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Abstract. Let l and k be two integers such that l|k. Define T k
l (X) :=

X+Xpl+· · ·+Xpk−2l

+Xpk−l

and Sk
l (X) := X−Xpl+· · ·+(−1)(k/l−1)Xpk−l

,
where p is any prime.

This paper gives explicit representations of all solutions in Fpn to the
affine equations T k

l (X) = a and Sk
l (X) = a, a ∈ Fpn . The case p = 2

was solved very recently in [10]. The results of this paper reveal another
solution.

Keywords: Affine equation · Finite field · Zeros of a polynomial · Linearized
polynomial.

Mathematics Subject Classification. 11D04, 12E05, 12E12.

1 Introduction

Let Fpn be the finite field of pn elements where p is a prime and n ≥ 1 is a
positive integer. A polynomial L(X) ∈ Fpn [X] of shape

L(X) =
t∑

i=0

aiX
pi

, ai ∈ Fpn

is called a linearized polynomial over Fpn or a p−polynomial over Fpn . An affine
equation over Fpn is an equation of type

L(X) = a, (1)

where L is a linearized polynomial and a ∈ Fpn .
Affine equations arise in many different problems and contexts (e.g. [4–7,

9–15]). In particular, those involving the trace functions are crucial in many
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contexts of cryptography and error-correcting codes [1–3]. However, to find ex-
plicit solutions is often challenging and it is the ultimate goal to achieve.

Let k and l be positive integers such that l|k. Define two p−polynomials over
Fp:

T k
l (X) :=

k
l −1∑
i=0

Xpli

and

Sk
l (X) :=

k
l −1∑
i=0

(−1)iXpli

.

In this paper, we study the following two affine equations

T k
l (X) = a, a ∈ Fpn (2)

and
Sk
l (X) = a, a ∈ Fpn . (3)

It is well-known that a linearized polynomial induce a linear transformation
of Fpn over Fp. In particular, if x1 and x2 are two solutions in Fpn to Equation (1),
then their difference x1−x2 is a zero of L in Fpn , that is, their difference lies in the
set {x ∈ Fpn | L(x) = 0}, that we call the kernel of L in Fpn . Determination of
the Fpn− solutions to Equation (1) can therefore be divided into two problems:
to determine the kernel of L in Fpn and to find a solution x0 in Fpn of the
affine equation. Indeed, if those two problems are solved then the set of all
Fpn−solutions to Equation (1) is x0 + {x ∈ Fpn | L(x) = 0}.

In this paper, we solve these two problems for the linearized polynomials T k
l

and Sk
l . We firstly determine the kernels of T k

l and Sk
l in Section 3. Next, we give

explicit representations of particular solutions to Equation (2) and Equation (3)
in Section 4. As by-product of those results, we also characterize the elements a
in Fpn for which Equation (2) and Equation (3) has at least one solution in Fpn

in Section 4.

Remark 1. In [10], we considered the particular case of p = 2 for which T k
l (X) =

Sk
l (X). Interestingly, Theorem 1 and Theorem 4 in this paper provide another

solution for this particular case.

2 Preliminaries

Throughout this paper, we maintain the following notation (otherwise, we will
point it out at the appropriate place).
• p is any prime and n is any positive integer.
• a is any element of the finite field Fpn .
• k and l are any positive integers such that l|k.
• We denote the greatest common divisor and the smallest common multiple
of two positive integers u and v by (u, v) and [u, v], respectively.
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• d := (n, k), e := (n, l) and L := [d, l].

We now present a lemma that will be heavily used throughout this paper.

Lemma 1. For any positive integers k, l and m with m|l|k the following holds:

1. T k
l ◦ T l

m(X) = T k
m(X) is an identity. Also, T k

l ◦ Sl
m(X) = Sk

m(X) if l/m is
even and Sk

l ◦ Sl
m(X) = Sk

m(X) if l/m is odd.

2. Sk
l ◦T 2l

l (X) = S2k
k (X) = X−Xpk

if k
l is even and Sk

l ◦T 2l
l (X) = T 2k

k (X) =

X +Xpk

if k
l is odd.

3. T k
l ◦ S2l

l (X) = S2k
k (X).

4. T
[n,k]
k (x) = Tn

(n,k)(x) for any x ∈ Fpn . Furthermore, if [n,k]
k is even, then

S
[n,k]
k (x) = Sn

(n,k)(x) for any x ∈ Fpn .

5. If k
l is even, then Sk

l (x) + Sk
l (x)p

l

= 0 for any x ∈ Fpk .

Proof. The first three assertions are obtained by easy straightforward calcula-
tions. Hence, we give proofs only for the last two assertions.

