design a set of DMPC controllers:

ui(k + s|k) = Fii(k, rk+s|k)xii(k + s|k) +
N∑

j=1,j 6=i
Fij(k, rk+s|k)xjj(k + s|k),

= Fi(k, rk+s|k)xi(k + s|k), i = 1, 2, . . . , N, s = 1, 2, . . . ,∞
(9)

such that the system (5) is positive and stochastic stability by solving the optimization:

min
ui(k+s|k)

i=1,2,...,N,s≥0

max
[Ai(rk) Bi(rk)]∈Ω1(or,Ω2)

i=1,2,...,N,rk+s|k∈S

Ji(k) subject to (5) and (8),
(10)

with the performance index function:

Ji(k) = Ek
{ ∞∑
s=0

(
xTi (k + s|k)ς(k + s|k) + uTi (k + s|k)%i(k + s|k) +

N∑
j=1,j 6=i

u∗Tj (k + s|k)%j(k + s|k)
)}
, (11)

where xi(k+ s|k) and ui(k+ s|k) are the state and input predicted at time instant k, ς(k+ s|k) � 0, %i(k+ s|k) ≺ 0,

%j(k + s|k) ≺ 0, and u∗j (·) is the solution obtained from a previous iteration and kept fixed in the current iteration.

As stated in [30], there does not exist any nonnegative control law such that a discrete-time positive system is stable.

Based on this point, we assume that the DMPC control law to be designed is negative, that is, uTi (k + s|k) ≺ 0.

Consequently, the corresponding parameters ς(k + s|k), %i(k + s|k), and %j(k + s|k) are introduced to guarantee the

validity of the performance index function.

3.2. DMPC Design

First, a stochastic linear co-positive Lyapunov function is constructed for the system (5). Then, a stochastic

stability condition is derived. Finally, a DMPC controller design is proposed for the system (5).

By (5) and (9), the closed-loop system is:

xi(k + s+ 1|k) =
(
Ai(p) +Bi(p)Fi(k, p)

)
xi(k + s|k) +

N∑
j=1,j 6=i

Bj(p)F
∗
j (k, p)xj(k + s|k)

=
(
A∗i (p) +Bi(p)Fi(k, p)

)
xi(k + s|k),

(12)

where rk+s|k = p, A∗i (p) = Ai(p)+
N∑

j=1,j 6=i
Bj(p)F

∗
j (k, p) and the second equation follows from xi(k+s|k) = xj(k+s|k).

Construct a stochastic linear co-positive Lyapunov function:

Vi(k + s|k) = xTi (k + s|k)vi(k, p), (13)

where vi(k, p) � 0, vi(k, p) ∈ <n. To obtain the bound of the performance index in (10), a robust stability condition

is introduced:

Vi(k + s+ 1|k)− Vi(k + s|k) ≤ −
(
xTi (k + s|k)ς(k + s|k) + uTi (k + s|k)%i(k + s|k)

+
N∑

j=1,j 6=i
u∗Tj (k + s|k)%j(k + s|k)

)
.

(14)

Theorem 1 (Controller design) (a) Interval uncertainty. If there exist constants ~ > 1, γi(k) > 0 and <n

vectors vi(k, p) � 0, ξ
(ı)
i (k, p) ≺ 0, ξi(k, p) ≺ 0 such that

A∗Ti (p)
S∑
q=1

πpqvi(k, q) + ξi(k, p)− vi(k, p) + ς∗(p) ≺ 0, (15a)

6



Ai(p)e
T
mi

(BT
i (p)

S∑
q=1

πpqvi(k, q) + %i(p)) + ~
N∑

j=1,j 6=i
Bj(p)

mi∑
ı=1

e
(ı)
miξ

(ı)T
j (k, p) +Bi(p)

mi∑
ı=1

e
(ı)
miξ

(ı)T
i (k, p) � 0, (15b)

eTmi
(BT

i (p)
S∑
q=1

πpqvi(k, q) + %i(p)) ≤ ~eTmj
(BT

j (p)
S∑
q=1

πpqvj(k, q) + %j(p)), (15c)

BT
i (p)

S∑
q=1

πpqvi(k, q) + %i(p) � 0, (15d)

ξ
(ı)
i (k, p) � ξi(k, p), ı = 1, 2, . . . ,mi, (15e)

and

xTi (k|k)vi(k, p) ≤ γi(k) (16)

hold ∀p ∈ S,∀(i, j) ∈ {1, . . . , N} × {1, . . . , N}, i 6= j, then under the control law

ui(k + s|k) = Fi(k, p)xi(k + s|k) =

∑mi
ı=1 e

(ı)
miξ

(ı)T
i (k, p)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %i(p))
xi(k + s|k), (17)

the interval uncertain system (5) is positive and satisfies the condition (14), whereA
∗
i (p) = Ai(p)+

N∑
j=1,j 6=i

Bj(p)F
∗
j (k, p).

(b) Polytopic uncertainty. If there exist constants ~ > 1, γi(k) > 0 and vectors vi(k, p) � 0 with vi(k, p) ∈ <n,
ρi(p) � 0 with ρi(p) ∈ <mi , ξ

(ı)
i (k, p) ∈ <n, ξi(k, p) ≺ 0 with ξi(k, p) ∈ <n such that

A
(l)∗T
i (p)

S∑
q=1

πpqvi(k, q) + ξi(k, p)− vi(k, p) + ς∗(p) ≺ 0, (18a)

A
(l)
i (p)eTmi

ρi(p) + ~
N∑

j=1,j 6=i
B

(l)
j (p)

mj∑
ı=1

e
(ı)
mjξ

(ı)T
j (k) +B

(l)
i (p)

mi∑
ı=1

e
(ı)
miξ

(ı)T
i (k) � 0, (18b)

B
(l)T
i (p)

S∑
q=1

πpqvi(k, q) + %i � ρi(p), (18c)

eTmi
ρi(p) ≤ ~eTmj

ρj(p), (18d)

ξ
(ı)
i (k, p) � ξi(k, p), ı = 1, 2, . . . ,mi, (18e)

and (16) hold ∀l ∈ {1, . . . , L},∀p ∈ S,∀(i, j) ∈ {1, . . . , N} × {1, . . . , N}, i 6= j, then under the control law

ui(k + s|k) = Fi(k, p)x(k + s|k) =

∑m
ı=1 e

(ı)
miξ

(ı)T
i (k, p)

eTmi
ρi(p)

x(k + s|k), (19)

the polytopic system (5) is positive and satisfies the condition (14), where A
(l)∗
i (p) = A

(l)
i (p) +

N∑
j=1,j 6=i

B
(l)
j (p)F ∗j (k, p).

Proof Along the system (12), the difference of the Lyapunov function in (13) is

Ek+s|k(∆Vi(k + s|k)) = Ek+s|k
(
Vi(k + s+ 1|k)− Vi(k + s|k)

)

= Ek+s|k
(
xTi (k + s+ 1|k)vi(k, rk+s+1|k)

)
− xTi (k + s|k)vi(k, p)

= xTi (k + s|k)
((
A∗i (p) +Bi(p)Fi(k, p)

)TEk+s|k(vi(k, rk+s+1|k))− vi(k, p)
)
.

(20)

Combining (9), (14), and (20) gives

xTi (k + s|k)
((
A∗i (p) +Bi(p)Fi(k, p)

)TEk+s|k(vi(k, rk+s+1|k))− vi(k, p)

+ ς(p) + F Ti (k, p)%i(p) +
N∑

j=1,j 6=i
F ∗Tj (k, p)%j(p)

)

≤ 0.

(21)
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By the expectation property of the Markov process, it follows that Ek+s|k(vi(k, rk+s+1|k)) =
∑S

q=1 πpqvi(k, q). Then,

the inequality (21) is equivalent to

xTi (k + s|k)
((
A∗i (p) +Bi(p)Fi(k, p)

)T ∑S
q=1 πpqvi(k, q)− vi(k, p) + ς∗(p) + F Ti (k, p)%i(p)

)
≤ 0, (22)

where ς∗(p) = ς(p) +
N∑

j=1,j 6=i
F ∗Tj (k, p)%j(p).

