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Abstract

Despite its robust performance under various illumina-
tion conditions, multispectral scene analysis has not been
widely deployed due to two strong practical limitations: 1)
thermal cameras, especially high-resolution ones are much
more expensive than conventional visible cameras; 2) the
most commonly adopted multispectral architectures, two-
stream neural networks, nearly double the inference time of
a regular mono-spectral model which makes them imprac-
tical in embedded environments. In this work, we aim to
tackle these two limitations by proposing a novel knowl-
edge distillation framework named Modality Distillation
(MD). The proposed framework distils the knowledge from
a high thermal resolution two-stream network with feature-
level fusion to a low thermal resolution one-stream network
with image-level fusion. We show on different multispectral
scene analysis benchmarks that our method can effectively
allow the use of low-resolution thermal sensors with more
compact one-stream networks.

1. Introduction
Vision applications such as autonomous driving or remote
surveillance need to maintain high reliability under vari-
ous conditions, such as insufficient illumination or adverse
weather. These situations are challenging for systems us-
ing only visible cameras, which is why multispectral sys-
tems introduce additional thermal cameras to provide sup-
plementary information. In particular, visible cameras pro-
vide visual details of colour and texture, while thermal cam-
eras are sensitive to temperature changes, thus their contri-
butions are complementary and their combination can en-

sure reliable recognition performance round-the-clock.
Under the conventional settings of multispectral scene

analysis, thermal cameras and visible ones must provide
image pairs with identical perception fields and identical
spatial resolution. The former requirement can be achieved
through camera calibration. However, due to the extreme
price gap between high-resolution visible and thermal cam-
eras1, the requirement of identical spatial resolution usu-
ally leads to either 1) visible image downsampling that may
cause information loss or 2) high manufacturing costs for
thermal cameras that prevent massive production. From a
practical point of view, using a high-resolution visible cam-
era and a low-resolution thermal one would be the best com-
promise in performance/price.

Another constraint from the current multispectral sys-
tems lies in the software part. Nowadays, deep learning-
based methods dominate the field of (multispectral) scene
analysis. Multispectral information fusion methods can
be categorized into: image-level fusion, feature-level fu-
sion and decision-level fusion. Architectures that imple-
ment a feature-level fusion, usually within a two-stream net-
work architecture (one dedicated to each source), have been
proven to outperform the other strategies, and are currently
the most studied in the literature [18, 13, 14, 29, 27, 32, 26,
7, 21, 8]. However, the computational overhead provided
by two-stream networks is huge, which is particularly un-
desirable for software deployment on embedded devices.

In this paper, we propose a novel knowledge distillation
framework named Modality Distillation (MD) to tackle the
aforementioned hardware and software constraints. This

1A typical thermal camera of resolution 640 × 480 could cost more
than 8,000 USD. When the resolution is reduced to 80 × 60, the price
becomes much more affordable (around 200 USD).



framework follows two steps: Firstly, a multispectral sys-
tem with high-resolution visible and thermal cameras is
used to collect training data and to learn a precise but com-
plex two-stream neural network for scene analysis. This
model will be used as a teacher model with fixed weights.
Secondly, a more efficient image-level fusion student model
is trained with high-resolution visible images and down-
sampled thermal images to simulate production systems
that are equipped with more economical low-resolution
thermal cameras. The knowledge from the teacher model is
transferred to the student model to mimic the more accurate
feature-level fusion architecture and to reconstruct high-
resolution thermal details. We performed extensive exper-
iments for multispectral pedestrian detection [11] and se-
mantic segmentation [7]. In both tasks, our model strongly
reduces thermal camera requirements (resolution divided by
16) and achieves substantial inference acceleration (runtime
divided by, at least, 1.8), with minor precision drop com-
pared to full-resolution two-stream teacher networks which
makes the deployment of multiple low-cost student net-
works on embedded devices much more viable.

The rest of this paper is organized as follows: In Section
2, we provide some representative work on multispectral
scene analysis and knowledge distillation. Section 3 details
the proposed method. In section 4, we conduct various ex-
periments to study the effects of MD under different ther-
mal resolutions and compare our results to state-of-the-art
methods. Section 5 concludes the paper.