Since n · k = [n, k] · (n, k), one has n
(n,k) = [n,k]

k and {j · (n, k) | 0 ≤ j ≤
n

(n,k) − 1} = {ik mod n | 0 ≤ i ≤ [n,k]
k − 1} because n divides ik if and only if i

is a multiple of n
(n,k) = [n,k]

k . Therefore T
[n,k]
k (x) = Tn

(n,k)(x).

Furthermore, if [n,k]
k = n

(n,k) is even, then k
(n,k) is odd since it is prime to

n
(n,k) . Thus, when two integers i and j are such that jd ≡ ik (mod n), then they

have the same parity. This proves S
[n,k]
k (x) = Sn

(n,k)(x) if [n,k]
k is even.

Finally, the last assertion is proved as follows: by Assertion 1 (with 2l at the
place of l and with l at the place of m), we have Sk

l (X) = S2l
l ◦ T k

2l(X). Let

x ∈ Fpk . Then y := T k
2l(x) ∈ Fp2l . Hence Sk

l (x) + Sk
l (x)p

l

= S2l
l (y) + S2l

l (y)
pl

=

(y − ypl

) + (y − ypl

)p
l

= 0. ut

It is well known that the set of p−polynomials over Fp forms an integral
domain under the operations of symbolic multiplication (composition of poly-
nomials) and ordinary addition (e.g. see page 115 in [8]). Therefore, under the
symbolic multiplication, any two p−polynomials over Fp, involving T k

l and Sk
l ,

are commutative.This fact will be implicitly used throughout this paper.

3 On the Kernels of T k
l and Sk

l

To determine the kernels of T k
l and Sk

l in Fpn , we begin by determining the zeros
of T k

l and Sk
l in the algebraic closure Fp.

Lemma 2. It holds:

1.
{x ∈ Fp |T k

l (x) = 0} = S2l
l (Fpk) = {x− xp

l

|x ∈ Fpk}.
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2. When k
l is even,

{x ∈ Fp |Sk
l (x) = 0} = T 2l

l (Fpk) = {x+ xp
l

|x ∈ Fpk}.

3. When k
l is odd,

{x ∈ Fp |Sk
l (x) = 0} = S2k

k ◦T 2l
l (Fp2k) = {(x+xp

l

)− (x+xp
l

)p
k

|x ∈ Fp2k}.

Proof. For x ∈ Fpk , by Assertion 3 of Lemma 1, T k
l ◦ S2l

l (x) = x − xp
k

= 0

proving the inclusion of S2l
l (Fpk) in {x ∈ Fp |T k

l (x) = 0}. We then conclude the
equality from the fact that the two sets have the same cardinality pk−l. The
second assertion is similarly proved by using Assertion 2 of Lemma 1. The third
assertion can be proved similarly by using Assertions 2 and 3 of Lemma 1. ut

Corollary 1. The following holds:

1.
ker(T k

l ) ⊂ Fpk .

2.

ker(Sk
l ) ⊂

{
Fpk , if k

l is even,

Fp2k , if k
l is odd.

Based on the lemma above, we can determine the kernels of T k
l and Sk

l in Fpn .
For the reader’s convenience, we present our results as three statements, each of
them corresponding to an assertion of Lemma 2.

Theorem 1. The following holds true:

{x ∈ Fpn |T k
l (x) = 0} =

{
Fpd , if p| kL
S2e
e (Fpd), otherwise.

Consequently,

#{x ∈ Fpn |T k
l (x) = 0} =

{
pd, if p| kL
pd−e, otherwise.

Proof. By Assertion 1 of Lemma 2,

{x ∈ Fpn |T k
l (x) = 0} = S2l

l (Fpk) ∩ Fpn ⊂ Fp(n,k) = Fpd .

By Assertion 1 of Lemma 1 we have T k
l (X) = T k

L ◦ TL
l (X) and therefore

{x ∈ Fpn |T k
l (x) = 0} = {x ∈ Fpd |T k

l (x) = 0}

= {x ∈ Fpd | k
L
TL
l (x) = 0}.

Thus, if p| kL , then

{x ∈ Fpn |T k
l (x) = 0} = Fpd ,
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and if p - k
L , then

{x ∈ Fpn |T k
l (x) = 0} = {x ∈ Fpd |TL

l (x) = 0}
= {x ∈ Fpd |T d

e (x) = 0} (by Assertion 4 of Lemma 1)

= S2e
e (Fpd) (by Assertion 1 of Lemma 2).

ut

Theorem 2. Suppose that k
l is even.

1. If d
e is even, then

{x ∈ Fpn |Sk
l (x) = 0} =

{
Fpd , if p| kL
T 2e
e (Fpd), otherwise

and consequently

#{x ∈ Fpn |Sk
l (x) = 0} =

{
pd, if p| kL
pd−e, otherwise.

2. If d
e is odd, then

{x ∈ Fpn |Sk
l (x) = 0} = Fpd

and consequently
#{x ∈ Fpn |Sk

l (x) = 0} = pd.

