
HAL Id: hal-03491856
https://hal.science/hal-03491856v2

Submitted on 27 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inferring topological operations on generalized maps:
application to subdivision schemes

Romain Pascual, Hakim Belhaouari, Agnès Arnould, Pascale Le Gall

To cite this version:
Romain Pascual, Hakim Belhaouari, Agnès Arnould, Pascale Le Gall. Inferring topological operations
on generalized maps: application to subdivision schemes. Graphics and Visual Computing, 2022,
�10.1016/j.gvc.2022.200049�. �hal-03491856v2�

https://hal.science/hal-03491856v2
https://hal.archives-ouvertes.fr

Graphics and Visual Computing 6 (2022) 200049

R
a

b

d
a
G
n
d
j
d

r
i
t
i
a
o
t
e
t

m
t
m

h
2

Contents lists available at ScienceDirect

Graphics and Visual Computing

journal homepage: www.elsevier.com/locate/gvc

Technical section

Inferring topological operations on generalizedmaps: Application to
subdivision schemes✩

omain Pascual a,∗, Hakim Belhaouari b, Agnès Arnould b, Pascale Le Gall a
Laboratoire Mathématiques et Informatique pour la Complexité et les Systèmes (MICS), CentraleSupélec, Université Paris Saclay, France
Laboratoire XLIM UMR CNRS 7252, Université de Poitiers, France

a r t i c l e i n f o

Article history:
Received 3 December 2021
Received in revised form 9 May 2022
Accepted 10 May 2022
Available online 14 May 2022

Keywords:
Topology-based geometric modeling
Subdivision schemes
Operation inference
Inference from examples
Topological operation
Computational topology

a b s t r a c t

The design of correct topological modeling operations is known to be a time-consuming and challeng-
ing task. However, these operations are intuitively understood via simple drawings of a representative
object before and after modification. We propose to infer topological modeling operations from an
application example. Our algorithm exploits a compact and expressive graph-based language. In this
framework, topological modeling operations on generalized maps are represented as rules from the
theory of graph transformations. Most of the time, operations are generic up to a topological cell
(vertex, face, volume). Thus, the rules are parameterized with orbit types indicating which kind of cell
is involved. Our main idea is to infer a generic rule by folding a graph comprising a copy of the object
before modification, a copy after modification, and information about the modification. We fold this
graph according to the cell parametrization of the operation under design. We illustrate our approach
with some subdivision schemes because their symmetry simplifies the operation inference.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
e
a
L
t
r
d
t
t
a
a
t
s
a

1. Introduction

In interactive modeling, the possibility to effortlessly create
edicated operations is a long-craved ambition. These operations
im at simplifying the production of domain-specific objects.
eometric modelers [1–3] usually enable the user to hand-code
ew operations through an API, adapting a generic tool into a
edicated one. Such solutions allow constructing geometric ob-
ects across many application domains such as computer-aided
esign, architecture, or animation movies.
Our ambition is to deduce the general operation from a single

epresentative instance. Indeed, domain experts usually exper-
ment on simple instances when the target object is complex,
o the point that they often can characterize an operation us-
ng a well-chosen use case. Besides, inferring operations from
n instance reduces the cumbrous nature of implementing new
perations, coping with the unfamiliarity of domain experts with
he tool’s implementation. We aspire to exploit the intuition
xperts can provide to infer operation in the specific case of
opological modifications on meshes.

Our approach lies in the field of topology-based geometric
odeling [4]. An object consists of a topological structure, i.e., its

opological cells (volumes, faces, edges, and vertices) and geo-
etrical aspects. All the non-topological information is called

✩ This article was recommended for publication by L. Barthe.
∗ Corresponding author.

E-mail address: romain.pascual@centralesupelec.fr (R. Pascual).
 c

ttps://doi.org/10.1016/j.gvc.2022.200049
666-6294/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
embedding information and may encode the position of vertices,
the curvature of edges, or the texture mapped onto faces. We
exploit the formalism of generalized maps, or G-maps [4–6]. Gen-
eralized maps are similar to (combinatorial) maps, equivalent
to graph rotation systems [7,8] in 2D. This model has the main
benefit of being homogeneously defined in all dimensions. The
standard construction of G-maps exploits permutations on a set
of darts. Here, we will represent them as graphs, similarly to the
approach of [9,10].

Since objects are formalized using graphs, modeling opera-
tions can be studied as rules in the framework of graph trans-
formations [11–13]. Intuitively, a rule is written L → R and
allows to transform object L into object R within a more gen-
ral context. Rule-based languages have already been studied to
pply predefined operations on predefined objects, such as in
-system languages [14,15]. In [16], the authors used a graph-
ransformation-like approach to define surface subdivision algo-
ithms. Rule-based dedicated languages allow for a user-friendly
escription of modeling operations and a generic manipulation of
hese operations via a dedicated rule application engine. In [10],
he authors showed how to design a modeler kernel as a rule
pplication engine in the context of graph transformation rules
pplied to generalized maps. These rules separately handle the
opological modification and their geometric counterpart. Be-
ides, as operations should produce a well-formed object when
pplied to a well-formed object, rules are subject to syntactic
onditions that ensure the preservation of the topological [17,18]
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.gvc.2022.200049
http://www.elsevier.com/locate/gvc
http://www.elsevier.com/locate/gvc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gvc.2022.200049&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:romain.pascual@centralesupelec.fr
https://doi.org/10.1016/j.gvc.2022.200049
http://creativecommons.org/licenses/by/4.0/

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

a
t
o
g
t
f
g
i
u

o
s
i
o
e
t

Fig. 1. Operation of quad subdivision: application to a cube (a), iterated application to the cube (b), and application to a quadmesh (c).
nd the geometric consistency [19]. Operations can be parame-
erized by topological cells. Topological cells, and more generally
rbits, encode rule parameters to offer a compact and expressive
raph-based language to design modeling operations. These ex-
ended rules, called rule schemes, express transformations valid
or all possible shapes of a given orbit type, providing the desired
eneralization. Applying a modeling operation is achieved by
nstantiating a rule scheme to a concrete rule based on the object
nder modification.
We wish to provide a tool that can infer the topological part

f an operation from a representative example. The operation
hould be applicable to similar objects. The user specifies an
nitial object A, modifies it, and provides the final object B. We
ffer to deduce the operation that transforms A directly into B. For
xample, the subdivision of the cube, illustrated in Fig. 1(a), is a
ransformation where object A is the cube before subdivision and
object B is the object after subdivision. Since we want an opera-
tion applicable in a broader context than simply on the object A,
we infer operations generic up to a user-specified topological cell.
For instance, we can require that the inferred operation for the
subdivision described in Fig. 1(a) is general up to a surface. The in-
ferred operation can be applied again on the resulting object (see
Fig. 1(b)). The operation also allows modifying different objects,
such as the quad mesh of a cow depicted in Fig. 1(c). The present
paper focuses on inferring operations for subdivision schemes
to exploit their regularity. Indeed such transformations rely on
local modifications applied similarly on the whole object, creating
many symmetries. These symmetries simplify the inference of the
operation.

Our main contribution is an algorithm that infers topological
operations described as rules. The algorithm takes as input two
objects described as G-maps, a mapping of the element preserved
by the operation and an orbit describing the generality of the
operation to be inferred. We prove the algorithm’s correctness
in the sense that applying the inferred operation on the before
instance yields the after instance. We also illustrate our algorithm
by inferring standard subdivision schemes and applying the rules
to various examples.

This paper presents an algorithm to conceive topological mod-
eling operations without any knowledge of generalized maps or
graph rewriting. We will illustrate our approach with the help of
subdivision schemes. We provide context for operations inference
by presenting other approaches that deduce modeling operations
in Section 2. We recall the formalism of generalized maps in
Section 3 and give some insights on graph transformation rules
used for modeling operations in Section 4. We present the topo-
logical folding algorithm used for reconstructing rule schemes in
Section 5 and illustrate it with examples and counter-examples
in Section 6. We explain how to gather both instances in a single
graph used as input for our algorithm in Section 7. We analyze the
topological folding algorithm in Section 8. We present a validation
of our approach in Section 9 with the illustration of several
subdivision schemes. We discuss some practical side-effects of
our inference mechanism in Section 10. The complete proof of
correctness of the presented algorithm is provided in Appendix A.
2

2. Related works

There are several categories of previous works that relate to
our contribution. They mainly belong to procedural modeling
and, more generally, the inference of rules, scenes, and modeling
operations.

Procedural modeling and inverse procedural modeling. Procedu-
ral modeling refers to techniques used in computer graphics to
derive a model from a ruleset. These techniques avoid manu-
ally editing objects, proving fruitful to model regular objects,
i.e., objects with many repetitions of sub-patterns. Procedural
modeling techniques have been exploited to generate plants [14],
terrain [20], buildings [21], or cities [22]. Since these techniques
could not guarantee an output faithful to the designer’s idea,
they were extended to inverse procedural modeling. Thanks to
machine learning, these new approaches try to discover the cor-
rect parameterized rules and values. Inverse procedural modeling
techniques have proven successful in most of the domains where
procedural modeling was used, namely trees [23], building fa-
cades [24], weather simulation on urban models [25], virtual
worlds [26], and texture modeling [27]. In such approaches, the
set of possible rules describes a specific domain, and the oper-
ation inference is tailored to this domain. Conversely, the ap-
proach that we will present in this article builds topological
operations that allow for editing objects regardless of the ap-
plication field. Indeed, our rule-based approach discovers the
correct rule parameterized by topological information and not by
domain-specific values.

L-systems. In [28], the authors present the definition of rules
to be the "key challenge of procedural modeling" and use a
clustering approach to construct the rules and parameters of a
parametric context-free L-system, given a vectorial 2D image.
They capitalize on L-systems, introduced to describe plant cells’
behavior and, in particular, their growth processes [29]. Such
rewriting systems build objects by recursively applying produc-
tion rules from an axiom word until a stop condition is met.
The produced string is transformed into a geometric object via
an interpretation [30, II.6, III.5]. More recently, [31] extended the
work of [28] with deep learning techniques for the detection of
elements and a derivation tree for the retrieval of the rules. In
these works, the emphasis is put on the generation of scenes
while we focus on the inference of operations. L-systems have
been used to represent the refinement operation for subdivision
curves [15], where the authors show how to infer an L-system
from the subdivision matrix. However, L-systems are essentially
geometric interpretations of words, thus inherently equivalent
to string rewriting. Therefore, they are ill-suited for working on
surfaces and volumes. Graph rewriting extends string rewriting,
allowing to find an occurrence of a graph pattern and replace it
with another pattern. In a sense, G-map rewriting represents a
more general approach than L-systems. Therefore, the ambition
of the present article can be understood as a generalization of [32]
from L-systems to graph rewriting.

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

R

f
p
o
t
p
c
t
e
a
s

I
a
t
r
w
m
u
a
g
o
m
g
H
g

I
I
a
e
t
o
c
c
s
a
s

3

s
d
b
G
b
d
m
i
o
s
t

o
d
T
t
e

eevaluation. To avoid cumbersome implementation, some mod-
elers support the definition of modeling operations through the
recording of a sequence of already existing operations. The reeval-
uation [33,34] of the sequence provides a solution to apply this
new operation via a specific naming of the modified entities [35].
Thus the reevaluation method allows for modifying similar ob-
jects, i.e., objects with the same naming of entities. However,
the constructed operation is often not an optimized solution to
define the modification because every step of the sequence is
reproduced faithfully.

Neural networks and geometrical approaches. Recently, [36] of-
ered automatic generation of geometric operations. This ap-
roach takes the Loop subdivision scheme [37] as the atomic
peration for refinement. A neural network is then used to learn
he geometric values for the subdivision. Therefore, the approach
roduces the result from an initial object through the direct
omputation of the targeted geometry. This construction is dual
o ours as we focus only on the topology. Nonetheless, our gen-
ralization power is broader as the inferred operations do not
ssume a fixed topology. For instance, we can reconstruct any
ubdivision scheme.

nference of graph transformation rules. Our approach exploits
domain-specific language within graph transformations for

opology-based geometric modeling. We offer an algorithm to
econstruct modeling operations from an example. Similar ideas
ere used in [38] to reconstruct a graphical modeling environ-
ent for domain-specific language using yED. In [39], the authors
sed graph transformations as a learning mechanism to detect
nd fix bugs in Javascript programs. A rule-based definition of
eometric modeling operation has been used in [40] to predict
perations. Here, we use a particular formalism: generalized
aps together with a domain-specific language. Thus, we infer
raph transformation rules dedicated to geometric modeling.
owever, we do not assume a given set of rules and retrieve more
eneral operations.

nference of modeling sequences in constructive solid geometry.
n [41], the authors infer the sequence of modeling operations
s a sequence of sketches, extrusions, and boolean operations. It
xtends previous works such as [42,43] or [44] using construc-
ive solid geometry (CSG). These works retrieve a CSG tree to
btain a specific object. The deduced tree yields an exact object
onstruction but does not endow a definition of operations. One
ould easily use these techniques to build the first iteration of a
ubdivision scheme. However, the obtained tree would not give
solution to build the successive iterations of the subdivision

cheme.

. Generalized maps

Boundary representation of objects relies on topological data
tructures called edge-based models [45] that encode a cell sub-
ivision of the geometric object. Some data, usually called em-
edding, are attached to the object’s cells to define its geometry.
eneralized maps are defined as a formalization of these edge-
ased models to represent non-oriented (quasi-)manifolds in any
imension [4–6]. In [10], the model of generalized maps was
ainly chosen for its homogeneity in manipulating dimensions,

.e., because the manipulation of a subdivision does not depend
n its dimension. Here, generalized maps homogeneity allows
earching for regularities along all dimensions via a simple graph
raversal.

In this section, we will first give a graph-based definition
f generalized maps and provide some intuition about how it
escribes the topological structure of an object (Section 3.2).
hen, we will describe how to retrieve cells using orbits in Sec-
ion 3.3. Finally, in Section 3.4 we will sketch the construction of
mbedded G-maps.
3

3.1. Vocabulary

In this section, we will introduce several notations. Please
note that some elements may have the same name in different
communities but we will take care of using distinct words.

(a) We call vertex a 0-cell and edge a 1-cell. For instance, we
can talk about the vertices and edges of the stacked cube
given in Fig. 3(a).

(b) We reserve the terms node and arc to refer to the constitu-
tive elements of a graph, in agreement with algebraic graph
rewriting [11,12] used to model operations.

(c) We call darts and links the elements of a generalized maps,
following the combinatorial definition of [4]. Therefore we
say that the representation of the stacked cubes with a
G-map in Fig. 3(e) contains 96 darts, 48 0-links, 48 1-links,
48 2-links, and 88 3-links.

The combinatorial (c) and graph-based (b) approaches to
G-maps are strictly equivalent, but we use graphs to exploit graph
rewriting techniques. We will preserve this vocabulary through-
out the article to better indicate which point of view should be
considered. Thus, we will be referring to the geometric object
when using the words ‘vertex’ and ‘edge’; its representation as
a G-map with the terms ‘dart’ and ‘link’; or the elements of a
rewriting rule with the expressions ‘node’ and ‘arc’.

3.2. Topological structure

We rely on a graph-based definition of generalized maps
(see [18]), enabling the expression of modeling operations as
rules. Rules simplify the design of operations and alleviate their
implementation, provided that a rule application engine exists.
Moreover, our algorithm relies on a traversal of the G-map,
expressed as a graph algorithm.