2. Related work
Our review of the related work mainly focuses on multi-
spectral scene analysis and knowledge distillation, the two
critical techniques to build the proposed framework.

2.1. Multispectral scene analysis

The first dataset for pedestrian detection from visible-
thermal image pairs was introduced in [11] and then various
deep learning-based methods have been proposed to tackle
this problem. In [22], the authors compared, on this dataset,
two different fusion strategies: image-level fusion (called
early fusion) and feature-level fusion (there called late fu-
sion because it is at the last possible feature level). Early
fusion combines the information from the two modalities by
directly concatenating visible and thermal images. Late fu-
sion methods usually apply a two-stream architecture which
employs two separate feature extraction networks (for visi-
ble and thermal images respectively) and combine the mul-
tispectral information by feature concatenation. [22] con-
cluded that feature-level fusion methods produce superior
performance, whereas image-level fusion ones cannot even
surpass traditional methods (such as Aggregated Channel
Features (ACF) [4]). To the best of our knowledge, world-
wide research on image-level fusion for multispectral image

analysis has been mostly interrupted since these findings.
The research focus has then shifted to feature-level fusion:
[18, 13] studied the optimal fusion “timing” in the detec-
tion network and came to the same conclusion that halfway
feature fusion produces better results; [14] introduced an
auxiliary segmentation task on the basis of halfway feature
fusion for further performance improvements. [29, 27] ap-
plied attention mechanisms to adaptively weigh the visible
and thermal features in the feature fusion stage; [26, 32]
alleviated the inconsistency between visible and thermal
features to facilitate the optimization process of a dual-
modality network. Apart from these studies on feature-
level fusion, multiple decision-level fusion methods were
suggested: [6, 15] used illumination information to guide
the fusion of predictions (decisions) from visible/thermal
images or from day/night sub-networks; [30] discussed a
confidence-aware fusion mechanism, where the disagree-
ment between visible and thermal predictions is used to re-
weigh visible contributions, which could also be regarded
as a decision-level fusion approach.

Compared to multispectral pedestrian detection, multi-
spectral semantic segmentation is a younger research topic,
and most related methods are based on feature-level fusion.
Some relevant datasets and baseline methods were intro-
duced in [7]. Similarly to other feature fusion methods,
the baseline method also adopts two separate feature extrac-
tors for visible and thermal images respectively. Moreover,
short-cut blocks were designed to concatenate the extracted
multispectral feature maps. Based on this, [21] adopted
stronger feature extraction networks to further boost seg-
mentation accuracy. However, because of this complexity,
the inference speed of their models was much slower. On a
different type of data, [8] tackled the RGB-D semantic seg-
mentation task, the architecture of which is also applicable
for visible-thermal inputs. Therefore, we also include this
model for comparison in our experiments.

Previous studies on multispectral scene analysis aimed
to improve detection/segmentation accuracy, neglecting the
computational cost and the effectiveness of operational de-
ployment. In this paper, we rather exploit the (forgotten) po-
tentialities of image-level fusion architectures, which have
a similar complexity as mono-spectral networks. Moreover,
we also deal with the issue of reducing thermal camera res-
olution, which has never been discussed in the literature
despite the great interest in practical multispectral applica-
tions.

2.2. Knowledge distillation

Knowledge distillation is a method for inheriting the knowl-
edge learnt from one or multiple pre-trained teacher mod-
els to a student model. This concept was firstly introduced
in [10], where the training objective of a student model is
the prediction produced by the teacher models. The use of



this method strongly improved the accuracy of the student
model. [20] proposed to distil features instead of predic-
tions. Concretely, features from internal layers of a student
model should mimic that of a teacher model. [12] suggested
that directly parsing features as guidance might be difficult,
therefore, they transferred attention maps (generated in an
unsupervised manner) that function as a summary of the
whole feature maps.

Apart from image classification, knowledge distillation
is also widely used in other scene analysis tasks. [1] pro-
posed the first knowledge distillation framework for ob-
ject detection, which includes a distillation loss on both the
feature network and the detection head. Instead of distill-
ing all feature maps, [16, 23] applied knowledge distilla-
tion only on ROI-sampled features or features near object
bounding boxes to alleviate the extreme imbalance between
foreground and background. In terms of semantic segmen-
tation, [24] distilled both the fine annotated images and un-
labelled auxiliary data to regularize the training of a student
segmentation model; [19] proposed to distil the structured
knowledge for a semantic segmentation task.