(a) Interval uncertainty. First, the positivity of the interval uncertain system (5) is discussed. By (15d), it

follows that eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %i(p)) > 0. By (15b),

Ai(p) + ~
N∑

j=1,j 6=i
Bj(p)

∑mi
ı=1 e

(ı)
miξ

(ı)T
j (k, p)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %i(p))
+Bi(p)

∑mi
ı=1 e

(ı)
miξ

(ı)T
i (k, p)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %i(p))
� 0.

It is easy to obtain from (15c) that ~
eTmi

(BT
i (p)

∑S
q=1 πpqvi(k,q)+%i(p))

≥ 1
eTmj

(BT
j (p)

∑S
q=1 πpqvj(k,q)+%j(p))

. Together with

ξ
(ı)
j (k, p) ≺ 0, (6), and (17) gives

0 � Ai(p) + ~
N∑

j=1,j 6=i
Bj(p)

∑mi
ı=1 e

(ı)
miξ

(ı)T
j (k, p)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %i(p))
+Bi(p)

∑mi
ı=1 e

(ı)
miξ

(ı)T
i (k, p)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %i(p))

� Ai(p) +
N∑

j=1,j 6=i
Bj(p)

∑mj

ı=1 e
(ı)
mjξ

(ı)T
j (k, p)

eTmj
(BT

j (p)
∑S

q=1 πpqvj(k, q) + %j(p))
+Bi(p)

∑mi
ı=1 e

(ı)
miξ

(ı)T
i (k, p)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %i(p))

= Ai(p) +

N∑

j=1,j 6=i
Bj(p)Fj(k, p) +Bi(p)Fi(k, p)

� Ai(p) +
N∑

j=1,j 6=i
Bj(p)Fj(k, p) +Bi(p)Fi(k, p),

which implies that the pth mode of the interval uncertain system (5) is positive by Lemma 1. Thus, the interval

uncertain system (5) is positive by Lemma 2.

Next, consider the validity of the condition (14). By (15c) and (17), the following inequalities hold:

F Ti (k, p)BT
i (p)

∑S
q=1 πpqvi(k, q) + F Ti (k, p)%i(p)

�
∑mi

ı=1 ξ
(ı)
i (k,p)e

(ı)T
mi

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k,q)+%i(p))
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %i(p))

�
∑mi

ı=1 ξi(k,p)e
(ı)T
mi

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k,q)+%i(p))
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %i(p))

=
ξi(k,p)e

T
mi

(BT
i (p)

∑S
q=1 πpqvi(k,q)+%i(p))

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k,q)+%i(p))

� ξi(k, p).

(23)

From (6) and (23),

(
A∗i (p) +Bi(p)Fi(k, p)

)T ∑S
q=1 πpqvi(k, q)− vi(k, p) + ς∗(p) + F Ti (k, p)%i(p)

� A∗Ti (p)
∑S

q=1 πpqvi(k, q) + ξi(k, p)− vi(k, p) + ς∗(p).
(24)

Combining the fact xTi (k + s|k) � 0, (15a), and (24) concludes that the condition (22) holds, that is, the condition

(14) is satisfied. Noting the facts eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %i(p)) > 0 and
∑mi

ı=1 e
(ı)
miξ

(ı)T
i (k, p) ≺ 0, it follows that

Fi(k, p) ≺ 0. Thus, ui(k + s|k) ≺ 0.

Finally, the upper bound of the performance index in (10) is obtained. Taking the expectation for both sides of

the condition (14) and summing it up from s = 0 to ∞ give

Ek(Vi(∞|k))− Ek(Vi(k)) ≤ −Ek
( ∞∑
s=0

(
xTi (k + s|k)ς(k + s|k) + uTi (k + s|k)%i(k + s|k)

+
N∑

j=1,j 6=i
u∗Tj (k + s|k)%j(k + s|k)

))
.
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From (14), it is easy to have Ek(Vi(∞|k)) = 0. Thus, Ji(k) ≤ Ek(Vi(k)) = xTi (k|k)vi(k, p). Let γi(k) be the upper

bound of Ji(k) satisfying γi(k) ≥ xTi (k|k)vi(k, p), which is just the condition (16).

(b) Polytopic uncertainty. Using (18b) follows that

A
(l)
i (p) + ~

N∑

j=1,j 6=i
B

(l)
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)T
j (k)

eTmi
ρi(p)

+B
(l)
i (p)

∑mi
ı=1 e

(ı)
miξ

(ı)T
i (k)

eTmi
ρi(p)

� 0.

By (18d), it derives that ~
eTmi

ρi(p)
≥ 1

eTmj
ρj(p)

. Together with ξ
(ı)
j (k, p) ≺ 0, (7), and (19) gives

0 � A(l)
i (p) + ~

N∑

j=1,j 6=i
B

(l)
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)T
j (k)

eTmi
ρi(p)

+B
(l)
i (p)

∑mi
ı=1 e

(ı)
miξ

(ı)T
i (k)

eTmi
ρi(p)

� A(l)
i (p) +

N∑

j=1,j 6=i
B

(l)
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)T
j (k)

eTmj
ρj(p)

+B
(l)
i (p)

∑mi
ı=1 e

(ı)
miξ

(ı)T
i (k)

eTmi
ρi(p)

= A
(l)
i (p) +

N∑

j=1,j 6=i
B

(l)
j (p)Fj(k, p) +B

(l)
i (p)Fi(k, p).

(25)

From (7) and (12), the polytopic uncertain system (5) can be rewritten as:

xi(k + s+ 1|k) =
∑L

l=1 λl

(
A

(l)
i (p) +

N∑
j=1,j 6=i

B
(l)
j (p)Fj(k, p) +B

(l)
i (p)Fi(k, p)

)
xi(k + s|k), (26)

where
∑L

l=1 λl = 1, λl ≥ 0. From (25), the system (26) is positive by Lemma 1.

By (18c) and (19), it holds that

F Ti (k, p)B
(l)T
i (p)

∑S
q=1 πpqvi(k, q) + F Ti (k, p)%i(p) �

∑mi
ı=1 ξi(k,p)e

(ı)T
mi

eTmi
ρi(p)

(B
(l)T
i (p)

∑S
q=1 πpqvi(k, q) + %i(p))

=
ξi(k,p)e

T
mi

(B
(l)T
i (p)

∑S
q=1 πpqvi(k,q)+%i(p))

eTmi
ρi(p)

� ξi(k, p).

(27)

From (7) and (27),

(
A∗i (p) +Bi(p)Fi(k, p)

)T ∑S
q=1 πpqvi(k, q)− vi(k, p) + ς∗(p) + F Ti (k, p)%i(p)

=
∑L

l=1 λl

((
A

(l)∗
i (p) +B

(l)
i (p)Fi(k, p)

)T ∑S
q=1 πpqvi(k, q)− vi(k, p) + ς∗(p) + F Ti (k, p)%i(p)

)

�∑L
l=1 λl

(
A

(l)∗T
i (p)

∑S
q=1 πpqvi(k, q) + ξi(k, p)− vi(k, p) + ς∗(p)

)
.

(28)

By (18a) and (28), it can be derived that the condition (22) holds, that is, the condition (14) is satisfied.

Finally, the upper bound of the performance index in (10) can be achieved by (16) and the corresponding proof

is the same as that in the interval uncertain case. �

Remark 1 In (17), a matrix decomposition technique is employed for the design of DMPC controller gain matrix

Fi(k, p). A decomposed form of Fi(k, p) in (17) is given by:

Fi(k, p) = 1
eTmi

(BT
i (p)v̂i(k)+%i(p))

(
e

(1)
miξ

(1)T
i (k, p) + e

(2)
miξ

(2)T
i (k, p) + · · ·+ e

(mi)
mi ξ

(mi)T
i (k, p)

)

= 1
eTmi

(BT
i (p)v̂i(k)+%i(p))

((
ξ

(1)
i (k, p),0, . . . ,0︸ ︷︷ ︸

mi

)T
+
(
0, ξ

(2)
i (k, p),0, . . . ,0︸ ︷︷ ︸

mi

)T
+
(
0, . . . ,0, ξ

(mi)
i (k, p)︸ ︷︷ ︸

mi

)T)
,

where 0 = (0, . . . , 0)T ∈ <n. Under the decomposed form, it is easy to transform the robust stable condition (14)

into (15a). Moreover, the positivity condition (15b) is obtained. It is clear that (15a) and (15b) are solved in terms

of linear programming. A similar method is used in (19).
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Remark 2 In [30], it was shown that there does not exist a nonnegative feedback controller such that a discrete-

time positive system is stable. Hence, the MPC controller in [30] was required to be negative. This paper follows

the method in [30]. It should be pointed out that there may exist a controller with nonnegative and non-positive

components such that the corresponding system is stable. Thus, it would be interesting to remove the sign restriction

of the DMPC in (17) and (19) in future work.