In this article, we call graph a classical undirected graph,
possibly with parallel arcs and loops. We write G = (V , E) for the
graph with V as the set of nodes and E as the set of arcs. More
precisely, we will use arc-labeled graphs. An arc labeled with i
will also be called an i-arc. When two nodes u and v are linked
by an i-arc, we write u•

i
−• v. We will label arcs with dimension

to encode neighboring relations between the object’s sub-parts.
The combinatorial definition of G-maps [4] exploits a set of

involutions I1, . . . , In on a set of darts D. We consider each invo-
lution Ii as a symmetric relation over D, i.e., a subset of D × D.
Therefore, we can translate the structure ⟨D, I1, . . . , In⟩ into
a graph (D, I1 ∪ . . . ∪ In). Each dart is considered as a node
of the graph, while each involution Ii yields the set of i-labeled
(undirected) arcs linking these nodes. The final set of edges con-
sists of the union of the Ii’s. An illustration of this construction
is provided in Fig. 2. Both graphs 2(a) and 2(b) share D =

{a, b, c, d, e} for the set of nodes have a set of arcs deduced
from an involution, respectively drawn in red and blue. The final
graph 2(c) has the same nodes and the union of the arcs from
the two graphs. Since the combinatorial definition [4] of G-maps
sub-scripts involutions by the adequate dimension, we label each
arc with the suitable dimension.

Definition 3.1 (Generalized Map [18]). A generalized map of di-
mension n, or n-G-map, is a graph G = (D, α) whose arcs in α are
labeled on [[0, n]]. The nodes of the graph are called darts, and its
arcs are called links.

A graph G = (D, α) labeled on [[0, n]] is a n-G-map if it satisfies
the following topological constraints:

Incidence constraint any dart d of G is the source of a unique
i ′
i-link d•−• d , for each dimension i in [[0, n]].

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049
Fig. 2. Representation of the set of the involutions {I1, I2} over the set D =

{a, b, c, d, e} as graphs: (a) I1 = {(a, d), (b, e), (c, c), (d, a), (e, b)} represented as
the graph (D, I1); (b) I2 = {(a, b), (b, a), (c, e), (d, d), (e, c)} represented as the
graph (D, I2); (c) ⟨D, I1, I2⟩ represented as the graph (D, I1 ∪ I2). Similar examples
with permutations can be found in [4, Chap. 2.5.2].

Cycle constraint for all dimensions i and j in [[0, n]] such that
i + 2 ≤ j, any path of length 4 labeled by ijij is a cycle,
i.e., the source u and the target v are equal in the path
u•

i
−•

j
−•

i
−•

j
−• v.

Definition 3.1 faithfully transforms the involution-based no-
tion of generalized maps [4] in terms of graph vocabulary but
retain the combinatorial terminology for the constitutive ele-
ments, namely darts and links. In particular, the graph is subject to
two local constraints that translate the involution properties used
in the combinatorial definition. These constraints ensure that a
(i − 1)-cell can split at most two i-cells and guarantee that any
two i-cells can only be glued along a cell of dimension i − 1. For
instance, in a 2D object, three faces cannot share an edge, and
faces cannot be glued along a vertex. The formalism of G-maps
imposes that the only way to connect two faces is to glue them
along a unique edge.

The representation of a geometric object as a G-map can be
reconstructed from its decomposition into topological cells of de-
creasing dimensions. The final elements of the cell decomposition
are the darts of the G-map, while the decomposition provides
the arcs describing the neighboring relations between the cells.
For instance, the recursive subdivision of two stacked cubes (3D
object) is illustrated in Fig. 3, from the cubes in Fig. 3(a) to the
3-G-map in Fig. 3(e). In the latter, arcs are colored according to
their label: for •

3
−• , for •

2
−• , for •

1
−• , and for •

0
−• .

Let us detail the reconstruction of the G-map from two stacked
cubes with the help of Fig. 3:

• The object of Fig. 3(a) consists of two volumes sharing a face:
a green cube glued to a blue cube via a purple square. There-
fore, the object is first split into two volumes as in Fig. 3(b).
The topological cells of dimension 3 or 3-cells (the volumes)
are now linked along their shared face with green arcs ().
These 3-links encode the neighboring relation between the
two entities: they are adjacent volumes.

• From the representation of Fig. 3(b), we iterate the decom-
position by splitting the faces in each volume. Each cube
yields 8 faces, as illustrated in Fig. 3(c). Any two faces
adjacent within the same volume are 2-linked along their
common edge with blue arcs ().

• By iteration on decreasing dimensions, we obtain Fig. 3(d)
after the decomposition of dimension 1. In each face of each
volume, the edges are disconnected and linked with red arcs
() for 1-links.

• Finally, splitting the 0-cells, i.e., the vertices, with 0-links
drawn as black arcs () ends the subdivision process. The
atomic elements obtained after this last decomposition cor-
respond to the darts of the G-map. Loops are added on
each dart that misses a link (for each possible dimension) to
obtain the proper G-map. For the object of Fig. 3, only the
darts not belonging to the shared purple face are missing
some links, and 3-loops are added to all of them. The graph
displayed in Fig. 3(e) provides the 3-G-map representation
4

of the two stacked cubes. In the sequel, loops will sometimes
be omitted to simplify the figures.

Note that splitting the cubes yields two faces for the initial
purple face. The top one corresponds to the purple face from
within the green cube, while the bottom one represents the
purple face from within the blue cube. The 3-links characterize
that the two faces are actually the same face in the global object.
If we extend this intuition to all dimensions, we understand that
a dart encodes part of a vertex, an edge, a face, and a volume
simultaneously. For instance, let the pointed purple dart of Fig. 4
be called e. This dart is part of the green volume. In the green
volume, it corresponds to the purple face. In this face, it belongs
to the right-side edge. Within this edge, it encodes the front
vertex. Each of these topological cells is respectively illustrated
in Figs. 4(a) to 4(d) and retrieved via orbits that we present next.

3.3. Cells and orbits

In the sequel, we consider an n-G-map G. As outlined in
Section 3.2, the topological cells (vertices, edges, faces, volumes)
of the represented geometric object are not explicitly defined in
G but can be implicitly retrieved. Cells can be computed via graph
traversals restricted to a subset of dimensions. For instance, the
cells incident to the pointed purple dart e are depicted in Fig. 4.

• The 0-cell (the vertex) incident to dart e is given in Fig. 4(a).
This cell contains the dart, and every dart reachable by all
links except 0-links (i.e., 1, 2, and 3-links), along with the
links themselves. This subgraph is written G⟨1, 2, 3⟩(e).

• The 1-cell incident to dart e, representing the edge incident
to the purple dart is displayed in Fig. 4(b). This cell contains
all darts and links gathered in the traversal of G with the
all dimensions but 1, when starting from e. The subgraph
G⟨0, 2, 3⟩(e) corresponds to this edge.

• The 2-cell G⟨0, 1, 3⟩(e) incident to e is shown in Fig. 4(c) and
represents a face.

• The 3-cell (the volume) incident to e is the subgraph
G⟨0, 1, 2⟩(e) illustrated in Fig. 4(d).

More generally, the cells correspond to specific cases of orbits.

Definition 3.2 (Orbit). An orbit of G consists of a subgraph induced
by all the darts reachable from an initial dart, only using links
from a subset of [[0, n]].

The orbit is written G⟨o⟩(v) where o is a subset of [[0, n]], or
⟨o⟩(v) when there is no ambiguity on the graph. Such an orbit is
said to be of type ⟨o⟩ or referred to as an ⟨o⟩-orbit.

Retrieving an orbit intuitively provides all darts of G that
correspond to a common topological element. Such topological
elements encompass cells, such as vertices or volumes, or more
restricted elements, such as half faces, half edges, or corners
of faces. For example, the orbit G⟨0, 1⟩(e) described in Fig. 4(e)
represents the face of one volume (also called half face) incident
to e. Indeed the face incident to e is the orbit G⟨0, 1, 3⟩(e), thus
removing the dimension 3 splits the two half faces (the one in the
green cube and the one in the blue cube. Since the full graph G of
Fig. 3(e) contains a single connected component, it corresponds
to the orbit G⟨0, 1, 2, 3⟩(e).

3.4. Embedded G-maps

This presentation of generalized maps is only of topological
content. Although this article aims at inferring the topological
part of a modeling operation, we present briefly how the geomet-
ric data are handled on G-maps. More details can be found in [19].

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

v

b

A
r
c
p
b
w
e
i
d
⟨

w
t
r
w
c

Fig. 3. Topological decomposition of a geometric object in dimension 3: (a) two cubes sharing a face, (b) split on dimension 3, (c) dimension 2, (d) dimension 1,
and (e) dimension 0. The graph G is the corresponding G-map (e). Arc color legend: 3, 2, 1, and 0.
Fig. 4. Orbits incident to the purple dart e in the G-map G from Fig. 3(e): (a) vertex G⟨1, 2, 3⟩(e), (b) edge G⟨0, 2, 3⟩(e), (c) face G⟨0, 1, 3⟩(e), (d) volume G⟨0, 1, 2⟩(e),
and (e) face of volume G⟨0, 1⟩(e).
t

A
I
i
T
e
r
a
T
t

Fig. 5. Embedded representation of the stacked cubes: (a) embedding of the
ertices position with pos : ⟨1, 2, 3⟩ → Point3D, both cubes are of length 1; (b)

embedding of the faces color with color : ⟨0, 1, 3⟩ → RGB, the colors described
y the RGB values are displayed next to the values. Arc color legend: 3,

2, 1, and 0.

ll non-topological information such as position or color is rep-
esented via an embedding function that maps each topological
ell to its relevant data. In this paper, each vertex (0-cell) has a
osition, and each face (2-cell) has a color. These are minimal em-
edding information that allows for a simple display of objects,
ith edges represented as straight segments. More formally, an
mbedding is described via a function π : ⟨o⟩ → τ where π

s the operation name, τ is the data type, and ⟨o⟩ the domain
escribed as an orbit type. For instance, the embedding color :

0, 1, 3⟩ → RGB provides RGB coordinates to the topological faces
hile pos : ⟨1, 2, 3⟩ → Point3D maps each topological vertex
o some 3D coordinates. These two embedding data support the
epresentation of the G-map in Fig. 3 and are the only ones that
e manipulate in this article. An intuitive description of the two
ubes’ embedding is provided in Fig. 5.
5

4. Modeling operations

Since topological structures for representing geometric objects
rely on graphs, modeling operations can be expressed through
graph transformations. Graph rewriting is an extension of term
rewriting to non-linear structures. We advise the reading of [46]
for a quick introduction to graph rewriting, or [13] for a more
in-depth explanation with an emphasis on software engineering.
Graph rewriting allows to match a pattern within a graph and
replace it with a new pattern. In such a framework, both patterns
are graphs.

4.1. Graph rewriting

A graph transformation rule r : L → R is simply a rule where
he left-hand side L and right-hand side R are graphs. For our
needs, a graph transformation rule can be understood as a pair
(L, R) where the nodes are accessed through a unique identifier.

node of L is preserved if a node in R has the same identifier.
t is deleted if no such node exists. Symmetrically, a node in R
s an added node if no node from L shares the same identifier.
hroughout this article, we will use node names as identifiers. An
xample of graph transformation rule is provided in Fig. 6(a). The
ule removes the arc between nodes x and y, adds a new node z,
n arc between the nodes x and z, and an arc between z and y.
he elements preserved by the transformation are identified by
heir name. Here only the nodes x and y are preserved.

The application of a rule r : L → R on a graph G relies on
the specification of an occurrence, or match, of the left pattern
L in the transformed graph G. For our concern, a match of L
within a graph G corresponds to a subgraph of G similar to L.
More precisely, ‘similar to’ means isomorphic, i.e., there is a sub-
graph GL of G for which there is a bijection f from L to GL that
preserves node adjacency. From a given match, we can apply the
rule. The preserved elements that appear in L and R are used to

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

r
m
g
p
b
i
(

b
d
F
t
b
n
b
a
b
m

4

t
p
b
w
w
t
f
o

t
g
t
a
a
G
m
l
w
p
w
m
t
t

Fig. 6. A graph transformation rule (a) and its application (b) via the match
x ↦→ a, y ↦→ b, and (x •−• y) ↦→ (a •−• b). The codomain of the match, i.e., nodes
a, b and the arc between them is highlighted for readability purposes.

connect the added elements of R to the surrounding context. This
context consists of the graph G where elements of GL have been
emoved. The formal construction exploits a monic morphism

: L → G, i.e., an injective mapping from L to G that preserves
raph structure (nodes, arcs, and labels). Once the match m is
rovided, the application of r to the graph G results in a graph H
y deleting the subgraph GL = m(L) and adding R. The derivation
s denoted G ⇒

r,m H and achieved via categorical constructions
see [12]).

The intuition that the operation is defined as a rule applied
y removing and adding elements is sufficient to understand the
iscussions in this document. An application of the rule from
ig. 6(a) is illustrated in Fig. 6(b). The match from L to G maps x
o a, y to b, and the arc between x and y to the arc between a and
. Applying the rule to G keeps unmodified any element that is
ot within the match and propagates the modification described
y the rule. It removes the arc between nodes a and b, adds an
rc between the nodes a and c , and adds an arc between c and
. The occurrence of the rule is highlighted in green, while the
odification is highlighted in yellow.

.2. G-map rewriting

As a first step, we illustrate the use of graph transformations
o represent topological operations with simple examples. Fig. 7
rovides two possibilities for the vertex insertion in a 2-G-map,
ased on the freedom of the edge. A free edge is a ⟨0, 2⟩-orbit
here the 2-links are loops while a sewn edge is a ⟨0, 2⟩-orbit
here the 2-links are non-loop arcs. This distinction gives rise to
wo configurations for the vertex insertion operation: one for a
ree edge (see Fig. 7(a) for the rule and Fig. 7(b) for an example
f application) and one for a sewn edge (see Figs. 7(c) and 7(d)).
Applying a graph transformation rule relies on a mapping from

he left pattern to the rewritten graph. The standard approach to
raph rewriting requires a complete mapping of the nodes and
he edges that preserves node adjacency and labels. Here, rules
re not intended for any graph but only generalized maps, defined
s graphs with regularity properties. In particular, each dart of a
-map is required to have exactly one incident arc per dimension,
eaning we do not need the mapping of all elements from the

eft pattern of the rule. The choice of a single node is sufficient as
e can build the complete mapping by a joint traversal of the left
attern and the rewritten graph. We illustrated the construction
ith the rule application of Fig. 7(b). This application assumes the
atch maps node x onto node b. Because a match has to preserve

he node adjacency and the labels, the only possible match maps
he arcs incident to x onto the arcs incident to b. Thus x•

2
−• x is

mapped onto b•
2
−• b, while x•

0
−• y is mapped onto b•

0
−• d. Now,
mapping the arcs incident to x provides information on how the

6

match should map the nodes adjacent to x. Indeed, a valid match
that maps x•

0
−• y onto b•

0
−• d must map y onto d. By recursively

exploring the arcs incident to the newly found nodes, we can
unambiguously recreate the match from the sole information that
x is mapped onto b.

Intuitively, the incident arcs constraint, and, therefore, gener-
alized maps, allows for the reconstruction of the match from a
partial mapping. The minimal information required is the map-
ping of one node per connected component of L. Therefore, [10]
specifies one particular node per connected component, called
hook, rather than explicitly providing the entire match mapping.

4.3. Relabeling functions

Were modeling operations to be described as graph trans-
formations, each possible configuration should be individually
specified. However, modeling operations are usually defined for a
specific topological cell. For instance, we can define the extrusion
of a face without accounting for its arity, i.e., its number of edges.
To this end, [9,17] introduced labels on nodes of the rule. These
labels are in fact generalized orbit types and allow the rewrit-
ing of generalized maps regardless of a specific layout. These
extended rules are called rule schemes, where the left and right
patterns are called graph schemes. The simplest construction to
understand the application of an operation described with a rule
scheme is probably that of [19], using relabeling functions. The
basic idea is that a rule scheme is parameterized by an orbit
type, while all orbit labels of the rule scheme describe relabeling
functions obtained by following the position of the dimension
in the orbit type parameter. These relabeling functions allow
the rewriting of orbits, given an initial orbit graph of the same
type parameterizing the rule scheme. This process is called the
instantiation of a node.