We take inspiration from previous work and propose
two specific knowledge distillation methods for multispec-
tral scene analysis: Attention transfer and Semantic trans-
fer. The former generates teacher attention maps (masks)
via Guided Attentive Feature Fusion (GAFF) [27] from a
two-stream teacher network. These masks are then trans-
ferred to a one-stream student network (thus performing
an image-level fusion). The latter tackles the imbalance
problem in feature distillation through a novel “Focal Mean
Square Error” loss. Moreover, contrary to previous works
where the objective is to transfer knowledge from a “larger”
teacher network into a “smaller” student network (e.g., from
ResNet-101 to ResNet-18), our objective is instead to trans-
fer from a high thermal resolution two-stream multispec-
tral network into a low thermal resolution one-stream mul-
tispectral network, while the “base” network remains un-
changed (e.g., we use ResNet-18 for all experiments).

3. Modality Distillation
This section starts with an overview of the proposed Modal-
ity Distillation (MD) framework. We then briefly provide
the basic concepts of [27] that are used in our framework.
Finally, the two proposed knowledge distillation modules
are described in details.

3.1. Overview

As illustrated in Fig. 1(A), the proposed Modality Distil-
lation (MD) framework includes a teacher model (upper
model in blue) and a student model (lower model in or-
ange). The teacher model takes high-resolution multispec-
tral image pairs as input, and employs a two-stream archi-
tecture consisting of: two separate feature extraction net-
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Figure 1. Overview of the proposed method (A) and details on
knowledge transfer modules (B). Blue and orange blocks represent
components from teacher and student models, respectively.

works, a GAFF [27] module for multispectral fusion and
a task-specific network for pedestrian detection/semantic
segmentation. Contrarily to the teacher model, the stu-
dent model uses a low-resolution thermal input and a one-
stream feature extraction network that takes as input the
image-level fusion of both modalities (through different in-
put channels). We also conduct distillation experiments for
a student model without the thermal modality, i.e., in this
particular case, we attempt to use a multispectral teacher to
improve the performance of a visible-only student.

The proposed MD framework includes two training
stages. In the first stage, we train the teacher model and fix
its weights, such that the fused features from GAFF mod-
ule contain the rich semantics of high-resolution thermal-
visible image pairs. These features are used to guide the
training of the student model; In the second stage, the op-
timization of the student model is supervised by a task-
specific loss (e.g., pedestrian detection or semantic segmen-
tation loss) as well as the knowledge transfer loss. The ob-
jective of the knowledge transfer loss is two-fold: using
a more efficient one-stream network to mimic a more pre-
cise two-stream network and using the more available low-
resolution thermal images to reconstruct high-resolution
thermal details. Finally, we obtain a student model that
takes low-resolution thermal images as input, and the re-
quired parameters and calculations are greatly reduced.
Meanwhile, the precision of the low thermal resolution one-
stream student model is supposed to be close to the high
thermal resolution two-stream teacher model.



3.2. Guided attentive feature fusion

We carefully follow the implementations of GAFF mod-
ule from [27] for multispectral feature fusion in the teacher
model. GAFF learns the intra- and inter-modality attention
masks to adaptively enhance important areas and to identify
reliable modalities, respectively. Intra-modality attention is
used to distinguish the foreground and background for each
individual modality, and the inter-modality attention is used
to select features among visible and thermal modalities ac-
cording to the dynamic comparison of their prediction qual-
ity of the former mask.2. The weighted visible and thermal
features are obtained via:

fvisible
weighted = fvisible ⊗ (1 +mvisible

intra )⊗ (1 +mvisible
inter )

f thermal
weighted = f thermal ⊗ (1 +mthermal

intra )⊗ (1 +mthermal
inter )

(1)
where fvisible and f thermal denote features from visible
and thermal feature extraction branches. mintra and minter

are predicted intra- and inter-modality attention masks from
GAFF. Their superscript indicates the modality.

