
HAL Id: hal-03491878
https://hal.science/hal-03491878v1

Submitted on 18 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arbitrary-order pressure-robust DDR and VEM
methods for the Stokes problem on polyhedral meshes
Lourenço Beirão da Veiga, Franco Dassi, Daniele Antonio Di Pietro, Jérôme

Droniou

To cite this version:
Lourenço Beirão da Veiga, Franco Dassi, Daniele Antonio Di Pietro, Jérôme Droniou. Arbitrary-order
pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes. Computer
Methods in Applied Mechanics and Engineering, 2022, 397 (115061), �10.1016/j.cma.2022.115061�.
�hal-03491878�

https://hal.science/hal-03491878v1
https://hal.archives-ouvertes.fr


Arbitrary-order pressure-robust DDR and VEM methods for the
Stokes problem on polyhedral meshes

Lourenço Beirão da Veiga1, Franco Dassi1, Daniele A. Di Pietro2, and Jérôme Droniou3

1Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Italy, lourenco.beirao@unimib.it,
franco.dassi@unimib.it

2IMAG, Univ Montpellier, CNRS, Montpellier, France, daniele.di-pietro@umontpellier.fr
3School of Mathematics, Monash University, Melbourne, Australia, jerome.droniou@monash.edu

December 18, 2021

Abstract

This paper contains two major contributions. First we derive, following the discrete de Rham
(DDR) and Virtual Element (VEM) paradigms, pressure-robust methods for the Stokes equations
that support arbitrary orders and polyhedralmeshes. Unlike othermethods presented in the literature,
pressure-robustness is achieved here without resorting to an 𝑯(div)-conforming construction on a
submesh, but rather projecting the volumetric force onto the discrete𝑯(curl) space. The cancellation
of the pressure error contribution stems from key commutation properties of the underlying DDR
and VEM complexes. The pressure-robust error estimates in ℎ𝑘+1 (with ℎ denoting the meshsize and
𝑘 ≥ 0 the polynomial degree of the DDR or VEM complex) are proven theoretically and supported
by a panel of three-dimensional numerical tests. The second major contribution of the paper is an
in-depth study of the relations between the DDR and VEM approaches. We show, in particular, that
a complex developed following one paradigm admits a reformulation in the other, and that couples
of related DDR and VEM complexes satisfy commuting diagram properties with the degrees of
freedom maps.

Key words. Stokes problem, pressure-robustness, discrete de Rham method, Virtual Element
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1 Introduction
Denote by Ω ⊂ R3 an open connected polyhedral domain. For the sake of simplicity, we assume that
Ω has trivial topology, i.e., there is no tunnel crossing it and it does not enclose any void. Given
a volumetric force 𝒇 : Ω → R3, the Stokes problem for a homogeneous Newtonian fluid with unit
viscosity reads: 

Find the velocity 𝒖 : Ω→ R3 and the pressure 𝑝 : Ω→ R such that
curl(curl 𝒖) + grad 𝑝 = 𝒇 in Ω,
div 𝒖 = 0 in Ω,
curl 𝒖 × 𝒏 = 0 on 𝜕Ω,
𝒖 · 𝒏 = 0 on 𝜕Ω,∫
Ω

𝑝 = 0.

(1.1)
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Notice that, in the momentum balance equation, we have used the vector calculus identity −Δ 𝒖 =

curl(curl 𝒖) − grad(div 𝒖) along with the fact that div 𝒖 = 0 to reformulate the viscous term as the
curl of the vorticity. Here, we consider homogeneous natural boundary conditions only for the sake of
simplicity: the extension to non-homogeneous and/or essential boundary conditions is possible (see,
e.g., the discussion in [15] concerning the formulation corresponding to Eq. (1) therein).
We are interested in the weak formulation of problem (1.1) described hereafter. Assume 𝒇 ∈ 𝑳2(Ω),

denote by 𝐻1(Ω) and 𝑯(curl;Ω) the spaces of functions that are square-integrable over Ω along with
their gradient and curl, respectively. Additionally letting 𝐿20(Ω) ≔

{
𝑞 ∈ 𝐿2(Ω) :

∫
Ω
𝑞 = 0

}
, the weak

formulation of problem (1.1) reads:

Find 𝒖 ∈ 𝑯(curl;Ω) and 𝑝 ∈ 𝐻1(Ω) ∩ 𝐿20(Ω) such that∫
Ω

curl 𝒖 · curl 𝒗 +
∫
Ω

grad 𝑝 · 𝒗 =

∫
Ω

𝒇 · 𝒗 ∀𝒗 ∈ 𝑯(curl;Ω)∫
Ω

grad 𝑞 · 𝒖 = 0 ∀𝑞 ∈ 𝐻1(Ω) ∩ 𝐿20(Ω).

(1.2)

Problem (1.2) admits a unique solution which, if regular enough, satisfies (1.1) almost everywhere. It
is a simple matter to check that changing the irrotational component of the body force 𝒇 only affects
the pressure 𝑝, leaving the velocity 𝒖 unaltered. When considering numerical approximations, the
failure to reproduce this property at the discrete level can have a sizeable impact on the quality of the
numerical solution [30, 32]. Numerical schemes that behave robustly with respect to the magnitude
of the irrotational part of the body force are often referred to as pressure-robust. From the analysis
standpoint, such methods guarantee velocity error estimates that are independent of the pressure.
The issue of pressure-robustness for finite element discretizations on standard (conforming) meshes

has been addressed in several works. A two-dimensional finite element pair on standard triangular
meshes which is conforming, inf-sup stable, and delivers 𝑯(div;Ω)-conforming approximations of the
velocity has been developed in [28] using as a starting point the Stokes complex; see also [34] for an
extension to quadrilateral elements. 𝑯(div;Ω)-conforming velocity approximations naturally lead to
pressure-robustness. A related strategy to recover this property for a variety of numerical schemes is
outlined in [31] (see also [33]), where the authors suggest a modification of the right-hand side involving
the projection of the test function onto an 𝑯(div;Ω)-conforming space. This strategy has been applied
to the design of pressure-robust Hybrid High-Order discretizations of the Stokes problem on conforming
simplicial meshes in [26]; see also [24, Section 8.6] and [19] (along with the precursor works [16, 27])
concerning the extension to the full Navier–Stokes equations. In [9–11] the authors proposed a family
of Virtual Element schemes for general polytopal meshes such that the virtual velocity is divergence-
free and enjoys error bounds that do not depend directly on the pressure; although this represents an
improvement with respect to standard inf-sup stable methods, the scheme is not fully pressure-robust
since the velocity error depends indirectly on the pressure through a higher order loading term. We can
designate such schemes as asymptotic pressure robust, meaning that the terms involving the pressure in
the right-hand side of the error estimates are of higher-order than the dominating error component.
Adapting the strategy of [31] to general polytopal meshes can be problematic owing to the difficulty

of devising discrete spaces that are both 𝑯(div;Ω)-conforming and fully computable. 𝑯(div;Ω)-
conforming virtual spaces, e.g., fulfill the first requirement but not the second; as a result, when used in
the design of numerical schemes, they only lead to asymptotic pressure robustness. One possibility then
consists in constructing 𝑯(div;Ω)-conforming spaces based on a matching and shape regular simplicial
submesh, as recently proposed in [29]. While this approach leads to fully pressure-robust methods, it
hinges on a construction that can be computationally expensive, particularly in dimension 3 and/or in
the presence of faces and edges that are orders of magnitude smaller than the parent element.
In this work we explore a different strategy based on a compatible approach, that is, we replace the
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spaces that appear in the weak formulation (1.2) with finite-dimensional counterparts that form an exact
complex when connected by (discrete counterparts of) the usual vector calculus operators. Pressure-
robustness is then obtained projecting the body force 𝒇 onto the discrete𝑯(curl;Ω) space and leveraging
a commutativity property involving the interpolators on the discrete counterparts of 𝑯(curl;Ω) and
𝐻1(Ω) and the (discrete analog of) the gradient operator. A similar strategy has been considered in
[15] in the context of Compatible Discrete Operators, leading to a pressure-robust, low-order method
on general polytopal meshes. We also mention here [20, Remark 23] on a related approach for HHO
methods on standard meshes. Two different design paradigms are considered: the discrete de Rham
(DDR) approach of [22] (see also [23, 25]), where both the spaces and differential operators are replaced
by discrete analogs, and the Virtual Element Method (VEM) of [3, 5] (see also [4, 6]), where compatible
and conforming (but not fully computable) spaces are exploited to design a numerical scheme through
computable projections. In both cases, we obtain fully pressure-robust schemes that, when complexes
of degree 𝑘 ≥ 0 are used as starting points, converge as ℎ𝑘+1 (with ℎ denoting, as usual, the meshsize)
in the graph norm. The key feature of both schemes is that they achieve pressure-robustness on general
polytopal meshes without resorting to a matching simplicial submesh.
This work also contains a second important contribution, namely the construction of bridges between

the DDR and VEM approaches. Specifically, we recast the spaces and local constructions of each
paradigm into the other, thus enabling an in-depth comparison. On one hand, this shows differences
in the choice (and polynomial degree) of certain degrees of freedom; on the other hand, it reveals that
the reduction of the number of unknowns is obtained through different strategies in the two methods
(serendipity for VEM, a systematic use of enhancement for DDR). The links established in the present
work can serve as a starting point for cross-fertilization of these approaches.
The rest of the paper is organized as follows. In Section 2 we establish the discrete setting. In

Sections 3 and 4 we state, respectively, the DDR and VEM schemes along with the corresponding
pressure-robust error estimates. A numerical study of the methods is performed in Section 5, where we
also verify in practice the pressure-robustness property. Bridges between the DDR and VEM schemes
are built in Section 6. Finally, Section 7 contains the proofs of the main results.

2 Setting
2.1 Mesh and orientation of mesh entities

For any measurable set 𝑌 ⊂ R3, we denote by ℎ𝑌 ≔ sup{|𝒙 − 𝒚 | : 𝒙, 𝒚 ∈ 𝑌 } its diameter and by |𝑌 | its
Hausdorff measure. We consider meshesMℎ ≔ Tℎ ∪ Fℎ ∪ Eℎ ∪ Vℎ of the domain Ω, where: Tℎ is a
finite collection of open disjoint polyhedral elements such that Ω =

⋃
𝑇 ∈Tℎ 𝑇 and ℎ = max𝑇 ∈Tℎ ℎ𝑇 > 0;

Fℎ is a finite collection of open planar faces; Eℎ is the set collecting the open polygonal edges (line
segments) of the faces;Vℎ is the set collecting the edge endpoints. It is assumed, in what follows, that
(Tℎ, Fℎ) matches the conditions in [24, Definition 1.4]. We additionally assume that the polytopes in
Tℎ ∪ Fℎ are simply connected and have connected Lipschitz-continuous boundaries. The set collecting
the mesh faces that lie on the boundary of a mesh element 𝑇 ∈ Tℎ is denoted by F𝑇 . For any mesh
element or face 𝑌 ∈ Tℎ ∪ Fℎ, we denote, respectively, by E𝑌 andV𝑌 the set of edges and vertices of 𝑌 .
For any face 𝐹 ∈ Fℎ, an orientation is set by prescribing a unit normal vector 𝒏𝐹 and, for any mesh

element 𝑇 ∈ Tℎ sharing 𝐹, we denote by 𝜔𝑇 𝐹 ∈ {−1, 1} the orientation of 𝐹 relative to 𝑇 such that
𝜔𝑇 𝐹 𝒏𝐹 points out of 𝑇 . For any edge 𝐸 ∈ Eℎ, an orientation is set by prescribing the unit tangent vector
𝒕𝐸 . Denote by 𝐹 ∈ Fℎ a face such that 𝐸 ∈ E𝐹 and let 𝒏𝐹𝐸 be the unit vector normal to 𝐸 lying in the
plane of 𝐹 such that ( 𝒕𝐸 , 𝒏𝐹𝐸 ) forms a system of right-handed coordinates. We let 𝜔𝐹𝐸 ∈ {−1, 1} be
the orientation of 𝐸 relative to 𝐹 such that 𝜔𝐹𝐸𝒏𝐹𝐸 points out of 𝐹.
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2.2 Differential operators on faces and tangential trace

For any mesh face 𝐹 ∈ Fℎ, we denote by grad𝐹 and div𝐹 the tangent gradient and divergence operators
acting on smooth enough functions over 𝐹. Moreover, for any 𝑟 : 𝐹 → R and 𝒛 : 𝐹 → R2 smooth
enough, we define the two-dimensional vector and scalar curl operators such that

rot𝐹 𝑟 ≔ 𝜚−𝜋/2(grad𝐹 𝑟) and rot𝐹 𝒛 = div𝐹 (𝜚−𝜋/2𝒛),

where 𝜚−𝜋/2 is the rotation of angle − 𝜋
2 in the oriented tangent space to 𝐹. When considering the face

𝐹 ∈ Fℎ as immersed in R3, both grad𝐹 and rot𝐹 act on the restrictions to 𝐹 of scalar-valued functions
of the three-dimensional space coordinate. Similarly, div𝐹 and rot𝐹 act on the tangential trace on 𝐹
of vector-valued functions of the three-dimensional space coordinate. The tangential trace is hereafter
denoted appending the index “t, 𝐹” to the name of the function so that, e.g., given 𝒗 : Ω→ R3 smooth
enough and 𝐹 ∈ Fℎ, 𝒗t,𝐹 ≔ 𝒏𝐹 × (𝒗 |𝐹 × 𝒏𝐹 ).
2.3 Lebesgue and Hilbert spaces

For 𝑌 measured subset of R3, we denote by 𝐿2(𝑌 ) the Lebesgue space spanned by functions that are
square-integrable over 𝑌 . When 𝑌 is an 𝑛-dimensional set (typically a mesh element or face), we will
use the boldface notation 𝑳2(𝑌 ) ≔ 𝐿2(𝑌 )𝑛 for the space of vector-valued fields over 𝑌 with square-
integrable components. Given 𝑠 > 0 and 𝑌 ∈ {Ω} ∪ Tℎ ∪ Fℎ, 𝐻𝑠 (𝑌 ) will denote the usual Hilbert space
of index 𝑠 on 𝑌 , and we additionally let 𝑯𝑠 (𝑌 ) ≔ 𝐻𝑠 (𝑌 )𝑛 and 𝑪𝑠 (𝑌 ) ≔ 𝐶𝑠 (𝑌 )𝑛.
For all 𝑌 ∈ {Ω} ∪ Tℎ, 𝑯(curl;𝑌 ) and 𝑯(div;𝑌 ) denote the spaces of vector-valued functions that

are square integrable along with their curl or divergence, respectively. We additionally let, for any 𝑠 > 0,
𝑯𝑠 (curl;𝑌 ) ≔ {𝒗 ∈ 𝑯𝑠 (𝑌 ) : curl 𝒗 ∈ 𝑯𝑠 (𝑌 )}.
The regularity requirements in the error estimates will be expressed in terms of the broken Hilbert

spaces 𝐻𝑠 (Tℎ) ≔
{
𝑞 ∈ 𝐿2(Ω) : 𝑞 |𝑇 ∈ 𝐻𝑠 (𝑇) ∀𝑇 ∈ Tℎ

}
. According to the previously established

conventions, the corresponding vector-valued version is denoted by 𝑯𝑠 (Tℎ), and we additionally let
𝑯𝑠 (curl;Tℎ) ≔

{
𝒗 ∈ 𝑳2(Ω) : 𝒗 ∈ 𝑯𝑠 (curl;𝑇) ∀𝑇 ∈ Tℎ

}
.

2.4 Polynomial spaces and decompositions

For a given integer 𝑙 ≥ 0, P𝑙𝑛 denotes the space of 𝑛-variate polynomials of total degree ≤ 𝑙, with the
convention that P−1𝑛 ≔ {0} for any 𝑛. For any 𝑌 ∈ Tℎ ∪Fℎ ∪ Eℎ, we denote by P𝑙 (𝑌 ) the space spanned
by the restriction to 𝑌 of the functions in P𝑙3. Denoting by 1 ≤ 𝑛 ≤ 3 the dimension of 𝑌 , P𝑙 (𝑌 ) is
isomorphic to P𝑙𝑛 (see [24, Proposition 1.23]). In what follows, with a small abuse of notation, both
spaces are denoted by P𝑙 (𝑌 ). We also denote by

P𝑙
0(𝑌 ) ≔

{
𝑞 ∈ P𝑙 (𝑌 ) :

∫
𝑌

𝑞 = 0
}

(2.1)

the subspace of P𝑙 (𝑌 ) spanned by functions in P𝑙 (𝑌 ) with zero mean value over 𝑌 . For the sake of
brevity, we also introduce the boldface notations P𝑙 (𝑇) ≔ P𝑙 (𝑇)3 for all 𝑇 ∈ Tℎ and P𝑙 (𝐹) ≔ P𝑙 (𝐹)2
for all 𝐹 ∈ Fℎ. For 𝑌 as above, we denote by Π𝑙

P,𝑌 (resp. 𝚷
𝑙
P,𝑌
) the 𝐿2-orthogonal projector on P𝑙 (𝑌 )

(resp. P𝑙 (𝑌 )).
For all 𝑌 ∈ Tℎ ∪Fℎ and 𝒙 ∈ 𝑌 , we introduce the translated coordinate vector 𝒙𝑌 = 𝒙 − 𝒄𝑌 where, for

each given𝑌 , we have fixed a point 𝒄𝑌 ∈ 𝑌 such that𝑌 contains a ball centered at 𝒄𝑌 of radius 𝜌ℎ𝑌 , with
𝜌 denoting the mesh regularity parameter (see [24, Definition 1.9] and also Assumption 15 in Section
7.2.1 concerning the VEM scheme). For any mesh face 𝐹 ∈ Fℎ and any integer 𝑙 ≥ 0, we define the
following relevant subspaces of P𝑙 (𝐹):

G
𝑙 (𝐹) ≔ grad𝐹 P𝑙+1(𝐹), G

c,𝑙 (𝐹) ≔ 𝒙⊥𝐹 P𝑙−1(𝐹),
R

𝑙 (𝐹) ≔ rot𝐹 P𝑙+1(𝐹), R
c,𝑙 (𝐹) ≔ 𝒙𝐹 P𝑙−1(𝐹)

(2.2)
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(where 𝒚⊥ is a shorthand for the vector 𝒚 rotated by − 𝑓 𝑟𝑎𝑐𝜋2 in 𝐹), so that

P
𝑙 (𝐹) = G

𝑙 (𝐹) ⊕ G
c,𝑙 (𝐹) = R

𝑙 (𝐹) ⊕ R
c,𝑙 (𝐹).