Proof. By Assertion 2 of Lemma 2, when k
l is even, we know that {x ∈ Fpn |Sk

l (x) =
0} = T 2l

l (Fpk) ∩ Fpn ⊂ Fpd and thus

{x ∈ Fpn |Sk
l (x) = 0} = {x ∈ Fpd |Sk

l (x) = 0}.

Now, suppose that d
e = d

(d,l) = L
l is even. Then, by Assertion 1 of Lemma 1

{x ∈ Fpd |Sk
l (x) = 0} = {x ∈ Fpd |T k

L ◦ SL
l (x) = 0}

= {x ∈ Fpd | k
L
SL
l (x) = 0}.

Therefore, if p| kL , then

{x ∈ Fpn |Sk
l (x) = 0} = Fpd ,

and if p - k
L , then

{x ∈ Fpn |Sk
l (x) = 0} = {x ∈ Fpd |SL

l (x) = 0}
= {x ∈ Fpd |Sd

e (x) = 0} (by Assertion 4 of Lemma 1)

= T 2e
e (Fpd) (by Assertion 2 of Lemma 2).
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Suppose now that d
e = L

l is odd. In this case, k
L is even as k

l = k
L ·

L
l is even

by the assumption. Thus, we have

{x ∈ Fpn |Sk
l (x) = 0} = {x ∈ Fpd |Sk

l (x) = 0}
= {x ∈ Fpd |Sk

L ◦ SL
l (x) = 0} (by Assertion 1 of Lemma 1)

= Fpd

because SL
l (x) ∈ Fpd ⊂ FpL for x ∈ Fpd . ut

Theorem 3. Suppose that k
l is odd.

1. When n
d is odd,

{x ∈ Fpn |Sk
l (x) = 0} = {0}

and consequently
#{x ∈ Fpn |Sk

l (x) = 0} = 1.

2. When n
d is even,

{x ∈ Fpn |Sk
l (x) = 0} =

{
S2d
d (Fp2d), if p| kL
S2d
d ◦ T 2e

e (Fp2d), otherwise

and consequently

#{x ∈ Fpn |Sk
l (x) = 0} =

{
pd, if p| kL
pd−e, otherwise.

Proof. First of all, note that L
l and k

L are odd since both of them are divisors

of k
l which is odd. Then by Assertion 3 of Lemma 2 one has

{x ∈ Fpn |Sk
l (x) = 0} = S2k

k ◦ T 2l
l (Fp2k) ∩ Fpn = {x ∈ Fp(n,2k) |Sk

l (x) = 0}.

Suppose that n
d is odd. Then, (n, 2k) = d and we have

{x ∈ Fpn |Sk
l (x) = 0} = {x ∈ Fpd |Sk

l (x) = 0}
= {x ∈ Fpd |Sk

L ◦ SL
l (x) = 0} (by Assertion 1 of Lemma 1)

= {x ∈ Fpd |SL
l (x) = 0}

= {S2L
L ◦ T 2l

l (β) ∈ Fpd |β ∈ Fp2L} (by Assertion 3 of Lemma 2).

Now, if S2L
L ◦ T 2l

l (β) ∈ Fpd for β ∈ Fp2L , then we have

(S2L
L ◦ T 2l

l (β))p
L

= S2L
L ◦ T 2l

l (β)⇐⇒ −S2L
L ◦ T 2l

l (β) = S2L
L ◦ T 2l

l (β)

⇐⇒ S2L
L ◦ T 2l

l (β) = 0.

Thus, in that case
{x ∈ Fpn |Sk

l (x) = 0} = {0}.
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Now, suppose that n
d is even. Then, (n, 2k) = 2d and

{x ∈ Fpn |Sk
l (x) = 0} = {x ∈ Fp2d |Sk

l (x) = 0}.

Since L
l is odd, from by Assertion 5 of Lemma 1 it follows

S2L
l (x) + S2L

l (x)p
L

= 0 (4)

for every x ∈ Fp2d .

Also, k
d is odd since n

d is even and (n
d ,

k
d ) = 1. This implies L

d odd as well

since it is divisor of k
d . Therefore, for every x ∈ Fp2d , it holds

xp
L

= (xp
L−d

d
·d

)p
d

= xp
d

,

xp
k

= (xp
k−d
d

·d
)p

d

= xp
d

and hence
S2L
L (x) = S2d

d (x) and T 2k
k (x) = T 2d

d (x). (5)

Moreover, since L
d = [d,l]

d is odd, one has (2d, l) = (d, l) = e and [2d, l] = 2dl
(2d,l) =

2 dl
(d,l) = 2[d, l] = 2L. Therefore, by Assertion 4 of Lemma 1, for every x ∈ Fp2d

we have S2L
l (x) = S

[2d,l]
l (x) = S2d

(2d,l)(x) = S2d
(d,l)(x) = S2d

e (x), that is,

S2L
l (x) = S2d

e (x). (6)