The fusion of the weighted visible and thermal features
are assigned as the teacher features:

fteacher =
fvisible
weighted + f thermal

weighted

2
(2)

3.3. Knowledge transfer modules

To preserve the knowledge learnt from the teacher model
to the maximum extent, we apply two knowledge trans-
fer strategies: Attention transfer that guides the one-stream
model to mimic the two-stream attentive fusion, and Seman-
tic transfer that rebuilds high-resolution visual details from
low-resolution thermal images.

Attention transfer. GAFF significantly improves the
scene analysis performance in a two-stream teacher model.
However, such a multispectral feature fusion module does
not exist in a one-stream student model. Thus, as illustrated
in the left part of Fig. 1(B), we design the Attention trans-
fer module to simulate this attentive fusion in a one-stream
model. The teacher attention mask is the combination of
intra- and inter-modality attention masks. To keep the ar-
chitecture simple, the student attention mask is generated
by a 1 × 1 convolution followed by a Sigmoid activation,
and is supervised by minimizing the Dice loss [3] between

2Due to space constraint, we refer the reader to [27] for more details.

the student and teacher attention masks:

mteacher = mvisible
intra ⊗mvisible

inter +mthermal
intra ⊗mthermal

inter

mstudent = F(fstudent)

Lattention = 1− 2|mstudent ⊗mteacher|
|mstudent|+ |mteacher|

(3)
where Lattention denotes the Attention transfer loss;
mteacher and mstudent represent the teacher and student
attention masks respectively; fstudent denotes the student
features acquired from the joint feature branch; F repre-
sents a 1× 1 convolution followed by a Sigmoid activation;
⊗ and || represent respectively the pixel-wise multiplication
and summation operation.

Semantic transfer. To compensate for the resolution re-
duction of thermal input images, the Semantic transfer
module performs an implicit super-resolution of student
feature maps. As shown in the right part of Fig. 1(B), we
use a basic residual block [9] to increase the details in the
joint features. Semantic transfer aims to minimize the dis-
tance between the student (joint) and teacher (fused) feature
maps. However, optimizing this distance has proven to be
difficult. At first glance, this is due to the extreme imbalance
between the foreground and background areas [16, 23]. In-
spired by the Focal loss [17], we argue that the true prob-
lem lies in the extreme imbalance between easily-mimic and
hardly-mimic areas. Therefore, we propose the Focal Mean
Square Error (F-MSE) loss defined as:

d = (fstudent − fteacher)
2

Lsemantic =
∑
w

∑
h

1

n
(δ(

∑
n

d)×
∑
n

d)
(4)

where Lsemantic denotes the Semantic transfer loss; d is
the squared L2 distance between student and teacher feature
maps. δ signifies the Softmax function; w, h, n represent
the width, height and depth of feature maps, respectively.

The major difference between the proposed F-MSE loss
and the standard MSE loss (used in [20]) is the spatial re-
weighting based on feature-mimicking errors. Concretely,
the Softmax function generates a 2-D re-weighting mask,
where each value reflects the difficulty of feature mimick-
ing on a specific area, and the summation of all values on
the mask is equal to 1. In such a manner, the optimization
adaptively “focuses” on mis-predicted areas, and the imbal-
ance problem is therefore solved.

4. Experiments
In this section, we conduct experiments on two multi-

spectral benchmarks [11, 7] and two scene analysis tasks



(pedestrian detection and semantic segmentation) to evalu-
ate the effectiveness of the proposed Modality Distillation
(MD) framework.

4.1. Datasets

KAIST. The KAIST multispectral pedestrian detection
dataset [11] (denoted as KAIST Dataset) focuses on the
pedestrian detection task based on aligned multispectral im-
age pairs. These image pairs are collected during daytime
and nighttime. This dataset contains 21,622 annotated im-
age pairs for training, and 2,252 image pairs for testing. Due
to the problematic annotations from the original dataset, we
adopt the improved annotations proposed by [30] and [18]
for training and evaluation, respectively. Following previ-
ous works, we adopt the log-average Miss Rate (computed
by averaging the miss rate on false positive per-image points
sampled within the range of

[
10−2, 100

]
, lower is better)

under a “reasonable” setting [5] (pedestrians that are oc-
cluded or shorter than 55 pixels are eliminated) as the eval-
uation metric.