The 𝐿2-orthogonal projectors on the spaces (2.2) are, with obvious notation, 𝚷𝑙
G,𝐹
, 𝚷c,𝑙

G,𝐹
, 𝚷𝑙

R,𝐹
, and

𝚷c,𝑙
R,𝐹
. Similarly, for any mesh element 𝑇 ∈ Tℎ and any integer 𝑙 ≥ 0, we introduce the following

subspaces of P𝑙 (𝑇):

G
𝑙 (𝑇) ≔ gradP𝑙+1(𝑇), G

c,𝑙 (𝑇) ≔ 𝒙𝑇 ×P𝑙−1(𝑇),
R

𝑙 (𝑇) ≔ curlP𝑙+1(𝑇), R
c,𝑙 (𝑇) ≔ 𝒙𝑇 P𝑙−1(𝑇).

(2.3)

The 𝐿2-orthogonal projectors on the spaces (2.3) are 𝚷𝑙
G,𝑇
, 𝚷c,𝑙

G,𝑇
, 𝚷𝑙

R,𝑇
, and 𝚷c,𝑙

R,𝑇
, and we have

P
𝑙 (𝑇) = G

𝑙 (𝑇) ⊕ G
c,𝑙 (𝑇) = R

𝑙 (𝑇) ⊕ R
c,𝑙 (𝑇).

3 DDR scheme
We present a scheme based on the DDR sequence of [22]. Throughout this section, we let an integer
𝑘 ≥ 0 be fixed, corresponding to the polynomial degree of the sequence.
3.1 Spaces

We define the following spaces for the velocity and the pressure:

𝑿𝑘
curl,ℎ ≔

{
𝒗
ℎ
=
(
(𝒗R,𝑇 , 𝒗

c
R,𝑇
)𝑇 ∈Tℎ , (𝒗R,𝐹 , 𝒗

c
R,𝐹
)𝐹 ∈Fℎ , (𝑣𝐸 )𝐸 ∈Eℎ

)
:

𝒗R,𝑇 ∈ R𝑘−1(𝑇) and 𝒗c
R,𝑇
∈ Rc,𝑘 (𝑇) for all 𝑇 ∈ Tℎ,

𝒗R,𝐹 ∈ R𝑘−1(𝐹) and 𝒗c
R,𝐹
∈ Rc,𝑘 (𝐹) for all 𝐹 ∈ Fℎ,

and 𝑣𝐸 ∈ P𝑘 (𝐸) for all 𝐸 ∈ Eℎ
}
,

𝑋 𝑘
grad,ℎ ≔

{
𝑞
ℎ
=
(
(𝑞𝑇 )𝑇 ∈Tℎ , (𝑞𝐹 )𝐹 ∈Fℎ , 𝑞Eℎ

)
: 𝑞𝑇 ∈ P𝑘−1(𝑇) for all 𝑇 ∈ Tℎ,

𝑞𝐹 ∈ P𝑘−1(𝐹) for all 𝐹 ∈ Fℎ,

and 𝑞Eℎ ∈ P𝑘+1
c (Eℎ)

}
,

where P𝑘+1
c (Eℎ) is spanned by functions that are continuous on the edge skeleton of the mesh and whose

restriction to every edge 𝐸 ∈ Eℎ is in P𝑘+1(𝐸). Given • ∈ {grad, curl} and a mesh entity 𝑌 appearing
in the definition of 𝑋 𝑘

•,ℎ, we denote by 𝑋
𝑘
•,𝑌 the restriction of this space to 𝑌 , gathering the polynomial

components attached to 𝑌 and to the mesh entities on the boundary 𝜕𝑌 of 𝑌 . Similarly, the restriction to
𝑌 of an element 𝜉

ℎ
∈ 𝑋•,ℎ is denoted by 𝜉𝑌 and is obtained collecting the polynomial components of

𝜉
ℎ
attached to 𝑌 and to the mesh entities on 𝜕𝑌 . If 𝑞Eℎ ∈ P𝑘+1

𝑐 (Eℎ) and 𝐹 ∈ Fℎ, we similarly let 𝑞E𝐹
be the restriction of 𝑞Eℎ to 𝜕𝐹 = ∪𝐸 ∈E𝐹𝐸 .
The interpolators on the DDR spaces are defined as follows: 𝑰𝑘curl,ℎ : 𝑪

0(Ω) → 𝑿𝑘
curl,ℎ is obtained

setting, for all 𝒗 ∈ 𝑪0(Ω),

𝑰𝑘curl,ℎ𝒗 ≔
(
(𝚷𝑘−1

R,𝑇
𝒗 |𝑇 ,𝚷

c,𝑘
R,𝑇

𝒗 |𝑇 )𝑇 ∈Tℎ , (𝚷𝑘−1
R,𝐹

𝒗t,𝐹 ,𝚷
c,𝑘
R,𝐹

𝒗t,𝐹 )𝐹 ∈Fℎ , (Π𝑘
P,𝐸 (𝒗 |𝐸 · 𝒕𝐸 )𝐸 ∈Eℎ

)
,

where we remind the reader that 𝒗t,𝐹 denotes the tangential trace of 𝒗 over 𝐹, while 𝐼𝑘grad,ℎ : 𝐶
0(Ω) →

𝑋 𝑘
grad,ℎ is such that, for all 𝑞 ∈ 𝐶

0(Ω),

𝐼𝑘grad,ℎ𝑞 ≔
(
(Π𝑘−1
P,𝑇 𝑞 |𝑇 )𝑇 ∈Tℎ , (Π

𝑘−1
P,𝐹𝑞 |𝐹 )𝐹 ∈Fℎ , 𝑞Eℎ

)
∈ 𝑋 𝑘

grad,ℎ

where Π𝑘−1
P,𝐸 (𝑞Eℎ ) |𝐸 = Π𝑘−1

P,𝐸𝑞 |𝐸 for all 𝐸 ∈ Eℎ and 𝑞Eℎ (𝒄𝜈) = 𝑞(𝒄𝜈) for all 𝜈 ∈ Vℎ,

with 𝒄𝜈 denoting the coordinate vector of the vertex 𝜈 ∈ Vℎ.

5



3.2 Discrete vector calculus operators

Discrete vector calculus operators are built emulating integration by parts formulas. We recall here their
definitions and refer to [22, 25] for further details.

3.2.1 Curl

For all 𝐹 ∈ Fℎ, the face curl 𝐶𝑘
𝐹
: 𝑿𝑘

curl,𝐹 → P𝑘 (𝐹) is such that, for all 𝒗
𝐹
∈ 𝑿𝑘

curl,𝐹 ,∫
𝐹

𝐶𝑘
𝐹 𝒗𝐹 𝑟𝐹 =

∫
𝐹

𝒗R,𝐹 · rot𝐹 𝑟𝐹 −
∑︁

𝐸 ∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝑣𝐸𝑟𝐹 ∀𝑟𝐹 ∈ P𝑘 (𝐹). (3.1)

The tangential trace 𝜸𝑘
t,𝐹 : 𝑿

𝑘
curl,𝐹 → P

𝑘 (𝐹) is such that, for all 𝒗
𝐹
∈ 𝑿𝑘

curl,𝐹 and all (𝑟𝐹 , 𝒘𝐹 ) ∈
P𝑘+1(𝐹) ×Rc,𝑘 (𝐹),∫

𝐹

𝜸𝑘
t,𝐹 𝒗𝐹 · (rot𝐹 𝑟𝐹 + 𝒘𝐹 ) =

∫
𝐹

𝐶𝑘
𝐹 𝒗𝐹 𝑟𝐹 +

∑︁
𝐸 ∈E𝐹

𝜔𝐹𝐸

∫
𝐸

𝑣𝐸𝑟𝐹 +
∫
𝐹

𝒗c
R,𝐹
· 𝒘𝐹 . (3.2)

For all 𝑇 ∈ Tℎ, the element curl C𝑘
𝑇
: 𝑿𝑘

curl,𝑇 → P
𝑘 (𝑇) is obtained, for all 𝒗

𝑇
∈ 𝑿𝑘

curl,𝑇 , by enforcing∫
𝑇

C𝑘
𝑇 𝒗𝑇 · 𝒘𝑇 =

∫
𝑇

𝒗R,𝑇 · curl𝒘𝑇 +
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝜸𝑘
t,𝐹 𝒗𝐹 · (𝒘𝑇 × 𝒏𝐹 ) ∀𝒘𝑇 ∈ P𝑘 (𝑇). (3.3)

The discrete curl maps on the following discrete counterpart of the space 𝑯(div;Ω):

𝑿𝑘
div,ℎ ≔

{
𝒘

ℎ
=
(
(𝒘G,𝑇 , 𝒘

c
G,𝑇
)𝑇 ∈Tℎ , (𝑤𝐹 )𝐹 ∈Fℎ

)
:

𝒘G,𝑇 ∈ G𝑘−1(𝑇) and 𝒘c
G,𝑇
∈ Gc,𝑘 (𝑇) for all 𝑇 ∈ Tℎ,

and 𝑤𝐹 ∈ P𝑘 (𝐹) for all 𝐹 ∈ Fℎ
}
,

Specifically, we let 𝑪𝑘
ℎ
: 𝑿𝑘

curl,ℎ → 𝑿𝑘
div,ℎ be such that, for all 𝒗ℎ ∈ 𝑿𝑘

curl,ℎ,

𝑪𝑘
ℎ
𝒗
ℎ
≔

( (
𝚷𝑘−1

G,𝑇

(
C𝑘
𝑇 𝒗𝑇

)
,𝚷c,𝑘

G,𝑇

(
C𝑘
𝑇 𝒗𝑇

) )
𝑇 ∈Tℎ , (𝐶

𝑘
𝐹 𝒗𝐹 )𝐹 ∈Fℎ

)
. (3.4)

3.2.2 Gradient

For any 𝐸 ∈ Eℎ, the edge gradient 𝐺𝑘
𝐸
: 𝑋 𝑘

grad,𝐸 → P
𝑘 (𝐸) is defined as follows: For all 𝑞𝐸 ∈ 𝑋 𝑘

grad,𝐸 =

P𝑘+1(𝐸),
𝐺𝑘

𝐸𝑞𝐸 ≔ 𝑞′𝐸 ,

where the derivative is taken along 𝐸 according to the orientation of 𝒕𝐸 . For any 𝐹 ∈ Fℎ, the face
gradient G𝑘

𝐹
: 𝑋 𝑘

grad,𝐹 → P
𝑘 (𝐹) is such that, for all 𝑞

𝐹
∈ 𝑋 𝑘

grad,𝐹 ,∫
𝐹

G𝑘
𝐹𝑞𝐹

· 𝒘𝐹 = −
∫
𝐹

𝑞𝐹 div𝐹 𝒘𝐹 +
∑︁

𝐸 ∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝑞E𝐹 (𝒘𝐹 · 𝒏𝐹𝐸 ) ∀𝒘𝐹 ∈ P𝑘 (𝐹). (3.5)

The scalar trace 𝛾𝑘+1
𝐹
: 𝑋 𝑘

grad,𝐹 → P
𝑘+1(𝐹) is such that, for all 𝑞

𝐹
∈ 𝑋 𝑘

grad,𝐹 ,∫
𝐹

𝛾𝑘+1
𝐹 𝑞

𝐹
div𝐹 𝒗𝐹 = −

∫
𝐹

G𝑘
𝐹𝑞𝐹

· 𝒗𝐹 +
∑︁

𝐸 ∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝑞E𝐹 (𝒗𝐹 · 𝒏𝐹𝐸 ) ∀𝒗𝐹 ∈ Rc,𝑘+2(𝐹). (3.6)
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For all 𝑇 ∈ Tℎ, the element gradient G𝑘
𝑇
: 𝑋 𝑘

grad,𝑇 → P
𝑘 (𝑇) is defined such that, for all 𝑞

𝑇
∈ 𝑋 𝑘

grad,𝑇 ,∫
𝑇

G𝑘
𝑇 𝑞𝑇
· 𝒘𝑇 = −

∫
𝑇

𝑞𝑇 div𝒘𝑇 +
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝛾𝑘+1
𝐹 𝑞

𝐹
(𝒘𝑇 · 𝒏𝐹 ) ∀𝒘𝑇 ∈ P𝑘 (𝑇). (3.7)

Finally, the discrete gradient 𝑮𝑘
ℎ
: 𝑋 𝑘

grad,ℎ → 𝑿𝑘
curl,ℎ is obtained collecting the projections of each local

gradient on the space(s) attached to the corresponding mesh entity: For all 𝑞
ℎ
∈ 𝑋 𝑘

grad,ℎ,

𝑮𝑘
ℎ
𝑞
ℎ
≔

( (
𝚷𝑘−1

R,𝑇

(
G𝑘
𝑇 𝑞𝑇

)
,𝚷c,𝑘

R,𝑇

(
G𝑘
𝑇 𝑞𝑇

) )
𝑇 ∈Tℎ ,(

𝚷𝑘−1
R,𝐹

(
G𝑘
𝐹𝑞𝐹

)
,𝚷c,𝑘

R,𝐹

(
G𝑘
𝐹𝑞𝐹

) )
𝐹 ∈Fℎ ,

(𝐺𝑘
𝐸𝑞𝐸 )𝐸 ∈Eℎ

)
.

(3.8)

The following discrete counterpart of the property curl grad = 0 is proved in [22, Theorem 1]:

𝑪𝑘
ℎ
(𝑮𝑘

ℎ
𝑞
ℎ
) = 0 ∀𝑞

ℎ
∈ 𝑋 𝑘

grad,ℎ . (3.9)

3.3 Discrete potentials and 𝐿2-products

We next equip the DDR spaces with discrete 𝐿2-products composed of a consistent term (equal to
the 𝐿2-product of discrete scalar or vector potentials) and a stabilisation term involving least-square
penalisations of boundary differences.
Let 𝑇 ∈ Tℎ. The discrete scalar potential 𝑃𝑘+1

grad,𝑇 : 𝑋
𝑘
grad,𝑇 → P𝑘+1(𝑇) is such that, for all

𝑞
𝑇
∈ 𝑋 𝑘

grad,𝑇 ,∫
𝑇

𝑃𝑘+1
grad,𝑇 𝑞𝑇

div 𝒗𝑇 = −
∫
𝑇

G𝑘
𝑇 𝑞𝑇
·𝒗𝑇 +

∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝛾𝑘+1
𝐹 𝑞

𝐹
(𝒗𝑇 ·𝒏𝐹 ) ∀𝒗𝑇 ∈ Rc,𝑘+2(𝑇), (3.10)

with 𝛾𝑘+1
𝐹
defined by (3.6). The discrete vector potential 𝑷𝑘

curl,𝑇 : 𝑿
𝑘
curl,𝑇 → P

𝑘 (𝑇) is such that, for all
𝒗
𝑇
∈ 𝑿𝑘

curl,𝑇 and all (𝒘𝑇 , 𝒛𝑇 ) ∈ Gc,𝑘+1(𝑇) ×Rc,𝑘 (𝑇),∫
𝑇

𝑷𝑘
curl,𝑇 𝒗𝑇 · (curl𝒘𝑇 +𝒛𝑇 ) =

∫
𝑇

C𝑘
𝑇 𝒗𝑇 ·𝒘𝑇 −

∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝜸𝑘
t,𝐹 𝒗𝐹 · (𝒘𝑇 ×𝒏𝐹 )+

∫
𝑇

𝒗c
R,𝑇
·𝒛𝑇 . (3.11)

Finally, the discrete vector potential 𝑷𝑘
div,𝑇 : 𝑿

𝑘
div,𝑇 → P

𝑘 (𝑇) satisfies, for all 𝒘
𝑇
∈ 𝑿𝑘

div,𝑇 and all
(𝑟𝑇 , 𝒛𝑇 ) ∈ P𝑘+1(𝑇) ×Gc,𝑘 (𝑇),∫

𝑇

𝑷𝑘
div,𝑇 𝒘𝑇

· (grad 𝑟𝑇 + 𝒛𝑇 ) = −
∫
𝑇

𝐷𝑘
𝑇 𝒘𝑇

𝑟𝑇 +
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝑤𝐹 𝑟𝑇 +
∫
𝑇

𝒘c
G,𝑇
· 𝒛𝑇 , (3.12)

with discrete divergence 𝐷𝑘
𝑇
: 𝑿𝑘

div,𝑇 → P
𝑘 (𝑇) such that∫

𝑇

𝐷𝑘
𝑇 𝒘𝑇

𝑞𝑇 = −
∫
𝑇

𝒗G,𝑇 · grad 𝑞𝑇 +
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝑣𝐹 𝑞𝑇 ∀𝑞𝑇 ∈ P𝑘 (𝑇). (3.13)

For (•, 𝑙) ∈ {(grad, 𝑘 + 1), (curl, 𝑘), (div, 𝑘)}, the discrete 𝐿2-product (·, ·)•,ℎ : 𝑋 𝑘
•,ℎ × 𝑋 𝑘

•,ℎ → R
is such that, for all 𝜉

ℎ
, 𝜁

ℎ
∈ 𝑋 𝑘

•,ℎ,

(𝜉
ℎ
, 𝜁

ℎ
)•,ℎ ≔

∑︁
𝑇 ∈Tℎ

[∫
𝑇

𝑃𝑙
•,𝑇 𝜉𝑇

· 𝑃𝑙
•,𝑇 𝜁𝑇

+ s•,𝑇 (𝜉
𝑇
, 𝜁

𝑇
)
]
,
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with local stabilization bilinear forms such that, for all 𝑇 ∈ Tℎ: For all (𝑟𝑇 , 𝑞𝑇 ) ∈ 𝑋 𝑘
grad,𝑇 × 𝑋 𝑘

grad,𝑇 ,

sgrad,𝑇 (𝑟𝑇 , 𝑞𝑇 ) ≔
∑︁
𝐹 ∈F𝑇

ℎ𝑇

∫
𝐹

(𝑃𝑘+1
grad,𝑇 𝑟𝑇 − 𝛾

𝑘+1
𝐹 𝑟𝐹 ) (𝑃

𝑘+1
grad,𝑇 𝑞𝑇

− 𝛾𝑘+1
𝐹 𝑞

𝐹
)

+
∑︁

𝐸 ∈E𝑇
ℎ2𝑇

∫
𝐸

(𝑃𝑘+1
grad,𝑇 𝑟𝑇 − 𝑟𝐸 ) (𝑃

𝑘+1
grad,𝑇 𝑞𝑇

− 𝑞
𝐸
),

for all (𝒘
𝑇
, 𝒗

𝑇
) ∈ 𝑿𝑘

curl,𝑇 × 𝑿𝑘
curl,𝑇 ,

scurl,𝑇 (𝒘𝑇
, 𝒗

𝑇
) ≔

∑︁
𝐹 ∈F𝑇

ℎ𝑇

∫
𝐹

[
(𝑷𝑘

curl,𝑇 𝒘𝑇
)t,𝐹 − 𝜸𝑘

t,𝐹𝒘𝐹

]
·
[
(𝑷𝑘

curl,𝑇 𝒗𝑇 )t,𝐹 − 𝜸
𝑘
t,𝐹 𝒗𝐹

]
+

∑︁
𝐸 ∈E𝑇

ℎ2𝑇

∫
𝐸

(
𝑷𝑘

curl,𝑇 𝒘𝑇
· 𝒕𝐸 − 𝑤𝐸

) (
𝑷𝑘

curl,𝑇 𝒗𝑇 · 𝒕𝐸 − 𝑣𝐸
)

(recall that the subscript “t, 𝐹” denotes the tangential trace on 𝐹) and, for all (𝒘
𝑇
, 𝒗

𝑇
) ∈ 𝑿𝑘

div,𝑇 ×𝑿
𝑘
div,𝑇 ,

sdiv,𝑇 (𝒘𝑇
, 𝒗

𝑇
) ≔

∑︁
𝐹 ∈F𝑇

ℎ𝑇

∫
𝐹

(
𝑷𝑘
div,𝑇 𝒘𝑇

· 𝒏𝐹 − 𝑤𝐹

) (
𝑷𝑘
div,𝑇 𝒗𝑇 · 𝒏𝐹 − 𝑣𝐹

)
.