Then, for every x ∈ Fp2d one has

S2d
d ◦ Sk

l (x) = S2L
L ◦ Sk

l (x) (by (5))

= S2L
L ◦ Sk

L ◦ SL
l (x) (by Assertion 1 of Lemma 1)

= Sk
L ◦ S2L

L ◦ SL
l (x)

= Sk
L ◦ S2L

l (x) (again by Assertion 1 of Lemma 1)

=
k

L
S2L
l (x) (by (4))

=
k

L
S2d
e (x) (by (6)),

that is,

Sk
l (S2d

d (x)) =

{
0, if p| kL
S2d
e (x), otherwise.

(7)

Thus, when p| kL , it holds

{x ∈ Fp2d |Sk
l (x) = 0} ⊃ S2d

d (Fp2d) = ker(T 2d
d ),

where the equality is from Assertion 1 of Lemma 2. On the other hand, by (5)
and Assertion 2 of Lemma 1, T 2d

d (x) = T 2k
k (x) = T 2l

l ◦ Sk
l (x) for every x ∈ Fp2d

and therefore {x ∈ Fp2d |Sk
l (x) = 0} ⊂ ker(T 2d

d ). Hence, when p| kL , we get

{x ∈ Fpn |Sk
l (x) = 0} = S2d

d (Fp2d).
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On the other hand, if p - k
L , then by (7)

{x ∈ Fp2d |Sk
l (x) = 0} ⊃ {S2d

d (x) |S2d
e (x) = 0, x ∈ Fp2d}

= {S2d
d ◦ T 2e

e (β) |β ∈ Fp2d} (by Assertion 2 of Lemma 2)

= ker(Sd
e ) (by Assertion 3 of Lemma 2 since

d

e
=
L

l
is odd).

Also, when x ∈ Fp2d , we can write

Sk
l (x) =

k − L
2L

S2L
l (x) + SL

l (x)

because k
L is odd. By (6) and (7), Sk

l (x) = 0 implies S2L
l (x) = 0 and therefore

if Sk
l (x) = 0, then SL

l (x) = 0 for x ∈ Fp2d . Then one has

{x ∈ Fp2d |Sk
l (x) = 0} ⊂ ker(SL

l ) ∩ Fp2d .

Thus, to conclude the theorem, thanks to Assertion 3 of Lemma 2 it is sufficient
to prove:

ker(Sd
e ) = ker(SL

l ) ∩ Fp2d . (8)

To begin with, let us show

ker(Sd
e ) ⊂ ker(SL

l ) ∩ Fp2d .

In fact, if y ∈ ker(Sd
e ) or equivalently y = S2d

d ◦ T 2e
e (β) for some β ∈ Fp2d , then

SL
l (y) = SL

l ◦ S2d
d ◦ T 2e

e (β)

= SL
l ◦ S2L

L ◦ T 2e
e (β) (by (5))

= S2L
l ◦ T 2e

e (β) (by Assertion 1 of Lemma 1)

= S2d
e ◦ T 2e

e (β) (by (6))

= S4d
2d(β) (by Assertion 2 of Lemma 1)

= 0 (since β ∈ Fp2d).

Next, we prove
# ker(Sd

e ) = #{ker(SL
l ) ∩ Fp2d}

which will conclude (8). Let A := ker(S2d
e ) = T 2e

e (Fp2d). Then, by (6), A =
ker(S2L

l ) ∩ Fp2d , and since S2L
l = S2L

L ◦ SL
l by Assertion 1 of Lemma 1,

ker(SL
l ) ∩ Fp2d ⊂ A.

Hence, now we determine SL
l (A) which will make it possible to compute #{ker(SL

l )∩
Fp2d}. Since S2d

d (SL
l (A))

(5)
= S2L

L (SL
l (A)) = S2L

l (A) = {0}, it holds

SL
l (A) ⊂ Fpd . (9)

8



Then, since d
e = L

l is odd, by Assertion 2 of Lemma 1, Sd
e (A) = Sd

e ◦T 2e
e (Fp2d) =

T 2d
d (Fp2d) = Fpd . The obvious fact Sd

e (A) ⊂ A yields

Fpd ⊂ A. (10)

Now, let us prove that SL
l is a permutation on Fpd . In fact, if y ∈ FpL is an

element in ker(SL
l ), then by Assertion 3 of Lemma 2 we can write y = S2L

L ◦T 2l
l (β)

for some β ∈ Fp2L and one has y = yp
L

= (S2L
L ◦T 2l

l (β))p
L

= −S2L
L ◦T 2l

l (β) = −y,
i.e. y = 0. Therefore, ker(SL

l ) ∩ FpL = {0} and SL
l is a permutation on FpL and

subsequently on Fpd . Applying SL
l on both sides of (10) we get

Fpd ⊂ SL
l (A). (11)

Combining (9) and (11) proves

SL
l (A) = Fpd .