MFNet. The Multispectral semantic segmentation dataset
[7] (denoted as MFNet Dataset) targets the semantic seg-
mentation of street scenes for autonomous vehicles. The
segmentation labels consist of eight classes: car, person,
bike, curve, car stop, guardrail, colour cone and bump.
It provides 1,568 aligned multispectral image pairs in the
training set, 392 pairs in the validation set and 393 pairs
in the test set. Among each subset, half of the image pairs
are taken during daytime, and the other half during night-
time. To evaluate the segmentation accuracy, we report the
class-wise Mean Accuracy, calculated by averaging the ra-
tio between the number of true positive pixels and the sum
of true positive and false negative pixels for each class.

4.2. Implementation details

Network architecture. For all experiments, we apply
ResNet-18 [9] as the feature extraction network, RetinaNet
[17] (its label assignment is optimized via Mutual Guid-
ance strategy [25]) as the pedestrian detection network and
PSPNet [31] as the semantic segmentation network. For
the teacher model (Fig. 1(A) upper model), GAFF [27]
is adopted for the attentive fusion of visible and thermal
features. For the student model (Fig. 1(A) lower model),
visible and thermal images are concatenated to generate
6-channel multispectral inputs, i.e., 3 channels from each
modality. The first convolution layer is modified to suit the
6-channel input3. Note that in lieu of generating 4-channel
input as done in [22], we duplicate the single-channel ther-

3Concretely, the pretrained ImageNet [2] weights for the first convolu-
tion layer are duplicated along the input channel dimension, and the values
are halved.

Fusion stage Miss Rate (%) RuntimeDay Night All
Visible-only 16.95 35.15 22.84±0.77 6.48ms
Image-level 10.73 6.61 9.40±0.39 6.55ms
Feature-level 9.37 4.71 7.77±0.07 10.97ms
Decision-level 10.74 9.25 10.34±0.32 12.96ms

Table 1. Different fusion methods on KAIST Dataset. For fair
comparisons, all listed methods use the same feature extraction
network (ResNet-18) and detection network (RetinaNet).

mal images into 3 channels to balance the contribution of
visible and thermal spectrum in the first convolution layer.

Input resolution. The resolution of visible input images
are set identical to previous methods for fair comparisons.
More specifically, the resolution is 640 × 512 on KAIST
Dataset and 640 × 480 on MFNet Dataset. To simu-
late the low-resolution thermal camera in actual products,
we downsample the high-resolution thermal images (e.g.,
from 640 × 512 to 160 × 128) through bilinear interpola-
tion. These downsampled small thermal images are then
re-scaled to the original spatial size (e.g., from 160 × 128
back to 640 × 512) to concatenate with the visible images.
Note that the high-resolution thermal details are already lost
in the first interpolation operation. Considering the camera
price and the containing number of pixels, 16 times thermal
resolution downsampling is regarded as the most practical
case (e.g., downsampling from 640× 512 to 160× 128).

Training details. All models (including teacher and stu-
dent models) are trained on a single GPU with 16 multispec-
tral image pairs per mini-batch, and with an initial learning
rate of 1e-2. To stabilize the training at the beginning, we
adopt the warm-up strategy, where the learning rate is lin-
early increased from 1e-6 to 1e-2 within the first 500 itera-
tions, then decayed with a cosine annealing. Pedestrian de-
tection models are trained for 3,500 iterations, and seman-
tic segmentation models are trained for 14,000 iterations.
The whole project is coded in PyTorch 1.20. For fair run-
time comparisons, all models’ runtimes are measured on an
Nvidia GTX 1080Ti GPU. We repeat each training 3 times
with different random seed values and report the average
performance as well as the standard error (only for the “all”
setting because of the space restriction). The best results are
shown in bold.

4.3. Experimental results

Baseline results. Image-level, feature-level and decision-
level are the three major fusion methods for multispec-
tral scene analysis. We list in Tab. 1 and 2 their predic-
tion accuracy and inference time on KAIST Dataset [11]
and on MFNet Dataset [7], respectively. The visible-only



Fusion stage Mean Accuracy (%) RuntimeDay Night All
Visible-only 50.83 52.26 55.06±0.21 4.57ms
Image-level 54.97 56.07 59.42±0.22 4.68ms
Feature-level 57.21 62.18 63.45±0.24 8.94ms
Decision-level 51.72 53.37 56.21±0.14 9.14ms

Table 2. Different fusion methods on MFNet Dataset. For fair
comparisons, all listed methods use the same feature network
(ResNet-18) and segmentation network (PSPNet).