3.4 Discrete problem and convergence

Define the following subspace of 𝑋 𝑘
grad,ℎ incorporating the zero-mean value condition:

𝑋 𝑘
grad,ℎ,0 ≔

{
𝑞
ℎ
∈ 𝑋 𝑘

grad,ℎ : (𝑞ℎ, 𝐼
𝑘
grad,ℎ1)grad,ℎ = 0

}
.

Assuming the additional regularity 𝒇 ∈ 𝑪0(Ω), the DDR scheme reads:
Find 𝒖

ℎ
∈ 𝑿𝑘

curl,ℎ and 𝑝ℎ ∈ 𝑋 𝑘
grad,ℎ,0 such that

aℎ (𝒖ℎ
, 𝒗

ℎ
) + bℎ (𝑝

ℎ
, 𝒗

ℎ
) = ℓℎ ( 𝒇 , 𝒗ℎ) ∀𝒗

ℎ
∈ 𝑿𝑘

curl,ℎ,

−bℎ (𝑞
ℎ
, 𝒖

ℎ
) = 0 ∀𝑞

ℎ
∈ 𝑋 𝑘

grad,ℎ,0,

(3.14)

where the bilinear forms aℎ : 𝑿𝑘
curl,ℎ × 𝑿𝑘

curl,ℎ → R, bℎ : 𝑋
𝑘
grad,ℎ × 𝑿𝑘

curl,ℎ → R, and ℓℎ : 𝑪
0(Ω) ×

𝑿𝑘
curl,ℎ → R are such that, for all 𝒗ℎ, 𝒘ℎ

∈ 𝑿𝑘
curl,ℎ, all 𝑞ℎ ∈ 𝑋 𝑘

grad,ℎ, and all 𝒈 ∈ 𝑪
0(Ω),

aℎ (𝒘ℎ
, 𝒗

ℎ
) ≔ (𝑪𝑘

ℎ
𝒘

ℎ
,𝑪𝑘

ℎ
𝒗
ℎ
)div,ℎ, bℎ (𝑞

ℎ
, 𝒗

ℎ
) ≔ (𝑮𝑘

ℎ
𝑞
ℎ
, 𝒗

ℎ
)curl,ℎ,

ℓℎ (𝒈, 𝒗ℎ) ≔ (𝑰
𝑘
curl,ℎ𝒈, 𝒗ℎ)curl,ℎ .

(3.15)

Remark 1 (Discretisation of the volumetric force term). The following commutation property is an
immediate consequence of the corresponding local version proved in [22, Lemma 4]:

𝑮𝑘
ℎ
(𝐼𝑘grad,ℎ𝑞) = 𝑰𝑘curl,ℎ (grad 𝑞) ∀𝑞 ∈ 𝐶1(Ω).

It follows from this relation that, for all (𝜓, 𝒗
ℎ
) ∈ 𝐶1(Ω) × 𝑿𝑘

curl,ℎ,

ℓℎ (grad𝜓, 𝒗
ℎ
) = bℎ (𝐼𝑘grad,ℎ𝜓, 𝒗ℎ). (3.16)
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Since we are interested in ℎ-convergence, we assume in what follows thatMℎ belongs to a mesh
sequence that is regular in the sense of [24, Definition 1.9]. For • ∈ {grad, curl, div}, we denote by
‖·‖•,ℎ the norm induced by the inner product (·, ·)•,ℎ on the space 𝑋 𝑘

•,ℎ, and we additionally set, for all
(𝒗

ℎ
, 𝑞

ℎ
) ∈ 𝑿𝑘

curl,ℎ × 𝑋 𝑘
grad,ℎ,

||| (𝒗
ℎ
, 𝑞

ℎ
) |||ℎ ≔

(
|||𝒗

ℎ
|||2curl,ℎ + |||𝑞ℎ |||

2
grad,ℎ

) 1
2 (3.17)

with graph norms on 𝑿𝑘
curl,ℎ and 𝑋

𝑘
grad,ℎ given by, respectively,

|||𝒗
ℎ
|||curl,ℎ ≔

(
‖𝒗

ℎ
‖2curl,ℎ + ‖𝑪

𝑘
ℎ
𝒗
ℎ
‖2div,ℎ

) 1
2
, |||𝑞

ℎ
|||grad,ℎ ≔

(
‖𝑞

ℎ
‖2grad,ℎ + ‖𝑮

𝑘
ℎ
𝑞
ℎ
‖2curl,ℎ

) 1
2
. (3.18)

In Theorem 2 below, we compare the solution of the discrete problem (3.14) with the interpolant of the
solution to the continuous problem (1.2). For all 𝑇 ∈ Tℎ, in order to account for the additional regularity
required by the interpolator on 𝑿𝑘

curl,𝑇 , we set: For all 1 ≤ 𝑠 ≤ 𝑘 + 1 and all 𝒗 ∈ 𝑯max(𝑠,2) (𝑇),

|𝒗 |𝑯 (𝑠,2) (𝑇 ) ≔
{
|𝒗 |𝑯1 (𝑇 ) + ℎ𝑇 |𝒗 |𝑯2 (𝑇 ) if 𝑠 = 1,
|𝒗 |𝑯𝑠 (𝑇 ) if 𝑠 ≥ 2.

Correspondingly we set, for all 𝒗 ∈ 𝑯𝑠 (Tℎ), |𝒗 |𝑯 (𝑠,2) (Tℎ) ≔
( ∑

𝑇 ∈Tℎ |𝒗 |2𝑯 (𝑠,2) (𝑇 )
) 1
2
. Throughout the rest

of the paper, we write 𝑎 . 𝑏 in place of 𝑎 ≤ 𝐶𝑏 with 𝐶 depending only on, and possibly not all of them,
the domain Ω, the polynomial degree 𝑘 and the mesh regularity parameters (see [24, Definition 1.9] for
the DDR method and Assumption 15 in Section 7.2 for the VEM).

Theorem 2 (Error estimate for the DDR scheme (3.14)). Denote by 𝒖 ∈ 𝑯(curl;Ω) ∩ 𝑯(div;Ω) and
𝑝 ∈ 𝐻1(Ω) ∩ 𝐿20(Ω), respectively, the velocity and pressure fields solution of the weak formulation
(1.2), and by 𝒖

ℎ
∈ 𝑿𝑘

curl,ℎ and 𝑝
ℎ
∈ 𝑋 𝑘

grad,ℎ,0 the corresponding discrete counterparts solving the
DDR scheme (3.14). Let 1 ≤ 𝑠 ≤ 𝑘 + 1 and assume the additional regularity 𝒖 ∈ 𝑯2(Ω) ∩ 𝑯𝑠 (Tℎ),
curl 𝒖 ∈ 𝑯𝑠+1(Tℎ), curl curl 𝒖 ∈ 𝑪0(Ω) ∩ 𝑯max(𝑠,2) (Tℎ), and 𝑝 ∈ 𝐶1(Ω). Then, it holds

||| (𝒖
ℎ
− 𝑰𝑘curl,ℎ𝒖, 𝑝ℎ

− 𝐼𝑘grad,ℎ𝑝) |||ℎ

. ℎ𝑠
(
|𝒖 |𝑯 (𝑠,2) (Tℎ) + | curl 𝒖 |𝑯𝑠 (Tℎ) + | curl 𝒖 |𝑯𝑠+1 (Tℎ) + | curl curl 𝒖 |𝑯 (𝑠,2) (Tℎ)

)
. (3.19)

Proof. See Section 7.1.2. �

Remark 3 (Pressure robustness). It can be easily checked that the substitution 𝒇 ← 𝒇 + grad𝜓 with
𝜓 ∈ 𝐻1(Ω) in (1.1) results in (𝒖, 𝑝) ← (𝒖, 𝑝 + 𝜓), showing that the velocity field is not affected by
the irrotational component of the source term at the continuous level. By (3.16), a similar property
holds at the discrete level: the substitution 𝒇 ← 𝒇 + grad𝜓 with 𝜓 ∈ 𝐶1(Ω) (the additional regularity
being required by the presence of the interpolator in the definition (3.15) of ℓℎ) results in (𝒖ℎ

, 𝑝
ℎ
) ←

(𝒖ℎ, 𝑝
ℎ
+ 𝐼𝑘grad,ℎ (𝜓 +𝐶)) where 𝐶 is a constant which ensures that (𝐼

𝑘
grad,ℎ (𝜓 +𝐶), 𝐼

𝑘
grad,ℎ1)grad,ℎ = 0.

This property has the important consequence that the right-hand side of the error estimate (3.19) is
independent of the pressure, and is therefore not affected by the substitution 𝒇 ← 𝒇 + grad𝜓, showing
that the DDR scheme (3.14) is pressure robust [31]. This property is obtained here on general meshes,
for arbitrary polynomial degrees, and without resorting to submeshing.
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4 VEM scheme
The second scheme we present in this paper is based on a set of Virtual Element spaces that form an
exact sequence. Since the spaces are a simple modification of those presented in [3], our description
will be brief and we refer to the above paper for a deeper overview. Throughout the rest of this section,
the integer 𝑘 ≥ 0 will denote the polynomial degree of the sequence.
4.1 Local spaces on faces

We first introduce the local edge and nodal spaces on faces, minimal modifications of those introduced
in [3, 5]. These spaces can be seen as a generalization to polygons of Nédélec elements of the first
kind. Let 𝐹 ∈ Fℎ denote a mesh face. In order to describe directly the serendipity version of the
spaces (which, when compared to the standard version, requires a more complex construction but is
more computationally efficient), we let

𝛽𝐹 ≔ 𝑘 + 1 − 𝜂𝐹 , (4.1)

where 𝜂𝐹 is an integer, equal to or smaller than the number of straight lines necessary to cover the
boundary of 𝐹. A safe (but possibly not optimal) choice is 𝜂𝐹 = 3, yielding 𝛽𝐹 = 𝑘 − 2. Higher
values of 𝛽𝐹 will lead to a more efficient scheme but may not always be feasible depending on the face
geometry. In what follows, we always assume 𝜂𝐹 ≥ 1 so that 𝛽𝐹 ≤ 𝑘; note that in the case 𝛽𝐹 = 𝑘 ,
which represents the plain non-serendipity VEM, the conditions in the spaces (4.3), (4.8) vanish and
one does not need to define the serendipity projectors (4.2), (4.7). In the case 𝛽𝐹 ≥ 0 we assume that
faces are convex (such condition is not needed if 𝛽𝐹 < 0). This convexity condition simplifies the
development of serendipity spaces; for the treatment of non-convex faces also in the case 𝛽𝐹 ≥ 0 we
refer to [7]. An alternative option would be instead to use an “enhancement”, in the spirit of [1], that is
a simpler approach but leads to a less significant reduction in the number of degrees of freedom.

4.1.1 Edge space on faces

We start by defining a projector𝚷e
𝑆,𝐹
: Se → P

𝑘 (𝐹), where Se is a set of sufficiently regular functions
𝐹 → R2, as follows: For all 𝒗 ∈ Se,∫

𝜕𝐹
[(𝒗 −𝚷e

𝑆,𝐹
𝒗) · 𝒕𝜕𝐹 ] [grad𝐹 𝑝 · 𝒕𝜕𝐹 ] = 0 ∀𝑝 ∈ P𝑘+1(𝐹), (4.2a)∫

𝜕𝐹
(𝒗 −𝚷e

𝑆,𝐹
𝒗) · 𝒕𝜕𝐹 = 0, (4.2b)

if 𝑘 > 1:
∫
𝐹
rot𝐹 (𝒗 −𝚷e𝑆,𝐹 𝒗)𝑝 = 0 ∀𝑝 ∈ P𝑘−1

0 (𝐹), (4.2c)

if 𝛽𝐹 ≥ 0:
∫
𝐹
(𝒗 −𝚷e

𝑆,𝐹
𝒗) · 𝒙𝐹 𝑝 = 0 ∀𝑝 ∈ P𝛽𝐹 (𝐹), (4.2d)

where ( 𝒕𝜕𝐹 ) |𝐸 ≔ 𝜔𝐹𝐸 𝒕𝐸 for all 𝐸 ∈ E𝐹 . Note that, if 𝜂𝐹 is chosen smaller than the number of straight
lines necessary to cover the boundary of 𝐹, the above conditions are either to be intended in the least
square sense or the integral in the first condition to be taken on a suitable subset of 𝜕𝐹. The (serendipity)
edge space on 𝐹 is then defined as:

𝑆𝑉e𝑘 (𝐹) ≔
{
𝒗 ∈ 𝑳2(𝐹) : div𝐹 𝒗 ∈ P𝑘 (𝐹), rot𝐹 𝒗 ∈ P𝑘 (𝐹), 𝒗 · 𝒕𝐸 ∈ P𝑘 (𝐸) ∀𝐸 ∈ E𝐹 ,∫

𝐹

(𝒗 −𝚷e𝑆,𝐹 𝒗) · 𝒙𝐹 𝑝 = 0 ∀𝑝 ∈ P𝛽𝐹 |𝑘 (𝐹)
}
, (4.3)

where P𝛽𝐹 |𝑘 (𝐹) is any space such that

P𝑘 (𝐹) = P𝛽𝐹 (𝐹) ⊕ P𝛽𝐹 |𝑘 (𝐹) .
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The following operators constitute (once bases for the corresponding polynomial test spaces are chosen)
a unisolvent set of degrees of freedom (DoFs) for 𝑆𝑉e

𝑘
(𝐹):

• on each edge 𝐸 ∈ E𝐹 ,
∫
𝐸
(𝒗 · 𝒕𝐸 )𝑝 ∀𝑝 ∈ P𝑘 (𝐸), (4.4)

• if 𝛽𝐹 ≥ 0:
∫
𝐹

(𝒗 · 𝒙𝐹 ) 𝑝 ∀𝑝 ∈ P𝛽𝐹 (𝐹), (4.5)

• if 𝑘 > 0:
∫
𝐹

rot𝐹 𝒗 𝑝 ∀𝑝 ∈ P𝑘
0 (𝐹), (4.6)

where we recall that 𝒙𝐹 = 𝒙 − 𝒄𝐹 , and that P𝑘
0 (𝐹) was defined in (2.1). Following [3, Eq. (3.6)], we

can compute the 𝐿2-orthogonal projector 𝚷𝑘+1
P,𝐹
: 𝑆𝑉e

𝑘
(𝐹) → P

𝑘+1(𝐹) using only the DoFs on 𝑉e
𝑘
(𝐹)

(that is, without the need of actually reconstructing the functions of 𝑉e
𝑘
(𝐹)).

Remark 4 (Edge serendipity operator). One could modify the serendipity operator into 𝚷e
𝑆,𝐹
: Se →

P
𝑘 (𝐹) + 𝒙⊥

𝐹
P𝑘 (𝐹), by increasing the test functions in (4.2c) to 𝑝 ∈ P𝑘

0 (𝐹). This would guarantee that
the Nédélec space P𝑘 (𝐹) + 𝒙⊥

𝐹
P𝑘 (𝐹) is contained in 𝑆𝑉e

𝑘
(𝐹), and thus that the full Nédélec space of

the first kind is contained in 𝑉e
𝑘
(𝑇), see (4.13) below. Such a change would however not improve the

interpolation properties of the space with respect to Lemma 17 below.

4.1.2 Nodal space on faces

For the construction of the nodal serendipity space on faces we proceed as before. Let Πn
𝑆,𝐹
: Sn →

P𝑘+1(𝐹), with Sn a space of sufficiently regular functions 𝐹 → R, be a projector defined by: For all
𝑞 ∈ Sn, ∫

𝜕𝐹
[grad𝐹 (𝑞 − Πn𝑆,𝐹𝑞) · 𝒕𝜕𝐹 ] [grad𝐹 𝑝 · 𝒕𝜕𝐹 ] = 0 ∀𝑝 ∈ P𝑘+1(𝐹),∫

𝜕𝐹
(𝑞 − Πn

𝑆,𝐹
𝑞) (𝒙𝐹 · 𝒏𝜕𝐹 ) = 0,

if 𝛽𝐹 ≥ 0:
∫
𝐹

grad𝐹 (𝑞 − Πn𝑆,𝐹𝑞) · 𝒙𝐹 𝑝 = 0 ∀𝑝 ∈ P𝛽𝐹 (𝐹),
(4.7)

where, for each 𝐸 ∈ E𝐹 , (𝒏𝜕𝐹 ) |𝐸 ≔ 𝜔𝐹𝐸𝒏𝐹𝐸 . The same observation as in (4.2d) applies. The
(serendipity) nodal space of order 𝑘 + 1 on the face 𝐹 is then defined as:

𝑆𝑉n𝑘+1(𝐹) ≔
{
𝑞 ∈ 𝐻1(𝐹) : 𝑞 |𝐸 ∈ P𝑘+1(𝐸) ∀𝐸 ⊂ E𝐹 , Δ𝐹𝑞 ∈ P𝑘 (𝐹),∫

𝐹

(grad𝐹 𝑞 − grad𝐹 Πn𝑆,𝐹𝑞) · 𝒙𝐹 𝑝 = 0 ∀𝑝 ∈ P𝛽𝐹 |𝑘 (𝐹)
}
.