From this equality, considering x 7→ SL
l (x) as an Fp−linear transformation of

the Fp−subspace A, it follows that

#{ker(SL
l ) ∩ Fp2d} = #A/pd = p(2d−e)−d = pd−e = # ker(Sd

e ).

ut

4 On particular solutions of T k
l (X) = a and Sk

l (X) = a

In this section, we give particular solutions for each of the two equations (2)
and (3) as well as characterizations of the a’s in Fpn for which the equations
(2) and (3) have at least one solution in Fpn . As in Section 3, we present these
results in three statements. Each of them corresponds to one of the three cases
of Lemma 2.

Theorem 4. Let δ ∈ F∗
pn and δ1 ∈ F∗

pd be any elements such that Tn
d (δ) = 1

and T d
e (δ1) = 1.

1. When p| kL , there exists a solution in Fpn to the equation T k
l (X) = a, a ∈ Fpn ,

if and only if Tn
d (a) = 0. In that case,

x0 = S2l
l

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

ap
ki


is a particular Fpn−solution to the equation T k

l (X) = a.
2. When p - k

L , there exists a solution in Fpn to the equation T k
l (X) = a, a ∈

Fpn , if and only if S2e
e ◦ Tn

d (a) = 0. In that case,

x0 = y0 +
L

k
(a− T k

l (y0))δ1,

9



where

y0 =

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

S2l
l (a)p

ki

,

is a particular Fpn−solution to the equation T k
l (X) = a.

Proof. Let a = T k
l (x0) for some x0 ∈ Fpn . Then

Tn
d (a) = Tn

d ◦ T k
l (x0)

= Tn
d ◦ T k

L ◦ TL
l (x0) (by Assertion 1 of Lemma 1)

= T k
L ◦ TL

l ◦ Tn
d (x0)

= T k
L ◦ T d

e ◦ Tn
d (x0) (by Assertion 4 of Lemma 1)

= T k
L ◦ Tn

e (x0) (by Assertion 1 of Lemma 1)

=
k

L
Tn
e (x0) (since Tn

e (x0) ∈ Fpe ⊂ FpL).

Thus, if p| kL , then Tn
d (a) = 0, and if p - k

L , then S2e
e ◦ Tn

d (a) = k
LS

2e
e ◦ Tn

e (x0) =
k
LS

2n
n (x0) = 0 where we applied Assertion 3 of Lemma 1. In other words, if p| kL ,

then

T k
l (Fpn) ⊂ {a ∈ Fpn |Tn

d (a) = 0}, (12)

and if p - k
L , then

T k
l (Fpn) ⊂ {a ∈ Fpn |S2e

e ◦ Tn
d (a) = 0}. (13)

By Theorem 1 we have:

#T k
l (Fpn) = pn/#{ker(T k

l ) ∩ Fpn} =

{
pn−d, if p| kL
pn−(d−e), otherwise.

On the other hand, by the well-known nature of the trace mapping one knows

#{a ∈ Fpn |Tn
d (a) = 0} = pn−d

and

#{a ∈ Fpn |S2e
e ◦ Tn

d (a) = 0} = #{a ∈ Fpn |Tn
d (a) ∈ Fpe} = pn−(d−e).

Thus, we conclude that the inclusions (12) and (13) are actually equalities. That
is, the if and only if conditions for T k

l (X) = a ∈ Fpn to have a solution in Fpn

are proved.

10



Let us check the validity of the given particular solutions. If Tn
d (a) = 0, we

have

T k
l ◦ S2l

l

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

ap
ki


= S2k

k

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

ap
ki

 (by Assertion 3 of Lemma 1)

=

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

ap
ki

−
n
d −1∑
i=1

n
d∑

j=i+1

δp
kj

ap
ki

=

n
d −1∑
j=1

δp
kj

a−
n
d −1∑
i=1

δp
k
d
n

ap
ki

=

n
d −1∑
j=1

δp
kj

a−
n
d −1∑
i=1

δap
ki

=

n
d −1∑
j=0

δp
kj

a−
n
d −1∑
i=0

δap
ki

= T
[n,k]
k (δ)a− δT [n,k]

k (a)

= Tn
d (δ)a− δTn

d (a) (by Assertion 4 of Lemma 1)

= a (since Tn
d (δ) = 1 and Tn

d (a) = 0).

This proves case 1.