Thermal resolution MD Miss Rate (%)
Day Night All

Full resolution 10.73 6.61 9.40±0.39
✓ 9.45 4.61 7.78±0.28

4x downsample 11.57 6.51 9.84±0.72
✓ 9.39 5.07 7.91±0.11

16x downsample 12.09 6.73 10.17±0.42
✓ 9.85 4.84 8.03±0.19

64x downsample 14.92 10.66 13.37±0.30
✓ 10.75 7.07 9.50±0.06

Visible-only 16.95 35.15 22.84±0.77
✓ 14.74 34.13 21.08±0.21

Table 3. Comparison between native models and distilled mod-
els on KAIST Dataset under different thermal resolution settings
(from full thermal resolution to no thermal scenario). All listed
methods use an image-level fusion architecture.

results are also listed for reference. In order to fairly
compare these fusion methods, we use the same feature
network (ResNet-18 [9]) and detection/segmentation net-
work (RetinaNet [17]/PSPNet [31]). Specifically, we adopt
GAFF [27] as the feature-level fusion method. For sim-
plicity, we average the prediction from visible and ther-
mal images for decision-level fusion. The tables show
that, regardless of the information fusion stage (image-
level, feature-level or decision-level), multispectral meth-
ods greatly improve the detection/segmentation accuracy
compared to the visible-only model, especially for night-
time detection/segmentation. Feature-level and decision-
level fusion methods almost double the execution runtimes
(as well as the number of parameters, not reported here be-
cause of the space restriction) of a visible-only model. In
contrast, the computational overhead for the image-level fu-
sion is negligible, which shows the relevance of this fusion
method when fewer computational resources are available.

Distillation results. We list in Tab. 3 and 4 the compar-
isons between native image-level fusion models and dis-
tilled image-level fusion models (i.e., student models) on
KAIST Dataset [11] and MFNet Dataset [7], respectively.
It can be observed that MD strategy brings important im-
provements for all thermal resolutions for both datasets.

Thermal resolution MD Mean Accuracy (%)
Day Night All

Full resolution 54.97 56.07 59.42±0.22
✓ 59.71 62.78 64.93±0.11

4x downsample 53.89 55.18 57.93±0.27
✓ 58.32 61.88 64.25±0.11

16x downsample 53.85 55.43 58.21±0.46
✓ 58.46 61.37 63.52±0.87

64x downsample 53.68 53.68 57.06±0.18
✓ 57.58 59.67 62.62±0.81

Visible-only 50.83 52.26 55.06±0.21
✓ 57.74 56.67 60.62±0.42

Table 4. Comparison between native models and distilled mod-
els on MFNet Dataset under different thermal resolution settings
(from full thermal resolution to no thermal scenario). All listed
methods use an image-level fusion architecture.
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Figure 2. Visual improvements on KAIST Dataset.

Specifically, on the multispectral pedestrian detection
task (Tab. 3), our full thermal resolution result with MD is
already close to that of the feature-level fusion model (i.e.,
teacher model) shown in Table 1 (7.78% versus 7.77%),
while the inference time is almost halved (10.97ms versus
6.55ms). When it comes to the most practical case where
thermal resolution is 16 times lower than visible resolution,
MD strategy brings 2.14% of Miss Rate improvement, and
the performance difference compared to the teacher model
is only 0.26% (8.03% versus 7.77%). We show some de-
tection results from native model and distilled model for
this practical case in Fig. 2, and it can be observed that our
distilled model provides more precise detection results. In-
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Figure 3. Visual improvements on MFNet Dataset.

terestingly, the nighttime detection precision is boosted by
27.06% (7.07% versus 34.13%) even if the thermal resolu-
tion is reduced to 80 × 64 (i.e., 64 times downsampled),
proving the necessity of the thermal modality in night-
time detections. Moreover, our strategy remains helpful
when the thermal image is completely removed (e.g., the
Miss Rate for visible-only model is reduced from 22.84%
to 21.08%). Here the multispectral knowledge from the
teacher model allows the visible-only student to perform
pseudo-multispectral detection, which is the main reason of
improvements.