(4.8)

Note that the above conditions easily imply that functions in 𝑆𝑉n
𝑘+1(𝐹) are continuous on the boundary

of 𝐹. The DoFs in 𝑆𝑉n
𝑘+1(𝐹) are

• for each vertex 𝜈 ∈ V𝐹 , the value 𝑞(𝒄𝜈), (4.9)
• if 𝑘 ≥ 1: for each edge 𝐸 ∈ E𝐹 ,

∫
𝐸
𝑞 𝑝 ∀𝑝 ∈ P𝑘−1(𝐸), (4.10)

• if 𝛽𝐹 ≥ 0 :
∫
𝐹

(grad𝐹 𝑞 · 𝒙𝐹 ) 𝑝 ∀𝑝 ∈ P𝛽𝐹 (𝐹). (4.11)

Notice that, if 𝐹 is a triangle, the space 𝑆𝑉n
𝑘+1(𝐹) corresponds to the standard polynomial Finite Element

space of degree 𝑘 + 1. We do not discuss here projectors in the space 𝑆𝑉n
𝑘+1(𝐹), since these will not be

needed in the following.

4.2 Local spaces and 𝐿2-products on polyhedra

Let 𝑇 denote a mesh element of Tℎ, which we assume to have convex faces. We introduce the following
nodal, edge, and face (local) three-dimensional spaces, which, again, are minimal modifications of those
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in [3] (to which we refer for the proofs of the properties hereafter stated):

𝑉n𝑘+1(𝑇) ≔
{
𝑞 ∈ 𝐻1(𝑇) : 𝑞 |𝐹 ∈ 𝑆𝑉n𝑘+1(𝐹) ∀𝐹 ∈ F𝑇 , Δ 𝑞 ∈ P𝑘−1(𝑇)

}
, (4.12)

𝑉e𝑘 (𝑇) ≔
{
𝒗 ∈ 𝑳2(𝑇) : div 𝒗 ∈ P𝑘−1(𝑇), curl(curl 𝒗) ∈ P𝑘 (𝑇),

𝒗t,𝐹 ∈ 𝑆𝑉e𝑘 (𝐹) ∀𝐹 ∈ F𝑇 , 𝒗 · 𝒕𝐸 single valued on each edge 𝐸 ∈ E𝑇
}
,

(4.13)

where, as before, 𝒗t,𝐹 denotes the tangential trace of 𝒗 over 𝐹, and

𝑉 f𝑘 (𝑇)≔
{
𝒘 ∈ 𝑳2(𝑇) : div𝒘 ∈ P𝑘 (𝑇), curl𝒘 ∈ P𝑘 (𝑇), 𝒘 |𝐹 · 𝒏𝐹 ∈ P𝑘 (𝐹) ∀𝐹 ∈ F𝑇

}
. (4.14)

The following linear maps form a set of DoFs for 𝑉n
𝑘+1(𝑇):

• for each vertex 𝜈 ∈ V𝑇 , the nodal value 𝑞(𝒄𝜈), (4.15)
• if 𝑘 ≥ 1: for each edge 𝐸 ∈ E𝑇 ,

∫
𝐸
𝑞 𝑝 ∀𝑝 ∈ P𝑘−1(𝐸), (4.16)

• for each face 𝐹 ∈ F𝑇 with 𝛽𝐹 ≥ 0,
∫
𝐹
(grad𝐹 𝑞 · 𝒙𝐹 ) 𝑝 ∀𝑝 ∈ P𝛽𝐹 (𝐹), (4.17)

•
∫
𝑇
(grad 𝑞 · 𝒙𝑇 ) 𝑝 ∀𝑝 ∈ P𝑘−1(𝑇). (4.18)

In 𝑉e
𝑘
(𝑇), the DoFs are

• for each edge 𝐸 ∈ E𝑇 ,
∫
𝐸
(𝒗 · 𝒕𝐸 )𝑝 ∀𝑝 ∈ P𝑘 (𝐸), (4.19)

• for each face 𝐹 ∈ F𝑇 with 𝛽𝐹 ≥ 0,
∫
𝐹
(𝒗t,𝐹 · 𝒙𝐹 ) 𝑝 ∀𝑝 ∈ P𝛽𝐹 (𝐹), (4.20)

• if 𝑘 > 0: for each face 𝐹 ∈ F𝑇 ,
∫
𝐹
rot𝐹 𝒗t,𝐹 𝑝 ∀𝑝 ∈ P𝑘

0 (𝐹), (4.21)

•
∫
𝑇
(𝒗 · 𝒙𝑇 )𝑝 ∀𝑝 ∈ P𝑘−1(𝑇), (4.22)

•
∫
𝑇
(curl 𝒗) · (𝒙𝑇 × 𝒑) ∀𝒑 ∈ P𝑘 (𝑇), (4.23)

where we recall that 𝒙𝑇 = 𝒙 − 𝒄𝑇 . Finally, for 𝑉 f𝑘 (𝑇) we have the DoFs

• for any face 𝐹 ∈ F𝑇 ,
∫
𝐹
(𝒘 · 𝒏𝐹 )𝑝 ∀𝑝 ∈ P𝑘 (𝐹), (4.24)

• if 𝑘 > 0:
∫
𝑇
(div𝒘)𝑝 ∀𝑝 ∈ P𝑘

0 (𝑇), (4.25)

•
∫
𝑇
𝒘 · (𝒙𝑇 × 𝒑) ∀𝒑 ∈ P𝑘 (𝑇). (4.26)

Many of the above DoFs could equivalently be written using the polynomial subspaces (2.2)-(2.3)
instead of using an explicit expression. We prefer here to conform to the standard notation used in the
VEM literature; a bridge between the two approaches will be drawn in Section 6. We also notice that,
on tetrahedra, the spaces above have a higher number of internal DoFs than in the corresponding finite
element case; one could reduce such number by applying an enhancement approach, see Remark 7.
However, here we will make no effort to reduce this number, as it assumed that, in practice, they could
be eliminated by static condensation (since they are internal to the elements).
As shown in [3, Proposition 3.7], from the above DoFs we can compute (in particular) the following

𝐿2-orthogonal projections of virtual functions on polynomial spaces: from 𝑉e
𝑘
(𝑇) to P𝑘 (𝑇) and from

𝑉 f
𝑘
(𝑇) toP𝑘 (𝑇) (actually, notice that we could also compute richer projections from𝑉 f

𝑘
(𝑇) toP𝑘+1(𝑇),

but this will not be used in the following). These projections are used to define the following scalar
products for edge and face spaces mimicking the 𝑳2(𝑇) product: For • ∈ {e, f}, we let

[𝒗, 𝒘]𝑉 •
𝑘
(𝑇 ) ≔

∫
𝑇

𝚷𝑘
P,𝑇

𝒗 · 𝚷𝑘
P,𝑇

𝒘 + 𝑠𝑇 ((𝐼 −𝚷𝑘
P,𝑇
)𝒗, (𝐼 −𝚷𝑘

P,𝑇
)𝒘) ∀(𝒗, 𝒘) ∈ 𝑉•𝑘 (𝑇) ×𝑉

•
𝑘 (𝑇),
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where the symmetric and computable bilinear form 𝑠𝑇 (·, ·) can be taken, for instance, as

𝑠𝑇 (𝒗, 𝒘) = ℎ3𝑇

∑︁
𝑖

(dof𝑖{𝒗}) (dof𝑖{𝒘}) ∀(𝒗, 𝒘) ∈ 𝑉•𝑘 (𝑇) ×𝑉
•
𝑘 (𝑇), (4.27)

where we assume that all DoFs dof𝑖 are scaled in order to behave (with respect to element size changes)
as a nodal evaluation. It is immediate to check that, by construction,

[𝒗, 𝒑]𝑉 •
𝑘
(𝑇 ) =

∫
𝑇

𝒗 · 𝒑 ∀𝒗 ∈ 𝑉•𝑘 (𝑇), ∀𝒑 ∈ P
𝑘 (𝑇). (4.28)

Remark 5 (Alternative stablisation). Another choice of stabilisation in 𝑉e
𝑘
(𝑇) is

𝑠𝑇 (𝒗, 𝒘) =
∑︁

𝐸 ∈E𝑇
ℎ2𝑇

∫
𝐸

Π𝑘
P,𝐸 (𝒗 · 𝒕𝐸 )Π

𝑘
P,𝐸 (𝒘 · 𝒕𝐸 ) +

∑︁
𝐹 ∈F𝑇

ℎ𝑇

∫
𝐹

𝚷𝑘+1
P,𝐹

𝒗t,𝐹 · 𝚷𝑘+1
P,𝐹

𝒗t,𝐹

while, in 𝑉 f
𝑘
(𝑇), we can take

𝑠𝑇 (𝒗, 𝒘) =
∑︁
𝐹 ∈F𝑇

ℎ𝑇

∫
𝐹

Π𝑘
P,𝐹 (𝒗 · 𝒏𝐹 )Π𝑘

P,𝐹 (𝒘 · 𝒏𝐹 ) +
∫
𝑇

𝚷c,𝑘+1
G,𝑇

𝒗 · 𝚷c,𝑘+1
G,𝑇

𝒘.

These stabilisations are inspired by the ones considered in the DDR setting and, following the ideas in
[22, Lemma 5] and using discrete inverse inequalities, it can easily be checked that they yield coercive
and consistent 𝑳2(𝑇) products.
Remark 6 (Alternative choices of degrees of freedom). An integration by parts easily shows that the
DoFs (4.17) could be replaced by

∫
𝐹
𝑞 𝑝 for all 𝑝 ∈ P𝛽𝐹 (𝐹), and analogously the set (4.18) by

∫
𝑇
𝑞𝑝

for all 𝑝 ∈ P𝑘−1(𝑇). Knowledge on one set of DoFs implies knowledge on the other set, an vice-versa.
Similarly, the set of DoFs (4.23) could be replaced by

∫
𝑇
𝒗 · curl(𝒙𝑇 × 𝒑) for all 𝒑 ∈ P

𝑘 (𝑇) and the
set (4.25) by

∫
𝑇
𝒘 · grad 𝑝 for all 𝑝 ∈ P𝑘

0 (𝑇). The advantage of the current choice is a more direct
expression of the differential operators in terms of DoFs. The advantage of the alternative choice would
be the reduced regularity needed in order to compute the DoF-interpolant of a generic function.
Remark 7 (Enhancement). Note that one could apply an “enhancement” approach (in the elements
volume), in order to reduce the number of internal DoFs. The enhancement idea, first introduced in
[1], is to adopt a slightly different definition of the VEM spaces in order to reduce the number of DoFs
without sacrificing accuracy or computability. For the spaces presented here, a particularly interesting
form of enhancement can be obtained in the spirit of the DDR approach, see Section 6.3.

4.3 Global spaces

The global spaces are constructed by standard degrees of freedom gluing, as in classical Finite Elements.
The scalar nodal space is conforming in 𝐻1(Ω) ∩ 𝐿20(Ω), the edge space in 𝑯(curl;Ω), and the face
space in 𝑯(div;Ω). We set

𝑉n𝑘+1,0 ≔
{
𝑞 ∈ 𝐻1(Ω) ∩ 𝐿20(Ω) such that 𝑞 |𝑇 ∈ 𝑉

n
𝑘+1(𝑇) ∀𝑇 ∈ Tℎ

}
, (4.29)

𝑉e𝑘 ≔

{
𝒗 ∈ 𝑯(curl;Ω) such that 𝒗 |𝑇 ∈ 𝑉e𝑘 (𝑇) ∀𝑇 ∈ Tℎ

}
, (4.30)

𝑉 f𝑘 ≔

{
𝒘 ∈ 𝑯(div;Ω) such that 𝒘 |𝑇 ∈ 𝑉 f𝑘 (𝑇) ∀𝑇 ∈ Tℎ

}
. (4.31)

The global DoFs can be trivially derived from the local ones (for instance, the space𝑉n
𝑘+1,0 has one DoF

per vertex of Tℎ, 𝑘 DoFs per edge, etc.). For • ∈ {e, f}, the global scalar products are given by

[𝒗, 𝒘]𝑉 •
𝑘
≔

∑︁
𝑇 ∈Tℎ
[𝒗 |𝑇 , 𝒘 |𝑇 ]𝑉 •

𝑘
(𝑇 ) ∀(𝒗, 𝒘) ∈ 𝑉•𝑘 ×𝑉

•
𝑘 .
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Remark 8 (Virtual exact sequence). The Virtual Element spaces defined above form an exact sequence:

0 𝑉n
𝑘+1,0 𝑉e

𝑘
𝑉 f
𝑘

𝑉v
𝑘

0,i grad curl div 0

where the space 𝑉v
𝑘
= P𝑘 (Tℎ) ≔

{
𝑞 ∈ 𝐿2(Ω) : 𝑞 |𝑇 ∈ P𝑘 (𝑇) ∀𝑇 ∈ Tℎ

}
collects broken polynomial

functions on Tℎ of total degree ≤ 𝑘 .
It is important to point out that the inclusions above can be also computed in practice, in the

following sense. Given the DoFs of 𝑞 ∈ 𝑉n
𝑘+1,0, we can compute the DoFs of grad 𝑞 in 𝑉e

𝑘
; given the

DoFs of 𝒗 ∈ 𝑉e
𝑘
, we can compute the DoFs of curl 𝒗 in 𝑉 f

𝑘
; from the DoFs of 𝒘 ∈ 𝑉 f

𝑘
we can compute its

divergence in𝑉v
𝑘
. This observation also entails that we have a commuting diagram property that involves

the natural interpolation operators defined through the DoFs. We refer to [3] for a deeper overview on
such aspects.

4.4 Discrete problem and convergence

We are now able to present the VEM discretization of problem (1.1). Assuming that 𝒇 ∈ 𝑯𝑠 (Ω) with
curl 𝒇 ∈ 𝑯𝑠 (Ω) for some 𝑠 > 1/2, we denote its interpolant in 𝑉e

𝑘
by 𝒇 𝐼 = Ie𝑘 ( 𝒇 ). The VEM problem

reads: 
Find 𝒖ℎ ∈ 𝑉e𝑘 and 𝑝ℎ ∈ 𝑉

n
𝑘+1,0 such that

[curl 𝒖ℎ, curl 𝒗ℎ]𝑉 f
𝑘
+ [grad 𝑝ℎ, 𝒗ℎ]𝑉 e

𝑘
= [ 𝒇 𝐼 , 𝒗ℎ]𝑉 e𝑘 ∀𝒗ℎ ∈ 𝑉e𝑘 ,

−[grad 𝑞ℎ, 𝒖ℎ]𝑉 e
𝑘
= 0 ∀𝑞ℎ ∈ 𝑉n𝑘+1,0.

(4.32)

Notice that all the above scalar products are well defined thanks to the inclusion properties stemming
from Remark 8.
Remark 9 (Pressure robustness). Whenever the loading 𝒇 is a gradient, i.e. 𝒇 = grad𝜓 for some
sufficiently regular 𝜓, the commuting diagram property recalled at the end of the previous section gives

𝒇 𝐼 = Ie𝑘 (grad𝜓) = gradIn𝑘+1(𝜓)

where the operator In
𝑘+1 denotes the natural DoF interpolator in 𝑉

n
𝑘+1 (which consists in the space 𝑉

n
𝑘+1,0

without the zero average condition). Therefore, reasoning as in Remark 3, it can be checked that
irrotational perturbations of the loading term have no influence on the velocities, and that the method is
pressure robust in the sense of [31]. This will also be reflected in the convergence result of Theorem 10
below, where the right-hand side of the error estimate does not depend on the pressure. Such property is
obtained here on general meshes, for arbitrary polynomial degrees, and without resorting to submeshing.
To close this section, we state the main convergence result for the VEM scheme. As for the DDR

scheme, the following theorem requires a high (piecewise) regularity for the exact velocity 𝒖, but the
adopted approach allows to obtain full independence of the velocity error from the pressure solution.

Theorem 10 (Error estimate for the VEM scheme (4.32)). Denote by 𝒖 ∈ 𝑯(curl;Ω) ∩ 𝑯(div;Ω)
and 𝑝 ∈ 𝐻1(Ω) ∩ 𝐿20(Ω), respectively, the velocity and pressure fields solution of the weak formulation
(1.2), and by 𝒖ℎ ∈ 𝑉e

𝑘
and 𝑝ℎ ∈ 𝑉n

𝑘+1,0 the corresponding discrete counterparts solving the VEM
scheme (4.32). Assume 𝒖 ∈ 𝑯𝛾 (Ω), 𝛾 > 3

2 , and that 𝒖, curl 𝒖, curl curl 𝒖, 𝒇 , curl 𝒇 are in 𝑯𝑠 (Tℎ),
1
2 < 𝑠 ≤ 𝑘 + 1. Denote the interpolants 𝒖𝐼 = Ie𝑘 (𝒖) and 𝑝𝐼 = In𝑘+1(𝑝). It holds

‖𝒖ℎ − 𝒖𝐼 ‖𝑯 (curl;Ω) + ‖𝑝ℎ − 𝑝𝐼 ‖𝐻 1 (Ω)
. ℎ𝑠

(
|𝒖 |𝑯𝑠 (curl;Tℎ) + | curl curl 𝒖 |𝑯𝑠 (Tℎ) + | curl 𝒇 |𝑯𝑠 (Tℎ)

)
. (4.33)

The same bounds hold also for ‖𝒖ℎ − 𝒖‖𝑯 (curl;Ω) and, upon the addition of an ℎ𝑠 |𝑝 |𝐻 1+𝑠 (Tℎ) term to the
right-hand side, also for ‖𝑝ℎ − 𝑝‖𝐻 1 (Ω) , see Corollary 21.
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Proof. See Section 7.2.2. �

Remark 11 (Regularity condition). Bymaking use of the second result in Lemma 17 below, and noticing
that curl curl 𝒖 = PH 𝒇 , the Helmholtz-Hodge projection of 𝒇 , if 𝑠 > 3

2 the regularity conditions can be
slightly reduced to 𝒖, curl 𝒖, 𝒇 ,PH 𝒇 in 𝑯𝑠 (Tℎ). The right hand side in (4.33) changes accordingly.
5 Numerical experiments
In this section we numerically test the proposed DDR and VEM approaches (the latter, for the sake
of simplicity, with 𝛽𝐹 = 𝑘 for all 𝐹 ∈ Fℎ). More specifically, we start with a numerical convergence
analysis that will validate from the practical standpoint Theorems 2 and 10 for the DDR and VEM
schemes, respectively. Finally, in Subsection 5.2 we make a robustness analysis with respect to the
strength of the pressure component.
We consider the following discrete and continuous norms as errors indicators. On the one hand, for

the DDR scheme (3.14), we compute as discrete errors the following quantities

𝐸d𝒖 ≔ |||𝒖
ℎ
− 𝑰𝑘curl,ℎ𝒖 |||curl,ℎ , 𝐸d𝑝 ≔ ‖𝑮𝑘

ℎ
𝑝
ℎ
− 𝑮𝑘

ℎ
𝐼𝑘grad,ℎ𝑝‖curl,ℎ,

where the norms |||·|||curl,ℎ and ‖·‖curl,ℎ are defined in Section 3.4. Then, as continuous error indicators,
we compute

𝐸c𝒖 ≔

(
‖𝑷𝑘

curl,ℎ𝒖ℎ
− 𝒖‖2

𝑳2 (Ω) + ‖C
𝑘
ℎ𝒖ℎ
− curl 𝒖‖2

𝑳2 (Ω)

)1/2
, 𝐸c𝑝 ≔ ‖G𝑘

ℎ𝑝ℎ
− grad 𝑝‖𝑳2 (Ω) ,

where 𝑷𝑘
curl,ℎ, C

𝑘
ℎ
and G𝑘

ℎ
are the global potentials and operators obtained patching the local potentials

and discrete vector calculus operators 𝑷𝑘
curl,𝑇 , C

𝑘
𝑇
, and G𝑘

𝑇
, respectively.