Now, suppose that p - k
L and S2e

e ◦ Tn
d (a) = 0, i.e., Tn

d (a) ∈ Fpe . Then,

S2l
l (Tn

d (a)) = Tn
d (a)− Tn

d (a)p
l

= 0, and for y0 =
∑n

d −2
i=0

∑n
d −1
j=i+1 δ

pkj

S2l
l (a)p

ki

, it
holds

S2k
k (y0) =

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

S2l
l (a)p

ki

−
n
d −1∑
i=1

n
d∑

j=i+1

δp
kj

S2l
l (a)p

ki

= S2l
l (a)− δTn

d (S2l
l (a)) = S2l

l (a)− δS2l
l (Tn

d (a))

= S2l
l (a).

Since S2k
k (y0) = S2l

l (T k
l (y0)) (by Assertion 3 of Lemma 1), we get

β := a− T k
l (y0) ∈ ker(S2l

l ) ∩ Fpn ⊂ Fpl ∩ Fpn = Fpe .

11



Now, βδ1 ∈ Fpd ⊂ FpL and therefore

T k
l (βδ1) = T k

L ◦ TL
l (βδ1) (by Assertion 1 of Lemma 1)

=
k

L
TL
l (βδ1) (since TL

l (βδ1) ∈ FpL)

=
k

L
T d
e (βδ1) (by Assertion 4 of Lemma 1)

=
k

L
βT d

e (δ1) (since β ∈ Fpe)

=
k

L
β.

That is, we get T k
l (L

k (a− T k
l (y0))δ1) = a− T k

l (y0), or equivalently,

T k
l (y0 +

L

k
(a− T k

l (y0))δ1) = a.

ut

Theorem 5. Let p 6= 2, k
l even, δ ∈ F∗

pn be any element such that Tn
d (δ) = 1.

When d
e is even, let δ1 ∈ F∗

pd be any element such that T d
2e(δ1) = 1.

1. When d
e is odd, or, when d

e is even and p| kL , there exists a solution in Fpn

to the equation Sk
l (X) = a if and only if Tn

d (a) = 0. In that case,

x0 = T 2l
l

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

ap
ki

 (14)

is a particular Fpn−solution to the equation Sk
l (X) = a.

2. When d
e is even and p - k

L , there exists a solution in Fpn to the equation
Sk
l (X) = a if and only if T 2e

e ◦ Tn
d (a) = 0. In that case,

x0 = y0 +
L

2k
(a− Sk

l (y0))δ1,

where

y0 =

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

T 2l
l (a)p

ki

,

is a particular Fpn−solution to the equation Sk
l (X) = a.

Proof. Suppose that Sk
l (x0) = a for some x0 ∈ Fpn . When d

e = L
l is odd, k

L is

even since k
l = L

l ·
k
L was assumed to be even. Then, we have

Tn
d (a) = Tn

d ◦ Sk
l (x0)

= Tn
d ◦ Sk

L ◦ SL
l (x0) (by Assertion 1 of Lemma 1)

= Sk
L(SL

l ◦ Tn
d (x0))

= 0 (since SL
l ◦ Tn

d (x0) ∈ Fpd ⊂ FpL and
k

L
is even)

12



and thus
Sk
l (Fpn) ⊂ {a ∈ Fpn |Tn

d (a) = 0}. (15)

On the other hand, when d
e = L

l is even, one has

Tn
d (a) = Tn

d ◦ Sk
l (x0)

= Tn
d ◦ T k

L ◦ SL
l (x0) (by Assertion 1 of Lemma 1)

= T k
L ◦ SL

l ◦ Tn
d (x0)

= T k
L ◦ Sd

e ◦ Tn
d (x0) (by Assertion 4 of Lemma 1)

=
k

L
Sd
e ◦ Tn

d (x0) (since Sd
e ◦ Tn

d (x0) ∈ Fpd ⊂ FpL).

Therefore, if p| kL , then (15) still holds true, and if p - k
L , then it holds

T 2e
e ◦ Tn

d (a) =
k

L
T 2e
e ◦ Sd

e ◦ Tn
d (x0)

=
k

L
S2d
d ◦ Tn

d (x0) (by Assertion 2 of Lemma 1)

= 0 (since Tn
d (x0) ∈ Fpd)

and thus
Sk
l (Fpn) ⊂ {a ∈ Fpn |T 2e

e ◦ Tn
d (a) = 0}. (16)

By Theorem 2 we have:

#Sk
l (Fpn) = pn/#{ker(Sk

l )∩Fpn} =

{
pn−d, if d

e is odd, or, d
e is even and p| kL

pn−(d−e), otherwise.

On the other hand, by the well-known nature of the trace mapping one knows

#{a ∈ Fpn |Tn
d (a) = 0} = pn−d

and if d/e is even then

#{a ∈ Fpn |T 2e
e ◦ Tn

d (a) = 0} = pn−(d−e).