Remark 3 For general systems (non-positive), a Lyapunov function is usually constructed in a quadratic form:

V (x(k)) = xT (k)Px(k), where P is a positive definite matrix with compatible dimension. Such a quadratic form can

guarantee the positive definite property of the Lyapunov function. Stochastic Lyapunov functions with a quadratic

form are widely used for MJSs [9–13]. The state of positive systems is nonnegative. Therefore, a linear function:

V (x(k)) = xT (k)v can be chosen as the Lyapunov function of positive systems, where v � 0 with compatible

dimension. Under the linear Lyapunov function, linear programming is naturally employed as computation tool. A

linear approach including linear Lyapunov functions and linear programming has been employed for positive systems

[4–8]. Consequently, linear stochastic Lyapunov functions and linear programming have also been developed for

PMJSs [15–21]. In [39–43], the DMPC has been considered. In [41–43], linear matrix inequalities were chosen as the

computation method. For PMJSs, the number of linear matrix inequalities conditions may increase twice since the

positivity of the systems are required besides the stability. Consequently, the traditional DMPC framework is not

very suitable for PMJSs. From the Introduction, it is not hard to find that a linear approach is more effective for

positive systems than other approaches. Therefore, Theorem 1 proposes a linear Lyapunov function associated with

linear programming approach for the DMPC controller design of PMJSs.

Remark 4 To guarantee the linearity of the conditions (15) and (18), the parameter ~ is given. Two questions yield:

(i) how to choose the parameter, and (ii) whether the parameter will bring conservatism to Theorem 1. For the first

question, a suggested algorithm is provided later. A discussion on the second question is given as follows. For two

positive real numbers a and b, a fact is that there must exist a constant ~ > 1 such that a < ~b. This reveals that

the conditions (15d) and (18d) do not increase the restriction for the conditions (15) and (18), respectively. Take

(15b) and (18b) into account. If the inequality A+BK � 0 holds, then there must exist a constant ~ > 1 such that

A+ ~BK ′ � 0 holds, where A � 0, B � 0, and K = ~K ′. Based on this point, the conditions (15b) and (18b) do not

bring the conservatism to the conditions (15) and (18), respectively.

To obtain the value of γi(k), a linear programming can be implemented:

min
vi(k,p),ξ

(ı)
i (k,p),ξi(k,p)

γi(k) subject to (15) and (16) (or, (18) and (16)). (29)

To choose the value of ~ and compute (29), a suggestive algorithm is introduced as follows:

Algorithm 1

Step 1: Let ~ ∈ [1, ~̄], where ~̄ is a given constant. Set ~i = 1 + σi(~̄− 1), where i = 1, 2, · · · ,M,M ∈ N and σi is a

random number in the interval [0, 1].

Step 2: Substitute ~i, i = 1, 2, · · · ,M, into (15) (or, (18)). If the condition (15) (or, (18)) is feasible, denote the

corresponding values of ~i as ~fi, i = 1, 2, · · · ,Mf , where Mf ≤M and go to Step 4. Otherwise, go to Step 3.

Step 3: Choose ~ ∈ [~̄, ~̄′], where ~̄′ is a given constant. Set ~i = 1 + σi(~̄′ − ~̄), where i = 1, 2, · · · ,M ′,M ′ ∈ N and

σi is a random number in the interval [0, 1]. Repeat Step 2.

Step 4: Implement the optimization (29) for each ~fi, i = 1, 2, · · · ,Mf and find the minimal value of γi(k).
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Theorem 2 If the optimization (29) is feasible at time instant k for the initial state x(k) and initial mode rk, then

the optimization (29) is also feasible at any time instant k′ ≥ k. Moreover, the DMPC controller obtained from (29)

guarantees the stability of the system (5) with interval/polytopic uncertainties in the mean-square sense.

Proof (a) Interval uncertainty. Assume that the optimization (29) is feasible at the sample time instant k.

Denote the optimization solution as Φi(k) = {γ∗i (k), F ∗i (k, p), vi(k, p), ξ
(ı)
i (k, p), ξi(k, p), ~} and the control sequence

as Ui(k) = {ui(k), ui(k + 1|k), . . . , ui(k + M − 1|k)}, where M is the predictive step. By (16), Vi(k|k) ≤ γ∗i (k). At

the (k + 1)th sample time instant, construct a feasible solution as Φi(k + 1) = {γi(k + 1) = γ∗i (k), Fi(k + 1, p) =

F ∗i (k, p), vi(k, p), ξ
(ı)
i (k, p), ξi(k, p), ~} and a control sequence as Ui(k + 1) = {ui(k + 1|k), . . . , ui(k + M − 1|k), 0}.

First, Φi(k + 1) is a solution to (15). Then, the condition (14) holds, that is, V (k + 1|k + 1) ≤ V (k|k). Thus,

V (k + 1|k + 1) ≤ γ∗i (k) = γi(k + 1). This implies that the optimization (29) is feasible at the sample time instant

k + 1. By a recursive induction, the feasibility of the optimization (29) is reached.

From (15) and (20), we have Ek+s|k
(
Vi(k+s+1|k)

)
≤ Vi(k+s|k), ∀s = 1, 2, · · · . That is to say, Ek+s|k

(
Vi(k+s+1|k)

)

is non-increasing with time. As s→∞, Ek+s|k
(
Vi(k + s+ 1|k)

)
→ 0. Since Vi(k + s+ 1|k) ≥ αi ‖ xi(k + s+ 1|k) ‖1,

then Ek+s|k
(
‖ xi(k + s + 1|k) ‖1 |x(k), rk

)
→ 0, where αi = min

p=1,2,...,S,
j=1,2,...,n

v
(j)
i (k, p) with v

(j)
i (k, p) being the jth element

of vi(k, p). By Definition 2, the system (5) is stochastically stable.

(b) Polytopic uncertainty. The proof of the polytopic uncertainty case is similar to (a) and omitted. �

3.3. Handling Constraints

In this subsection, a linear programming approach is presented to handle the constraints in (8).

Theorem 3 (Handling constraints) (a) Interval uncertainty. If there exist constants ~ > 1, γi(k) > 0, ε > 0

and <n vectors vi(k, p) � 0, ξ
(ı)
i (k, p) ≺ 0, ξi(k, p) ≺ 0 such that (15), (16), and

vi(k, p) � εen, (30a)

γi(k) ≤ δε, (30b)

ηeTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %i(p))en + δ
∑mi

ı=1 ξ
(ı)
i (k, p)e

(ı)T
mi emp � 0, (30c)

hold ∀p ∈ S, ∀(i, j) ∈ {1, . . . , N} × {1, . . . , N}, i 6= j, then the constraints in (8) are handled under the control law

(17).

(b) Polytopic uncertainty. If there exist constants ~ > 1, γi(k) > 0, ε > 0 and vectors vi(k, p) � 0 with vi(k, p) ∈
<n, ρi(p) � 0 with ρi(p) ∈ <mi , ξ

(ı)
i (k, p) ∈ <n, ξi(k, p) ≺ 0 with ξi(k, p) ∈ <n such that (18), (16), and

vi(k, p) � εen,
γi(k) ≤ δε,

ηeTmi
ρi(p)en + δ

∑mi
ı=1 ξ

(ı)
i (k, p)e

(ı)T
mi emp � 0,

(31)

hold ∀l ∈ {1, . . . , L},∀p ∈ S,∀(i, j) ∈ {1, . . . , N} × {1, . . . , N}, i 6= j, then the constraints in (8) are handled under

the control law (19).