On the other hand, for the VEM scheme (4.32), we define the following discrete and continuous
errors:

𝐸d𝒖 ≔

(
[[𝒖ℎ − 𝒖𝐼 ]]2𝑉 e

𝑘

+ [[curl 𝒖ℎ − curl 𝒖𝐼 ]]2𝑉 f
𝑘

)1/2
, 𝐸d𝑝 ≔ [[grad 𝑝ℎ − grad 𝑝𝐼 ]]𝑉 e

𝑘

where [[·]]𝑉 •
𝑘
is the global discrete 𝐿2-norm corresponding to the scalar product [·, ·]𝑉 •

𝑘
, and

𝐸c𝒖 ≔

(
‖𝚷𝑘

P,ℎ
𝒖ℎ − 𝒖‖2𝑳2 (Ω) + ‖𝚷

𝑘
P,ℎ

curl 𝒖ℎ − curl 𝒖‖2
𝑳2 (Ω)

)1/2
,

𝐸c𝑝 ≔ ‖𝚷𝑘
P,ℎ

grad 𝑝ℎ − grad 𝑝‖𝑳2 (Ω) ,

with 𝚷𝑘
P,ℎ
and Π𝑘

P,ℎ global projectors on the broken polynomial spaces P
𝑘 (Tℎ) and P𝑘 (Tℎ), respec-

tively.
Independently of the scheme taken, the errors in pressure are only based on gradients. This choice

is due to the fact that the norm of the (discrete or continuous) gradient is a norm on the (discrete or
continuous) pressure space.
Since the solutions we are considering are smooth, Theorem 2 and 10 state that all these errors

indicators should decay as ℎ𝑘+1 for both DDR and VEM. To show this trend, we consider two families
of meshes of the unit cube Ω = (0, 1)3: one composed of tetrahedra and the other one made of Voronoi
cells. Each mesh family is a sequence with decreasing meshsize. Figure 1 shows one representative of
each family.
Both DDR and VEM schemes have been implemented in the open source C++ library HArDCore3D

(see https://github.com/jdroniou/HArDCore), based on the linear algebra library Eigen3 (see
http://eigen.tuxfamily.org). In order to solve the linear system arising from each discretization,
we use the Intel MKL PARDISO library (see https://software.intel.com/en-us/mkl) [2]. The
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(a) Tetrahedral mesh (b) Voronoi mesh

Figure 1: Members of mesh families used in numerical tests.

VEM implementation uses the stabilisations described in Remark 5. For the lowest order case, the
zero-average pressure condition was enforced through a weighted node sum, since the element-wise
integral is not available in that case (an alternative option would be to introduce a small modification in
the discrete spaces, as in [4], in order to render such quantity computable also for 𝑘 = 0). For both the
DDR and VEM schemes, we applied a multiplicative factor of 0.1 to the stabilisations. This factor only
impacts the magnitude of the errors (not the rates of convergences); we found by trial-and-error that a
factor of 0.1 was leading for both methods to reasonable magnitudes; deeper analysis of the optimal
choice of stabilisation and/or multiplicative factor is the subject of future work.

5.1 Convergence analysis

We build the right hand side of the problem defined in Equation (1.1) in such a way that the exact
solution is

𝑝(𝑥, 𝑦, 𝑧) = sin(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑧) and 𝒖 =


1
2 sin(2𝜋𝑥) cos(2𝜋𝑦) cos(2𝜋𝑧)
1
2 cos(2𝜋𝑥) sin(2𝜋𝑦) cos(2𝜋𝑧)
− cos(2𝜋𝑥) cos(2𝜋𝑦) sin(2𝜋𝑧)

 .

In Figure 2 and 3 we show the convergence lines for both DDR and VEM schemes. We observe an
initial pre-asymptotic behavior, probably due to the fact that the first meshes are indeed quite coarse,
then the convergence rates stabilize to the ones predicted by the theoretical analysis. It should also be
noted that the regularity factor of the Voronoi meshes increases quite strongly along the family (see the
discussion in [24, Section 5.1.8.2]), but that it does not seem to affect the proposed schemes, which
display an apparent good robustness with respect to this factor.
Whilst the continuous errors for both schemes yield very similar values, the discrete errors are higher

for the VEM scheme than the DDR scheme. It should however be noticed that, although the continuous
errors can be compared, making a comparison of the discrete errors is more tricky as they measure
different quantities for each scheme, since they are based on different sets of DoFs (for instance, contrary
to the DDR scheme the VEM set of DoFs involves function derivatives).
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𝐸c, 𝑘 = 0; 𝐸c, 𝑘 = 1; 𝐸c, 𝑘 = 2
𝐸d, 𝑘 = 0; 𝐸d, 𝑘 = 1; 𝐸d, 𝑘 = 2
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(a) DDR scheme errors on 𝒖
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(b) DDR scheme errors on 𝑝
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(c) VEM scheme errors on 𝒖
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(d) VEM scheme errors on 𝑝

Figure 2: Tetrahedral meshes: errors w.r.t. ℎ
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𝐸c, 𝑘 = 0; 𝐸c, 𝑘 = 1; 𝐸c, 𝑘 = 2
𝐸d, 𝑘 = 0; 𝐸d, 𝑘 = 1; 𝐸d, 𝑘 = 2
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(a) DDR scheme errors on 𝒖

10−0.8 10−0.6 10−0.4 10−0.2

10−1

100

101

1

1

1

2

1

3

(b) DDR scheme errors on 𝑝
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(c) VEM scheme errors on 𝒖
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(d) VEM scheme errors on 𝑝

Figure 3: Voronoi meshes: errors w.r.t. ℎ
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5.2 Robustness test

In this section we are interested in showing that the proposed schemes are robust with respect to the
magnitude of the pressure field 𝑝. To achieve this goal we build the right hand side of the problem
defined in (1.1) in such a way that the velocity field is the same as in the previous example, but with
pressure field

𝑝(𝑥, 𝑦, 𝑧) = 𝜆 sin(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑧) ,

where the parameter 𝜆 ∈ R+ controls the magnitude of the irrotational part of the source term. We fix
𝜆 = 105 and we run a convergence test for both discretization schemes on each type of meshes. Figure 4
and 5 present the results of this analysis. First of all, we observe that the expected convergence rates
are recovered for all measured quantities. Furthermore, if comparing the figures with the corresponding
ones for 𝜆 = 1, i.e., Figure 2 with 4 and Figure 3 with 5, we can appreciate the robustness of the proposed
schemes with respect to the magnitude of 𝑝. Specifically, the errors on the velocity field 𝒖 seem to
be unaffected by the magnitude of 𝑝, as expected due to the pressure robustness of the schemes. Such
observation applies also to the discrete pressure error 𝐸d𝑝, again in line with the theoretical results. On
the other hand 𝐸c𝑝, grows approximately by a factor corresponding to the value of 𝜆, which is again
expected since we consider absolute errors and the continuous error estimates depend (linearly) on 𝑝.

6 Bridging the VEM and DDR approaches
In this section we bridge the VEM and DDR approaches. The bridge VEM→DDR consists in construct-
ing, for each virtual space 𝑉•

𝑙
, (•, 𝑙) ∈ {(n, 𝑘 + 1), (e, 𝑘), (f, 𝑘)}, a fully discrete space 𝑉•

𝑙
of vectors of

polynomials, with the DoFs (interpreted as providing polynomials through the moments they describe)
creating isomorphisms 𝑉•

𝑙

≈→ 𝑉•
𝑙
; we also construct discrete operators, between the various 𝑉•

𝑙
spaces,

that commute with DoF maps and the corresponding operators between the virtual spaces𝑉•
𝑙
. Similarly,

to create the bridge DDR→VEM, we construct for each DDR space 𝑋 𝑘
• , • ∈ {grad, curl, div}, a space

of virtual functions 𝑋 𝑘
• with DoFs that create isomorphisms 𝑋 𝑘

•
≈→ 𝑋 𝑘

• , and such that the discrete
DDR operators commute, through these isomorphisms, with the corresponding continuous differential
operators between the virtual spaces.

6.1 DDR interpretation of the VEM scheme

The DDR interpretation of the VEM approach requires us to identify the fully discrete spaces, vector
calculus operators, and potentials corresponding, respectively, to the VEM spaces and projections. This
identification leads, in particular, to the commutative diagram (6.1), in which the vertical arrows are
the isomorphisms defined by the DoFs in each virtual space, while 𝑮n,𝑘

𝑇
and 𝑪e,𝑘

𝑇
are, respectively, the

restrictions to a mesh element 𝑇 ∈ Tℎ of 𝑮n,𝑘ℎ
and 𝑪e,𝑘

ℎ
(see (6.4) and (6.6) below).

𝑉n
𝑘+1(𝑇) 𝑉e

𝑘
(𝑇) 𝑉 f

𝑘
(𝑇) P𝑘 (𝑇)

𝑉n
𝑘+1(𝑇) 𝑉e

𝑘
(𝑇) 𝑉 f

𝑘
(𝑇) P𝑘 (𝑇)

grad

≈ (DoF)

curl

≈ (DoF)

div

≈ (DoF) Id
𝑮n,𝑘

𝑇
𝑪e,𝑘

𝑇
𝐷
f,𝑘
𝑇

(6.1)

6.1.1 Spaces

The fully discrete counterparts of the global nodal, edge, and face VEM spaces are, respectively,

𝑉n
𝑘+1 ≔

{
𝑞
ℎ
=
(
(𝑮𝑞,𝑇 )𝑇 ∈Tℎ , (𝑮𝑞,𝐹 )𝐹 ∈Fℎ , (𝑞𝐸 )𝐸 ∈Eℎ , (𝑞𝜈)𝜈∈Vℎ

)
:

𝑮𝑞,𝑇 ∈ Rc,𝑘 (𝑇) for all 𝑇 ∈ Tℎ, 𝑮𝑞,𝐹 ∈ Rc,𝛽𝐹+1(𝐹) for all 𝐹 ∈ Fℎ,

𝑞𝐸 ∈ P𝑘−1(𝐸) for all 𝐸 ∈ Eℎ, and 𝑞𝜈 ∈ R for all 𝜈 ∈ Vℎ

}
,

(6.2)
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𝐸c, 𝑘 = 0; 𝐸c, 𝑘 = 1; 𝐸c, 𝑘 = 2
𝐸d, 𝑘 = 0; 𝐸d, 𝑘 = 1; 𝐸d, 𝑘 = 2
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(a) DDR scheme errors on 𝒖
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(c) VEM scheme errors on 𝒖
10−0.6 10−0.5 10−0.4 10−0.3

10−1

100

101

102

103

104

105

106

1
1

1

2

1

3

(d) VEM scheme errors on 𝑝

Figure 4: Tetrahedral meshes, 𝜆 = 105: errors w.r.t. ℎ
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𝐸c, 𝑘 = 0; 𝐸c, 𝑘 = 1; 𝐸c, 𝑘 = 2
𝐸d, 𝑘 = 0; 𝐸d, 𝑘 = 1; 𝐸d, 𝑘 = 2
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(a) DDR scheme errors on 𝒖
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(b) DDR scheme errors on 𝑝
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(c) VEM scheme errors on 𝒖
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(d) VEM scheme errors on 𝑝

Figure 5: Voronoi meshes, 𝜆 = 105: errors w.r.t. ℎ
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Space 𝑉 ∈ Vℎ 𝐸 ∈ Eℎ 𝐹 ∈ Fℎ 𝑇 ∈ Tℎ

DDR

𝑋 𝑘
grad,ℎ R P𝑘−1(𝐸) P𝑘−1(𝐹) P𝑘−1(𝑇)

𝑿𝑘
curl,ℎ P𝑘 (𝐸) R

𝑘−1(𝐹) ⊕ R
c,𝑘 (𝐹) R

𝑘−1(𝑇) ⊕ R
c,𝑘 (𝑇)

𝑿𝑘
div,ℎ P𝑘 (𝐹) G

𝑘−1(𝑇) ⊕ G
c,𝑘 (𝑇)

P𝑘 (Tℎ) P𝑘 (𝑇)

VEM

𝑉n
𝑘+1 R P𝑘−1(𝐸) R

c,𝛽𝐹+1(𝐹) R
c,𝑘 (𝑇)

𝑉e
𝑘

P𝑘 (𝐸) P𝑘
0 (𝐹) ×R

c,𝛽𝐹+1(𝐹) G
c,𝑘+1(𝑇) ×Rc,𝑘 (𝑇)

𝑉 f
𝑘

P𝑘 (𝐹) P𝑘
0 (𝑇) ×G

c,𝑘+1(𝑇)
P𝑘 (Tℎ) P𝑘 (𝑇)

Table 1: Comparison of the polynomial components of the discrete spaces for the DDR and VEM
discrete complexes. The direct sum symbol (⊕) replaces the Cartesian product (×) when the polynomial
components attached to a mesh entity refer to homogeneous quantities and not to, e.g., functions and
derivatives.

𝑉e
𝑘
≔

{
𝒗
ℎ
=
(
(𝑪𝒗,𝑇 , 𝒗

c
R,𝑇
)𝑇 ∈Tℎ , (𝐶𝒗,𝐹 , 𝒗

c
R,𝐹
)𝐹 ∈Fℎ , (𝑣𝐸 )𝐸 ∈Eℎ

)
:

𝑪𝒗,𝑇 ∈ Gc,𝑘+1(𝑇) and 𝒗cR,𝑇
∈ Rc,𝑘 (𝑇) for all 𝑇 ∈ Tℎ,

𝐶𝒗,𝐹 ∈ P𝑘
0 (𝐹) and 𝒗

c
R,𝐹
∈ Rc,𝛽𝐹+1(𝐹) for all 𝐹 ∈ Fℎ,

and 𝑣𝐸 ∈ P𝑘 (𝐸) for all 𝐸 ∈ Eℎ
}
,

and
𝑉 f

𝑘
≔

{
𝒘

ℎ
=
(
(𝐷𝒘,𝑇 , 𝒘

c
G,𝑇
)𝑇 ∈Tℎ , (𝑤𝐹 )𝐹 ∈Fℎ

)
:

𝐷𝒘,𝑇 ∈ P𝑘
0 (𝑇) and 𝒘

c
G,𝑇
∈ Gc,𝑘+1(𝑇) for all 𝑇 ∈ Tℎ,

and 𝑤𝐹 ∈ P𝑘 (𝐹) for all 𝐹 ∈ Fℎ
}
,

(6.3)

where we have used the customary underlined notation to recall the fact that these spaces are spanned by
vectors of polynomials. Notice that, unlike (4.29), (6.2) does not incorporate the zero-average condition
over Ω. For a comparison of the discrete spaces corresponding to the DDR and VEM complexes, see
Table 1.

Remark 12 (Link between polynomial components and degrees of freedom). In 𝑉n
𝑘+1, the component

𝑮𝑞,𝑇 is associated to the DoFs (4.18), 𝑮𝑞,𝐹 corresponds to (4.17), 𝑞𝐸 to (4.16) and 𝑞𝜈 to (4.15). The
link between components in 𝑉e

𝑘
and DoFs is as follows: 𝑪𝒗,𝑇 comes from (4.23), 𝒗cR,𝑇

from (4.22),
𝐶𝒗,𝐹 from (4.21), 𝒗cR,𝐹

from (4.20) and 𝑣𝐸 from (4.19). Finally, for the face space: 𝐷𝒘,𝑇 is generated
by (4.25), 𝒘c

G,𝑇
from (4.26) and 𝑣𝐹 from (4.24).