On the multispectral semantic segmentation task, the im-
provements are more important (around 5% for all ther-
mal resolutions using MD). It is noteworthy that the per-
formance of the distilled visible-only model is even bet-
ter than that of the native full-resolution image-level fusion
model (60.62% versus 59.42%). Here, our assumption is
that the multispectral semantic segmentation task is more
critical for the choice of fusion architecture, e.g., according
to Tab. 2, native image-level fusion performs 4.03% worse
than feature-level fusion. This may be the reason why rare
previous work use image-level fusion for multispectral se-
mantic segmentation. However, our MD strategy makes the
student model mimic a feature-level fusion teacher model,
which compensates its established disadvantage of image-
level fusion architecture, and thus brings tremendous accu-
racy improvements. For the practical case (16 times thermal

Method Miss Rate (%) RuntimeDay Night All
ACF [11] 42.57 56.17 47.32 2730ms
Halfway Fusion [18] 24.88 26.59 25.75 430ms
FusionRPN+BF [13] 19.57 16.27 18.29 800ms
IAF R-CNN [15] 14.55 18.26 15.73 210ms
IATDNN+IASS [6] 14.67 15.72 14.95 250ms
RFA [28] 16.78 10.21 14.61 80ms
CIAN [29] 14.77 11.13 14.12 70ms
MSDS-RCNN [14] 10.53 12.94 11.34 220ms
AR-CNN [30] 9.94 8.38 9.34 120ms
MBNet [32] 8.28 7.86 8.13 70ms
Ours (teacher) 9.37 4.71 7.77 11ms
Ours (full) 9.45 4.61 7.78 7ms
Ours (practical) 9.85 4.84 8.03 7ms

Table 5. Comparison between state-of-the-art multispectral pedes-
trian detection methods and ours on KAIST Dataset. Our competi-
tors’ results are taken from [32].

Method Mean Accuracy (%) RuntimeDay Night All
MFNet [7] 42.6 41.4 45.1 4.35ms
FuseNet [8] 49.5 48.9 52.4 3.92ms
RTFNet-50 [21] 57.3 59.4 62.2 11.25ms
RTFNet-152 [21] 60.0 60.7 63.1 29.35ms
Ours (teacher) 57.2 62.2 63.5 8.94ms
Ours (full) 59.7 62.8 64.9 4.92ms
Ours (practical) 57.6 61.4 63.5 4.92ms

Table 6. Comparison between state-of-the-art multispectral se-
mantic segmentation methods and ours on MFNet Dataset. Our
competitors’ results are taken from [21].

resolution downsampling), the mean accuracy difference
with the teacher model is minor (63.52% versus 63.45%).
We visualize in Fig. 3 the segmentation results from the na-
tive model and our distilled model for the practical case, and
it could be noted that the improvement from MD strategy on
segmentation quality is obvious.

Comparing with state-of-the-art. We compare the re-
sults of our distilled models (which adopt the more efficient
image-level fusion) with state-of-the-art methods (all adopt-
ing the more cumbersome feature-level fusion) on KAIST
Dataset (Tab. 5) and MFNet Dataset (Tab. 6). Note that our
teacher models use [27] and this method has already been
shown to give better results than its competitors. However,
our goal here is to show how our student models (which are
supposed to be less good than their teachers) perform com-
pared to their competitors. Specifically, we provide our one-
stream student models’ results using full thermal resolution
(same condition as our competitors, denoted as “full”) and
using 16 times downsampled thermal resolution (denoted



S(M) S(F) A Miss Rate (%)
Day Night All

12.09 6.73 10.17±0.42
✓ 11.92 6.69 10.09±0.06

✓ 10.24 6.93 9.11±0.15
✓ 10.61 5.83 8.99±0.23

✓ ✓ 9.85 4.84 8.03±0.19
Table 7. Ablation experiments on KAIST Dataset. We study the
effects of Semantic transfer (with MSE or F-MSE loss) and Atten-
tion transfer modules in the proposed MD framework.

as “practical”). We also list our two-stream teacher models’
results (denoted as “teacher”) for reference. We consider
“practical” the most interesting setting for actual multispec-
tral applications.