Proof (a) Interval uncertainty. From Theorem 1, the condition (14) holds. Then xTi (k + s + 1|k)vi(k, p) ≤
xTi (k + s|k)vi(k, p) ≤ · · · ≤ xTi (k|k)vi(k, p). Together with (16) gives xTi (k + s + 1|k)vi(k, p) ≤ γi(k). By (30a) and

(30b), it derives that

εxTi (k + s+ 1|k)en ≤ xTi (k + s+ 1|k)vi(k, p) ≤ γi(k) ≤ δε, (32)
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which verifies the validity of the constraint (8a).

Using (30c) gives

ηen + δ

∑mi
ı=1 ξ

(ı)
i (k, p)e

(ı)T
mi

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %i(p))
emi � 0.

Noting the control law in (17), it follows that −δF Ti (k, p)emi � ηen. Thus, −δxTi (k+s|k)F Ti (k, p)emp ≤ ηxTi (k+s|k)en,

that is, −uTi (k + s|k)emi ≤ η
δx

T
i (k + s|k)en. By (32), −uTi (k + s|k)emi = ‖u(k + s|k)‖1 ≤ η

δx
T
i (k + s|k)en ≤ η, which

handles the constraint (8b).

(b) Polytopic uncertainty. The proof is similar to that in (a) and omitted. �

To obtain the value of γi(k), a linear programming can be implemented:

min
vi(k,p),ξ

(ı)
i (k,p),ξi(k,p),ε

γi(k) subject to (15), (16), and (30) (or, (18), (16), and (31)). (33)

The conditions in Theorems 1 and 3 are all linear programming. Thus, the optimization (29) and (33) can be

solved in terms of linear programming.

3.4. Robust DMPC Algorithm

In this subsection, a cone as the invariant set is established for the systems. Then, a linear programming based

DMPC algorithm is proposed.

Lemma 3 (Invariant set) Define a cone Θi = {xi|xTi (k)vi(k, p) ≤ γi(k)}, ∀x(k) � 0, γp(k) > 0, ∀p ∈ {1, . . . , S}.
Then, Θi is an invariant set of the system (5).

By (15) and (18), the condition (14) holds. Together with (16), it is clear that Θi is an invariant set of the system

(5). From the proof of Theorem 2, it follows that Θi ∈ {x(k)|E{‖x(k)‖1|x0, r0} → 0}.
Theorem 4 If the optimization (33) is feasible at time instant k for the initial state x(k) and initial mode rk, then

the optimization (33) is also feasible at any time instant t ≥ k. Moreover, the DMPC controller obtained from (33)

guarantees the robustly stochastic stability of the system (5) with interval/polytopic uncertainties in the mean-square

sense.

The proof of Theorem 4 is similar to that in Theorem 2 and omitted. To solving the optimization (33), an

algorithm is given as follows:

Algorithm 2

Step 1: Set Fj(0, p) = 0 for k = 0. Choose a value ~ such that (33) is feasible using linear search method. Assume

that the feasible solutions are F
(0)
i (0, p). Set Fi(0, p) = F

(0)
i (0, p) at time instant k = 0.

Step 2: Fix the value ~ in Step 1 and implement the linear programming (33) at the time instant s = 1 to obtain

Fi(1, p).

Step 3: Implement the linear programming (33) at the time instant s = n to obtain Fi(n, p). If (33) is feasible, check

the convergence condition ‖Fi(n, p)− Fi(n− 1, p)‖1 ≤ εi, ∀i ∈ {1, . . . , N}, where εi > 0 is a prescribed error. If (33)

is infeasible, set Fi(n, p) = Fi(n− 1, p).

Step 4: Apply the control input ui(k + n|k) = Fi(k, p)x(k + n|k) to the corresponding subsystem and implement the

linear programming (33) at the time instant k = k + n+ 1 by repeating Step 3.
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4. Extensions to General Systems

In Section 3, the DMPC of PMJSs is considered. It has also been stated that the linear approach has some

advantages with respect to the quadratic approach. This section attempts to develop the approach in Section 3 for

general systems. In Section 3, the interval and polytopic uncertainties in (2) and (3) require the nonnegative property

of the system matrices. Here, the nonnegative restriction is removed, that is, the system matrices in (2) and (3) do

not contain any sign restriction. Assume that the considered systems can be positively stabilized, which means that

there exists a control law such that the considered systems are positive and stable.

We modify the optimization problem (10) as

min
ui(k+s|k)

i=1,2,...,N,s≥0

max
[Ai(rk) Bi(rk)]∈Ω1(or,Ω2)

i=1,2,...,N,rk+s|k∈S

Ji(k) subject to (5) and (8),
(34)

with the performance index function:

Ji(k) = Ek
{ ∞∑
s=0

(
xTi (k + s|k)ς(k + s|k) + u+T

i (k + s|k)%+
i (k + s|k) + u−Ti (k + s|k)%−i (k + s|k)

+
N∑

j=1,j 6=i

(
u∗−Tj (k + s|k)%−j (k + s|k) + u∗+Tj (k + s|k)%+

j (k + s|k)
))}

,
(35)

where xi(k+ s|k) and ui(k+ s|k) = u+
i (k+ s|k) + u−i (k+ s|k) with u+

i (k+ s|k) � 0 and u−i (k+ s|k) � 0 are the state

and input predicted at time instant k, ς(k+s|k) � 0, %+
i (k+s|k) � 0, %−i (k+s|k) ≺ 0, %+

j (k+s|k) � 0, %−j (k+s|k) ≺ 0,

and u∗j (·) = u+∗
j (·) + u−∗j (·) is the solution obtained from a previous iteration and kept fixed in the current iteration.

Remark 5 Considering the property of positive systems, a negative DMPC controller is designed in Section 3, that

is, ui(k + s|k) ≺ 0. For general systems, the negative DMPC controller is rigorous. Therefore, the sign restriction of

the controller is removed in this section. Consequently, the optimization (34) is introduced. For the DMPC of general

systems, a quadratic performance index is usually used [41–43]. Here, a positive system approach is employed to deal

with the DMPC problem of MJSs. Following the approach in Section 3, a linear performance index (35) is given.

The linear robust stability condition (14) is changed as:

Vi(k + s+ 1|k)− Vi(k + s|k)

≤ −
(
xTi (k + s|k)ς(k + s|k) + u+T

i (k + s|k)%+
i (k + s|k) + u−Ti (k + s|k)%−i (k + s|k)

+
N∑

j=1,j 6=i

(
u∗−Tj (k + s|k)%−j (k + s|k) + u∗+Tj (k + s|k)%+

j (k + s|k)
))
.

(36)

4.1. Interval Uncertainty

The first subsection first considers the interval uncertainty case. From Section 3, it can be found that the sign of

the system matrices Bi(p) is key to the DMPC design. The matrices Bi(p) is divided into Bi(p) = B−i (p) + B+
i (p),

where B−i (p) � 0 and B+
i (p) � 0 consisting of all non-positive and nonnegative elements of Bi(p), respectively. Then,

denote Bi(p) = B−i (p)+B+
i (p) and Bi(p) = B

−
i (p)+B

+
i (p), where B−i (p) � 0, B+

i (p) � 0, B
−
i (p) � 0, B

+
i (p) � 0 and

B−i (p), B+
i (p) and B

−
i (p), B

+
i (p) are the corresponding lower and upper bounds, respectively. For the cases B−i (p) = 0

and B+
i (p) = 0, the results are trivial and similar to Section 3. Therefore, only the cases B−i (p) 6= 0 and B+

i (p) 6= 0

are considered. Accordingly, the controller gain is given as: Fi(k, p) = F−i (k, p) + F+
i (k, p), where F−i (k, p) � 0 and

F+
i (k, p) � 0.
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Theorem 5 (Controller design) If there exist constants ~1 > 1, ~2 > 1, γi(k) > 0 and <n vectors vi(k, p) � 0,

ξ
(ı)+
i (k, p) � 0, ξ+

i (k, p) � 0, ξ
(ı)−
i (k, p) ≺ 0, ξ−i (k, p) ≺ 0 such that

A
∗T
i (p)

∑S
q=1 πpqvi(k, q) + ~2ξ

+
i (k, p) + ξ−i (k, p)− vi(k, p) + ς∗(p) ≺ 0, (37a)