For (•, 𝑙) ∈ {(n, 𝑘 + 1), (e, 𝑘), (f, 𝑘)} and any geometric entity 𝑌 ∈ Tℎ ∪ Fℎ ∪ Eℎ appearing in the
definition of a fully discrete VEM space𝑉•

𝑙
, we denote by𝑉•

𝑙
(𝑌 ) the restriction of𝑉•

𝑙
to 𝑌 collecting the

polynomial spaces attached to 𝑌 and its boundary.
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6.1.2 Discrete vector calculus operators and potentials

Nodal space Given 𝑞
ℎ
∈ 𝑉n

𝑘+1, we denote by 𝑞Eℎ ∈ P𝑘+1
c (Eℎ) the unique function on the edge

skeleton of the mesh such that Π𝑘−1
P,𝐸𝑞Eℎ = 𝑞𝐸 for all 𝐸 ∈ Eℎ and 𝑞Eℎ (𝒄𝜈) = 𝑞𝜈 for all 𝜈 ∈ Vℎ. We

then define the discrete gradient operator 𝑮n,𝑘
ℎ
: 𝑉n

𝑘+1 → 𝑉e
𝑘
such that, for all 𝑞

ℎ
∈ 𝑉n

𝑘+1,

𝑮n,𝑘
ℎ

𝑞
ℎ
≔

(
(0,𝑮𝑞,𝑇 )𝑇 ∈Tℎ , (0,𝑮𝑞,𝐹 ))𝐹 ∈Fℎ , ((𝑞Eℎ ) ′|𝐸 )𝐸 ∈Eℎ

)
. (6.4)

Edge space Given a mesh face 𝐹 ∈ Fℎ, the edge serendipity operator 𝚷e,𝑘
𝑆,𝐹
: 𝑉e

𝑘
(𝐹) → P

𝑘 (𝐹) is
such that, for all 𝒗

𝐹
∈ 𝑉e

𝑘
(𝐹),∑︁

𝐸 ∈E𝐹
𝜔𝐹𝐸

∫
𝐸

(𝚷e,𝑘
𝑆,𝐹

𝒗
𝐹
· 𝒕𝐸 ) (𝒘 · 𝒕𝐸 ) =

∑︁
𝐸 ∈E𝐹

𝜔𝐹𝐸

∫
𝐸

𝑣𝐸 (𝒘 · 𝒕𝐸 ) ∀𝒘 ∈ G𝑘 (𝐹),∑︁
𝐸 ∈E𝐹

𝜔𝐹𝐸

∫
𝐸

𝚷e,𝑘
𝑆,𝐹

𝒗
𝐹
· 𝒕𝐸 =

∑︁
𝐸 ∈E𝐹

𝜔𝐹𝐸

∫
𝐸

𝑣𝐸 .∫
𝐹

rot𝐹 (𝚷e,𝑘𝑆,𝐹
𝒗
𝐹
) 𝑞 =

∫
𝐹

𝐶𝒗,𝐹 𝑞 ∀𝑞 ∈ P𝑘−1
0 (𝐹),∫

𝐹

𝚷e,𝑘
𝑆,𝐹

𝒗
𝐹
· 𝒘 =

∫
𝐹

𝒗c
R,𝐹
· 𝒘 ∀𝒘 ∈ Rc,𝛽𝐹+1(𝐹),

Recalling the face Raviart–Thomas space RT
𝑘+1(𝐹) ≔ R

𝑘 (𝐹) ⊕ R
c,𝑘+1(𝐹), the tangent trace 𝜸e,𝑘+1

𝐹
:

𝑉e
𝑘
(𝐹) → RT

𝑘+1(𝐹) is such that, for all 𝒗
𝐹
∈ 𝑉e

𝑘
(𝐹) and all (𝑟𝐹 , 𝒘𝐹 ) ∈ P𝑘+1

0 (𝐹) ×R
c,𝑘+1(𝐹),∫

𝐹

𝜸e,𝑘+1
𝐹

𝒗
𝐹
· (rot𝐹 𝑟𝐹 + 𝒘𝐹 ) =

∫
𝐹

𝐶𝒗,𝐹 𝑟𝐹 +
∑︁

𝐸 ∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝑣𝐸 𝑟𝐹 +
∫
𝐹

𝚷e,𝑘
S,𝐹

𝒗
𝐹
· 𝒘𝐹 . (6.5)

Since 𝐶𝒗,𝐹 only encodes the zero-averaged component of the discrete face curl, we reconstruct a
complete face curl 𝐶e,𝑘

𝐹
: 𝑉e

𝑘
(𝐹) → P𝑘 (𝐹) by using the tangential components to the edges: For all

𝒗
𝐹
∈ 𝑉e

𝑘
(𝐹),∫

𝐹

𝐶
e,𝑘
𝐹

𝒗
𝐹
𝑟𝐹 =

∫
𝐹

𝐶𝒗,𝐹𝑟𝐹 +
1
|𝐹 |

( ∫
𝐹

𝑟𝐹

) ( ∑︁
𝐸 ∈E𝐹

𝜔𝐹𝐸

∫
𝐸

𝑣𝐸

)
∀𝑟𝐹 ∈ P𝑘 (𝐹).

For all 𝑇 ∈ Tℎ, the element potential 𝑷e,𝑘
𝑇
: 𝑉e

𝑘
(𝑇) → P

𝑘 (𝑇) is such that, for all 𝒗
𝑇
∈ 𝑉e

𝑘
(𝑇) and all

(𝒘𝑇 , 𝒛𝑇 ) ∈ Gc,𝑘+1(𝑇) ×Rc,𝑘 (𝑇),∫
𝑇

𝑷e,𝑘
𝑇

𝒗
𝑇
· (curl𝒘𝑇 + 𝒛𝑇 ) =

∫
𝑇

𝑪𝒗,𝑇 · 𝒘𝑇 −
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝜸e,𝑘+1
𝐹

𝒗
𝑇
· (𝒘𝑇 × 𝒏𝐹 ) +

∫
𝑇

𝒗c
R,𝑇
· 𝒛𝑇 .

Finally, we define the discrete curl 𝑪e,𝑘
ℎ
: 𝑉e

𝑘
→ 𝑉 f

𝑘
such that, for all 𝒗

ℎ
∈ 𝑉e

𝑘
,

𝑪e,𝑘
ℎ

𝒗
ℎ
≔

(
(0,𝑪𝒗,𝑇 )𝑇 ∈Tℎ , (𝐶

e,𝑘
𝐹

𝒗
𝐹
)𝐹 ∈Fℎ

)
. (6.6)

Remark 13 (Face and element gradients). Face and element gradients on full polynomial spaces in the
spirit of (3.5) and (3.7) can be obtained setting 𝑮n,𝑘

𝐹
≔ 𝚷𝑘

P,𝐹
◦ 𝜸e,𝑘+1

𝐹
◦ 𝑮n,𝑘

𝐹
for all 𝐹 ∈ F𝑇 and

𝑮n,𝑘
𝑇

≔ 𝑷e,𝑘
𝑇
◦ 𝑮n,𝑘

𝑇
for all 𝑇 ∈ Tℎ where, given 𝑌 ∈ Tℎ ∪ Fℎ, 𝑮n,𝑘𝑌

denotes the restriction to 𝑌 of 𝑮n,𝑘
ℎ

(see (6.4)). For 𝑌 ∈ Tℎ ∪ Fℎ, 𝑮n,𝑘𝑌
yields the exact gradient when applied to the interpolants on 𝑉n

𝑘
(𝑌 )

of functions in P𝑘+1(𝑌 ).
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Face space The element potential is 𝑷f,𝑘
𝑇
: 𝑉 f

𝑘
(𝑇) → P

𝑘 (𝑇) such that, for all 𝒘
𝑇
∈ 𝑉 f

𝑘
(𝑇) and all

(𝑟𝑇 , 𝒗𝑇 ) ∈ P𝑘+1
0 (𝑇) ×G

c,𝑘 (𝑇),∫
𝑇

𝑷f,𝑘
𝑇

𝒘
𝑇
· (grad 𝑟𝑇 + 𝒗𝑇 ) = −

∫
𝑇

𝐷𝒘,𝑇 𝑟𝑇 +
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝑤𝐹 𝑟𝑇 +
∫
𝑇

𝒘c
G,𝑇
· 𝒗𝑇 .

The discrete divergence is the operator 𝐷f,𝑘
ℎ
: 𝑉 f

𝑘
→ P𝑘 (Tℎ) such that, for all 𝒘ℎ

∈ 𝑉 f
𝑘
and all 𝑇 ∈ Tℎ,

(𝐷f,𝑘
ℎ

𝒘
ℎ
) |𝑇 = 𝐷

f,𝑘
𝑇

𝒘
𝑇
∈ P𝑘 (𝑇) where, recalling that 𝐷𝒘,𝑇 only encodes the zero-average component

of the discrete divergence and following the same idea as for 𝐶e,𝑘
𝐹
, we define 𝐷f,𝑘

𝑇
𝒘
𝑇
by∫

𝑇

𝐷
f,𝑘
𝑇

𝒘
𝑇
𝑞 =

∫
𝑇

𝐷𝒘,𝑇 𝑞 +
1
|𝑇 |

( ∫
𝑇

𝑞

) ( ∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝑤𝐹

)
∀𝑞 ∈ P𝑘 (𝑇).

6.1.3 Discrete 𝐿2-products

For • ∈ {e, f}, the discrete 𝐿2-product (·, ·)•,ℎ in 𝑉•𝑘 is defined as follows: For all 𝒗ℎ, 𝒘ℎ
∈ 𝑉•

𝑘
,

(𝒗
ℎ
, 𝒘

ℎ
)•,ℎ ≔

∑︁
𝑇 ∈Tℎ
(𝒗

𝑇
, 𝒘

𝑇
)•,𝑇

where, for all 𝑇 ∈ Tℎ,

(𝒗
𝑇
, 𝒘

𝑇
)•,𝑇 ≔

∫
𝑇

𝑷•,𝑘
𝑇

𝒗
𝑇
· 𝑷•,𝑘

𝑇
𝒘
𝑇
+ 𝑠•,𝑇

(
𝒗
𝑇
− 𝑰•𝑘,𝑇 (𝑷

•,𝑘
𝑇

𝒗
𝑇
), 𝒘

𝑇
− 𝑰•𝑘,𝑇 (𝑷

•,𝑘
𝑇

𝒘
𝑇
)
)
,

where 𝑠•,𝑇 : 𝑉•𝑘 (𝑇) × 𝑉
•
𝑘
(𝑇) → R is, for example, the stabilization bilinear form corresponding to

the one defined by (4.27) while 𝑰•
𝑘,𝑇
is the natural interpolator on 𝑉•

𝑘
(𝑇) obtained assembling the

𝐿2-orthogonal projections onto each component space.

6.2 VEM interpretation of the DDR scheme

The main steps in interpreting the DDR as a VEM scheme is the introduction of local virtual element
spaces, the associatedDoFs, and the projectors associatedwith theDDRdiscrete operators and potentials.
The virtual spaces 𝑋•

𝑙
, (•, 𝑙) ∈ {(n, 𝑘 + 1), (e, 𝑘), (f, 𝑘)}, and continuous differential operators are then

linked to the DDR spaces 𝑋•
𝑙
, • ∈ {grad, curl, div}, and discrete operators through the commuting

diagram (6.7), in which the vertical arrows are the isomorphisms defined by the DoFs in each virtual
space, and 𝑮𝑘

𝑇
and 𝑪𝑘

𝑇
are, respectively, the restrictions to 𝑇 ∈ Tℎ of 𝑮𝑘

ℎ
and 𝑪𝑘

ℎ
(see (3.8) and (3.4)).

𝑋n
𝑘+1(𝑇) 𝑋e

𝑘
(𝑇) 𝑋 f

𝑘
(𝑇) P𝑘 (𝑇)

𝑋 𝑘
grad,𝑇 𝑿𝑘

curl,𝑇 𝑿𝑘
div,𝑇 P𝑘 (𝑇)

grad

≈ (DoF)

curl

≈ (DoF)

div

≈ (DoF) Id

𝑮𝑘
𝑇

𝑪𝑘
𝑇

𝐷𝑘
𝑇

(6.7)

6.2.1 Virtual spaces and degrees of freedom

Nodal space. We start by defining the nodal space on faces

𝑋n𝑘+1(𝐹) ≔
{
𝑞 ∈ 𝐻1(𝐹) : 𝑞 |𝐸 ∈ P𝑘+1(𝐸) ∀𝐸 ∈ E𝐹 , Δ𝐹𝑞 ∈ P𝑘+1(𝐹),∫

𝐹

(grad𝐹 𝑞 −𝚷𝑘
P,𝐹
(grad𝐹 𝑞)) · 𝒙𝐹 𝑝 = 0 ∀𝑝 ∈ P𝑘−1 |𝑘+1(𝐹)

}
.
(6.8)
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where P𝑘−1 |𝑘+1(𝐹) is any space such that P𝑘+1(𝐹) = P𝑘−1(𝐹) ⊕ P𝑘−1 |𝑘+1(𝐹). The local space on an
element 𝑇 is defined by

𝑋n𝑘+1(𝑇) ≔
{
𝑞 ∈ 𝐻1(𝑇) : 𝑞 |𝐹 ∈ 𝑋n𝑘+1(𝐹) ∀𝐹 ∈ F𝑇 , Δ 𝑞 ∈ P𝑘+1(𝑇),∫

𝑇

(grad 𝑞 −𝚷𝑘
P,𝑇
(grad 𝑞)) · 𝒙𝑇 𝑝 = 0 ∀𝑝 ∈ P𝑘−1 |𝑘+1(𝑇)

}
.

The DoFs are chosen as follows:

• for any vertex 𝜈 ∈ V𝑇 , the nodal value 𝑞(𝒄𝜈),
• if 𝑘 ≥ 1: for each edge 𝐸 ∈ E𝑇 ,

∫
𝐸
𝑞 𝑝 ∀𝑝 ∈ P𝑘−1(𝐸),

• if 𝑘 ≥ 1: for each face 𝐹 ∈ F𝑇 ,
∫
𝐹
𝑞 𝑝 ∀𝑝 ∈ P𝑘−1(𝐹),

• if 𝑘 ≥ 1:
∫
𝑇
𝑞 𝑝 ∀𝑝 ∈ P𝑘−1(𝑇).

Edge space. The edge spaces on faces and elements are given by

𝑿e𝑘 (𝐹) ≔
{
𝒗 ∈ 𝑳2(𝐹) : div𝐹 𝒗 ∈ P𝑘+1(𝐹), rot𝐹 𝒗 ∈ P𝑘 (𝐹), 𝒗 · 𝒕𝐸 ∈ P𝑘 (𝐸) ∀𝐸 ∈ E𝐹∫

𝐹

(𝒗 −𝚷𝑘
P,𝐹

𝒗) · 𝒙𝐹 𝑝 = 0 ∀𝑝 ∈ P𝑘−1 |𝑘+1(𝐹)
}
.

𝑿e𝑘 (𝑇) ≔
{
𝒗 ∈ 𝑳2(𝑇) : div 𝒗 ∈ P𝑘+1(𝑇), curl(curl 𝒗) ∈ P𝑘 (𝑇),

𝒗t,𝐹 ∈ 𝑿e𝑘 (𝐹) ∀𝐹 ∈ F𝑇 , 𝒗 · 𝒕𝐸 single valued on each edge 𝐸 ∈ E𝑇 ,∫
𝑇

(curl 𝒗 −𝚷𝑘
P,𝑇
(curl 𝒗)) · (𝒙𝑇 × 𝒑) = 0 ∀𝒑 ∈ P𝑘−1 |𝑘 (𝑇),∫

𝑇

(𝒗 −𝚷𝑘
P,𝑇

𝒗) · 𝒙𝑇 𝑝 = 0 ∀𝑝 ∈ P𝑘−1 |𝑘+1(𝑇)
}
.

The DoFs are chosen as follows

• for each edge 𝐸 ∈ E𝑇 ,
∫
𝐸
(𝒗 · 𝒕𝐸 )𝑝 ∀𝑝 ∈ P𝑘 (𝐸), (6.9)

• if 𝑘 ≥ 1: for each face 𝐹 ∈ F𝑇 ,
∫
𝐹
(𝒗t,𝐹 · 𝒙𝐹 ) 𝑝 ∀𝑝 ∈ P𝑘−1(𝐹), (6.10)

• if 𝑘 ≥ 1: for each face 𝐹 ∈ F𝑇 ,
∫
𝐹
𝒗t,𝐹 · rot𝐹 𝑝 ∀𝑝 ∈ P𝑘

0 (𝐹) , (6.11)

• if 𝑘 ≥ 1:
∫
𝑇
(𝒗 · 𝒙𝑇 )𝑝 ∀𝑝 ∈ P𝑘−1(𝑇), (6.12)

• if 𝑘 ≥ 1:
∫
𝑇
𝒗 · curl(𝒙𝑇 × 𝒑) ∀𝒑 ∈ P𝑘−1(𝑇). (6.13)

Face space. The face space on an element 𝑇 of the mesh is given by

𝑿f𝑘 (𝑇)≔
{
𝒘 ∈ 𝑳2(𝑇) : div𝒘 ∈ P𝑘 (𝑇), curl𝒘 ∈ P𝑘 (𝑇), 𝒘 |𝐹 · 𝒏𝐹 ∈ P𝑘 (𝐹) ∀𝐹 ∈ F𝑇 ,∫

𝑇

(𝒘 −𝚷𝑘
P,𝑇

𝒘) · (𝒙𝑇 × 𝒑) = 0 ∀𝒑 ∈ P𝑘−1 |𝑘 (𝐹),
}
.

with DoFs

• for each face 𝐹 ∈ F𝑇 ,
∫
𝐹
(𝒘 · 𝒏𝐹 )𝑝 ∀𝑝 ∈ P𝑘 (𝐹),

• if 𝑘 ≥ 1:
∫
𝑇
𝒘 · (grad 𝑝) ∀𝑝 ∈ P𝑘

0 (𝑇),
• if 𝑘 ≥ 1:

∫
𝑇
𝒘 · (𝒙𝑇 × 𝒑) ∀𝒑 ∈ P𝑘−1(𝑇).

25



6.2.2 𝐿2-orthogonal projectors

Nodal space. By definition of the 𝐿2-orthogonal projector and an integration by parts, for all 𝑞𝐹 ∈
𝑋n
𝑘+1(𝐹) and all 𝒑 ∈ P

𝑘 (𝐹),∫
𝐹

𝚷𝑘
P,𝐹
(grad𝐹 𝑞𝐹 ) · 𝒑 =

∫
𝐹

(grad𝐹 𝑞𝐹 ) · 𝒑 = −
∫
𝐹

𝑞𝐹 div𝐹 𝒑 +
∑︁

𝐸 ∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝑞𝐹 ( 𝒑 · 𝒏𝐹𝐸 ),

which is computable from the DoFs. This relation and the chosen DoFs show that 𝚷𝑘
P,𝐹
◦ grad𝐹 is

computable on 𝑋n
𝑘+1(𝐹) from the DoFs and corresponds to the face gradient (3.5). The scalar trace

defined in (3.6) corresponds to the 𝐿2-orthogonal projector from 𝑋n
𝑘+1(𝐹) onto P

𝑘+1(𝐹). This is seen
first expressing any 𝑟 ∈ P𝑘+1(𝐹) as div𝐹 (𝒙𝐹 𝑝) with 𝑝 ∈ P𝑘+1(𝐹) (see, e.g., [22, Remark 2]), and then
integrating by parts to get, for all 𝑞𝐹 ∈ 𝑋n

𝑘+1(𝐹),∫
𝐹

(Π𝑘+1
P,𝐹𝑞𝐹 ) 𝑟 =

∫
𝐹

𝑞𝐹 𝑟 = −
∫
𝐹

(grad𝐹 𝑞𝐹 ) · (𝒙𝐹 𝑝) +
∑︁

𝐸 ∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝑞𝐹 𝑝(𝒙𝐹 · 𝒏𝐹𝐸 ).

Thanks to the second line in definition (6.8), the term grad𝐹 𝑞𝐹 in the right hand side can be replaced
with 𝚷𝑘

P,𝐹
(grad𝐹 𝑞𝐹 ). This shows that Π𝑘+1

P,𝐹𝑞𝐹 is computable from the DoFs and corresponds to
the scalar trace 𝛾𝑘+1

𝐹
𝑞
𝐹
. Analogously, the element gradient in (3.7) corresponds to the 𝐿2-projection

of the gradient on P𝑘 (𝑇) (and this projection is therefore computable from the DoFs) since, for all
𝑞𝑇 ∈ 𝑋n

𝑘+1(𝑇) and all 𝒑 ∈ P
𝑘 (𝑇),∫

𝐹

𝚷𝑘
P,𝑇
(grad 𝑞𝑇 ) · 𝒑 =

∫
𝑇

(grad 𝑞𝑇 ) · 𝒑 = −
∫
𝑇

𝑞𝑇 div 𝒑 +
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

(Π𝑘+1
P,𝐹𝑞𝑇 ) ( 𝒑 · 𝒏𝐹 ).