On the multispectral pedestrian detection task, the
achieved Miss Rate from the distilled “practical” model is
already better than that of the best feature-level fusion meth-
ods in the literature [32] (8.03% versus 8.13%). It should be
noted that our “practical” model takes downsampled ther-
mal images as input and adopts a much simpler architecture
(one-stream networks for “full”/“practical” and two-stream
networks for others). It is also worth noting that our night-
time detection performance surpasses all previous methods,
which proves that the thermal information has been well-
preserved in the student model.

On the multispectral semantic segmentation task, thanks
to the substantial accuracy improvements from MD (about
5%), our distilled “practical” model also surpasses the best
previous result [21] (63.5% versus 63.1%). For this dataset
as well, all our trained models (including the “practical”
model with downsampled thermal input) have obvious ad-
vantage in nighttime prediction. It should be pointed out
that both our distilled models with one-stream ResNet-18
feature network even outperform RTFNet-152 [21] with
two-stream ResNet-152 feature network, demonstrating the
high efficiency of our distilled models (ours are about 6
times faster than RTFNet-152). More surprisingly, we can
see in Tab. 6 that the full student model gives slightly better
results than the teacher model. The student model’s fea-
ture extraction network is the same as the teacher’s one, so
the student could theoretically achieve similar performance,
and the student model has more sources of supervision, i.e.,
the ground truth and the knowledge learnt from the teacher
model, which we believe is the reason for the higher perfor-
mance shown by the student model.

Ablation experiments. To explore the effects of the pro-
posed Attention transfer and Semantic transfer modules, we
conduct ablation experiments on KAIST Dataset (Tab. 7)
and MFNet Dataset (Tab. 8), under the most practical case
(thermal images are 16 times downsampled). The “S” and

S(M) S(F) A Mean Accuracy (%)
Day Night All

53.85 55.43 58.21±0.46
✓ 56.04 57.87 60.41±0.28

✓ 57.49 58.47 61.16±0.13
✓ 57.55 58.46 61.51±0.30

✓ ✓ 57.58 61.37 63.52±0.87
Table 8. Ablation experiments on MFNet Dataset. We study the
effects of Semantic transfer (with MSE or F-MSE loss) and Atten-
tion transfer modules in the proposed MD framework.

Visible image Thermal image Re-weighting mask

Figure 4. Visualization of the visible-thermal image pairs and the
2-D spatial re-weighting masks from the proposed F-MSE loss.
The first two lines of multispectral images pairs come from KAIST
Dataset, and the last two lines come from MFNet Dataset.

“A” denote Semantic transfer and Attention transfer mod-
ules as illustrated in Fig. 1(B) right and left parts, respec-
tively. We conduct comparative experiments between the
traditional MSE loss (denoted as “M”) and the proposed F-
MSE loss (denoted as “F”) in the Semantic transfer module.
According to our experimental results, the latter provides
better performance for both tasks. Moreover, we visualize
some examples of the 2-D spatial re-weighting mask from
F-MSE loss (Eq.4) in Fig. 4, and it can be observed that: 1)
the imbalance between easily-mimic and hardly-mimic area
is grave, where the former occupies most of a given image;
2) with F-MSE loss, the optimization on the feature mim-
icking is automatically “focused” on more important areas,
e.g., pedestrians, vehicles and colour cones. This specific
loss tackles the imbalance problem in the Semantic transfer
module. In conclusion, according to our ablation experi-
ments on two datasets, both the proposed Semantic transfer



and Attention transfer modules bring notable improvements
and their combination leads to the best performance.

5. Conclusion
In this paper, we identify the hardware and software con-
straints in today’s multispectral scene analysis systems and
propose a novel Modality Distillation framework to tackle
these constraints. Specifically, this framework distils the
knowledge from a high thermal resolution two-stream net-
work with feature-level fusion to a low thermal resolution
one-stream network with image-level fusion. The distilled
model could perform prediction on widely available low-
resolution thermal cameras and shows similar complexity
with the mono-spectral models. In this framework, we
present two knowledge transfer modules named Attention
transfer and Semantic transfer specifically for multispectral
learning. Extensive experiments for multispectral pedes-
trian detection and semantic segmentation demonstrate the
efficiency of the proposed framework. In the future, we plan
to extend our method for scene analysis with even more
modalities such as depth sensor, Doppler radar, LiDAR, etc.
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