Ai(p)e
T
mi

(BT
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p)) + 1

~1

N∑
j=1,j 6=i

B+
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p)

+~1

N∑
j=1,j 6=i

B−j (p)
∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p) + ~1

N∑
j=1,j 6=i

B
+
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p)

+ 1
~1

N∑
j=1,j 6=i

B
−
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p) +Bi(p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p) +Bi(p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p) � 0,

(37b)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %−i (p)) ≤ ~1e
T
mj

(BT
j (p)

∑S
q=1 πpqvj(k, q) + %−j (p)), (37c)

eTmi
(B

T
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p)) ≤ ~2e

T
mi

(BT
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p)), (37d)

BT
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p) � 0, (37e)

ξ
(ı)+
i (k, p) � ξ+

i (k, p), ξ
(ı)−
i (k, p) � ξ−i (k, p), ı = 1, 2, . . . ,mi, (37f)

and (16) hold ∀p ∈ S,∀(i, j) ∈ {1, . . . , N} × {1, . . . , N}, i 6= j, then under the control law ui(k+ s|k) = Fi(k, p)xi(k+

s|k) = (F+
i (k, p) + F−i (k, p))xi(k + s|k) with

F+
i (k, p) =

∑mi
ı=1 e

(ı)
miξ

(ı)+T
i (k, p)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %−i (p))
, F−i (k, p) =

∑mi
ı=1 e

(ı)
miξ

(ı)−T
i (k, p)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %−i (p))
, (38)

the interval uncertain system (5) is positive and satisfies the condition (36), or there exist constants 1 > ~1 >

0, γi(k) > 0 and <n vectors vi(k, p) � 0, ξ
(ı)+
i (k, p) � 0, ξ+

i (k, p) � 0, ξ
(ı)−
i (k, p) ≺ 0, ξ−i (k, p) ≺ 0 such that

A
∗T
i (p)

∑S
q=1 πpqvi(k, q) + ξ+

i (k, p) + ξ−i (k, p)− vi(k, p) + ς∗(p) ≺ 0,

Ai(p)e
T
mi

(BT
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p)) + ~1

N∑
j=1,j 6=i

B+
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p)

+ 1
~1

N∑
j=1,j 6=i

B−j (p)
∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p) + 1

~1

N∑
j=1,j 6=i

B
+
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p)

+~1

N∑
j=1,j 6=i

B
−
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p) +Bi(p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p) +Bi(p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p) � 0,

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %−i (p)) ≤ ~1e
T
mj

(BT
j (p)

∑S
q=1 πpqvj(k, q) + %−j (p)),

B
T
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p) ≺ 0,

ξ
(ı)+
i (k, p) � ξ+

i (k, p), ξ
(ı)−
i (k, p) � ξ−i (k, p), ı = 1, 2, . . . ,mi,

(39)

and (16) hold ∀p ∈ S,∀(i, j) ∈ {1, . . . , N} × {1, . . . , N}, i 6= j, then under the control law ui(k+ s|k) = Fi(k, p)xi(k+

s|k) = (F+
i (k, p) + F−i (k, p))xi(k + s|k) with

F+
i (k, p) =

∑mi
ı=1 e

(ı)
miξ

(ı)−T
i (k, p)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %−i (p))
, F−i (k, p) =

∑mi
ı=1 e

(ı)
miξ

(ı)+T
i (k, p)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %−i (p))
, (40)

the interval uncertain system (5) is positive and satisfies the condition (36), where

A
∗
i (p) = Ai(p) +

N∑
j=1,j 6=i

(Bj(p)F
+∗
j (k, p) +Bj(p)F

−∗
j (k, p)).
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Proof Consider the validity of Theorem 5 under the condition (37). The proof of the condition (38) is similar and

omitted. By (37e), it follows that eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %−i (p)) > 0. By (37c), it is easy to obtain

~1

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %−i (p))
≥ 1

eTmj
(BT

j (p)
∑S

q=1 πpqvj(k, q) + %−j (p))

≥ 1

~1eTmi
(BT

i (p)
∑S

q=1 πpqvi(k, q) + %−i (p))
.

(41)

Together with ξ
(ı)+
j (k, p) � 0, ξ

(ı)−
j (k, p) ≺ 0, and (6) gives

Ai(p) +
N∑

j=1,j 6=i
Bj(p)Fj(k, p) +Bi(p)Fi(k, p)

= Ai(p) +
N∑

j=1,j 6=i
Bj(p)(F

+
j (k, p) + F−j (k, p)) +Bi(p)(F

+
i (k, p) + F−i (k, p))

� Ai(p) +
N∑

j=1,j 6=i

(
Bj(p)F

+
j (k, p) +Bj(p)F

−
j (k, p)

)
+
(
Bi(p)F

+
i (k, p) +Bi(p)F

−
i (k, p)

)
.

(42)

By (38) and (41),

Bj(p)F
+
j (k, p) � B+

j (p)

∑mj
ı=1 e

(ı)
mj
ξ
(ı)+T
j (k,p)

~1eTmi
(BT

i (p)
∑S

q=1 πpqvj(k,q)+%−i (p))
+B−j (p)

~1
∑mj

ı=1 e
(ı)
mj
ξ
(ı)+T
j (k,p)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k,q)+%
−
i (p))

,

Bj(p)F
−
j (k, p) � B+

j (p)
~1

∑mj
ı=1 e

(ı)
mj
ξ
(ı)−T
j (k,p)

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k,q)+%
−
i (p))

+B
−
j (p)

∑mj
ı=1 e

(ı)
mj
ξ
(ı)−T
j (k,p)

~1eTmi
(BT

i (p)
∑S

q=1 πpqvi(k,q)+%
−
i (p))

.

(43)

Substituting (43) into (42) yields that

Ai(p) +
∑N

j=1,j 6=iBj(p)Fj(k, p) +Bi(p)Fi(k, p)

� 1
eTmi

(BT
i (p)

∑S
q=1 πpqvi(k,q)+%i(p))

(
eTmi

(BT
i (p)

∑S
q=1 πpqvi(k, q) + %i(p))Ai(p)

+ 1
~1

N∑
j=1,j 6=i

B+
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p) + ~1

∑N
j=1,j 6=iB

−
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p)

+ ~1

N∑
j=1,j 6=i

B
+
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p) + 1

~1
∑N

j=1,j 6=iB
−
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p)

+Bi(p)
∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p) +Bi(p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p)

)
.

(44)

From (37b), it is clear that Ai(p) +
N∑

j=1,j 6=i
Bj(p)Fj(k, p) +Bi(p)Fi(k, p) � 0, which implies that the pth mode of the

interval uncertain system (5) is positive by Lemma 1. Thus, the interval uncertain system (5) is positive by Lemma

2.

Next, consider the validity of the condition (36). Similar to (14), the condition (36) is equivalent to:

xTi (k + s|k)
((
A∗i (p) +Bi(p)Fi(k, p)

)T ∑S
q=1 πpqvi(k, q)− vi(k, p) + ς∗(p) + F+T

i (k, p)%+
i (p) + F−Ti (k, p)%−i (p)

)
≤ 0,

where ς∗(p) = ς(p) +
N∑

j=1,j 6=i
(F+∗T

j (k, p)%+
j (p) + F−∗Tj (k, p)%−j (p)). By (37d) and (38),

F Ti (k, p)BT
i (p)

∑S
q=1 πpqvi(k, q) + F+T

i (k, p)%+
i (p) + F−Ti (k, p)%−i (p)

=
∑mi

ı=1 ξ
(ı)+
i (k,p)e

(ı)T
mi

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k,q)+%
−
i (p))

(BT
i (p)

∑S
q=1 πpqvi(k, q) + %+

i (p))

+
∑mi

ı=1 ξ
(ı)−
i (k,p)e

(ı)T
mi

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k,q)+%
−
i (p))

(BT
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p))

�
∑mi

ı=1 ξ
(ı)+
i (k,p)e

(ı)T
mi

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k,q)+%
−
i (p))

(B
T
i (p)

∑S
q=1 πpqvi(k, q) + %+

i (p))

+
∑mi

ı=1 ξ
(ı)−
i (k,p)e

(ı)T
mi

eTmi
(BT

i (p)
∑S

q=1 πpqvi(k,q)+%
−
i (p))

(BT
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p))

� ~2ξ
+
i (k, p) + ξ−i (k, p).