Therefore the inclusions (15) and (16) are indeed equalities. That is, the if and
only if conditions for Sk

l (X) = a to have an Fpn−solution are justified.
Since Sk

l ◦ T 2l
l = S2k

k ( Assertion 2 of Lemma 1), it can be checked by the
same computation as in the proof of the first assertion of Theorem 4 that under
the condition Tn

d (a) = 0,

x0 = T 2l
l (

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

ap
ki

)

is a particular Fpn−solution to the equation Sk
l (X) = a. This proves case 1.
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Now, assuming that d
e = L

l is even, let us suppose that p - k
L and T 2e

e ◦
Tn
d (a) = 0, i.e., Tn

d (a)p
e

= −Tn
d (a). Then, l

e is odd since it is prime to n
e =

d
e ·

n
d which is even. Hence, T 2l

l (Tn
d (a)) = Tn

d (a) + Tn
d (a)p

l

= 0, and for y0 =∑n
d −2
i=0

∑n
d −1
j=i+1 δ

pkj

T 2l
l (a)p

ki

, it holds

S2k
k (y0) =

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

T 2l
l (a)p

ki

−
n
d −1∑
i=1

n
d∑

j=i+1

δp
kj

T 2l
l (a)p

ki

= T 2l
l (a)− δTn

d (T 2l
l (a)) = T 2l

l (a)− δT 2l
l (Tn

d (a))

= T 2l
l (a).

Since S2k
k (y0) = T 2l

l (Sk
l (y0)) ( Assertion 2 of Lemma 1), letting β := a −

Sk
l (y0), we have

β ∈ ker(T 2l
l ) ∩ Fpn ⊂ Fp2l ∩ Fpn ⊂ Fp2e ⊂ Fpd

and

Sk
l (βδ1) =

k

L
SL
l (βδ1) (since

L

l
is even)

=
k

L
Sd
e (βδ1) (by Assertion 4 of Lemma 1)

=
k

L
S2e
e (T d

2e(βδ1)) (by Assertion 1 of Lemma 1)

=
k

L
S2e
e (βT d

2e(δ1)) (since β ∈ Fp2e)

=
k

L
S2e
e (β) =

k

L
(β − βpe

).

On the other hand, since ker(T 2l
l ) ∩ Fp2e = S2e

e (Fp2e) (see Theorem 1), β ∈
ker(T 2l

l ) ∩ Fpn means that β = α− αpe

for some α ∈ Fp2e , and therefore we get
β + βpe

= (α− αpe

) + (α− αpe

)p
e

= 0 and hence

Sk
l (βδ1) =

2k

L
β,

or equivalently,

Sk
l

(
y0 +

L

2k
(a− Sk

l (y0))δ1

)
= a.

ut

Theorem 6. Let p 6= 2, k
l odd, δ ∈ F∗

pn and δ1 ∈ F∗
p2d be any elements such

that Tn
d (δ) = 1 and T 2d

2e (δ1) = 1.

1. When n
d is even and p| kL , there exists a solution in Fpn to the equation

Sk
l (X) = a if and only if Sn

d (a) = 0. In that case,

x0 = T 2l
l

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

ap
ki

(−1)i
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is a particular Fpn−solution to the equation Sk
l (X) = a.

2. When n
d is even and p - k

L , there exists a solution in Fpn to the equation
Sk
l (X) = a if and only if T 2e

e ◦ Sn
d (a) = 0. In that case,

x0 = y0 +
L

2k
S2d
d ((a− Sk

l (y0))δ1),

where

y0 =

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

T 2l
l (a)p

ki

(−1)i,

is a particular Fpn−solution to the equation Sk
l (X) = a.

3. When n
d is odd, the equation Sk

l (X) = a has a unique Fpn−solution:

x0 =
T 2l
l ◦ S

[n,k]
k (a)

2
.

Proof. Suppose a ∈ Sk
l (Fpn), i.e., a = Sk

l (x0) for some x0 ∈ Fpn .
Let us assume that n

d is even. In this case, k
d and its divisor L

d are odd since

(n
d ,

k
d ) = 1. One has

Sn
d (a) = Sn

d ◦ Sk
l (x0)

= Sn
d ◦ Sk

L ◦ SL
l (x0) (by Assertion 1 of Lemma 1)

= S2d
d ◦ Tn

2d ◦ Sk
L ◦ SL

l (x0) (again by Assertion 1 of Lemma 1)

= S2L
L ◦ Tn

2d ◦ Sk
L ◦ SL

l (x0) (by (5) since Tn
2d ◦ Sk

L ◦ SL
l (x0) ∈ Fp2d)

= Sk
L ◦ S2L

L ◦ SL
l ◦ Tn

2d(x0)

= Sk
L ◦ S2L

l ◦ Tn
2d(x0) (by Assertion 1 of Lemma 1)

=
k

L
S2L
l ◦ Tn

2d(x0) (by (4))

=
k

L
S2d
e ◦ Tn

2d(x0) (by (6) since Tn
2d(x0) ∈ Fp2d)

=
k

L
Sn
e (x0) =

k

L
S2e
e ◦ Tn

2e(x0) (once again by Assertion 1 of Lemma 1).