The discrete scalar potential (3.10) corresponds to the 𝐿2-orthogonal projector from 𝑋n
𝑘+1(𝑇) onto

P𝑘+1(𝑇). Indeed, writing any 𝑟 ∈ P𝑘+1(𝑇) as div(𝒙𝑇 𝑝) with 𝑝 ∈ P𝑘+1(𝑇), for all 𝑞𝑇 ∈ 𝑋n
𝑘+1(𝑇),∫

𝑇

(Π𝑘+1
P,𝑇 𝑞𝑇 )𝑟 =

∫
𝑇

𝑞𝑇 𝑟 = −
∫
𝑇

(grad 𝑞𝑇 ) · (𝒙𝑇 𝑝) +
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝑞𝑇 𝑝(𝒙𝑇 · 𝒏𝐹 )

= −
∫
𝑇

𝚷𝑘
P,𝑇
(grad 𝑞𝑇 ) · (𝒙𝑇 𝑝) +

∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

(Π𝑘+1
P,𝐹𝑞𝑇 ) 𝑝(𝒙𝑇 · 𝒏𝐹 ) ,

where, in the last step, we also used the constraint appearing in the definition of 𝑋n
𝑘+1(𝑇), together with

the fact that 𝒙𝑇 · 𝒏𝐹 is constant over 𝐹.

Edge space. For all 𝐹 ∈ Fℎ and 𝒗𝐹 ∈ 𝑿e
𝑘
(𝐹), the face curl (3.1) corresponds to rot𝐹 𝒗𝐹 ∈ P𝑘 (𝐹),

without the need for any projection. This can be checked by noticing that∫
𝐹

(rot𝐹 𝒗𝐹 )𝑝 =

∫
𝐹

𝒗𝐹 · rot𝐹 𝑝 −
∑︁

𝐸 ∈E𝐹
𝜔𝐹𝐸

∫
𝐸

(𝒗𝐹 · 𝒕𝐸 )𝑝 ∀𝑝 ∈ P𝑘 (𝐹)

and by recalling the choice of DoFs in 𝑿e
𝑘
(𝐹). The tangential trace (3.2) becomes the 𝐿2-orthogonal

projector 𝚷𝑘
P,𝐹

: 𝑿e
𝑘
(𝐹) → P

𝑘 (𝐹) (which is thus computable from the DoFs). Indeed, for all
𝒗𝐹 ∈ 𝑿e

𝑘
(𝐹), writing any 𝒑 ∈ P𝑘 (𝐹) as rot𝐹 𝑝 + 𝒙𝐹𝑞 with 𝑝 ∈ P𝑘+1(𝐹) and 𝑞 ∈ P𝑘−1(𝐹), we have∫

𝐹

𝚷𝑘
P,𝐹

𝒗𝐹 · (rot𝐹 𝑝 + 𝒙𝐹𝑞) =
∫
𝐹

𝒗𝐹 · (rot𝐹 𝑝 + 𝒙𝐹𝑞)

=

∫
𝐹

𝑝(rot𝐹 𝒗𝐹 ) +
∑︁

𝐸 ∈E𝐹
𝜔𝐹𝐸

∫
𝐸

(𝒗𝐹 · 𝒕𝐸 )𝑝 +
∫
𝐹

𝒗𝐹 · 𝒙𝐹 𝑞,
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with, as noticed above, rot𝐹 𝒗𝐹 corresponding to the discrete face curl appearing in (3.2).
For all 𝑇 ∈ Tℎ and 𝒗𝑇 ∈ 𝑿e

𝑘
(𝑇), the element curl (3.3) is the 𝐿2-orthogonal projector from curl 𝒗

into P𝑘 (𝑇). To see this, we simply write∫
𝑇

(𝚷𝑘
P,𝑇

curl 𝒗𝑇 ) · 𝒑 =

∫
𝑇

𝒗𝑇 · curl 𝒑 +
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝒗𝑇 · ( 𝒑 × 𝒏𝐹 )

=

∫
𝑇

𝚷𝑘−1
R,𝑇

𝒗𝑇 · curl 𝒑 +
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝚷𝑘
P,𝐹
(𝒗𝑇 )t,𝐹 · ( 𝒑 × 𝒏𝐹 ) ∀𝒑 ∈ P𝑘 (𝑇),

the introduction of the tangential component denoted by t, 𝐹 and of the projector 𝚷𝑘
P,𝐹
being justified

by the fact that 𝒑 × 𝒏𝐹 is tangential to 𝐹 and of degree ≤ 𝑘 . We conclude the equivalence with (3.3) by
recalling that the DoFs (6.13) provide 𝚷𝑘−1

R,𝑇
𝒗𝑇 (since R𝑘−1(𝑇) = curlP𝑘 (𝑇) = curlGc,𝑘 (𝑇)) and that

𝚷𝑘
P,𝐹
(𝒗𝑇 )t,𝐹 corresponds through the DoFs to the tangential trace 𝜸𝑘

t,𝐹 𝒗𝐹 . Finally, the discrete vector
potential (3.11) corresponds to the 𝐿2-orthogonal projector 𝚷𝑘

P,𝑇
: 𝑿e

𝑘
(𝑇) → P

𝑘 (𝑇) since a generic
test function 𝒑 ∈ P𝑘 (𝑇) can be decomposed as 𝒑 = curl 𝒒 + 𝒙𝑇 𝑝 with 𝒒 ∈ Gc,𝑘+1(𝑇) and 𝑝 ∈ P𝑘−1(𝑇)
so that, for all 𝒗𝑇 ∈ 𝑿e

𝑘
(𝑇),∫

𝑇

𝚷𝑘
P,𝑇

𝒗𝑇 · 𝒑 =

∫
𝑇

(𝚷𝑘
P,𝑇

curl 𝒗𝑇 ) · 𝒒 −
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

𝚷𝑘
P,𝐹
(𝒗𝑇 )t,𝐹 · (𝒒 × 𝒏𝐹 ) +

∫
𝑇

𝒗𝑇 · 𝒙𝑇 𝑝,

where we used again the constraints appearing in the definition of 𝑿e
𝑘
(𝑇) and 𝑿e

𝑘
(𝐹), the latter combined

with the fact that 𝒒 |𝐹 × 𝒏𝐹 ∈ P𝑘 (𝐹) + 𝒙𝐹P𝑘 (𝐹), see for instance [22, Eq. (A.5)].

Face space. For all 𝒘𝑇 ∈ 𝑿f
𝑘
(𝑇), the discrete divergence (3.13) corresponds to div𝒘𝑇 ∈ P𝑘 (𝑇)

(without any projection) since∫
𝑇

(div𝒘𝑇 )𝑞 = −
∫
𝑇

𝒘𝑇 · grad 𝑞 +
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

(𝒘𝑇 · 𝒏𝐹 )𝑞 ∀𝑞 ∈ P𝑘 (𝑇),

each of the terms involving 𝒘𝑇 in the right-hand side corresponding to some DoFs on 𝑿f
𝑘
(𝑇). The

discrete vector potential (3.12) corresponds to the 𝐿2-orthogonal projector 𝚷𝑘
P,𝑇
: 𝑿f

𝑘
:→ P

𝑘 (𝑇): For
all 𝒘 ∈ 𝑿f

𝑘
(𝑇), writing a generic 𝒑 ∈ P𝑘 (𝑇) as 𝒑 = grad 𝑟+𝒙𝑇 ×𝒒 with 𝑟 ∈ P𝑘+1(𝑇) and 𝒒 ∈ P𝑘−1(𝑇),

we have∫
𝑇

(𝚷𝑘
P,𝑇

𝒘) · (grad 𝑟 + 𝒙𝑇 × 𝒒) = −
∫
𝑇

(div𝒘)𝑟 +
∑︁
𝐹 ∈F𝑇

𝜔𝑇 𝐹

∫
𝐹

(𝒘 · 𝒏𝐹 )𝑟 +
∫
𝑇

𝒘 · (𝒙𝑇 × 𝒒).

6.2.3 Discrete scalar products

Having established the relation, through the DoFs, between discrete potentials and projections, the
translation of the DDR scalar products of Section 3.3 into the VEM setting is simply a substitution of
symbols. For example, in the nodal case, the scalar product is given by: For all 𝑞, 𝑤 ∈ 𝑋n

𝑘+1(𝑇),

[𝑞, 𝑤]𝑋n
𝑘+1 (𝑇 ) =

∫
𝑇

(Π𝑘+1
P,𝑇 𝑞) (Π

𝑘+1
P,𝑇𝑤) + 𝑆grad,𝑇 (𝑞, 𝑤) ,

where 𝑆grad,𝑇 (𝑞, 𝑤) =
∑︁
𝐹 ∈F𝑇

ℎ𝑇

∫
𝐹

(
Π𝑘+1
P,𝑇 𝑞 − Π

𝑘+1
P,𝐹𝑞

) (
Π𝑘+1
P,𝑇𝑤 − Π

𝑘+1
P,𝐹𝑤

)
+

∑︁
𝐸 ∈E𝑇

ℎ2𝑇

∫
𝐸

(
Π𝑘+1
P,𝑇 𝑞 − 𝑞)

(
Π𝑘+1
P,𝑇𝑤 − 𝑤

)
.
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6.3 Comparison and further developments

Due to the use of the serendipity approach on element faces, the Virtual ElementMethod has fewer DoFs
for certain DoF sets. On the other hand, thanks to the systematic adoption of what, in the VEM language,
would be called an enhancement approach, the DDR has fewer DoFs in other instances, such as element
volumes. Thanks to the bridges developed above, such constructions can be easily combined, leading to
a more efficient and highly competitive scheme that can be interpreted both as DDR and VEM. Drawing
the details of such construction is beyond the scope of the present article; nevertheless, to shed some
more light onto the idea, we show very briefly the following short example of cross-fertilization.
Consider the Virtual Element space 𝑉 f

𝑘
(𝑇). It can be checked that lowering by one the degree 𝑘

appearing in the DoF set (4.26) (that is, testing only on 𝒑 ∈ P
𝑘−1(𝑇)) would still allow to compute

the 𝐿2-projection 𝚷𝑘
P,𝑇

: 𝑉 f
𝑘
(𝑇) → P

𝑘 (𝑇). Therefore one could use such projection to introduce
an “enhancement” following the spirit in [1] and mimicking the analogous construction in the DDR
approach: decrease by one the degree 𝑘 in (4.26) and introduce the corresponding constraint in the
definition of the space 𝑉 f

𝑘
(𝑇). Analogously, the serendipity idea from VEM could be injected in the

DDR setting, allowing to lower the DoF count on faces. For instance, one could introduce in the spaces
𝑋 𝑘

grad,𝑇 and 𝑿
𝑘
curl,𝑇 a construction leveraging serendipity operators in order to fix the values of certain

polynomial components on faces.

7 Theoretical analysis of the methods
In this section we prove the error estimates for the proposed schemes stated in Theorems 2 (DDR) and
10 (VEM).

7.1 Analysis of the DDR scheme

After recasting problem (3.14) in variational form and proving stability for the bilinear form in the
left-hand side, we give a proof of Theorem 2.

7.1.1 Variational formulation and stability

The variational formulation of problem (3.14) reads{
Find (𝒖

ℎ
, 𝑝

ℎ
) ∈ 𝑿𝑘

curl,ℎ × 𝑋 𝑘
grad,ℎ,0 such that

Aℎ ((𝒖ℎ
, 𝑝

ℎ
), (𝒗

ℎ
, 𝑞

ℎ
)) = ℓℎ ( 𝒇 , 𝒗ℎ) ∀(𝒗ℎ, 𝑞ℎ) ∈ 𝑿𝑘

curl,ℎ × 𝑋 𝑘
grad,ℎ,0,

(7.1)

where the bilinear form Aℎ :
(
𝑿𝑘

curl,ℎ × 𝑋 𝑘
grad,ℎ

)2 → R is such that, for all (𝒘
ℎ
, 𝑟ℎ), (𝒗ℎ, 𝑞ℎ) ∈

𝑿𝑘
curl,ℎ × 𝑋 𝑘

grad,ℎ,

Aℎ ((𝒘ℎ
, 𝑟ℎ), (𝒗ℎ, 𝑞ℎ)) ≔ aℎ (𝒘ℎ

, 𝒗
ℎ
) + bℎ (𝑟ℎ, 𝒗ℎ) − bℎ (𝑞ℎ, 𝒘ℎ

). (7.2)

Well-posedness is then a classical consequence of the following inf-sup condition on Aℎ.

Lemma 14 (Inf-sup condition for Aℎ). For all (𝒘
ℎ
, 𝑟ℎ) ∈ 𝑿𝑘

curl,ℎ × 𝑋 𝑘
grad,ℎ,0, it holds

||| (𝒘
ℎ
, 𝑟ℎ) |||ℎ . sup

(𝒗
ℎ
,𝑞

ℎ
) ∈𝑿 𝑘

curl,ℎ×𝑋
𝑘
grad,ℎ,0\{(0,0) }

Aℎ ((𝒘ℎ
, 𝑟ℎ), (𝒗ℎ, 𝑞ℎ))

||| (𝒗
ℎ
, 𝑞

ℎ
) |||ℎ

. (7.3)

Proof. Denote by $ the supremum in the right-hand side of (7.3). Taking (𝒗
ℎ
, 𝑞

ℎ
) = (𝒘

ℎ
+ 𝑮𝑘

ℎ
𝑟ℎ, 𝑟ℎ)

in (7.2), recalling the definitions (3.15) of aℎ and bℎ, and using the relation (3.9), we have

‖𝑪𝑘
ℎ
𝒘

ℎ
‖2div,ℎ + ‖𝑮

𝑘
ℎ
𝑟ℎ ‖

2
curl,ℎ = Aℎ ((𝒘ℎ

, 𝑟ℎ), (𝒘ℎ
+ 𝑮𝑘

ℎ
𝑟ℎ, 𝑟ℎ))

≤ $||| (𝒘
ℎ
+ 𝑮𝑘

ℎ
𝑟ℎ, 𝑟ℎ) |||ℎ . $||| (𝒘ℎ

, 𝑟ℎ) |||ℎ,
(7.4)
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where we have used a triangle inequality along with the definitions (3.17) of |||·|||ℎ and (3.18) of
|||·|||grad,ℎ for the pair (𝑮𝑘

ℎ
𝑟ℎ, 0) together with (3.9) to infer ||| (𝒘ℎ

+ 𝑮𝑘
ℎ
𝑟ℎ, 𝑟ℎ) |||ℎ . ||| (𝒘ℎ

, 𝑟ℎ) |||ℎ. The
Poincaré–Wirtinger inequality of [22, Theorem 3] combined with (7.4) yields

‖𝑟ℎ ‖
2
grad,ℎ . $||| (𝒘ℎ

, 𝑟ℎ) |||ℎ . (7.5)

To estimate ‖𝒘
ℎ
‖curl,ℎ, we infer from the exactness property of [22, Theorem 2] the (·, ·)curl,ℎ-orthogonal

decomposition 𝒘
ℎ
= 𝝍

ℎ
+𝑮𝑘

ℎ
𝜙
ℎ
, where𝝍

ℎ
∈ (Ker𝑪𝑘

ℎ
)⊥ and 𝜙

ℎ
∈ 𝑋 𝑘

grad,ℎ,0. By the Poincaré inequality
of [22, Theorem 4], it holds

‖𝝍
ℎ
‖2curl,ℎ . ‖𝑪

𝑘
ℎ
𝝍
ℎ
‖2div,ℎ = ‖𝑪𝑘

ℎ
𝒘

ℎ
‖2div,ℎ . $||| (𝒘ℎ

, 𝑟ℎ) |||ℎ, (7.6)

where the equality follows from (3.9) and we have used (7.4) to conclude. On the other hand, tak-
ing (𝒗

ℎ
, 𝑞

ℎ
) = (0,−𝜙

ℎ
) in (7.2) and using the definition (3.15) of bℎ along with the (·, ·)curl,ℎ-

orthogonality of the decomposition 𝒘
ℎ

= 𝝍
ℎ
+ 𝑮𝑘

ℎ
𝜙
ℎ
and 𝑮𝑘

ℎ
𝜙
ℎ
∈ Ker𝑪𝑘

ℎ
(see (3.9)) to infer

bℎ (𝜙
ℎ
, 𝒘

ℎ
) =

��������(𝑮𝑘
ℎ
𝜙
ℎ
,𝝍

ℎ
)curl,ℎ + ‖𝑮𝑘

ℎ
𝜙
ℎ
‖2curl,ℎ, we get

‖𝑮𝑘
ℎ
𝜙
ℎ
‖2curl,ℎ = Aℎ ((𝒘ℎ

, 𝑟ℎ), (0,−𝜙ℎ
)) ≤ $||| (0, 𝜙

ℎ
) |||ℎ ≤ $‖𝒘ℎ

‖curl,ℎ ≤ $||| (𝒘ℎ
, 𝑟ℎ) |||ℎ . (7.7)

The second inequality in (7.7) is obtained writing

||| (0, 𝜙
ℎ
) |||2ℎ = ‖𝜙

ℎ
‖2grad,ℎ + ‖𝑮

𝑘
ℎ
𝜙
ℎ
‖2curl,ℎ . ‖𝑮

𝑘
ℎ
𝜙
ℎ
‖2curl,ℎ ≤ ‖𝒘ℎ

‖2curl,ℎ,

where we have used, in this order, the definitions (3.17) of |||·|||ℎ and (3.18) of |||·|||grad,ℎ, the discrete
Poincaré inequality of [22, Theorem 3], and the (·, ·)curl,ℎ-orthogonality of the decomposition 𝒘

ℎ
=

𝝍
ℎ
+ 𝑮𝑘

ℎ
𝜙
ℎ
. Summing (7.6) and (7.7), it is inferred that ‖𝒘

ℎ
‖2curl,ℎ . $||| (𝒘ℎ

, 𝑟ℎ) |||ℎ which, together
with (7.4) and (7.5), gives (7.3) after simplification. �

7.1.2 Convergence

Proof of Theorem 2. By the Third Strang lemma [21, Theorem 10] and Lemma 14 (with a slight
modification for 𝑘 = 0 not detailed here to make sure that 𝑝

ℎ
− 𝐼𝑘grad,ℎ𝑝 has zero average), it holds

||| (𝒖
ℎ
− 𝑰𝑘curl,ℎ𝒖, 𝑝ℎ

− 𝐼𝑘grad,ℎ𝑝) |||ℎ . sup
(𝒗

ℎ
,𝑞

ℎ
) ∈𝑿 𝑘

curl,ℎ×𝑋
𝑘
grad,ℎ,0\{(0,0) }

Eℎ (𝒗ℎ, 𝑝ℎ)
||| (𝒗

ℎ
, 𝑝

ℎ
) |||ℎ

, (7.8)

where Eℎ : 𝑿𝑘
curl,ℎ × 𝑋 𝑘

grad,ℎ,0 → R is the consistency error linear form such that

Eℎ (𝒗ℎ, 𝑝ℎ) ≔ ℓℎ ( 𝒇 , 𝒗ℎ) − Aℎ ((𝑰𝑘curl,ℎ𝒖, 𝐼
𝑘
grad,ℎ𝑝), (𝒗ℎ, 𝑝ℎ)).