(45)
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From (6) and (45),

(
A∗i (p) +Bi(p)Fi(k, p)

)T ∑S
q=1 πpqvi(k, q)− vi(k, p) + ς∗(p) + F+T

i (k, p)%+
i (p) + F−Ti (k, p)%−i (p)

� A∗Ti (p)
∑S

q=1 πpqvi(k, q) + ~2ξ
+
i (k, p) + ξ−i (k, p)− vi(k, p) + ς∗(p).

(46)

Combining the fact xTi (k + s|k) � 0, (37a), and (46) concludes that the condition (36) holds. �

Remark 6 In Theorem 1, the open-loop interval uncertain system (5) is assumed to be positive. The condition (15b)

is presented to guarantee the positivity of the corresponding closed-loop system. In Theorem 5, a positive system

approach is used for the DMPC of general systems (non-positive open-loop systems). To guarantee the positivity of

the system (5), the condition (37b) is introduced. Noting the controller gain matrices in (17) and (38), the former is

required to be negative whereas the latter is not. Assume that Theorem 5 employs a similar controller to (17), then

the corresponding positivity condition has a similar form to (15b). On the other hand, the DMPC design approach

in Theorem 5 can be developed for Theorem 1 and remove the sign restriction of the DMPC controller gain matrix

in Theorem 1.

Theorem 6 (Handling constraints) If there exist constants ~1 > 1, ~2 > 1, γi(k) > 0, ε > 0 and <n vectors

vi(k, p) � 0, ξ
(ı)+
i (k, p) � 0, ξ+

i (k, p) � 0, ξ
(ı)−
i (k, p) ≺ 0, ξ−i (k, p) ≺ 0 such that (37), (16), and

vi(k, p) � εen, (47a)

γi(k) ≤ δε, (47b)

δ
∑mi

ı=1 ξ
(ı)+
i (k, p)e

(ı)T
mi emp − δ

∑mi
ı=1 ξ

(ı)−
i (k, p)e

(ı)T
mi emp − ηeTmi

(BT
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p))en � 0, (47c)

hold ∀p ∈ S, ∀(i, j) ∈ {1, . . . , N} × {1, . . . , N}, i 6= j, then the constraints in (8) are handled under the control law

(38), or there exist constants 1 > ~1 > 0, γi(k) > 0, ε > 0 and vectors vi(k, p) � 0, ξ
(ı)+
i (k, p) � 0, ξ+

i (k, p) � 0,

ξ
(ı)−
i (k, p) ≺ 0, ξ−i (k, p) ≺ 0 such that (39), (16), and

vi(k, p) � εen,
γi(k) ≤ δε,

δ
∑mi

ı=1 ξ
(ı)−
i (k, p)e

(ı)T
mi emp − δ

∑mi
ı=1 ξ

(ı)+
i (k, p)e

(ı)T
mi emp − ηeTmi

(BT
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p))en � 0,

(48)

hold ∀p ∈ S, ∀(i, j) ∈ {1, . . . , N} × {1, . . . , N}, i 6= j, then the constraints in (8) are handled under the control law

(40).

Proof From (47c) and (38), δF+T
i (k, p)emp−δF−Ti (k, p)emp−ηen � 0. Thus, δu+T

i (k+s|k)emp−δu−Ti (k+s|k)emp ≤
ηxT (k + s|k)en, and consequently,

‖ui(k + s|k)‖1 ≤ ‖u+
i (k + s|k)‖1 + ‖u−i (k + s|k)‖1 = u+T

i (k + s|k)emp − u−Ti (k + s|k)emp ≤ η.

The proof of the second case is similar to the first case and is omitted. �

Theorems 5 and 6 have developed the DMPC design approach of interval positive systems to general systems.

The feasibility and robustly stochastic stability of the systems can be given using similar methods in Theorems 3 and

4.
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4.2. Polytopic Uncertainty

This subsection further develops the approach in Section 3 for the polytopic case. Similar to Subsection 4.1, the

sign restriction of the system matrices is removed. Denote B
(l)
i (p) = B

(l)−
i (p) + B

(l)+
i (p), where B

(l)−
i (p) � 0 and

B
(l)+
i (p) � 0.

Theorem 7 (Controller design) If there exist constants ~1 > 1, ~2 > 1, γi(k) > 0 and vectors vi(k, p) � 0,

ξ
(ı)+
i (k, p) � 0, ξ+

i (k, p) � 0, ξ
(ı)−
i (k, p) ≺ 0, ξ−i (k, p) ≺ 0, ρi(p) � 0 such that

A
(l)∗T
i (p)

∑S
q=1 πpqvi(k, q) + ~2ξ

+
i (k, p) + ξ−i (k, p)− vi(k, p) + ς∗(p) ≺ 0, (49a)

A
(l)
i (p)eTmi

ρi(p) + 1
~1
∑N

j=1,j 6=iB
(l)+
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p) + ~1

∑N
j=1,j 6=iB

(l)+
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p)

+~1
∑N

j=1,j 6=iB
(l)−
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p) + ~1

∑N
j=1,j 6=iB

(l)−
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p)

+B
(l)
i (p)

∑mi
ı=1 e

(ı)
miξ

(ı)+T
i (k, p) +B

(l)
i (p)

∑mi
ı=1 e

(ı)
miξ

(ı)−T
i (k, p) � 0,

(49b)

eTmi
ρi(p) ≤ ~1e

T
mj
ρj(p), (49c)

B
(l)T
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p) � ρi(p), (49d)

B
(l)T
i (p)

∑S
q=1 πpqvi(k, q) + %+

i (p) ≺ ~2ρi(p), (49e)

ξ
(ı)+
i (k, p) � ξ+

i (k, p), ξ
(ı)−
i (k, p) � ξ−i (k, p), ı = 1, 2, . . . ,mi, (49f)

and (16) hold ∀p ∈ S, ∀l ∈ {1, . . . , L},∀(i, j) ∈ {1, . . . , N}×{1, . . . , N}, i 6= j, then under the control law ui(k+s|k) =

Fi(k, p)xi(k + s|k) = (F+
i (k, p) + F−i (k, p))xi(k + s|k) with

F+
i (k, p) =

∑mi
ı=1 e

(ı)
miξ

(ı)+T
i (k, p)

eTmi
ρi(p)

, F−i (k, p) =

∑mi
ı=1 e

(ı)
miξ

(ı)−T
i (k, p)

eTmi
ρi(p)

, (50)

the polytopic system (5) is positive and satisfies the condition (36), or there exist constants 1 > ~1 > 0, γi(k) > 0 and

vectors vi(k, p) � 0, ξ
(ı)+
i (k, p) � 0, ξ+

i (k, p) � 0, ξ
(ı)−
i (k, p) ≺ 0, ξ−i (k, p) ≺ 0, ρi(p) ≺ 0 such that

A
(l)∗T
i (p)

∑S
q=1 πpqvi(k, q) + ξ+

i (k, p) + ξ−i (k, p)− vi(k, p) + ς∗(p) ≺ 0,

A
(l)
i (p)eTmi

ρi(p) + ~1
∑N

j=1,j 6=iB
(l)+
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p) + 1

~1
∑N

j=1,j 6=iB
(l)+
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p)

+ 1
~1
∑N

j=1,j 6=iB
(l)−
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p) + 1

~1
∑N

j=1,j 6=iB
(l)−
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p)

+B
(l)
i (p)

∑mi
ı=1 e

(ı)
miξ

(ı)+T
i (k, p) +B

(l)
i (p)

∑mi
ı=1 e

(ı)
miξ

(ı)−T
i (k, p) � 0,

eTmi
ρi(p) ≤ ~1e

T
mj
ρj(p),

B
(l)T
i (p)

∑S
q=1 πpqvi(k, q) + %+

i (p) ≺ ρi(p),
ξ

(ı)+
i (k, p) � ξ+

i (k, p), ξ
(ı)−
i (k, p) � ξ−i (k, p), ı = 1, 2, . . . ,mi,

(51)

and (16) hold ∀p ∈ S, ∀l ∈ {1, . . . , L},∀(i, j) ∈ {1, . . . , N}×{1, . . . , N}, i 6= j, then under the control law ui(k+s|k) =

Fi(k, p)xi(k + s|k) = (F+
i (k, p) + F−i (k, p))xi(k + s|k) with

F+
i (k, p) =

∑mi
ı=1 e

(ı)
miξ

(ı)−T
i (k, p)

eTmi
ρi(p)

, F−i (k, p) =

∑mi
ı=1 e

(ı)
miξ

(ı)+T
i (k, p)

eTmi
ρi(p)

, (52)

the polytopic system (5) is positive and satisfies the condition (36), where A
(l)∗
i (p) = A

(l)
i (p)+

N∑
j=1,j 6=i

B
(l)
j (p)F ∗j (k, p).