We will now provide the formal constructions of the rela-
beling functions and the instantiation of graph schemes. The
remaining part of this subsection might be skipped as Section 4.4
provides some informal explanation. The informal explanation
of Section 4.4 should be enough to understand the algorithm
presented in Section 5 which is the main contribution of our
work. However, the details below are needed to understand the
proof of correctness of the algorithm.

Cells support the definition of modeling operations. Some
examples of operations would be the subdivision of a face and the
volume’s edge-rounding. These operations are defined regardless
of a specific topology, i.e., without considering the number of
edges in a face or the arrangement of faces in a volume. Therefore,
in [9,17] graph transformation rules were extended with orbit
type parametrization. The rule is assigned an orbit type as a
parameter, intuitively describing the rule’s modified orbit. Each
node is also assigned an orbit type but as a label used to compute
the operation. These extended rules allow writing generic rules
regardless of a specific layout.

Their instantiation specializes a generic rule into a partic-
ular configuration, i.e., a basic graph transformation rule. In-
tuitively, a rule scheme describes a folded representation of a
transformation, which must be unfolded to obtain the actual
graph transformation that can modify an object. For instance,
the two configurations of the vertex insertion can be unified by
folding the edge along its 2-links. We obtain the rule of Fig. 8(a).
This rule is parameterized with the orbit type ⟨2⟩. To obtain a
graph-level rule, we choose a graph that consists of an orbit ⟨2⟩.
This graph is then used to unfold all the node labels. If unfolded
as a 2-loop, the rule scheme provides the graph transformation
rule of Fig. 7(a) while unfolding with two nodes sharing a 2-link
yields the rule of Fig. 7(c). We will see that we can even further
fold the graph transformation rule to obtain the rule scheme of
Fig. 8(b). Formally, folding and unfolding are defined via relabeling
functions.

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

G
A

t

D
p
w

i
{

o
o
r
c
1
o
r
f
w
t
u
c
w
t
t

Fig. 7. Graph transformation rule for the vertex insertion in a free edge (a) and its application on a 2-G-map on a outer edge (b) via the match deduced from x ↦→ b.
raph transformation rule for the vertex insertion in a sewn edge (c) and its application on a 2-G-map on an inner edge (d) via the match deduced from x ↦→ e.
rc color legend: 3, 2, 1, and 0.
t
r

Fig. 8. Rule schemes for the vertex insertion: (a) by folding the 2-links and (b)
both the 0 and 2-links.

4.3.1. Relabeling function
Introduced in [19], relabeling functions allow rewriting orbit

ypes.

efinition 4.1 (Relabeling Function). A relabeling function is a
artial function f : [[0, n]] → [[0, n]] ∪ {_}, injective on [[0, n]],
here ‘_’ is a special symbol called removing symbol.

The application of a relabeling function to an orbit type is
ts application to each dimension within the orbit. For example,
0 ↦→ 1, 2 ↦→ 2}(⟨0, 2⟩) = ⟨1, 2⟩. If we assume a reference
rbit type ⟨o⟩ and a relabeled orbit type ⟨o′

⟩, then the position
f the dimensions within the orbit type entirely describes the
elabeling function. For instance, given ⟨0, 2⟩ ↦→ ⟨1, 2⟩, one
an unambiguously reconstruct the relabeling function {0 ↦→

, 2 ↦→ 2}. The motivation to use relabeling functions is to encode
rbit rewriting. Therefore, we usually denote such functions as
elabeling of orbit types. Let ⟨o⟩ = (oi)i≤k be the set of dimensions
or which f is defined (ordered by increasing value), then f is
ritten ⟨o⟩ ↦→ ⟨(f (oi))i≤k⟩. The injectivity property simply means
hat a dimension d cannot appear twice in ⟨o′

⟩ = ⟨(f (oi))i≤k⟩. Let
s remark that ⟨o′

⟩ is not strictly speaking an orbit type, as it may
ontain the symbol ‘_’. In this sense, it is a generalized orbit type,
hich we will also call orbit type for convenience. Please note
hat the domain ⟨o⟩ of the relabeling function must not contain
he removing symbol.
7

Fig. 9. Orbits (a) and (d) of type ⟨0, 2⟩, label modification (b) and (e) via
he relabeling function ⟨0, 2⟩ ↦→ ⟨1, 2⟩, and label deletion (c) and (f) via the
elabeling function ⟨0, 2⟩ ↦→ ⟨_, 2⟩. Arc color legend: 3, 2, 1, and 0.

A relabeling function naturally extends from orbit type rewrit-
ing to orbit rewriting. Given a relabeling function ⟨o⟩ ↦→ ⟨o′

⟩

and an orbit ⟨o⟩(v), one can build the orbit ⟨o′
⟩(v) by relabeling

all arcs according to the function. For instance, the relabeling
function {0 ↦→ 1, 2 ↦→ 2} applied on the graphs of Fig. 9(a)
yields the graphs of Fig. 9(b). The highlighting on the graphs of
Fig. 9 will be exploited later on. Here we are only interested in the
arc relabeling, i.e., the modification of the arc color. The 2-loops
incident to nodes a and b yields 2-loops incident to nodes a1 and
b1, as described by the relabeling 2 ↦→ 2. Similarly, the relabeling
0 ↦→ 1 transforms the arc a•

0
−• b into a1•

1
−• b1. The application

of the same function on the graphs of Fig. 9(d) yields the graphs
of Fig. 9(e).

The removing symbol ‘_’ extends orbit types to generalized
orbit types. This special symbol extends the definition of relabel-
ing functions and their application on orbits. For instance, {0 ↦→

_, 2 ↦→ 2} denotes the removal of the 0 label while preserving 2.
Similar to any dimension, the removing symbol may appear in the
orbit type of a node label. For example, ⟨_, 2⟩ is a valid node label.
Assuming a reference orbit type ⟨0, 2⟩, one can unambiguously
reconstruct the relabeling function {0 ↦→ _, 2 ↦→ 2}. When
applied to an orbit, all arcs that are relabeled with _ are in fact
deleted. Two examples are provided in Figs. 9(c) and 9(f), using
the graphs of Fig. 9(a) and 9(d) as references. In these examples,
the arcs a•

0
−• b, c •

0
−• e, and d•

0
−• f do not have corresponding

arcs between a0 and b0, c0 and e0, and d0 and f 0.

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

g

D
t

o
l
t
⟨

m
o

a
s

t
n
o
r
i
9
a
o
s
c
n
w
t

m
o

4

r
f
W
c

d
o

I
l
s
⟨

e
i
a

D
f
a

ι

D
w
n

D
f
i

ι

g
t

n

,

Relabeling functions allow encoding folded representation of
raphs called graph schemes.

efinition 4.2 (Graph Scheme and Rule Scheme). Let ⟨o⟩ be an orbit
ype defined on [[0, n]].

A graph scheme of dimension n on ⟨o⟩, (n, ⟨o⟩)-graph scheme,
r simply graph scheme consists of a graph S whose arcs are
abeled on [[0, n]] and nodes are labeled with generalized orbit
ypes of the same length as ⟨o⟩. For each node v of S , we write
ov

⟩ the orbit type labeling v.
A rule scheme on ⟨o⟩, or simply rule scheme, is a graph transfor-

ation rule L
⟨o⟩
−→ R where L and R are graph schemes defined

n ⟨o⟩.

The orbit type of a rule scheme is also said to be its parameter
nd might be omitted when the context is clear. Both graph
chemes of a rule scheme must share the same orbit type.
The node labels of a graph scheme are used as placeholders

o encode any orbit of the given orbit type. More precisely, each
ode of a graph scheme is intended to be substituted by an
rbit whose type matches its label. For example, a graph scheme
educed to a unique node labeled by the orbit type ⟨0, 2⟩ may be
nstantiated with a free or sewn edge, as depicted in Figs. 9(a) and
(d). As soon as the graph scheme S contains several nodes, an
dditional condition comes into play. The size condition on the
rbit types labeling the nodes of S means that they all share the
ame number of symbols as ⟨o⟩. Therefore the node substitutions
an be obtained from relabeling functions built with ⟨o⟩. All the
odes of S will be substituted by the same orbit typed by ⟨o⟩,
hose arcs will be relabeled by the relabeling function attached
o the nodes.

Graph schemes can be used to define rules with the require-
ent that both left and right patterns are graph schemes defined
n the same orbit type.

.3.2. Instantiation
Unfolded graphs that correspond to a given graph scheme are

econstructed through relabeling functions. This process is de-
ined inductively and called the instantiation of a graph scheme.
e provide a step-by-step construction of the instantiation pro-

ess to ease its understanding.
For the following definitions, we consider a graph scheme S

efined on the orbit type ⟨o⟩ and a graph O that consist of an
rbit typed by ⟨o⟩.

solated node. The first component is the instantiation of an iso-
ated node s, i.e., a node without arc. In such a case, the in-
tantiation process is reduced to applying the relabeling function
o⟩ ↦→ ⟨os⟩ to the orbit graph chosen for the instantiation. An
xample of such a graph scheme is provided in Fig. 10, some of its
nstantiation are depicted in Figs. 9(b) and 9(e) (when considered
s a graph scheme on the orbit ⟨0, 2⟩).

efinition 4.3 (Instantiation of an Isolated Node). If S is of the
orm ({s}, ∅), its instantiation with O is the graph obtained by the
pplication of the relabeling function ⟨o⟩ ↦→ ⟨os⟩ to O.
⟨o⟩(({s}, ∅),O) = [⟨o⟩ ↦→ ⟨os⟩](O)

iscrete graph. The instantiation of a discrete graph, i.e., a graph
ithout arc, consists of the union of the instantiation of its labeled
odes. An illustration is given in Fig. 11.

efinition 4.4 (Instantiation of a Discrete Scheme). If S is of the
orm (V , ∅), its instantiation with O is the disjoint union of the
nstantiation of each node of S with O.
⟨o⟩((V , ∅),O) =

⋃
v∈V

ι⟨o⟩(({v}, ∅),O)
8

Fig. 10. Isolated node extracted from the right pattern of Fig. 8(b). When
considered as graph scheme on the orbit ⟨0, 2⟩, its instantiation on the orbit
raph of Fig. 9(a) yields the graphs of Fig. 9(b). Similarly, its instantiation on
he orbit graph of Fig. 9(d) yields the graph of Fig. 9(e).

Fig. 11. Discrete graph scheme (a) extracted from the right pattern of Fig. 8(b),
instantiation (b) with the orbit graph of Fig. 9(a), and instantiation (c) with the
orbit graph of Fig. 9(d).

Fig. 12. Graph scheme (a) with an arc between two nodes, and (b) and (c) two
instantiations by addition of the 0-links. Arc color legend: 3, 2, 1, and

0.

Arc. The instantiation of an arc between two nodes adds links be-
tween darts image of the same initial dart via the two relabeling
functions. An example is provided in Fig. 12.

Definition 4.5 (Instantiation of an Arc). For s a node of S and u a
ode of O, we write (u, s) for the image of u in ι⟨o⟩(({s}, ∅),O).
If S is of the form ({s, t}, {s• i

−• t}), its instantiation with O
extends ι⟨o⟩(({s, t}, ∅),O) to link copies of the same node from O:

ι⟨o⟩(({s, t}, {s• i
−• t}),O) = ι⟨o⟩(({s, t}, ∅),O) ∪

⋃
u∈O

(u, s)• i
−• (u, t)

We write ι⟨o⟩(s• i
−• t,O) for

⋃
u∈O(u, s)•

i
−• (u, t).

Complete graph scheme. From the instantiation of a discrete graph
we obtain the complete instantiation of a graph scheme by
instantiating each arc.

Definition 4.6 (Instantiation of a Graph Scheme). If S is of the form
(V , E), its instantiation with O extends ι⟨o⟩((V , ∅),O) to link copies
according to all the arcs of E:

ι⟨o⟩((V , E),O) = ι⟨o⟩((V , ∅),O) ∪

⋃
v •

i
−• v′∈E

ι⟨o⟩(v •
i
−• v′,O)

Instantiating a graph scheme intuitively corresponds to:

1. Unifying the application of the relabeling functions (en-
coded by the orbit types on the node).

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

p
F
s

s
h

2. Adding a link between the images of a node whenever
there is an arc in the graph scheme.

Rule scheme. The instantiation of a rule scheme L
⟨o⟩
−→ R is

defined as the instantiation of both L and R with the same orbit
O of type ⟨o⟩. The resulting instantiations directly yield to a graph
transformation ι⟨o⟩(L,O) → ι⟨o⟩(R,O) as discussed in Section 4.2.

Let us illustrate with the reconstruction of the two rules of
Figs. 7(a) and 7(c) via the rule scheme of Fig. 8(b). We consider
the left-hand side and the right-hand side of the rule separately.
Each graph is a graph scheme defined on the orbit type ⟨0, 2⟩.
The left pattern consists of a single node n0 without any arc. The
label of n0 has the type ⟨0, 2⟩. Thus, the relabeling function is
⟨0, 2⟩ ↦→ ⟨0, 2⟩, i.e., the identity function. In other words, the
instantiations of the graph scheme with the graphs of Fig. 9(a)
and 9(d) yield these exact graphs. The right pattern is the graph
scheme of Fig. 12(a). Therefore, the complete instantiations of the
right pattern correspond to graphs of Figs. 12(b) and 12(c):

• The instantiation of the left pattern on the graph of Fig. 9(a)
is the graph of Fig. 9(a), isomorphic to the graph L in the rule
of Fig. 7(a).

• The instantiation of the left pattern on the graph of Fig. 9(d)
is the graph of Fig. 9(d), isomorphic to the graph L in the
rule of Fig. 7(c)

• The instantiation of the right pattern on the graph of Fig. 9(a)
is the graph of Fig. 12(b), isomorphic to the graph R in the
rule of Fig. 7(a).

• The instantiation of the left pattern on the graph of Fig. 9(d)
is the graph of Fig. 12(c), isomorphic to the graph R in the
rule of Fig. 7(c)

In practice, the orbit type ⟨o⟩ for the rule parameter is given
through the hook. We choose a node with no removing symbol
‘_’ in its node label and use it as a reference to construct all
relabeling functions. Thus, the hook serves a double purpose. On
top of specifying where the modeling operation occurs in the
object, it is used to build the relabeling functions. The application
of a rule scheme to a G-map starts with the selection of a dart a.
From this dart, a graph traversal builds the orbit ⟨o⟩(a) where the
orbit type ⟨o⟩ is the one carried by the hook. The rule scheme
is instantiated with the orbit ⟨o⟩(a) via instantiation of both its
left-hand side and right-hand side. The instantiation provides a
graph transformation rule, applied on the initial G-map.

4.4. Example of rule scheme for the quad subdivision

We provide an intuitive explanation of a rule scheme instan-
tiation closer to the actual implementation with the subdivision
illustrated in Fig. 1. This subdivision, called the quad subdivision,
is mainly used to refine the topological structure of meshes [47].
We can consider this operation as purely topological, i.e., without
considering the geometric refinement. A new vertex is added to
the center of the face and the middle of each edge. An edge then
attaches the center of each face to the midpoints of each of the
initial edges. When applied to a cube, the subdivision splits each
face into four new faces (see Fig. 1(a)). From the decomposition of
the cube before and after the subdivision, we can reconstruct the
operation as a rule on G-maps, which subdivides any hexahedron
(see Fig. 13). Rule schemes allow to write this operation for
an entire surface, i.e., on the volume cell ⟨0, 1, 2⟩. The rule is
rovided in Fig. 14, nodes are colored to ease the explanation of
ig. 15. Nodes are generically named n plus an integer in a graph
cheme, e.g., n0, n1.
In the rule scheme of Fig. 14, the left-hand side contains a

ingle node. The double line around the node means that it is a
ook. The hook’s label is the parameter of the rule scheme and
9

Fig. 13. Quad subdivision represented on G-maps associated with the objects
of Fig. 1(a).