Therefore, if p| kL , then it holds

Sk
l (Fpn) ⊂ {a ∈ Fpn |Sn

d (a) = 0}, (17)

and if p - k
L , then it holds

Sk
l (Fpn) ⊂ {a ∈ Fpn |T 2e

e ◦ Sn
d (a) = 0} (18)

since T 2e
e ◦ Sn

d (Sk
l (x0)) = T 2e

e ◦ S2e
e ◦ Tn

2e(x0) = 0. By the second assertion of
Theorem 3, if p| kL then the size of Sk

l (Fpn) equals the degree of Sn
d and when

p - k
L then it equals the degree of T 2e

e ◦Sn
d . It follows that the inclusions (17) and
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(18) are actually equalities. That is, the if and only if conditions for Sk
l (X) = a

to have an Fpn−solution are justified.

If Sn
d (a) = 0, then for x0 = T 2l

l (
∑n

d −2
i=0

∑n
d −1
j=i+1 δ

pkj

ap
ki

(−1)i),

Sk
l (x0) = T 2k

k (

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

ap
ki

(−1)i) (by Assertion 2 of Lemma 1)

=

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

ap
ki

(−1)i +

n
d −1∑
i=1

n
d∑

j=i+1

δp
kj

ap
ki

(−1)i−1

= a− δSn
d (a) = a.

This finishes the proof of case 1.
Now, suppose that T 2e

e ◦ Sn
d (a) = 0, i.e., Sn

d (a)p
e

= −Sn
d (a). Then, l

e is

odd since it is prime to n
e = d

e ·
n
d which is even, and hence T 2l

l (Sn
d (a)) =

Sn
d (a) + Sn

d (a)p
l

= 0. Thus, for y0 =
∑n

d −2
i=0

∑n
d −1
j=i+1 δ

pkj

T 2l
l (a)p

ki

(−1)i one has

T 2k
k (y0) =

n
d −2∑
i=0

n
d −1∑

j=i+1

δp
kj

T 2l
l (a)p

ki

(−1)i +

n
d −1∑
i=1

n
d∑

j=i+1

δp
kj

T 2l
l (a)p

ki

(−1)i−1

= T 2l
l (a)− δSn

d (T 2l
l (a)) = T 2l

l (a).

Since T 2k
k (y0) = T 2l

l ◦ Sk
l (y0) (by Assertion 2 of Lemma 1), we have

β := a− Sk
l (y0) ∈ ker(T 2l

l ) ∩ Fpn ⊂ Fp2e ⊂ Fp2d .

Now,

Sk
l

(
S2d
d (βδ1)

)
= Sk

l

(
S2L
L (βδ1)

)
(by (5))

= Sk
L ◦ SL

l

(
S2L
L (βδ1)

)
(by Assertion 1 of Lemma 1)

= Sk
L ◦
(
S2L
l (βδ1)

)
(by Assertion 1 of Lemma 1)

=
k

L
S2L
l (βδ1) (by (4))

=
k

L
S2d
e (βδ1) (by (6))

=
k

L
S2e
e ◦ T 2d

2e (βδ1) (by Assertion 1 of Lemma 1)

=
k

L
S2e
e (βT 2d

2e (δ1)) =
k

L
S2e
e (β) =

k

L
(β − βpe

).

Since β ∈ ker(T 2l
l ) ∩ Fp2e = S2e

e (Fp2e) (Theorem 1), it holds β + βpe

= 0 and
thus we get

Sk
l

(
S2d
d (βδ1)

)
=

2k

L
β.

That is,

Sk
l (y0 +

L

2k
S2d
d ((a− Sk

l (y0))δ1)) = a.
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This finishes the proof of case 2.

If n
d = [n,k]

k is odd, then by Theorem 3, Sk
l is a permutation on Fpn and the

equation Sk
l (X) = a has a unique Fpn−solution. In fact, applying Assertion 2 of

Lemma 1 twice yields

Sk
l (T 2l

l ◦ S
[n,k]
k (a/2)) = T 2k

k ◦ S
[n,k]
k (a/2) = T

2[n,k]
[n,k] (a/2) = a.

ut

5 Conclusion

We explicitly determined the sets of preimages of linearized polynomials

T k
l (X) :=

k
l −1∑
i=0

Xpli

,

Sk
l (X) :=

k
l −1∑
i=0

(−1)iXpli

,

over the finite field Fpn for any characteristic p and any integer n ≥ 1. In
particular, another solution for the case p = 2, which was solved very recently
in [10], was obtained in Theorem 1 and Theorem 4.
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