Proof Consider the proof of the condition (49). By (49c), it follows that ~
eTmi

ρi(p)
≥ 1

eTmj
ρj(p)

≥ 1
~eTmi

ρi(p)
. Together

17



with (7) and (50) gives

A
(l)
i (p) +

N∑
j=1,j 6=i

B
(l)
j (p)Fj(k, p) +B

(l)
i (p)Fi(k, p)

� 1
eTmi

ρi(p)

(
A

(l)
i (p) + 1

~1

N∑
j=1,j 6=i

B
(l)+
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p) + ~1

N∑
j=1,j 6=i

B
(l)+
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p)

+ ~1

N∑
j=1,j 6=i

B
(l)−
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)+T
j (k, p) + ~1

N∑
j=1,j 6=i

B
(l)−
j (p)

∑mj

ı=1 e
(ı)
mjξ

(ı)−T
j (k, p)

+B
(l)
i (p)

∑mi
ı=1 e

(ı)
miξ

(ı)+T
i (k, p) +B

(l)
i (p)

∑mi
ı=1 e

(ı)
miξ

(ı)−T
i (k, p)

)
.

By (49b), A
(l)
i (p) +

N∑
j=1,j 6=i

B
(l)
j (p)Fj(k, p) +B

(l)
i (p)Fi(k, p) � 0. Thus, the system (26) is positive by Lemma 1.

Next, the validity of the condition (36) is given. By (49d) and (49e),

F Ti (k, p)BT
i (p)

∑S
q=1 πpqvi(k, q) + F+T

i (k, p)%+
i (p) + F−Ti (k, p)%−i (p)

=
∑L

l=1 λl

(
F+T
i (k, p)

(
B

(l)T
i (p)

∑S
q=1 πpqvi(k, q) + %+

i (p)
)

+ F−Ti (k, p)
(
B

(l)T
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p)

))

=
∑L

l=1 λl

(∑mi
ı=1 ξ

(ı)+
i (k,p)e

(ı)T
mi

eTmi
ρi(p)

(B
(l)T
i (p)

∑S
q=1 πpqvi(k, q) + %+

i (p))

+
∑mi

ı=1 ξ
(ı)−
i (k,p)e

(ı)T
mi

eTmi
ρi(p)

(B
(l)T
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p))

)

�∑L
l=1 λl

(
~2ξ

+
i (k, p) + ξ−i (k, p)

)
.

Thus,

(
A∗i (p) +Bi(p)Fi(k, p)

)T ∑S
q=1 πpqvi(k, q)− vi(k, p) + ς∗(p) + F+T

i (k, p)%+
i (p) + F−Ti (k, p)%−i (p)

=
∑L

l=1 λl

((
A

(l)∗
i (p) +B

(l)
i (p)Fi(k, p)

)T ∑S
q=1 πpqvi(k, q)− vi(k, p)

+ ς∗(p) + F+T
i (k, p)%+

i (p) + F−Ti (k, p)%−i (p)
)

�∑L
l=1 λl

(
A

(l)∗T
i (p)

∑S
q=1 πpqvi(k, q) + ~2ξ

+
i (k, p) + ξ−i (k, p)− vi(k, p) + ς∗(p)

)
.

By (49a), it follows that the condition (36) holds. �

Theorem 8 (Handling constraints) If there exist constants ~1 > 1, ~2 > 1, γi(k) > 0, ε > 0 and vectors vi(k, p) � 0,

ξ
(ı)+
i (k, p) � 0, ξ+

i (k, p) � 0, ξ
(ı)−
i (k, p) ≺ 0, ξ−i (k, p) ≺ 0, ρi(p) � 0 such that (49), (16), and

vi(k, p) � εen,
γi(k) ≤ δε,

δ
∑mi

ı=1 ξ
(ı)+
i (k, p)e

(ı)T
mi emp − δ

∑mi
ı=1 ξ

(ı)−
i (k, p)e

(ı)T
mi emp − ηeTmi

ρi(p)en � 0,

(53)

hold ∀p ∈ S, ∀(i, j) ∈ {1, . . . , N} × {1, . . . , N}, i 6= j, then the constraints in (8) are handled under the control law

(50), or there exist constants 1 > ~1 > 0, γi(k) > 0, ε > 0 and vectors vi(k, p) � 0, ξ
(ı)+
i (k, p) � 0, ξ+

i (k, p) � 0,

ξ
(ı)−
i (k, p) ≺ 0, ξ−i (k, p) ≺ 0, ρi(p) ≺ 0 such that (51), (16), and

vi(k, p) � εen,
γi(k) ≤ δε,

δ
∑mi

ı=1 ξ
(ı)−
i (k, p)e

(ı)T
mi emp − δ

∑mi
ı=1 ξ

(ı)+
i (k, p)e

(ı)T
mi emp − ηeTmi

ρi(p)en � 0,

(54)

hold ∀p ∈ S, ∀(i, j) ∈ {1, . . . , N} × {1, . . . , N}, i 6= j, then the constraints in (8) are handled under the control law

(52).

Replacing the term BT
i (p)

∑S
q=1 πpqvi(k, q) + %−i (p) in Theorem 6 by ρi(p), the proof of Theorem 8 can be given

using a similar method to that in Theorem 6.
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Remark 7 In [41], the DMPC of MJSs was investigated based on quadratic Lyapunov functions and linear matrix

inequalities. The DMPC of MJSs is proposed in this section using a positive system approach. Different from the

DMPC in [41], a linear Lyapunov function associated with linear programming is used in Theorems 5-8. The main

advantage of the DMPC in Theorems 5-8 is that a linear programming based DMPC algorithm is employed. As we all

know, linear matrix inequalities based predictive algorithm will lead to a heavy computation burden. Especially, for

large-scale computation, linear matrix inequalities have a low capacity. Linear programming overcomes the drawbacks

of linear matrix inequalities. On one hand, the linear programming based conditions have a simple form. On the other

hand, linear programming is powerful for dealing with large-scale computation. These points improve the traditional

DMPC approach.

Remark 8 The obtained results in Theorems 5-8 imply that the sign of the states will be kept invariant under the

designed DMPC controller. That is to say, the corresponding state component is nonnegative (non-positive) if some

component of initial conditions is nonnegative (non-positive). Thus, the states are easy to be caught by the initial

condition. It should also be pointed out that the extensions in this section have a prerequisite that the considered

systems can be positively stabilized. However, not all systems satisfy the prerequisite. Up to now, there is no method

to judge which class of systems can be positively stabilized. This brings conservatism to the obtained results. In

practice, one may decide whether the results are available by checking the validity of the conditions in theorems.

This paper has proposed the DMPC design for PMJSs and then developed the obtained approach for MJSs. All

considered systems are linear. As we all know, nonlinear systems have advantages in modeling practical dynamic

processes [44, 45] with respect to linear systems. There have also been some results on nonlinear PMJSs [20, 21], the

nonlinear MPC [28], and the MPC of nonlinear MJSs [27]. For positive systems, few efforts are devoted to the topics

mentioned above. There are three interesting issues in future work: (i) how to developed the DMPC framework

proposed in this paper for nonlinear PMJSs and (ii) how to construct a nonlinear MPC (DMPC) framework for

nonlinear PMJSs.