Fig. 14. Rule scheme generalizing the operation from Fig. 13.

encodes the valid possibilities to unfold the rule, i.e., to build
a legal concrete rule. In our example, the node n0 of the left-
hand side is labeled by ⟨0, 1, 2⟩. Thus, the unfolding is realized
using a ⟨0, 1, 2⟩-orbit graph. The graph of Fig. 15(a) is a ⟨0, 1, 2⟩-
orbit and can be used to unfold the rule scheme. The relabeling
function associated with the hook is the identity function, and its
application on a graph will result in the same graph. Therefore,
the graph of Fig. 15(a) is a possible unfolding of the node n0 from
the left-hand side of the rule scheme.

All other nodes from the left-hand side or the right-hand
side represent copies of the graph built through relabeling func-
tions. Each relabeling function is encoded by the mapping of
dimensions in the node label via their position in the orbit type
(see 4.3). For instance, the label of n0 is ⟨_, 1, 2⟩ in the right-
hand side. Since the orbit parameter is ⟨0, 1, 2⟩, the relabeling
function is 0 ↦→ _, 1 ↦→ 1, and 2 ↦→ 2. This substitution specifies
that the 0-links are deleted (removing symbol ‘_’), while the 1
and 2-links are preserved. All darts are always copied. The darts
corresponding to the same node have been drawn with the same
color in Figs. 14 and 15. From the graph of Fig. 15(a), we obtain
the graph of Fig. 15(b) by removing all the 0-links.

The dimensions in the node labels of the graph scheme are
called implicit arcs since they implicitly represent relabeled links.
On the other hand, the arcs between nodes of the rule are called
explicit arcs. They allow linking copies of the same dart of the
graph used for the unfolding. In the right-hand side of the rule,
node n0 has an incident explicit 0-arc. The unfolding adds 0-
links to all the darts associated with the node n0, as illustrated
in Fig. 15(c). Note that unfolding an explicit arc means adding
exactly one link incident to each dart unfolded from the node.
For example, the 0-arc between nodes n0 and n1 means that each
copy associated with node n0 is 0-linked to its counterpart in the
copy associated with node n1. The complete unfolding of the rule
scheme is obtained from a graph traversal, iterating additions of
darts with links corresponding to the node label and additions of
links corresponding to the arcs between the nodes.

The copy n1 removes the 0 and 1-links and keeps only the 2-
links, as indicated by the label ⟨_, _, 2⟩ with two "_". In Fig. 15(d),
purple darts are added at the dangling extremity of the 0-links of
Fig. 15(c), together with 2-links from the node label. The incident
1-arc from the rule scheme provides 1-links dangling from the
purple darts in Fig. 15(e). Pink darts corresponding to the copy
n2 are attached to the dangling extremities in Fig. 15(f). The label
of n2 in Fig. 14 renames all 0-links to 2-links and deletes the 1
and 2-links, as indicated by the label ⟨2, _, _⟩. Therefore, the pink
darts share 2-links where darts from the initial copy were sharing
0-links. Finally, 0-arc incident to n2 is extended in Fig. 15(g) and

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

b
r
p
(
t
r

u
o
t
T
t
d
t
g
s

4

t
t
c
t
c

b
T
t
o
p
s
e
v

Fig. 15. Unfolding the rule scheme of Fig. 14: (a) n0 from the left hand-side, (b) n0 from the right hand-side, (c) 0-arc between n0 and n1, (d) n1, (e) 1-arc between
n1 and n2, (f) n2, (g) 0-arc between n2 and n3, and (h) n3. The colors match the node coloring of Fig. 14 to ease the reading, already built elements are displayed
in gray. Arc color legend: 3, 2, 1, and 0.
f
a
s
v
t
t
t
n
a
p
t
T
f
T
p
T
a
f
n
T
o
w

e
i
m
t
c
a
f
c
e
m

lue darts are added to unfold the node n3 in Fig. 15(h). The
elabeling function from node n3 renames the 0-links into 2-links,
reserves the 1-links, and removes the 2-links. The first graph
Fig. 15(a)) is the cube in left part of the rule from Fig. 13, while
he last graph (Fig. 15(h)) is the complete subdivided cube in the
ight part of the rule.

Applying a rule scheme to a specific object requires finding an
nfolded rule compatible with the G-map representation of the
bject. This process, called the instantiation of the rule, relies on
he hook node. First, the user selects a dart within the G-map.
hen, a graph traversal gathers all darts and arcs corresponding
o the orbit type labeling the hook associated with the selected
art. In other words, if the user selects a dart v in a G-map G and
ries to apply a rule scheme with a ⟨o⟩-labeled hook, the retrieved
raph is G⟨o⟩(v). This graph is then used for unfolding the rule
cheme.

.5. Embedded operations

This subsection describes how to handle geometric computa-
ions at the rule level. Although these computations are needed
o display the objects, they are not required to understand our
ontribution, namely the topological folding algorithm. More de-
ails about the addition of embedding variables to rule schemes
an be found in [19].
The geometric properties of objects consist of values shared

y all darts among a topological cell, i.e, among a given orbit.
herefore, applying an operation might lead to an update of
he geometric values for all the orbits within the scope of the
peration. When directly modifying G-maps, the embedding com-
utations should be carried out for each dart. At the level of rule
chemes, these computations are extended with terms for better
xpressivity through references that yield distinct embedding
alues for darts instantiated from the same node.
 t

10
Fig. 16 shows the embedded versions of the rule schemes used
or the splitting of an edge into two edges by the insertion of
vertex. Recall that a rule scheme consists of a folded repre-

entation of graph rules that generalize operation up to an orbit
ariable. The rule scheme from Fig. 16(a) depicts the case where
he graph rule for the edge split is folded along the 2-links. In
his rule scheme, nodes n0 and n1 represent each endpoint of
he edge. The addition of the new vertex is supported by the
odes n2 and n3. All darts that correspond to these two nodes
re necessarily created by the operation and will not have a
osition value. The usual solution is to add the new vertex at
he barycenter position of the two endpoints of the initial edge.
herefore, we embed the operation with a position computation
or nodes n2 and n3, displayed above the rule in Fig. 16(a).
he geometric computation is realized during the instantiation
rocess via the substitution of n0 and n1 by the associated darts.
his substitution concerns each dart associated with the nodes n2
nd n3. Similarly, the ruling scheme from Fig. 16(b) represents the
olding of the graph rule along both the 0 and 2-arcs. Therefore,
ode n0 represents both endpoints of the edge simultaneously.
he splitting vertex now only corresponds to node n1, and the ge-
metric computation requires accessing both the darts associated
ith n0 and their neighbor by 0, written n0@0.
In [19], such variables are subject to consistency conditions to

nsure that the embedding of a generalized map is well-defined,
.e., all darts within the same orbit whose type represents the do-
ain of an embedding should have the same value. We also want

o point out that rule schemes allow considering the topological
omputations and the geometric computations separately. In this
rticle, we aim at deducing the topological part of an operation
rom a representative example. We leave aside all geometrical
onsiderations. Therefore, the inferred rule scheme will have no
mbedding computation. In the illustrative section (Section 9), we
anually added these embedding computations to the rule such

hat we obtain operations applicable to geometric objects.

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

2

4

n
t
m
p
d
s
t
u
t
A
c
n
w
a

5

e
l
w
o
d

t
p
c
w
w
c

c
d
b
r
i

a
t
a
e
s
r
o

a

Fig. 16. Embedded rule schemes for the vertex insertion: (a) by folding the
-links and (b) both the 0 and 2-links.

.6. Consistency preservation

We wish to emphasize that applying a rule to a G-map will
ot necessarily provide a G-map. Intuitively, we are simply saying
hat modifying a (quasi-)manifold will not result in a (quasi-)
anifold. Therefore, the rules are equipped with conditions that
reserve the (quasi-)manifold property. Prosaically, these con-
itions [17] guarantee the preservation of the topological con-
traints of Definition 3.1. These conditions can be extended [18]
o rule schemes, resulting in one of our principal motivations to
se graph rewriting: we can design operations that guarantee
o preserve the model’s consistency via conditions on the rule.
simple syntactic verification of the rule scheme allows dis-

riminating between well-formed and ill-formed rules. We will
ot provide more details on these conditions but highlight that
e can easily distinguish the well-formed rules. Therefore, if our
lgorithm builds an ill-formed rule, we discard it.

. Topological folding algorithm

Rule schemes are a compact format to describe modeling op-
rations. However, their authoring requires learning this specific
anguage and a good knowledge of generalized maps. Therefore,
e propose to infer them automatically based on an instance
f the operation, hence providing a solution that simplifies the
esign of new operations and hides the technical elements.
We now present our main contribution, which is a mechanism

o infer a generic modeling operation from an application exam-
le. In other words, we seek to reconstruct the rule scheme that
orresponds to a modification of the object performed by a user
ho is not an expert in the underlying theory. For instance, we
ish to infer the rule of Fig. 14 from the objects of Fig. 1 when
onsidering the orbit ⟨0, 1, 2⟩, i.e., a surface.
The user describes a starting object, modifies it, and asks the

orresponding operation for a given orbit. Therefore, we aim at
esigning a mechanism for reconstructing a rule scheme given
y an orbit (provided it exists), i.e., having an instantiation cor-
esponding to the rule provided by the user. We call operation
nference this mechanism.

The objective is to reconstruct the rule scheme that gener-
lizes a specific modeling operation for a given orbit. Rather
han directly reconstructing the rule scheme, we first design an
lgorithm to reconstruct a single graph scheme. We will then
xplain how to exploit the algorithm to build the complete rule
cheme. Intuitively, a graph scheme corresponds to the left (or
ight) pattern of a rule scheme. It corresponds to a graph labeled
n each node with an orbit type.
11
5.1. Notations

Our algorithm reconstructs a graph scheme S from a given G-
map G and a given orbit type ⟨o⟩ (with o ⊆ [[0, n]]). The algorithm
works as follows. First, we choose a dart a in the G-map. We
assume that the orbit graph incident to a corresponds to the orbit
used for instantiation, i.e., an orbit with the same type as the label
of the hook h from the graph scheme S. By local exploration, we
then try to reconstruct the scheme. Intuitively the construction of
the scheme S consists of folding the graph G along its i-links, for
ll dimensions i of the orbit type ⟨o⟩. If the construction fails, we

start again with another initial dart until a scheme is found. The
new initial dart is chosen in a pool of unseen darts (see discussion
in Section 10.3). If all darts have been tried, then no scheme exists
for the orbit type ⟨o⟩.

In the explanation of the algorithm, we will write:

• h for the hook in the graph scheme S , m for the node of
interest, and v for the other nodes.

• Letters from the beginning of the alphabet for the darts in
G⟨o⟩(a), e.g., a, b, c , with a being reserved for the initial dart.

• Letters from the end of the alphabet for generic darts in G,
e.g., x.

• d, i and j for the dimensions in [[0, n]].
• ⟨ov

⟩ for the orbit type used to label the node v of S such
that the associated relabeling function is ⟨o⟩ ↦→ ⟨ov

⟩.
• (b, v) for the dart in G that corresponds to the dart b from

the orbit G⟨o⟩(a) and the node v from the scheme S.

5.2. Algorithm

We detail the algorithm that constructs a graph scheme for a
given connected G-map G, a given orbit type ⟨o⟩, and a chosen
dart a of G. The graph scheme S we seek to construct will have
by construction a hook node h labeled by ⟨o⟩ if it exists.

Step 1 (Orbit graph and construction of the hook)
We build the orbit graph G⟨o⟩(a) on a in G and initialize the

graph scheme S as a single hook node h labeled by the chosen
orbit type ⟨o⟩. G⟨o⟩(a) is by construction a possible instantiation
of S.

Step 2 (Traversal)
Using a breadth-first traversal of G, we reconstruct a graph

scheme S that yields G by instantiation when (a, h) is mapped
onto a. First, the algorithm constructs the explicit arcs incident
to the next node (Step 2.1), starting from h. Then, it immediately
adds the node label (Step 2.2) of each newly created node. Finally,
it iterates on a new node. If the algorithm terminates without
failure, we obtain a topologically correct graph scheme S for the
chosen dart.

Step 2.1 (Construction of the explicit arcs incident to a node)
Given a node m in S , already labeled with an orbit type,

we construct its incident arcs. These explicit arcs are labeled by
dimensions d not belonging to the orbit type ⟨om⟩. Thus, their
instantiation provides the remaining links incident to the darts
of the instance of m.

The arcs construction starts with finding an extension of the
scheme based on the information we can retrieve from (a,m).
Then, the extension is verified to be compatible with all the (b,m)
for b in G⟨o⟩(a). The verification is straightforward as the addition
of a node m to S , ensures that we can retrieve all the darts (b,m)
for b in G⟨o⟩(a).

Since the algorithm runs on an n-G-map G, the dart (a,m) has
exactly one incident d-link ed per dimension d in [[0, n]] \ ⟨om⟩.
There are three possibilities for each e :
d

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

-

A

e
f
d
T
d
I
a
s

I

Fig. 17. Steps of the folding algorithm on the object. Step 1 (a) - construction of G⟨1, 2⟩(a). Step 2.1 (b) - construction of the hook’s explicit arcs. Step 2.2 (c) and (d)
construction of a node and its implicit arcs. The algorithm terminates (e). Arc color legend: 3, 2, 1, and 0.
Fig. 18. Different steps of the graph scheme in the folding algorithm: Step 1 (a)
- construction of the hook, Step 2.1 (b) - construction of the hook’s explicit arcs
and Step 2.2 (c) - construction of a node, (d) - result of the algorithm.

Arc addition ed is a d-link (a,m)•d
−• (a,m′) where m′ is a node of

S. In this case we add a d-arc m•
d
−•m′ in S (if not already

in S by the extension of m′).

rc failure ed is a d-link (a,m)•d
−• (b,m′) where b is a dart of

G⟨o⟩(a) different from a, and m′ is a node of S. In this case
the algorithm stops in a failure state because such a link is
not constructible using the instantiation mechanism.

Arc extension ed is a d-link (a,m)•d
−• x where x has not yet been

reached by the algorithm. In this case, we add a node v

with the label ⟨ov
⟩ = ⊥ and a d-arc m•

d
−• v in S. The

symbol ⊥ serves as a placeholder to signify that the node
v has no label yet, with the convention that ⊥ deletes all
arcs when instantiated.

Let S ′ be the graph scheme obtained after the addition and
xtension of all the d-arcs for d in [[0, n]] \ ⟨om⟩ (assuming no
ailure). Recall that a d-arc in the graph scheme gives rise to one
-link per dart b in G⟨o⟩(a), each one incident to a dart (b,m).
herefore, we still need to check that the decision made for each
imension is coherent with the links incident to the other darts.
n other words, check that each dart (b,m) for b in G⟨o⟩(a) has
n incident d-link with the other extremity corresponding to the
ame node in S ′.

nstantiation failure For each d-arc m•
d
−•m′ in S , if a dart b

exists in G⟨o⟩(a) such that there is no link (b,m) d (b,m′)
•−•

12
in G, then the algorithm stops in a failure state because
such an arc would be constructed using the instantiation
mechanism.

Note that the case of ‘arc addition’ where m′
= m covers the

addition of loops to the graph scheme S.

Step 2.2 (Construction of a node label)
A node m can be added with a fake label in the ‘arc extension’

case from Step 2.1. The construction of the explicit d-arc assumes
that the target darts of the corresponding d-links are the instan-
tiation of the new node m in the graph scheme. The proper label
associated with this node needs to be reconstructed. We look for
the existence of a label ⟨om⟩ whose instantiation provides the
links that join the darts of the instance of m.

Here again, we first extend the graph scheme S before check-
ing if the extension is correct. We consider, for each dimension i
of ⟨o⟩, the i-neighbor bi of a, i.e., the dart such that a•

i
−• bi is in

G⟨o⟩(a). We now distinguish between two possibilities:

Relabeling There is a dimension j in [[0, n]] such that a link
(a,m)• j

−• (bi,m) exists in G. In this case, we fix the re-
labeling i ↦→ j, i.e., j appears in ⟨om⟩ at the position of i
in ⟨o⟩.