To prove (3.19), it suffices to bound the right-hand side of (7.8). The rest of the proof relies on
consistency results established in [22] in the case of maximal regularity 𝑠 = 𝑘 + 1; their adaptation to
the generic case 1 ≤ 𝑠 ≤ 𝑘 + 1, used here, is straightforward. Recalling the definitions (3.15) and (7.2)
of the discrete bilinear forms, and since 𝒇 = curl(curl 𝒖) + grad 𝑝 almost everywhere in Ω, we have

Eℎ (𝒗ℎ, 𝑝ℎ) = ℓℎ (curl(curl 𝒖), 𝒗
ℎ
) − (𝑪𝑘

ℎ
(𝑰𝑘curl,ℎ𝒖),𝑪

𝑘
ℎ
𝒗
ℎ
)div,ℎ︸                                                           ︷︷                                                           ︸

𝔗1

+ ℓℎ (grad 𝑝, 𝒗
ℎ
) − (𝑮𝑘

ℎ
(𝐼𝑘grad,ℎ𝑝), 𝒗ℎ)curl,ℎ︸                                                 ︷︷                                                 ︸

𝔗2

+ (𝑮𝑘
ℎ
𝑞
ℎ
, 𝑰𝑘curl,ℎ𝒖)curl,ℎ .︸                       ︷︷                       ︸

𝔗3

(7.9)
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Recalling the commutation property 𝑪𝑘
ℎ
(𝑰𝑘curl,ℎ𝒘) = 𝑰𝑘div,ℎ (curl𝒘) valid for all 𝒘 ∈ 𝑯2(Ω), which is

an easy consequence of the corresponding local relation proved in [22, Lemma 4], and replacing ℓℎ with
its definition (3.15), we have

𝔗1 = (𝑰𝑘curl,ℎ (curl(curl 𝒖)), 𝒗
ℎ
)curl,ℎ − (𝑰𝑘div,ℎ (curl 𝒖),𝑪𝑘

ℎ
𝒗
ℎ
)div,ℎ .

Then, leveraging [22, Theorem 10] as in the bound of the component Eℎ,3 in the proof of [22, Theorem
12], we obtain

|𝔗1 | . ℎ𝑠
(
| curl 𝒖 |𝑯𝑠 (Tℎ) + | curl 𝒖 |𝑯𝑠+1 (Tℎ) + | curl curl 𝒖 |𝑯 (𝑠,2) (Tℎ)

)
|||𝒗

ℎ
|||curl,ℎ . (7.10)

By (3.16) with 𝜓 = 𝑝, we immediately have for the second term

𝔗2 = 0. (7.11)

Finally, for the third term, the adjoint consistency result for the gradient proved in [22, Theorem 9] along
with the fact that div 𝒖 = 0 in Ω and 𝒖 · 𝒏 = 0 on 𝜕Ω readily yields

|𝔗3 | . ℎ𝑠 |𝒖 |𝑯 (𝑠,2) (Tℎ) ‖𝑮
𝑘
ℎ
𝑞
ℎ
‖curl,ℎ . (7.12)

Using (7.10), (7.11), and (7.12) to estimate the right-hand side of (7.9) and plugging the resulting bound
into (7.8) proves (3.19). �

7.2 Analysis of the VEM scheme

In this section we tackle the convergence analysis of the Virtual Element approach presented in Section
4.

7.2.1 Preliminary results

Let us start by reviewing some results that will be useful in the following. The proof of Lemma 16 can
be found in [17], see also [13, 18], for any order 𝑘 . The proofs of the other interpolation and scalar
product stability results below can be found (for the lowest order case 𝑘 = 0) in [12], while the proof of
Lemma 19 is provided in [8]. The extension to the higher order case is beyond the scope of the present
paper and is the purpose of a future work. We classically assume, in what follows, the following mesh
property.

Assumption 15 (Star-shaped property). For all meshsize ℎ, all the elements 𝑇 ∈ Tℎ and all the faces
𝐹 ∈ Fℎ are uniformly star shaped with respect to a ball, and there exists a uniform positive constant 𝛾
such that ℎ𝐸 ≥ 𝛾ℎ𝑇 for all 𝐸 ∈ E𝑇 .

The discrete spaces proposed in Section 4 have optimal approximation properties, in terms of the
associated polynomial degree, as shown below. We state the next three results only at the local level,
the global counterpart following trivially by summing on all elements.

Lemma 16. Let 𝑣 ∈ 𝐻𝑠 (Ω), 32 < 𝑠 ≤ 𝑘 + 2. Then, the nodal interpolant 𝑣𝐼 = In
𝑘+1(𝑣) ∈ 𝑉

n
𝑘+1 (which,

we recall, is the space 𝑉n
𝑘+1,0 without the zero average condition) satisfies

‖𝑣 − 𝑣𝐼 ‖𝐿2 (𝑇 ) + ℎ𝑇 |𝑣 − 𝑣𝐼 |𝐻 1 (𝑇 ) . ℎ𝑠𝑇 |𝑣 |𝐻 𝑠 (𝑇 ) ∀𝑇 ∈ Tℎ .

Lemma 17. Let 𝒗 ∈ 𝑯𝑠 (curl;Ω), 12 < 𝑠 ≤ 𝑘 + 1. Then, the edge interpolant 𝒗𝐼 = Ie𝑘 (𝒗) ∈ 𝑉
e
𝑘

satisfies

‖𝒗 − 𝒗𝐼 ‖𝑯 (curl;𝑇 ) . 𝐶ℎ𝑠𝑇

(
‖𝒗‖𝑯𝑠 (𝑇 ) + | curl 𝒗 |𝑯𝑠 (𝑇 )

)
∀𝑇 ∈ Tℎ .

If 𝑠 > 3
2 , then the right hand side can be substituted with 𝐶ℎ𝑠

𝑇
|𝒗 |𝑯𝑠 (𝑇 ) .
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We furthermore have the following stability result for the discrete scalar products.

Lemma 18. It holds

‖𝒗‖2
𝑳2 (𝑇 ) . [𝒗, 𝒗]𝑉 •𝑘 (𝑇 ) . ‖𝒗‖

2
𝑳2 (𝑇 ) ∀𝑇 ∈ Tℎ, ∀𝒗 ∈ 𝑉

•
𝑘 (𝑇),

where, as usual, the symbol 𝑉•
𝑘
(𝑇) denotes either 𝑉e

𝑘
(𝑇) or 𝑉 f

𝑘
(𝑇).

Finally, we state a Poincaré inequality for the curl.

Lemma 19. Let 𝑍ℎ be the orthogonal in 𝑉e
𝑘

of the image of the gradient, that is

𝑍ℎ =

{
𝒗 ∈ 𝑉e𝑘 : [𝒗, grad𝑤]𝑉 e

𝑘
= 0 ∀𝑤 ∈ 𝑉n𝑘+1,0

}
.

Then, it holds
‖𝒗‖𝑳2 (Ω) . ‖ curl 𝒗‖𝑳2 (Ω) ∀𝒗 ∈ 𝑍ℎ .

7.2.2 Stability and convergence

We start by a simple lemma stating the consistency of the scalar product on the virtual spaces.

Lemma 20 (Consistency of the scalar products). Let 𝑇 ∈ Tℎ and the symbol 𝑉•
𝑘
(𝑇) represent either

𝑉e
𝑘
(𝑇) or 𝑉 f

𝑘
(𝑇). Let 𝝋 ∈ 𝑯𝑠 (𝑇), 0 ≤ 𝑠 ≤ 𝑘 + 1, and 𝝋ℎ ∈ 𝑉•𝑘 (𝑇). Then, for all 𝒘ℎ ∈ 𝑉•𝑘 (𝑇), it holds∫

𝑇

𝝋 · 𝒘ℎ − [𝝋ℎ, 𝒘ℎ]𝑉 •
𝑘
(𝑇 ) .

(
‖𝝋 − 𝝋ℎ ‖𝑳2 (𝑇 ) + ℎ

𝑠
𝑇 |𝝋|𝑯𝑠 (𝑇 )

)
‖𝒘ℎ ‖𝑳2 (𝑇 ) .

Proof. Let 𝝋𝜋 be the best 𝐿2 approximation in P
𝑘 (𝑇) of 𝝋. Then, using first property (4.28) and then

Lemma 18, we find∫
𝑇

𝝋 · 𝒘ℎ − [𝝋ℎ, 𝒘ℎ]𝑉 •
𝑘
(𝑇 ) =

∫
𝑇

(𝝋 − 𝝋𝜋) · 𝒘ℎ + [𝝋𝜋 − 𝝋ℎ, 𝒘ℎ]𝑉 •
𝑘
(𝑇 )

.
(
‖𝝋 − 𝝋𝜋 ‖𝑳2 (𝑇 ) + ‖𝝋𝜋 − 𝝋ℎ ‖𝑳2 (𝑇 )

)
‖𝒘ℎ ‖𝑳2 (𝑇 )

.
(
‖𝝋 − 𝝋𝜋 ‖𝑳2 (𝑇 ) + ‖𝝋 − 𝝋ℎ ‖𝑳2 (𝑇 )

)
‖𝒘ℎ ‖𝑳2 (𝑇 ) ,

where the last line is obtained introducing 𝝋 in ‖𝝋𝜋 − 𝝋ℎ ‖𝑳2 (𝑇 ) and using a triangle inequality. The
lemma is concluded by standard polynomial approximation results on star shaped polytopes, see for
instance [24, Theorem 1.45]. �

We are now ready to prove the convergence result stated in Theorem 10.

Proof of Theorem 10. Introducing the linear form Aℎ

Aℎ (𝒘ℎ, 𝑟ℎ; 𝒗ℎ, 𝑞ℎ) ≔ [curl𝒘ℎ, curl 𝒗ℎ]𝑉 f
𝑘
+ [grad 𝑟ℎ, 𝒗ℎ]𝑉 e

𝑘
− [grad 𝑞ℎ, 𝒘ℎ]𝑉 e

𝑘

∀(𝒘ℎ, 𝑟ℎ), (𝒗ℎ, 𝑞ℎ) ∈
(
𝑉e𝑘 ×𝑉

n
𝑘+1,0

)2
,

problem (4.32) can be equivalently written as: Find (𝒖ℎ, 𝑝ℎ) ∈ 𝑉e𝑘 ×𝑉
n
𝑘+1,0 such that

Aℎ (𝒖ℎ, 𝑝ℎ; 𝒗ℎ, 𝑞ℎ) = [ 𝒇 𝐼 , 𝒗ℎ]𝑉 e𝑘 ∀(𝒗ℎ, 𝑞ℎ) ∈ 𝑉e𝑘 ×𝑉
n
𝑘+1,0. (7.13)

The stability of problem (7.13) in the natural norms associated to this formulation (𝑯(curl;Ω) norm for
𝑉e
𝑘
and 𝐻1(Ω) norm for𝑉n

𝑘+1,0) follows from the standard theory of mixed methods [14]. The coercivity
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on the discrete kernel follows immediately from Lemma 19 and the stability of the scalar products (i.e.,
Lemma 18). The inf-sup condition (in the natural norms of the problem) is a simple consequence of the
exact complex property and Lemma 18: For each 𝑞ℎ ∈ 𝑉n𝑘+1,0,

sup
𝒗ℎ ∈𝑉 e𝑘

[grad 𝑞ℎ, 𝒗ℎ]𝑉 e
𝑘

‖𝒗ℎ ‖𝑯 (curl;Ω)
≥
[grad 𝑞ℎ, grad 𝑞ℎ]𝑉 e

𝑘

‖ grad 𝑞ℎ ‖𝐿2 (Ω)
& ‖ grad 𝑞ℎ ‖𝐿2 (Ω) .

Therefore, given 𝒖𝐼 ∈ 𝑉e𝑘 , 𝑝𝐼 ∈ 𝑉
n
𝑘+1,0 the interpolants of 𝒖 and 𝑝 (with a slight modification for 𝛽𝐹 < 0

not detailed here to make sure that 𝑝𝐼 has zero average), respectively, we have the existence of 𝒗ℎ ∈ 𝑉e𝑘 ,
𝑞ℎ ∈ 𝑉n𝑘+1,0 such that{

‖𝒖ℎ − 𝒖𝐼 ‖𝑯 (curl;Ω) + ‖𝑝ℎ − 𝑝𝐼 ‖𝐻 1 (Ω) ≤ Aℎ (𝒖ℎ − 𝒖𝐼 , 𝑝ℎ − 𝑝𝐼 ; 𝒗ℎ, 𝑞ℎ),
‖𝒗ℎ ‖𝑯 (curl;Ω) + ‖𝑞ℎ ‖𝐻 1 (Ω) . 1.

(7.14)

We start from (7.14) and apply the discrete equation (7.13). Afterwards, we recall the continuous
equation (1.1) and substitute 𝒇 in terms of 𝒖 and 𝑝. We obtain

‖𝒖ℎ − 𝒖𝐼 ‖𝑯 (curl;Ω) + ‖𝑝ℎ − 𝑝𝐼 ‖𝐻 1 (Ω) ≤ [ 𝒇 𝐼 , 𝒗ℎ]𝑉 e𝑘 − Aℎ (𝒖𝐼 , 𝑝𝐼 ; 𝒗ℎ, 𝑞ℎ) = 𝔗1 + 𝔗2 + 𝔗3, (7.15)

where
𝔗1 ≔ [(curl curl 𝒖)𝐼 , 𝒗ℎ]𝑉 e

𝑘
− [curl 𝒖𝐼 , curl 𝒗ℎ]𝑉 f

𝑘
,

𝔗2 ≔ [(grad 𝑝)𝐼 , 𝒗ℎ]𝑉 e
𝑘
− [grad 𝑝𝐼 , 𝒗ℎ]𝑉 e

𝑘
,

𝔗3 ≔ −[grad 𝑞ℎ, 𝒖𝐼 ]𝑉 e
𝑘
.

We deal with the three terms separately. Introducing
∫
Ω
(curl 𝒖) · (curl 𝒗ℎ) and integrating by parts,

recalling that curl 𝒖 × 𝒏 vanishes on the boundary, gives 𝔗1 = 𝔗1,1 + 𝔗1,2 where

𝔗1,1 ≔ [(curl curl 𝒖)𝐼 , 𝒗ℎ]𝑉 e
𝑘
−
∫
Ω

(curl curl 𝒖) · 𝒗ℎ ,

𝔗1,2 ≔

∫
Ω

(curl 𝒖) · (curl 𝒗ℎ) − [curl 𝒖𝐼 , curl 𝒗ℎ]𝑉 f
𝑘
.

We bound the square of 𝔗1,1 first by applying Lemma 20 and recalling (7.14), then using Lemma 17:

𝔗21,1 .
∑︁
𝑇 ∈Tℎ

(
‖ curl curl 𝒖 − (curl curl 𝒖)𝐼 ‖2𝑳2 (𝑇 ) + ℎ

2𝑠
𝑇 | curl curl 𝒖 |2𝑯𝑠 (𝑇 )

)
.

∑︁
𝑇 ∈Tℎ

ℎ2𝑠𝑇
(
‖ curl curl 𝒖‖2𝑯𝑠 (𝑇 ) + | curl 𝒇 |2𝑯𝑠 (𝑇 )

)
,

where we also used curl curl curl 𝒖 = curl 𝒇 . Term 𝔗1,2 is bounded following the same steps, leading
to

𝔗21,2 .
∑︁
𝑇 ∈Tℎ

ℎ2𝑠𝑇
(
‖ curl 𝒖‖2𝑯𝑠 (𝑇 ) + | curl curl 𝒖 |2𝑯𝑠 (𝑇 )

)
.

By the commuting diagram property (see Remark 9), it is trivial to check that 𝔗2 = 0, which is a key
point in the present analysis and essential to the pressure-robustness of the scheme. Finally, the term 𝔗3
is bounded by using the continuous equation

𝔗3 = [grad 𝑞ℎ, 𝒖𝐼 ]𝑉 e
𝑘
−
∫
Ω

(grad 𝑞ℎ) · 𝒖
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and then again by Lemmas 20 and 17, similarly to the previous terms:

𝔗3 .
∑︁
𝑇 ∈Tℎ

(
‖𝒖 − 𝒖𝐼 ‖2𝑳2 (𝑇 ) + ℎ

2𝑠
𝑇 |𝒖 |

2
𝑯𝑠 (𝑇 )

)
.

∑︁
𝑇 ∈Tℎ

ℎ2𝑠𝑇

(
‖𝒖‖2𝑯𝑠 (𝑇 ) + | curl 𝒖 |2𝑯𝑠 (𝑇 )

)
.

The final result follows by combining all the bounds into (7.15) and using ℎ𝑇 ≤ ℎ for all 𝑇 ∈ Tℎ. �

By combining the above proposition with the interpolation estimates in Lemmas 17 and 16, we
obtain the following result, which is more akin to the error estimates in the VEM literature.

Corollary 21 (Error with respect to the continuous solution). Let the solution (𝒖, 𝑝) of the continuous
problem satisfy 𝒖 ∈ 𝑯𝛾 (Ω), 𝛾 > 3

2 . Assume furthermore that the functions𝒖, curl 𝒖, curl curl 𝒖, 𝒇 , curl 𝒇
are in 𝑯𝑠 (Tℎ) and 𝑝 ∈ 𝐻𝑠+1(Tℎ), 12 < 𝑠 < 𝑘 + 1. Then it holds

‖𝒖 − 𝒖ℎ ‖𝑯 (curl;Ω) . ℎ𝑠
(
|𝒖 |𝑯𝑠 (curl;Tℎ) + | curl curl 𝒖 |𝑯𝑠 (Tℎ) + | curl 𝒇 |𝑯𝑠 (Tℎ)

)
,

|𝑝 − 𝑝ℎ |𝐻 1 (Ω) . ℎ𝑠
(
|𝒖 |𝑯𝑠 (curl;Tℎ) + | curl curl 𝒖 |𝑯𝑠 (Tℎ) + |𝑝 |𝐻 𝑠+1 (Tℎ)

)
.
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