5. Illustrative Example

Susceptible-exposed-infected-removed (SEIR) is one of the most commonly used models in epidemics [47]. In such

a model, there are four classes of individuals: (i) Susceptible individuals (named S) who have a large possibility to

contract the disease; (ii) Asymptomatic but infectious individuals, also called exposed individuals (named E) who may

transmit the disease to S; (iii) Symptomatic but infectious individuals (named I) who may transmit the disease to S;

and (iii) Recovered individuals (named R) who are permanently immune, the recovery, or death. Such a simple model

represents well a generic behavior of epidemics, and a related advantage consists in a small number of parameters to

identify. In [48], a modified SEIR discrete-time model was proposed to model the epidemics trend of COVID-19 in

China:

S(k + 1) = S(k)− bpcI(k)+r(k)E(k)
N S(k), (55a)

E(k + 1) = (1− σ)E(k) + bpcI(k)+r(k)E(k)
N S(k), (55b)

I(k + 1) = (1− χ)I(k) + σE(k), (55c)

R(k + 1) = R(k) + χI(k), (55d)
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where k ∈ N is the time counted in days, N denotes the total population, the parameter 0 < χ < +∞ represents the

mortality and recovery rates, the parameter 0 < b < +∞ corresponds to the infection rate of the virus transmission

from infectious to susceptibilities, 0 < σ < +∞ is the incubation rate by which the exposed develop symptoms,

0 < pc < +∞ corresponds to the number of contacts for the infectious I, and pc ≤ r(k) < +∞ is the number of

contacts per person per day for the exposed population E.

It is not hard to know that the system (55) is positive since the number of four classes individuals is nonnegative.

For the corresponding analysis and synthesis, it is reasonable to employ a positive system approach. In [9], a positive

system approach has been used to model HIV mitigating virus escape process. It is worthy noting that HIV is

essentially a epidemic. This further reveals that positive systems play a key role in modeling epidemics. Note the

fact that R(k) is easy to be obtained when I(k) is known. Therefore, the SEIR model (55) is modified as SEI model

(55a)-(55c). It is also necessary to point out that the exposed and infectious population will affect the susceptible

population, the symptomatic persons will affect the asymptomatic persons, and the susceptible persons may become

the symptomatic persons. In addition, the inequality 0 < bpcI(k)+r(k)E(k)
N < 1 holds. Based on these points, the SEIR

model (55) is rewritten as:

S(k + 1) = a11S(k) + a12E(k) + a13I(k),

E(k + 1) = a21S(k) + a22E(k) + a23I(k),

I(k + 1) = a31S(k) + a32E(k) + a33I(k),

(56)

where a11 = 1− bpcI(k)+r(k)E(k)
N , a22 = 1− σ, a32 = σ, a33 = 1− χ and a12, a13, a21, a23, a31 are unknown nonnegative

weighted coefficients. The system (56) is a predicted model to estimate the population of four classes of individuals.

Indeed, a more important issue is how to contain the deterioration of epidemic. Therefore, it is necessary to introduce

some effective control strategies for (56). Quarantine is one of available strategies in the absence of specific drugs

and vaccines. From the viewpoint of control theory, quarantine is to move the people from the infection zone to a

safe zone or restrict their behaviors, that is, the control input u(k) ≺ 0. In different zones, several SEI models can

be established. Meanwhile, different individuals in different zones will correlate with each other. A Markov jump

process is more suitable for modeling the dynamics of epidemics. In existing literature, such as [47] and [48], some

identification methods were used to obtain the values of parameters b, pc, r(k), σ, χ. Considering that the measured

data and parameters contain numerous uncertainties, it is difficult to make a reasonable prediction based on the SEIR

model with fixed values of parameters. Thus, an interval approach has already been applied to SEIR models in [49]

and [50].

By these analysis above, the system (1) with interval uncertainty is employed to re-construct SEIR for epidemics,

where

A(1) =




0.34 0.36 0.35

0.35 0.33 0.36

0.32 0.35 0.34


 , A(1) =




0.45 0.37 0.36

0.36 0.44 0.37

0.42 0.36 0.35


 , B(1) =




0.01 0.01

0.02 0.02

0.02 0.02


 , B(1) =




0.05 0.05

0.04 0.04

0.03 0.03


 ,

and

A(2) =




0.35 0.34 0.36

0.36 0.33 0.35

0.35 0.32 0.34


 , A(2) =




0.36 0.35 0.37

0.37 0.34 0.36

0.36 0.33 0.35


 , B(2) =




0.02 0.02

0.01 0.01

0.03 0.03


 , B(2) =




0.03 0.03

0.03 0.03

0.06 0.06


 .
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Give the initial condition x(k) = (2 × 106 5 × 105 4 × 104)T . Using Algorithm 1 gives ~ = 2.11. Then, implement

Algorithm 2 via 40 iterations. Here, the variables in the first predicted step are obtained:

v1(0, 1) =




0.1498

0.1400

0.1330


 , v1(0, 2) =




0.1497

0.1399

0.1329


 , v2(0, 1) =




0.1369

0.1359

0.1327


 , v2(0, 2) =




0.1368

0.1358

0.1326


 ,

ξ
(1)
1 (0, 1) =




−0.0124

−0.0205

−0.0222


 , ξ

(1)
1 (0, 2) =




−0.0123

−0.0204

−0.0222


 , ξ

(1)
2 (0, 1) =




−0.0131

−0.0128

−0.0118


 , ξ

(1)
2 (0, 2) =




−0.0130

−0.0127

−0.0117


 .

Then, the DMPC controller gain matrices are

F T1 (0, 1) =




−1.8056

−2.9896

−3.2535


 , F T1 (0, 2) =




−0.0130

−0.0127

−0.0117


 , F T2 (0, 1) =




−1.6381

−1.6036

−1.4810


 , F T2 (0, 2) =




−0.1982

−0.1982

−1.1749


 .

Denote x(k) = (x1(k) x2(k) x3(k))T and x(k) = (x1(k) x2(k) x3(k))T as the upper and lower bounds of the state

x(k), respectively. Figures 1-3 show the simulations of the states and their lower and upper bounds, Figure 4 is the

control input, and Figure 5 is the Markov jump signal. From Figures 1-3, it is clear that the infectious individuals are

contained in a limited scope. From Figure 4, the quarantine population is much at the first 30 sample time instants

(days) and it is few after 60 days. In Figure 4, the quarantine population at the beginning of spread of epidemics is

more than the sum of the susceptible, asymptomatic, and symptomatic infectious individuals. In practice, this is un-

reasonable. Indeed, it means that all individuals are required to implement the quarantine strategy if the quarantine

population in Figure 4 is more than the sum of the susceptible, asymptomatic, and symptomatic infectious individuals.
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Figure 1: The simulations of the state x1(k) and its upper and lower bounds
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Figure 2: The simulations of the state x2(k) and its upper and lower bounds
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Figure 3: The simulations of the state x3(k) and its upper and lower bounds
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Figure 4: The simulations of the control input u(k)
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Markov jump signal

Figure 5: One of Markov jump signals
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Remark 9 The literature [47–50] was concerned with the modeling, the parameter identification of models, and the

state estimation. These literature can provide some available modeling of SEIR and present some effective predict

for the trend of epidemics. However, few strategies are devoted to how to contain epidemics. It is fundamentally

important to propose effective approaches to suppress the spread of epidemics. In this section, a suggestive DMPC

approach is given to fill the mentioned gap. It should be pointed out that the parameters in the considered system

are not from a real case in some zone. In practice, one can utilize the methods in [47–50] to identify parameters by

virtue of some real data. Then, the approach in this section can be used to contain epidemics.

6. Conclusions and future work

This paper has presented a DMPC framework for PMJSs. Different from the DMPC of MJSs, the elements of the

DMPC framework of PMJSs are all linear. Using matrix decomposition techniques, the DMPC controller is designed

in terms of linear programming to guarantee the positivity and stochastic stability of the systems. The interval and

polytopic uncertainties are handled, respectively. Some corresponding algorithms are provided to check the presented

conditions.

The proposed DMPC framework can be further developed for the corresponding issues of positive systems such

as positive Takagi-Sugeno fuzzy systems, positive multi-agent systems, and so on. It is also interesting to establish a

DMPC framework on positive Markovian systems with disturbances. In this paper, the DMPC control law of PMJSs

is required to be negative. How to remove the sign restriction of the DMPC control law may be a significant topic in

future work.
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