Deletion The previous possibility is not fulfilled, i.e., (a,m) and
(bi,m) are not linked. We then fix i ↦→ _, i.e., the symbol
‘‘_’’ appears in ⟨om⟩ at the position of i in ⟨o⟩.

Recall that the orbit type used to label m gives rise to arcs
based on the relabeling function (⟨o⟩ ↦→ ⟨om⟩). Therefore one still
needs to check that the decision made for each implicit arc is
coherent with the other darts related to the instantiation of m.
In other word, check that each i-link between b and c in G⟨o⟩(a)
can be mapped onto a link between (b,m) and (c,m) in G.

Relabeling failure If the decided relabeling is i ↦→ j and there
is an i-link b•

i
−• c in the orbit G⟨o⟩(a) such that no link

(b,m)• j
−• (c,m) exists in G, then the algorithm stops in a

failure state. Indeed, such a link would be constructed by
the instantiation mechanism.

We are identifying the implicit arcs that are preserved, deleted,
or renamed by the new node m. Note that the preservation of an
arc is covered by the case ‘relabeling’, where j = i.

In general, two darts b and c of G⟨o⟩(a) can be connected by
several i-links (i.e., with different i of ⟨o⟩). One can then construct
several different orbit labels. Our algorithm uses a heuristic to
construct a plausible relabeling function among all possible ones.
To ensure the injectivity of the relabeling function, we ensure that
two dimensions i and i′ are not mapped onto the same dimension
j. The possible plurality of inferred graph schemes (and therefore
rule schemes) is further discussed in Section 10.3.

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

c
l
(
G
o
c
t
i

6

p
w
s
t
s
s

6

v
o
a

S
G
a
d
b
s
o

S
6
o
W
F
n

S
s
a
s
p
l
n
W
d
w

T
o
v
F
t
⟨

6

S
w
t
a
t

i
a

a
s
f
a
a
1
a
s
r
t
d
n
n
t

l
e
n
l
W
t
b
t
t
i
a
i
f
a
n

Note that we do not need a failure possibility for the ‘deletion’
ase. Indeed, if the decided relabeling is i ↦→ _, but there is a non-
oop i-link b•

i
−• c in G⟨o⟩(a) and a dimension j of [[0, n]] such that

b,m)• j
−• (c,m) is a link of G, then j does not appear in ⟨om⟩. Since

is a G-map, the incident arcs constraint ensures the existence
f a j-link incident to (a,m). This j-link will bring the addition or
reation of a j-arc in the construction of the explicit arcs incident
o m (if not directly a failure state). This j-arc will result in an
nstantiation failure on the darts (b,m) and (c,m).

. Illustrative examples

Before dealing with the analysis of the algorithm, we first
rovide some examples to illustrate its possible behaviors. First,
e give an example where the algorithm does not enter a failure
tate and outputs a valid graph scheme. Secondly, we present
he two prominent cases where the algorithm halts in a failure
tate. Throughout all examples, nodes of graph schemes and rule
chemes are generically named n plus an integer, e.g., n0, n1.

.1. Folding of the cube

We now illustrate the algorithm using the orbit type ⟨1, 2⟩ (the
ertex of volume) on the G-map of a cube, i.e., the left-hand side
f the rule given in Fig. 13. The cube is considered a closed surface
nd represented with a 2-G-map.

tep 1 (Orbit graph and construction of the hook). The orbit graph
⟨1, 2⟩(a) on the cube is illustrated in Fig. 17(a). Irrelevant links
nd darts have been dimmed. Thus, the orbit graph contains six
arts and links: three 1-links drawn in red and three 2-links in
lue. We initialize S as in Fig. 18(a): a graph scheme containing a
imple hook n0 labeled ⟨1, 2⟩. The subgraph of Fig. 17(a) is indeed
ne of its possible instantiations.

tep 2.1 (Construction of the explicit arcs incident to a node). The
darts of the vertex G⟨1, 2⟩(a) exhibit a 0-link to 6 distinct darts
utside the vertex matched by the hook n0, as shown in Fig. 17(b).
e deduce the beginning of the graph scheme described in

ig. 18(b). The scheme is incomplete at this point since the node
1 has a fake label ⊥.

tep 2.2 (Construction of a node label). We added a node n1 in the
cheme and now have to construct its label. We try to construct
renaming of the 1 and 2-links of the initial orbit graph on this
et of darts. As illustrated in Fig. 17(c), we obtain a plausible
reservation of the 2-link between a and c (since there is a 2-
ink between a′ and c ′). Conversely, as seen in Fig. 17(d), there is
o renaming of the 1-link between a and b; this link is deleted.
e check that the renaming (the replacement of 2 by 2 and the
eletion of 1) is correct for all darts. This renaming is valid, and
e deduce the partial graph scheme given in Fig. 18(c).

ermination. On the cube, the algorithm ends by the Construction
f the label of the last node n7. This node corresponds to the
ertex opposite to the initial vertex, as shown in Fig. 17(e).
ollowing the exploration path 012010, we reach the darts of
he opposite vertex, renaming the orbit G⟨1, 2⟩(a) by the function
1, 2⟩ ↦→ ⟨2, 1⟩. The resulting scheme is given in Fig. 18(d).

.2. Counterexamples

We now provide examples that result in a state of failure.
tep 1 corresponds to an unrestricted graph traversal and will al-
ays succeed. Step 2.1 concerns the construction of arcs incident
o a node, while Step 2.2 deals with the label associated with
node. The instantiation of a node with an orbit corresponds

o applying a relabeling function to this orbit. For an arc, the
13
nstantiation corresponds to its transformation in as many links
s darts in the orbit.
For the construction of the relabeling function associated with
node, the conditions ensure that the relabeling found is con-

istent for all darts associated with the node. The algorithm will
ail to fold a pyramid from a corner of the base, i.e., not the
pex. Figs. 19(a), 19(b), 19(c), and 19(d) display the same steps
s in Fig. 17, meaning that the partial schemes of Figs. 18(a),
8(b) and 18(c) will correctly be built by the algorithm. However,
s illustrated in Fig. 19(e), the algorithm will fail. The partial
cheme at this moment is provided in Fig. 21. When building the
elabeling, we identify a 0-arc between darts a′ and b′. We can
hus check if the relabeling 1 ↦→ 0 is coherent with the other
arts. As we can see, the 1-arc between d and e is mapped onto a
on-arc between d′ and e′. Therefore, the algorithm fails, meaning
o folding can be obtained from a as initial dart and ⟨0, 1⟩ as orbit
ype.

For the construction of an arc, the condition ensures that all
inks folded into the arc have the same status. These links can
ither be loops or links to darts that all correspond to the same
ode (coherently with the image from the initial orbit graph) or
inks to darts not seen yet (checked for relabeling afterward).
henever the incident d-links for a given dimension d outside

he orbit type fall into a different category, an explicit arc cannot
e added, and the algorithm stops. For instance, let us consider
he object of Fig. 20(a). The object consists of a cube where the
op face has been removed. Its G-map representation is depicted
n Fig. 20(b). If we fold it along one of the vertical edges, the
lgorithm fails. Indeed, with the orbit type ⟨0, 2⟩ and the dart a
n Fig. 20(c), we reach the state of Fig. 20(d) after traversing and
olding along the 1-links. However, dart b′ has a 2-loop while dart
′ has a non-loop 2-link. The algorithm cannot proceed, meaning
o folding is obtainable with a as initial dart and ⟨0, 2⟩ as orbit

type.

7. Generalization to a rule scheme

The algorithm presented in the previous sections allows for
deducing a folded representation of a G-map from an orbit and a
dart. To infer a rule scheme from a given concrete rule using the
folding algorithm, we propose to consider the G-maps (left and
right) of the concrete rule as part of the same graph. From two
G-maps L and R, we construct the graph κ(L, R) as the disjoint
union of L and R, plus arcs labeled by κ (a fresh symbol) con-
necting both copies of the preserved nodes. The graph κ(L, R)
constructed from the rule of Fig. 13 is given in Fig. 22(a). The
κ-arcs are drawn in pink; the original cube is enlarged while
the modified cube is shrunk. The κ-arcs state which nodes are
unmodified by the operation. These arcs are computed from a
mapping of some elements from the L to R, further discussed in
Section 9.

To determine the scheme for a rule r = L → R, we construct a
graph scheme of the related graph κ(L, R). We run the algorithm
on κ(L, R) by memorizing whether the darts belonged to L or R.
The algorithm is identical on the graph κ(L, R). We only need to
add some additional conditions:

• The graph κ(L, R) is connected;
• The dart chosen as input of the algorithm belongs to L;
• At each identification of a renaming function from ⟨o⟩ to

⟨om⟩, κ is not in ⟨om⟩. Therefore, κ-arcs can only occur as
explicit arcs in the reconstructed graph scheme.

The desired rule scheme is obtained by removing the κ-arcs
from the output graph scheme. This removal yields two graph
schemes corresponding respectively to the left and right parts of
the rule scheme.

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

a

t
T
o

a

Fig. 19. Steps of the folding algorithm from a non-apex vertex of the pyramid. Step 1 (a) - construction of G⟨1, 2⟩(a). Step 2.1 (b) - construction of the hook’s explicit
rcs. Step 2.2 (c) and (d) - construction of a node and its implicit arcs. The algorithm stops on an inconclusive output (f). Arc color legend: 3, 2, 1, and

0.
Fig. 20. Folding algorithm on a vertical edge of the box: (a) the object, (b) its G-map representation, (c) darts and links associated to the hook, (d) the algorithm
stops on an inconclusive output.
Fig. 21. Partial scheme before failure of the algorithm of Fig. 19(e).

Finally, the inferred rule scheme is checked against the condi-
ions for the preservation of the topological constraints [17,18].
his verification ensures that the application of the rule scheme
n a G-map can only produce a G-map (see Section 4.6).
If we carry on the example of Figs. 17 and 18, i.e., do the

lgorithm on the graph of Fig. 22(a) with the orbit ⟨1, 2⟩, we
obtain the rule scheme of Fig. 22(b). The example was given for
pedagogical purposes and the rule scheme reconstruction of the
rule scheme presented in Fig. 14 will be discussed in Section 9.

8. Algorithm analysis

We now provide some analysis of correctness and complexity
for the presented algorithm.

8.1. Correctness analysis

The proof of correctness essentially results from one fact. At
each step of the algorithm, the partial graph pattern correctly
folds all links incident to darts associated with a node with a
defined label and expanded arcs. The cases of failures for the
algorithm are either the impossibility to add an arc to the partial
graph pattern or the impossibility to determine a legal relabeling
function to add to a node. In the case of the node failure, the

issue translates into an asymmetry in the operation. Conversely,

14
an arc failure means a discontinuity in the topology. The issue
on an arc is actually twofold. Either all other endpoints of the
links do not share the same association with a node in the graph
scheme (instantiation failure), or the other endpoints do not
correspond to the image of the same dart from the orbit used
as a reference for the instantiation (arc failure). The issue on
the node’s label is relatively less complicated as the only real
issue is the hopelessness to build a joint relabeling value for a
given dimension. The complete proof of correctness is presented
in Appendix A.

8.2. Topological consistency

The folding algorithm provides a solution to generalize an
operation from a representative example. This generalization is
essentially obtained by finding symmetries (up to relabeling)
in the operation. Such a process tries to reverse the instan-
tiation of a graph scheme. However, the generalization of an
operation might be topologically incorrect. Previous works have
already studied the preservation of the topological consistency
[9,18]. They provide topological conditions to ensure that apply-
ing a rule scheme to a G-map always provides a G-map. Therefore,
every rule scheme obtained by our algorithm is checked to dis-
card ill-formed ones. A discarded rule is an inconsistent rule with
respect to the (quasi-)manifold property of G-maps.

Since the two instances used to infer the operation should
be well-formed G-maps, the rule on the empty orbit is always
a plausible operation and naturally satisfies the topological con-
ditions. Intuitively, the inconsistent rules come from incoherent
generalization, i.e., from the orbit used for the inference or map-
ping. However, the folding algorithm might produce a folded
representation of the transformation for the user-provided orbit
and matching. We illustrate such a possibility in Fig. 23. The
before and after instances respectively consist of triangular and
hexagonal faces. The complete topological structures are given.
These are 2D objects, and we can try to infer the associated
operation with the most general orbit, i.e., the orbit ⟨0, 1, 2⟩. We
now consider two possible mappings.

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

d
b
v
w
w

t
i
F
a
i
t
t
o
a
t

t

8

p
o
b
2
a
f
a
b
r
i
G

Fig. 22. The graph κ(L,R) (a) for quad subdivision of the cube and the rule scheme (b) obtained by resuming the algorithm after the folding of the cube displayed
in Fig. 18. Arc color legend: 3, 2, 1, and 0.
Fig. 23. Topological consistency: (a) before instance is a triangle and after instance is an hexagon, (b) the mapping induces an edge split, (c) the mapping induces
a vertex split, (d) folded rule for the mapping of Figure (b), (e) incorrect rule obtained with the mapping of Figure (c).
t
a
a
c
a

9

r
b
a
G

m
e
v
g
F
s
t
m
e

In Fig. 23(b), the mapping (indicated by the κ-arcs in pink) in-
uces an edge split. Each vertex, i.e., the orbits ⟨1, 2⟩, is preserved
y the operation. The new darts split the edges by inserting new
ertices. This mapping yields the rule of Fig. 23(d), detected as
ell-formed. This operation inserts a vertex to split each edge
hen applied on a surface.
In Fig. 23(c), the mapping induces a vertex split by preserving

he orbits ⟨0, 2⟩, i.e., the edges. With this mapping, the operation
nserts edges to split the vertices. Although valid on a curve (see
ig. 23(c)), this operation becomes topologically incorrect when
pplied on a surface where 2-links are not loops. For instance,
nserting an edge in each vertex of a cube is impossible. However,
he topological folding algorithm, which is essentially a graph
raversal algorithm, can produce a folded representation of this
peration from the two faces. The rule is given in Fig. 23(e). Via
syntax checker, we find that this operation would break the

opological consistency, as illustrated by the flag on node n1.
Therefore, this rule is discarded, and the algorithm outputs

hat no operation can be inferred.

.3. Complexity analysis

The algorithm runs in time O(|G|) for a G-maps G. The com-
lexity does not depend on the size of the orbit type ⟨o⟩ nor
n the size of the orbit graph G⟨o⟩(a). Step 1 is achieved as a
readth-first search on a in G and takes time O(|G⟨o⟩(a)|). Step
.1 requires checking for each dimension not in ⟨om⟩ whether
ll darts in the instantiation of m have a coherent incident arc
or that dimension. The number of dimensions is bounded by n,
nd there are |G⟨o⟩(a)| darts for which the incident arcs should
e checked. Thus Step 2.1 requires O(|G⟨o⟩(a)|) time. Step 2.2
equires building the relabeling function. When we build a node
n the scheme, we store, for each dart, its associated dart in
⟨o⟩(a). Therefore, building a relabeling means comparing the
15
dimensions of the arcs incident to a with the arcs incident to its
associated dart in the current node. Since there are at most n arcs
incident to a, building the relabeling takes time O(1). The consis-
tency of the relabeling must be checked for each dart associated
with the current node. By construction, there are |G⟨o⟩(a)| such
darts. Again, the number of possible arcs to check is bounded by
n, resulting in a complexity of O(|G⟨o⟩(a)|) for Step 2.2. Step 2
requires to iterate Steps 2.1 and 2.2 until the whole graph has
been traversed. The number of iterations is directly equal to the
number of nodes in the resulting rule scheme. Each node in the
rule scheme corresponds to |G⟨o⟩(a)| darts in the initial G-map.
Therefore the folded representation will have |G|

|G⟨o⟩(a)| nodes and
he overall complexity is O(|G|). On two instances that compose
rule, the complexity is the same for both the left-hand side
nd the right-hand side, unified using the κ-arcs. Thus the full
omplexity to build the rule scheme from a before G-map G and
n after G-map H is O(|G| + |H|), i.e., a linear complexity.

. Application to subdivision schemes

All the rules and objects presented in this article have been
ealized within the Jerboa framework [48]. Jerboa is a topology-
ased geometric modeling platform that allows for the edition
nd application of rule schemes on objects represented with
-maps. We implemented our algorithm in Jerboa.
Jerboa contains a rule editor, which enables the design of

odeling operations. For instance, the rule from Fig. 25(a) was
xported from Jerboa’s editor. This editor realizes a syntactic
erification of the rule [19,48] to detect both topological and
eometric inconsistencies. For example, the warning pictogram in
ig. 23(e) highlights that Jerboa’s syntax checker found an incon-
istency in the rule. This syntax checker can also be used to find
he missing geometric computations on the inferred rule. We can
anually write the missing computation using the embedding
xpressions (see Section 4.5 and [19]).

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

d
m
p
s
I
m
p
a
o
i
d
i
m
s
m

o
m
f
i

9

i

9

v
⟨

r
J
o

u

Fig. 24. Jerboa’s interface for the inference of operations.
In practice, the user can manipulate the object with Jerboa’s
efault rules or import existing objects into our tool. The user
ust provide the mapping of the preserved darts from the left
attern to the right pattern, either explicitly or implicitly. One
olution is to modify the object in our dedicated viewer directly.
n this case, the user takes two snapshots before and after its
odification. We then build the mapping from IDs of the darts
resent in both snapshots. The user can also create two instances
nd manually provide the mapping. We allow the mapping of
rbits (and thus cells) to simplify the process. Fig. 24 shows the
nterface we developed with Jerboa. It contains two viewers to
isplay and modify the before instance (on the left) and the after
nstance (on the right). At the bottom, the user provides the
apping of the darts via orbit matching or leaves the association
ection empty to use the identity function on the dart IDs as
apping. Our tool is freely available online1.
We reconstructed several subdivision schemes as a validation

f our algorithm. Note that we only inferred the topological
odifications and added the missing geometry manually. We

irst present applications to surfaces (Section 9.1). Afterward, we
llustrate our approach with operations on volumes (Section 9.2).

.1. Subdivision schemes for surface refinement

We reconstructed several subdivision schemes for surfaces,
.e., with the orbit ⟨0, 1, 2⟩ as inference parameter.

.1.1. Quad subdivision and Catmull–Clark
We first inferred the quad subdivision scheme presented pre-

iously. Using the two generalized maps of Fig. 13 and the orbit
0, 1, 2⟩, we obtain the rule given in Fig. 25(a). This rule cor-
esponds to the one presented in Fig. 14 made manually with
erboa’s rule editor. We can now apply the operation on an-
ther quadrangulation, for instance, on Suzanne (see Fig. 25(b)).

1 Link to website (last consulted on May, 18th 2022): http://xlim-sic.labo.
niv-poitiers.fr/jerboa/doc/topological-inference-for-subdivision-schemes/.
16
Fig. 25. Quad subdivision operation: inferred rule (a) from the objects of Figs. 1.
Suzanne (b), first (c) and second (d) iterations of the quad subdivision.

We obtain the first and second iterations of the subdivision
scheme, as presented in Figs. 25(c) and 25(d). We manually
added an expression computing the position of the new vertices
respectively as the barycenter of the faces and edges. This ge-
ometric computation is illustrated in the iterative sequence of
Fig. 26(a) to 26(d). This subdivision is topologically equivalent
to the Catmull–Clark subdivision [49]. Therefore, the addition of
a smoothing computation on the inferred operation yields the
desired refinement scheme, illustrated in Figs. 26(e) to 26(h).
The inferred rules are identical. The only difference concerns the
geometric computations added. For instance, the vertex added to
split the edge corresponds to the rule’s nodes n1 and n2. For the
quad subdivision, the new position is computed as the middle of
the edge’s vertices with the expression:� ⊵

/ / mid point of the edge
return Point3 : :middle(<0> _posit ion (n0)) ;� �
The smoothing for the Catmull–Clark subdivision requires

displacing the vertex. Using the standard geometric refinement
from [49], we obtain the expression:

http://xlim-sic.labo.univ-poitiers.fr/jerboa/doc/topological-inference-for-subdivision-schemes/
http://xlim-sic.labo.univ-poitiers.fr/jerboa/doc/topological-inference-for-subdivision-schemes/

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

o

9

s
s
e
g
2
F
o
s
i
t
I

9

a
v

Fig. 26. The quad subdivision operation is topologically equivalent to Catmull–
Clark. Iterative sequence for the quad subdivision (a), (b), (c), and (d). Iterative
sequence for Catmull–Clark (e), (f), (g), and (h).

Fig. 27. Loop subdivision operation: the initial object (a), the first (b) iterations
f the subdivision, and the inferred operation (c).

� ⊵
/ / mid point of the incident face
Point3 face1Mid = Point3 : :middle(<0 ,1> _posit ion (n0)) ;
/ / mid point of the adjacent face
Point3 face2Mid = Point3 : :middle(<0 ,1> _posit ion (n0@2)) ;
/ / average of the face points
Point3 faceMid = Point3 : :middle(face1Mid , face2Mid) ;
/ / mid point of the edge
Point3 edgeMid = Point3 : :middle(<0> _posit ion (n0)) ;
/ / average of the edge and face points
return Point3 : :middle(faceMid , edgeMid) ;� �
.1.2. Loop and butterfly
One standard refinement of triangulated surfaces is the Loop

ubdivision scheme [37]. This scheme splits each edge by in-
erting its midpoint vertex. The new vertices are linked with
dges in each face, dividing each triangle into four new trian-
les. One iteration on a triangle is illustrated in Figs. 27(a) and
7(b). From these two instances, we infer the rule scheme of
ig. 27(c). We added the standard masks to compute the position
f the new vertices and Warren’s simplified weights [50] for the
moothing of the old vertices. This subdivision approximates the
nitial surface. Choosing different geometric computations yields
he interpolation scheme known as the butterfly subdivision [51].
terations of the subdivisions are provided in Fig. 28.

.1.3. Powell–Sabin
Powell and Sabin studied various subdivision schemes on tri-

ngles [52] that ensure given values for the first derivatives on
ertices. Such subdivisions are still studied to construct smooth
17
Fig. 28. Triangular subdivisions with topologically equivalent refinements. It-
erative sequence for the non-refined subdivision (a), (b), (c), and (d). Iterative
sequence for Loop algorithm (e), (f), (g), and (h). Iterative sequence for Butterfly
subdivision (i), (j), (k), and (l).

finite element spaces [53]. The Powell–Sabin 6-split refines a
triangle into six new triangles. The operation adds a vertex at
the center of the face and links it with all vertices of the triangle
as well as all midpoints of the initial edges. Assuming we only
have three basic operations: split an edge, add a vertex, and link
two vertices by an edge, we can reconstruct the Powell–Sabin
6-split refinement as described in Fig. 29(a) to 29(d). Inferring
the rule scheme of Fig. 29(e), for the connected component (or-
bit ⟨0, 1, 2, 3⟩), takes around 5 ms. We apply the inferred opera-
tion on the triangulation of the unit square illustrated in [53], see
Figs. 29(f) to 29(h).

9.1.4. Kobbelt’s
√
3

The
√
3-algorithm developed by Kobbelt is topologically dis-

tinct from the previous subdivision schemes in the sense that it
removes (or rather flips) edges. The algorithm is usually described
in a two-step process. First, vertices are added at the center of
each triangle and linked with edges to the original face vertices.
From the triangles of Fig. 30(a), we obtain the mesh of Fig. 30(b).
Then every edge of the initial mesh is flipped, as illustrated
in Fig. 30(c). We inferred this operation on a tetrahedron. The
initial and final objects are provided in Figs. 31(a) and 31(c). The
associated 2-G-maps are given in Figs. 31(b) and 31(d), while the
inferred operation is illustrated in Fig. 31(e). With the addition
of the vertices geometric smoothing, we obtain the subdivision
scheme defined by Kobbelt. An illustration of the final operation
on the Stanford Bunny is provided in Figs. 31(f) and 31(g).

9.1.5. Doo-Sabin
The Doo-Sabin subdivision works with any surface [54] by

recursively splitting the vertices. Fig. 33(a) presents the initial ob-
ject, while Fig. 33(b) displays the first iteration of the subdivision.
From these two objects, we infer the rule of Fig. 33(c). We now
have a standalone rule, applicable to any isolated surface, which
refines objects as many times as desired. For instance, we can
further subdivide the object of Fig. 33(b) to obtain the second and

third iterations, respectively illustrated in Figs. 33(d), and 33(e).

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

9

o
n
a
m
2
s
c

o

s
s

o
a
t

Fig. 29. Powell–Sabin 6-split refinement: given a triangle (a), split the three
edges (b), add a vertex (c), and link it with all other vertices (d). The inferred
rule (e) is recursively applied on a triangulation of the unit square (f) (from [53])
to obtain more refined triangulations (g) and (h).

Fig. 30. Two-step illustration of the
√
3 algorithm: from an initial triangular

mesh (a), faces are triangulated with a vertex at the center (b), and old edges
are flipped (c).

From these iterated applications, we can infer new operations
directly producing the second or third iteration of the Doo-Sabin
subdivision. The inferred rules are illustrated in Figs. 32(a) and
32(b). In other words, our mechanism allows for straightforward
self-composition of operations. Inferring the rule of the third
iteration takes around 40 ms, which means our approach is usable
in practice.

9.2. Subdivision schemes for volume refinement

We reconstructed two subdivision schemes for volume refine-
ment, i.e., with the orbit ⟨0, 1, 2, 3⟩ as inference parameter.

.2.1. Menger sponge
The Menger sponge is a 3D extension of the Cantor set (1D)

r the Sierpinski carpet (2D). We can compute it as a fractal and
ow describe the construction of a refinement step. Take a cube
nd split each face into 9 squares to obtain 27 cubes. Remove all
iddle cubes (middle of faces and center of the initial cube). The
0 remaining cubes correspond to the iteration of the refinement
tep. This step is iterated on the newly obtained cubes. From the
ube of Fig. 34(a), we construct the first iteration of the Menger
18
Fig. 31. Inference and application of the
√
3 operation: (a) tetrahedron as the

‘‘before’’ instance, (b) G-map of the ‘‘before’’ instance, (c) refined object as the
‘‘after’’ instance, (d) G-map of the ‘‘after’’ instance, and (e) inferred rule scheme
for the orbit ⟨0, 1, 2⟩. After the addition of the missing geometry: (f) initial
bject with 4968 faces, (g) result of one subdivision (object with 14,904 faces).

ponge illustrated in Fig. 34(b). We can infer the operation by
pecifying that the operation occurs on the orbit ⟨0, 1, 2, 3⟩ to ob-
tain the rule of Fig. 34(e). Note that this inferred rule has 20 nodes
on its right-hand side, which might already prove challenging to
write (or read). Our inference mechanism alleviates the fastidious
task of manually designing such complex operations. We can now
iterate the inferred operation and obtain the following iterations
of the Menger sponge (second and third iterations in Figs. 34(c)
and 34(d)). The inferred operation directly produces the Menger
sponge’s second iteration. The rule has more than 400 nodes and
is too large to draw properly.

9.2.2. (2,2,2)-Menger sponge
In [55], the authors proposed a generalization of the Menger

sponge to Menger polycube. One iteration of the (L,M,N)-Menger
peration transforms a polycube into a polycube with L holes
long the x-axis, M holes along the y-axis, and N holes along
he z-axis. Each hole has the same size as a one-unit cube and
is separated from the nearest holes by a one-unit cube. From a
cube, we built the first iteration of the (2, 2, 2)-Menger operation
(see Fig. 35(b)). The polycube is of genus 28 and consists of 81
volumes, 270 faces, 216 vertices. To our knowledge, there is no
definition (either algorithmic or with a rule) of this operation. We
built the polycube and used our algorithm to infer the operation.
From the objects of Figs. 35(a) and 35(b), we inferred the rule of
Fig. 35(e). We used this operation to build the second and third
iterations, respectively illustrated in Figs. 35(c) and 35(d). For
information, it takes around 100 ms to infer the (2, 2, 2)-Menger
operation.

The inferred operations for both Menger and (2, 2, 2)-Menger
allows modifying any volume. Fig. 36 shows the first iteration of
the subdivision on three solids. We added inside lights to better
show the holes. The modified objects are all topologically correct,
although our geometric computations inherited from the cube
might seem off as the holes are much more prominent for Menger
than for (2, 2, 2)-Menger.

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049
Fig. 32. Inferred rules for the second (a) and third (b) iterations of the Doo-Sabin subdivision.
b
o
s
d

Fig. 33. Doo-Sabin subdivision operation: the initial object (a), the first (b),
second (d) and third (e) iterations of the subdivision. The inferred operation
(c) from the objects (a) and (b).

Fig. 34. A cube (a), the first (b), second (c) and third (d) iterations of the Menger
sponge. The inferred operation (e) from the objects of Figures (a) and (b).
19
10. Advanced exploitation

We discuss certain practical side-effects of our inference mech-
anism. The benefits and limitations are mainly related to Jerboa’s
formalism to handle modeling operations on generalized maps.

10.1. Target cell parameter

Operations are inferred for a given orbit. Intuitively, an orbit
is an abstraction of a cell (or a subcell), described by a subset of
dimensions. Therefore, the inferred rule for Powell–Sabin 6-split
does not specify that it subdivides triangles: we can apply it to
any surface. For instance, we can use this operation to triangulate
the quad mesh of Fig. 37(a). We obtain the triangulated mesh of
Fig. 37(b). We can iterate the subdivision to obtain the mesh of
Fig. 37(c). Similarly, the representation of Suzanne in Fig. 25(b) is
a surface that only consists of quads. We can use the inferred op-
eration of Fig. 29(e) to obtain a mesh triangulation, as illustrated
in Fig. 37(d).

The proposed algorithm folds the graph correctly to obtain
a rule by traversing all darts of the application example. The
inferred operation is always valid for the provided example but
might be too sensitive in some instances. In particular, the ex-
ternal, unmodified parts of the object may be captured by the
generated operation, hindering its applicability (see Section 8.2).

10.2. Inference of other operations

We presented several subdivision schemes in Section 9. How-
ever, our approach is not limited to these specific operations.
Indeed, the algorithm presented in Section 5 takes as input two
generalized maps and an orbit type. Any topological operation
can be inferred. For instance, if we transform the square face of
Fig. 38(a) into the cube of Fig. 38(d), we infer the rule presented
in Fig. 38(g) when specifying the face as the input cell. This
operation corresponds to the face extrusion. We can visualize
the operation by applying it on the triangle of Fig. 38(b) and the
octagon of Fig. 38(c) to obtain the prisms of Figs. 38(e) and 38(f).

10.3. Plurality of inferred operations

We explained in Section 5 our algorithm for inferring topo-
logical operations from an example for a given orbit. Intuitively,
the algorithm tries to fold the κ(L, R) graph for the provided orbit
y choosing an initial dart. Throughout the paper, we illustrated
ur approach with iterated function systems where the left-hand
ide of the rule consists of only one node. Therefore, any initial
art yields the same rule. It could be the case that several rules

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

a

e
t
(
p
t

Fig. 35. A cube (a), the first (b), second (c) and third (d) iterations of the (2, 2, 2)-Menger operation. The inferred operation (e) from the objects of Figures (a)
nd (b).
Fig. 36. Application of the inferred operations for the Menger operation on
various solids: (green) initial volumes, (orange) first Menger refinement, (blue)
first (2, 2, 2)-Menger refinement.

exist, e.g., when the left-hand side of the rule has more than
one node. Besides, there are possibilities for failure when either
the implicit or explicit arcs cannot be reconstructed. Thus, we
implemented a mechanism marking the darts that correspond
to the hook node during the computation of the algorithm. This
mechanism avoids exploring darts that would yield an already
found rule or fail to result in a rule. We can try the algorithm
again with an unmarked dart until all darts are marked. Based on
the symmetry of the initial and target objects, we might obtain
the same rule several times. To discard duplicated rules, we use
a vertex invariant algorithm similar to [56] with the addition of
the node labels to speed up the computation [57].

11. Conclusion and perspectives

We presented an automated method to infer topological mod-
ling operations from a representative instance. Our algorithm
akes as input an instance of the operation application
two G-maps and a partial mapping between them) and the
arametrization orbit. It produces as output a graph transforma-
ion rule parameterized by the input orbit type provided that
20
Fig. 37. Powell–Sabin 6-split on quad meshes: (a) a quad subdivision of the unit
square, (b) its triangulation with Powell–Sabin 6-split, (c) further refinement of
the triangulation, and (d) the triangulation of Suzanne.

such a graph transformation exists. Implementation was done
in the Jerboa platform to exploit its formal language, ensuring
the well-formedness of the inferred rules. Therefore, any in-
ferred rule preserves the topological consistency of generalized
maps, defined as edge-labeled graphs. Our approach for inferring
topological operations exploits the orbit-based definition of rule
schemes to fold objects along a given orbit. We experimented
with our algorithm on various 2D and 3D objects for several orbit
types, mainly for subdivision schemes. The inferred operation is
directly applicable to any object by matching the rule’s hook into

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049
Fig. 38. Face extrusions: (a) a square face and (d) its face extrusion as a cube,
(g) the inferred rule and its application to faces (b) and (e) to obtain prisms (c)
and (f).

an orbit of the appropriated type in the object. Our approach
offers the following two main benefits:

• First, a user unaccustomed to either topological models,
i.e., generalized maps, or (graph) transformation rules, can
design operations exclusively from examples.

• Secondly, a sequence of elementary operations can be opti-
mized to generate a direct transformation that can speed up
the design of complex scenes.

Our approach ensures that the topological part of modeling
operations can be inferred without writing a single line of code in
a standard programming language or designing a rule in Jerboa’s
expert language. It also hides the intern structure of Jerboa’s rules
which may be cumbersome, if not impracticable, to write or read
with too many nodes. Finally, an automated and reliable infer-
ence mechanism offers an alternative approach for developing
topology-based geometric operations.

Our work allows the inference of the topological part of mod-
eling operations. Once the two instances, the mapping, and the
target orbit type parameter are given, the inference is determin-
istic because there is essentially one solution. The inferred rules
were manually edited to add the missing geometric computa-
tions before applying them again. Our work opens a new venue
for the generation of modeling operations without programming
knowledge. Indeed, inferring the geometric computations would
lead to a low-code development platform for topology-based
geometric modeling. Compared to its topological counterpart, the
inference of the geometry is highly non-deterministic as several
computations may lead to the same values for a given input. In
any case, the inference of the missing geometry will need to be
generic to benefit from the orbit-based generalization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
21
Appendix A. Correctness analysis

Given a rule in Jerboa, i.e., a rule scheme, its application is
formally described as a graph transformation using results from
category theory. Among these results, the uniqueness (up to
isomorphisms) of the result G-map is guaranteed. Similarly, the
inferred rule’s uniqueness (up to equivalent relabeling) from its
instantiation is also guaranteed. Intuitively, the mechanism to
infer an operation is the reserve of the application mechanism.

Let us assume that the algorithm provides a rule scheme
r : L → R from two instances G and H of an object on a given
orbit type ⟨o⟩ and a given dart a. It is sufficient to show that the
instantiation of L and R on G⟨o⟩(a) are respectively isomorphic to
G and H .

We aim at proving the correctness of the algorithm for a
G-map G with orbit type ⟨o⟩ and initial dart a, i.e.,

• If the algorithm provides a graph scheme S, then its instan-
tiation on ⟨o⟩ yields the initial graph G.

• The algorithm fails if there exists no scheme that instanti-
ates in the initial graph G for the type ⟨o⟩ with preservation
of a.

Before going into the proof, we introduce some notations:

• P denotes the partial graph scheme during the execution of
the algorithm,

• V is the set of nodes of P ,
• V⊥ is the subset of V whose elements are labeled ⊥, i.e., have

not yet seen the construction of their orbit type.
• V⊙ is the subset of V whose elements have a suitably

defined label but have not yet seen the construction of their
incident arcs.

• V⊛ is the subset of V whose elements have been assigned a
label and whose incident arcs have been constructed.

Note that V⊥, V⊙, and V⊛ forms a partition of V . We can
describe the algorithm through its operations on V⊥, V⊙, and V⊛.
Step 1 initializes P as a graph with a single node h labeled ⟨o⟩.
Thus at the end of this step, V⊥

= ∅, V⊙
= {h}, and V⊛

= ∅. Step
2.1 moves a node m from V⊙ to V⊛ and may add new elements
to V⊥. Similarly, Step 2.2 moves a node m from V⊥ to V⊙ without
any other modification.

We also use the shorter notation R⟨o⟩
v to denote the relabeling

function ⟨o⟩ ↦→ ⟨ov
⟩ for a node v in a graph scheme S.

By induction on the steps of the algorithm, we show that
the partial graph P manipulated by the algorithm satisfies the
following property P(P):

1. ι⟨o⟩(P,G⟨o⟩(a)) is the unique subgraph of G where (a, h) is
mapped onto a.

2. For all nodes v in V⊛, no arc of the form (b, v)• i
−• (c, v′)

exists in G that does not belong to ι⟨o⟩(P,G⟨o⟩(a)), where
b and c are darts of G⟨o⟩(a), v′ is a node of P , and i a
dimension of [[0, n]].

Step 1 (Orbit graph and construction of the hook). Step 1 adds a
unique node h labeled ⟨o⟩ and builds G⟨o⟩(a) through a graph
traversal. Let Ph be the graph that only contains h. By construction
ι⟨o⟩(Ph,G⟨o⟩(a)) is obtained via the identity function and provides
a graph isomorphic to G⟨o⟩(a). Mapping (a, h) onto a ensures, via
the incident ars property on G that G⟨o⟩(a) is essentially mapped
onto itself. Besides, we have V⊛

= ∅ at the end of the step.
Thereafter P(Ph) holds.

Step 2.1 (Construction of the explicit arcs incident to a node). We
consider a partial graph scheme P that satisfies P(P) and assume
that the next action is the construction of the explicit arcs inci-
dent to a node m that belongs to V⊙. We write P ⊛ m for the

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049

g
a
o

t
[

t
i

w
r
t
h
(

c

G

w
c
o
f
G
m

raph scheme obtained by the addition or extension of arcs for
ll dimensions not in ⟨om⟩, assuming the algorithm does not halt
n the ‘arc failure’ case.
Assume that the algorithm does not fail when constructing

he explicit arcs incident to the node m. Let i be a dimension of
[0, n]] \ ⟨om⟩ and e be the i-arc incident to m added to P . Assume
hat the addition of e violates the property P . Since all arcs
ncident to m have not yet been extended, the second condition
of P holds from P . Thus ι⟨o⟩(P∪{e},G⟨o⟩(a)) is not a subgraph of G
hen mapping (a, h) onto a. By induction hypothesis, one arc that
esults from ι⟨o⟩(e,G⟨o⟩(a)) does not belong to G. This contradicts
he ‘instantiation failure’ condition from Step 2.1 and P(P ∪ {e})
olds. Once all the d-links incident to (a,m) have been considered
without failure), m belongs to V⊛. Assume that P(P⊛m) does not
hold. Since P(P∪{e}) holds for each e arc incident tom, the second
ondition of P(P⊛m) is violated. An arc (b,m)• i

−• (c,m) of G is not
in the instantiation ι⟨o⟩(P ⊛m,G⟨o⟩(a)), where b and c are darts of
⟨o⟩(a), and i is a dimension. By induction hypothesis, P(P) held,

and i cannot be a dimension of ⟨om⟩. Otherwise the construction
of ⟨om⟩ would have resulted in a failure state. Thus, an i-link is
incident to (a,m) in G. Because the algorithm did not stop at the
‘arc failure’ case, the link is of the form (a,m)• i

−• (a,m′) and lead
to the creation of an arc m•

i
−•m′. By the incident arcs property

in G, no link (b,m)• i
−• (b,m′) can exist. Therefore the algorithm

went into failure state for ‘instantiation failure’. By contradiction,
P(P ⊛ m) holds.

Assume that the algorithm fails to run Step 2.1. In the case
of ‘arc failure’, there is a dimension i in [[0, n]] \ ⟨om⟩ such that
the i-link incident to (a,m) is of the form (a,m)• i

−• (b,m′) with
b (̸= a) a dart of G⟨o⟩(a) and m′ (̸= m) a node of P . Such
a link cannot be obtained by either an explicit or an implicit
arc. An implicit arc would instantiate into a link (a,m)• i

−• (b,m),
which would not belong to G by the incident arcs constraint. An
explicit arc would instantiate into a link (a,m)• i

−• (a,m′), which
ould not belong to G either, by the incident arcs constraint. Both
ases would result in ι⟨o⟩(P ⊛ m,G⟨o⟩(a)) not being a subgraph
f G, once (a, h) is mapped onto a. In the case of ‘instantiation
ailure’, there are a dimension i in [[0, n]] \ ⟨om⟩ and a dart c in
⟨o⟩(a) such that the i-link incident to (a,m) gave rise to an arc
•

i
−•m′, but no link (c,m)• i

−• (c,m′) exists in G. The instantia-
tion of the arc m•

i
−•m′ would create an arc (c,m)• i

−• (c,m′) in
ι⟨o⟩(P ⊛ m,G⟨o⟩(a)). Therefore ι⟨o⟩(P ⊛ m,G⟨o⟩(a)) would not be a
subgraph of G, once (a, h) is mapped onto a.

Step 2.2 (Construction of a node label). We consider a partial graph
scheme P that satisfies P(P) and assume that the next action
is the construction of the label associated with a node m that
belongs to V⊥. Let P ⊙ m be the graph scheme obtained after
the addition of the label ⟨om⟩ to m.

Assume that the algorithm does not fail when constructing
the orbit type ⟨om⟩. The addition of ⟨om⟩ to m moves m from
V⊥ to V⊙ without modifying V⊛. Thus the second condition of
P(P⊙m) holds by induction hypothesis on P . Since the algorithm
did not fail, for all i in ⟨o⟩ such that R⟨o⟩

m (i) = j and j ̸= _,
for all b, c in G⟨o⟩(a) such that a link b•

i
−• c exists in G⟨o⟩(a), a

link (b,m)• j
−• (c,m) exists in ι⟨o⟩(P ⊙m,G⟨o⟩(a)). In other words,

the extension from P to P ⊙ m results, through the instantiation
mechanism in the addition of all links of R⟨o⟩

m (G⟨o⟩(a)). Assume
that the addition of these links violates P(P ⊙ m). Only the first
condition can be violated, meaning that ι⟨o⟩(P ⊙ m,G⟨o⟩(a)) is
not a subgraph of G, once (a, h) is mapped onto a. By induc-
tion hypothesis, P(P) holds. Therefore, one of the added link
does not belong to G. Let i and j be the dimensions such that
the superfluous link is of dimension j mapped from a i-link.
Since the algorithm did not stop on the ‘relabeling failure’ case,
the relabeling means that all links b i c in G⟨o⟩(a) results in
•−•

22
(b,m)• j
−• (c,m) in G, contradicting that the link does not belong

to G. Therefore, P(P ⊙ m) holds.
Assume that the algorithm fails to run Step 2.2, when con-

structing the label ⟨om⟩. The ‘relabeling failure’ was triggered by
a dimension i from ⟨o⟩. Let bi be the other extremity of the i-
link incident to a. Because the algorithm failed a relabeling was
decided for i. Let it be j, i.e., R⟨o⟩

m (i) = j. The failure state also
means there are b and c in G⟨o⟩(a) such that b•

i
−• c belongs

to G⟨o⟩(a) but (b,m)• j
−• (c,m) does not belong to G. Therefore

ι⟨o⟩(P ⊙ m,G⟨o⟩(a)) would not be a subgraph of G, once (a, h) is
mapped onto a. □

Termination. Since G is finite, the algorithm stops eventually. By
induction, when it stops, all nodes of S belong to V⊛, i.e., have an
orbit type as label and extended incident arcs. Since P(S) holds,
ι⟨o⟩(S,G⟨o⟩(a)) is the unique subgraph of Gwhere (a, h) is mapped
onto a. Besides, for all nodes v of S , there exists no arc of the form
(b, v)• i

−• (c, v′) in G that does not belong to ι⟨o⟩(S,G⟨o⟩(a)), where
b and c are darts of G⟨o⟩(a), v′ is a node of S , and i a dimension of
[[0, n]]. Since G is connected, ι⟨o⟩(S,G⟨o⟩(a)) is the complete graph
G, once (a, h) is mapped onto a. □

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.gvc.2022.200049.

References

[1] Gould D. Complete maya programming: An extensive guide to MEL and
C++ API. Elsevier; 2003.

[2] Squillacote AH, Ahrens J, Law C, Geveci B, Moreland K, King B. The
paraview guide, Vol. 366. Kitware Clifton Park, NY; 2007.

[3] Conlan C. The blender python API: Precision 3D modeling and add-on
development. A Press; 2017.

[4] Damiand G, Lienhardt P. Combinatorial maps: Efficient data structures for
computer graphics and image processing. CRC Press; 2014.

[5] Lienhardt P. Subdivisions of N-dimensional spaces and N-dimensional
generalized maps. In: Proceedings of the fifth annual symposium on
computational geometry. SCG ’89, New York, NY, USA: Association for
Computing Machinery; 1989, p. 228–36. http://dx.doi.org/10.1145/73833.
73859.

[6] Lienhardt P. Topological models for boundary representation: a com-
parison with n-dimensional generalized maps. Comput Aided Des
1991;23(11):59–82. http://dx.doi.org/10.1016/0010-4485(91)90100-B.

[7] Edmonds JR. A combinatorial representation for oriented polyhedral
surfaces. (Ph.D. thesis), University of Maryland; 1960.

[8] Akleman E, Chen J, Gross JL. Extended graph rotation systems as a
model for cyclic weaving on orientable surfaces. Discrete Appl Math
2015;193:61–79. http://dx.doi.org/10.1016/j.dam.2015.04.015.

[9] Poudret M, Comet JP, Le Gall P, Arnould A, Meseure P. Topology-based
geometric modelling for biological cellular processes. In: International
conference on language and automata theory and applications. 2007, p.
497–508.

[10] Bellet T, Poudret M, Arnould A, Fuchs L, Le Gall P. Designing a topological
modeler kernel: A rule-based approach. In: Shape modeling international
conference. IEEE; 2010, p. 100–12. http://dx.doi.org/10.1109/SMI.2010.31.

[11] Rozenberg G, editor. Handbook of graph grammars and computing by
graph transformation: Vol. I. Foundations. USA: World Scientific Publishing
Co., Inc.; 1997.

[12] Ehrig H, Ehrig K, Prange U, Taentzer G. Fundamentals of algebraic graph
transformation. Monographs in theoretical computer science. An EATCS
series, Berlin Heidelberg: Springer-Verlag; 2006, http://dx.doi.org/10.1007/
3-540-31188-2.

[13] Heckel R, Taentzer G. Graph transformation for software engineers:
with applications to model-based development and domain-specific
language engineering. Cham: Springer International Publishing; 2020,
http://dx.doi.org/10.1007/978-3-030-43916-3, ISBN 978-3-030-43915-6
978-3-030-43916-3.

[14] Prusinkiewicz P, Lindenmayer A, Hanan J. Development models of herba-
ceous plants for computer imagery purposes. In: Proceedings of the
15th annual conference on computer graphics and interactive techniques.
SIGGRAPH ’88, vol. 22, New York, NY, USA: Association for Computing
Machinery; 1988, p. 141–50. http://dx.doi.org/10.1145/54852.378503.

https://doi.org/10.1016/j.gvc.2022.200049
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb1
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb1
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb1
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb2
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb2
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb2
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb3
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb3
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb3
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb4
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb4
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb4
http://dx.doi.org/10.1145/73833.73859
http://dx.doi.org/10.1145/73833.73859
http://dx.doi.org/10.1145/73833.73859
http://dx.doi.org/10.1016/0010-4485(91)90100-B
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb7
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb7
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb7
http://dx.doi.org/10.1016/j.dam.2015.04.015
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb9
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb9
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb9
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb9
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb9
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb9
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb9
http://dx.doi.org/10.1109/SMI.2010.31
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb11
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb11
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb11
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb11
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb11
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/978-3-030-43916-3
http://dx.doi.org/10.1145/54852.378503

R. Pascual, H. Belhaouari, A. Arnould et al. Graphics and Visual Computing 6 (2022) 200049
[15] Prusinkiewicz P, Samavati F, Smith C, Karwowski R. L-system description
of subdivision curves. Int J Shape Model 2003;09(01):41–59. http://dx.doi.
org/10.1142/S0218654303000048.

[16] Smith C, Prusinkiewicz P, Samavati F. Local specification of surface subdi-
vision algorithms. In: Pfaltz JL, Nagl M, Böhlen B, editors. Applications of
graph transformations with industrial relevance. Lecture notes in computer
science, Berlin, Heidelberg: Springer; 2004, p. 313–27. http://dx.doi.org/10.
1007/978-3-540-25959-6_23.

[17] Poudret M, Arnould A, Comet J-P, Le Gall P. Graph transformation for
topology modelling. In: Ehrig H, Heckel R, Rozenberg G, Taentzer G,
editors. Graph transformations. Lecture notes in computer science, vol.
5214, Berlin, Heidelberg: Springer; 2008, p. 147–61. http://dx.doi.org/10.
1007/978-3-540-87405-8_11.

[18] Pascual R, Le Gall P, Arnould A, Belhaouari H. Topological consistency
preservation with graph transformation schemes. Sci Comput Program
2022;214:102728. http://dx.doi.org/10.1016/j.scico.2021.102728.

[19] Bellet T, Arnould A, Belhaouari H, Le Gall P. Geometric modeling: Con-
sistency preservation using two-layered variable substitutions. In: de
Lara J, Plump D, editors. Graph transformation. Lecture notes in computer
science, Cham: Springer; 2017, p. 36–53. http://dx.doi.org/10.1007/978-3-
319-61470-0_3.

[20] Smelik RM, De Kraker KJ, Tutenel T, Bidarra R, Groenewegen SA. A survey
of procedural methods for terrain modelling. In: Proceedings of the CASA
workshop on 3D advanced media in gaming and simulation. 2009, p.
25–34.

[21] Müller P, Wonka P, Haegler S, Ulmer A, Van Gool L. Procedural modeling
of buildings. In: ACM SIGGRAPH 2006 papers. SIGGRAPH ’06, New York,
NY, USA: Association for Computing Machinery; 2006, p. 614–23. http:
//dx.doi.org/10.1145/1179352.1141931.

[22] Parish YIH, Müller P. Procedural modeling of cities. In: Proceedings of the
28th annual conference on computer graphics and interactive techniques.
SIGGRAPH ’01, New York, NY, USA: Association for Computing Machinery;
2001, p. 301–8. http://dx.doi.org/10.1145/383259.383292.

[23] Stava O, Pirk S, Kratt J, Chen B, Měch R, Deussen O, Benes B. Inverse
procedural modelling of trees. Comput Graph Forum 2014;33(6):118–31.
http://dx.doi.org/10.1111/cgf.12282.

[24] Wu F, Yan DM, Dong W, Zhang X, Wonka P. Inverse procedural modeling
of facade layouts. ACM Trans Graph 2014;33(4). http://dx.doi.org/10.1145/
2601097.2601162.

[25] Garcia-Dorado I, Aliaga DG, Bhalachandran S, Schmid P, Niyogi D. Fast
weather simulation for inverse procedural design of 3D urban models. ACM
Trans Graph 2017;36(2). http://dx.doi.org/10.1145/2999534.

[26] Emilien A, Vimont U, Cani MP, Poulin P, Benes B. WorldBrush: interactive
example-based synthesis of procedural virtual worlds. ACM Trans Graph
2015;34(4). http://dx.doi.org/10.1145/2766975.

[27] Hu Y, Dorsey J, Rushmeier H. A novel framework for inverse procedural
texture modeling. ACM Trans Graph 2019;38(6). http://dx.doi.org/10.1145/
3355089.3356516.

[28] Št’ava O, Beneš B, Měch R, Aliaga DG, Krištof P. Inverse procedural
modeling by automatic generation of L-systems. Comput Graph Forum
2010;29(2):665–74. http://dx.doi.org/10.1111/j.1467-8659.2009.01636.x.

[29] Prusinkiewicz P, Lindenmayer A. The algorithmic beauty of plants. New
York, NY: Springer New York; 1990.

[30] Rozenberg G, Salomaa A. The mathematical theory of L systems. Academic
Press; 1980.

[31] Guo J, Jiang H, Benes B, Deussen O, Zhang X, Lischinski D, Huang H. Inverse
procedural modeling of branching structures by inferring L-systems. ACM
Trans Graph 2020;39(5):155:1–155:13. http://dx.doi.org/10.1145/3394105.

[32] Santos E, Coelho RC. Obtaining L-systems rules from strings. In: 2009
3rd Southern conference on computational modeling. 2009, p. 143–9.
http://dx.doi.org/10.1109/MCSUL.2009.21.

[33] Kripac J. A mechanism for persistently naming topological entities in
history-based parametric solid models. In: Proceedings of the third ACM
symposium on solid modeling and applications. SMA ’95, New York, NY,
USA: Association for Computing Machinery; 1995, p. 21–30. http://dx.doi.
org/10.1145/218013.218024.

[34] Farjana SH, Han S. Mechanisms of persistent identification of topological
entities in CAD systems: A review. Alex Eng J 2018;57(4):2837–49. http:
//dx.doi.org/10.1016/j.aej.2018.01.007.

[35] Cardot A, Marcheix D, Skapin X, Arnould A, Belhaouari H. Persistent naming
based on graph transformation rules to reevaluate parametric specification.
Comput-Aided Des Appl 2019;16(5):985–1002. http://dx.doi.org/10.14733/
cadaps.2019.985-1002.
23
[36] Liu HTD, Kim VG, Chaudhuri S, Aigerman N, Jacobson A. Neural subdivision.
ACM Trans Graph 2020;39(4). http://dx.doi.org/10.1145/3386569.3392418.

[37] Loop C. Smooth subdivision surfaces based on triangles (Master’s thesis),
The University of Utah; 1987.

[38] López-Fernández JJ, Garmendia A, Guerra E, de Lara J. An example is worth
a thousand words: Creating graphical modelling environments by example.
Softw Syst Model 2019;18(2):961–93. http://dx.doi.org/10.1007/s10270-
017-0632-7.

[39] Dinella E, Dai H, Li Z, Naik M, Song L, Wang K. Hoppity: Learning graph
transformations to detect and fix bugs in programs. In: International con-
ference on learning representations. 2020, p. 17, URL https://openreview.
net/forum?id=SJeqs6EFvB.

[40] Igarashi T, Hughes JF. A suggestive interface for 3D drawing. In: Pro-
ceedings of the 14th annual ACM symposium on user interface software
and technology. UIST ’01, New York, NY, USA: Association for Computing
Machinery; 2001, p. 173–81. http://dx.doi.org/10.1145/502348.502379.

[41] Xu X, Peng W, Cheng CY, Willis KD, Ritchie D. Inferring CAD modeling
sequences using zone graphs. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2021, p. 6062–70, URL http:
//arxiv.org/abs/2104.03900.

[42] Sharma G, Goyal R, Liu D, Kalogerakis E, Maji S. CSGNet: Neural shape
parser for constructive solid geometry. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018, p. 5515–23.

[43] Du T, Inala JP, Pu Y, Spielberg A, Schulz A, Rus D, Solar-Lezama A,
Matusik W. InverseCSG: Automatic conversion of 3D models to CSG trees.
ACM Trans Graph 2018;37(6). http://dx.doi.org/10.1145/3272127.3275006.

[44] Kania K, Ziȩba M, Kajdanowicz T. UCSG-net – unsupervised discovering of
constructive solid geometry tree. 2020, arXiv:2006.09102.

[45] Weiler K. Edge-based data structures for solid modeling in curved-surface
environments. IEEE Comput Graph Appl 1985;5(1):21–40. http://dx.doi.org/
10.1109/MCG.1985.276271.

[46] König B, Nolte D, Padberg J, Rensink A. A tutorial on graph transformation.
In: Heckel R, Taentzer G, editors. Graph transformation, specifications, and
nets: In memory of hartmut ehrig. Lecture notes in computer science,
Cham: Springer International Publishing; 2018, p. 83–104. http://dx.doi.
org/10.1007/978-3-319-75396-6_5.

[47] Bommes D, Lévy B, Pietroni N, Puppo E, Silva C, Tarini M, Zorin D.
Quad-mesh generation and processing: A survey. Comput Graph Forum
2013;32(6):51–76. http://dx.doi.org/10.1111/cgf.12014.

[48] Belhaouari H, Arnould A, Le Gall P, Bellet T. Jerboa: A graph transformation
library for topology-based geometric modeling. In: Giese H, König B,
editors. Graph transformation. Lecture notes in computer science, vol.
8571, Cham: Springer International Publishing; 2014, p. 269–84. http:
//dx.doi.org/10.1007/978-3-319-09108-2_18.

[49] Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary
topological meshes. Comput Aided Des 1978;10(6):350–5.

[50] Warren J. Subdivision methods for geometric design. 1995, p. 111.
[51] Dyn N, Levine D, Gregory JA. A butterfly subdivision scheme for surface

interpolation with tension control. ACM Trans Graph 1990;9(2):160–9.
http://dx.doi.org/10.1145/78956.78958.

[52] Powell MJD, Sabin MA. Piecewise quadratic approximations on triangles.
ACM Trans Math Software 1977;3(4):316–25. http://dx.doi.org/10.1145/
355759.355761.

[53] Guzmán J, Lischke A, Neilan M. Exact sequences on Powell–Sabin splits.
Calcolo 2020;57(2):13. http://dx.doi.org/10.1007/s10092-020-00361-x.

[54] Doo D, Sabin M. Behaviour of recursive division surfaces near extraordinary
points. Comput Aided Des 1978;10(6):356–60. http://dx.doi.org/10.1016/
0010-4485(78)90111-2.

[55] Richaume L, Andres E, Largeteau-Skapin G, Zrour R. Unfolding level 1
menger polycubes of arbitrary size with help of outer faces. In: Couprie M,
Cousty J, Kenmochi Y, Mustafa N, editors. Discrete geometry for computer
imagery. Lecture notes in computer science, Cham: Springer International
Publishing; 2019, p. 457–68. http://dx.doi.org/10.1007/978-3-030-14085-
4_36.

[56] McKay BD, Piperno A. Practical graph isomorphism, II. J Symbolic Comput
2014;60:94–112. http://dx.doi.org/10.1016/j.jsc.2013.09.003.

[57] Hsieh SM, Hsu CC, Hsu LF. Efficient method to perform isomorphism
testing of labeled graphs. In: Gavrilova ML, Gervasi O, Kumar V, Tan CJK,
Taniar D, Laganá A, Mun Y, Choo H, editors. Computational science and
its applications. Lecture notes in computer science, Berlin, Heidelberg:
Springer; 2006, p. 422–31. http://dx.doi.org/10.1007/11751649_46.

http://dx.doi.org/10.1142/S0218654303000048
http://dx.doi.org/10.1142/S0218654303000048
http://dx.doi.org/10.1142/S0218654303000048
http://dx.doi.org/10.1007/978-3-540-25959-6_23
http://dx.doi.org/10.1007/978-3-540-25959-6_23
http://dx.doi.org/10.1007/978-3-540-25959-6_23
http://dx.doi.org/10.1007/978-3-540-87405-8_11
http://dx.doi.org/10.1007/978-3-540-87405-8_11
http://dx.doi.org/10.1007/978-3-540-87405-8_11
http://dx.doi.org/10.1016/j.scico.2021.102728
http://dx.doi.org/10.1007/978-3-319-61470-0_3
http://dx.doi.org/10.1007/978-3-319-61470-0_3
http://dx.doi.org/10.1007/978-3-319-61470-0_3
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb20
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb20
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb20
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb20
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb20
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb20
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb20
http://dx.doi.org/10.1145/1179352.1141931
http://dx.doi.org/10.1145/1179352.1141931
http://dx.doi.org/10.1145/1179352.1141931
http://dx.doi.org/10.1145/383259.383292
http://dx.doi.org/10.1111/cgf.12282
http://dx.doi.org/10.1145/2601097.2601162
http://dx.doi.org/10.1145/2601097.2601162
http://dx.doi.org/10.1145/2601097.2601162
http://dx.doi.org/10.1145/2999534
http://dx.doi.org/10.1145/2766975
http://dx.doi.org/10.1145/3355089.3356516
http://dx.doi.org/10.1145/3355089.3356516
http://dx.doi.org/10.1145/3355089.3356516
http://dx.doi.org/10.1111/j.1467-8659.2009.01636.x
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb29
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb29
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb29
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb30
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb30
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb30
http://dx.doi.org/10.1145/3394105
http://dx.doi.org/10.1109/MCSUL.2009.21
http://dx.doi.org/10.1145/218013.218024
http://dx.doi.org/10.1145/218013.218024
http://dx.doi.org/10.1145/218013.218024
http://dx.doi.org/10.1016/j.aej.2018.01.007
http://dx.doi.org/10.1016/j.aej.2018.01.007
http://dx.doi.org/10.1016/j.aej.2018.01.007
http://dx.doi.org/10.14733/cadaps.2019.985-1002
http://dx.doi.org/10.14733/cadaps.2019.985-1002
http://dx.doi.org/10.14733/cadaps.2019.985-1002
http://dx.doi.org/10.1145/3386569.3392418
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb37
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb37
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb37
http://dx.doi.org/10.1007/s10270-017-0632-7
http://dx.doi.org/10.1007/s10270-017-0632-7
http://dx.doi.org/10.1007/s10270-017-0632-7
https://openreview.net/forum?id=SJeqs6EFvB
https://openreview.net/forum?id=SJeqs6EFvB
https://openreview.net/forum?id=SJeqs6EFvB
http://dx.doi.org/10.1145/502348.502379
http://arxiv.org/abs/2104.03900
http://arxiv.org/abs/2104.03900
http://arxiv.org/abs/2104.03900
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb42
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb42
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb42
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb42
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb42
http://dx.doi.org/10.1145/3272127.3275006
http://arxiv.org/abs/2006.09102
http://dx.doi.org/10.1109/MCG.1985.276271
http://dx.doi.org/10.1109/MCG.1985.276271
http://dx.doi.org/10.1109/MCG.1985.276271
http://dx.doi.org/10.1007/978-3-319-75396-6_5
http://dx.doi.org/10.1007/978-3-319-75396-6_5
http://dx.doi.org/10.1007/978-3-319-75396-6_5
http://dx.doi.org/10.1111/cgf.12014
http://dx.doi.org/10.1007/978-3-319-09108-2_18
http://dx.doi.org/10.1007/978-3-319-09108-2_18
http://dx.doi.org/10.1007/978-3-319-09108-2_18
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb49
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb49
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb49
http://refhub.elsevier.com/S2666-6294(22)00004-3/sb50
http://dx.doi.org/10.1145/78956.78958
http://dx.doi.org/10.1145/355759.355761
http://dx.doi.org/10.1145/355759.355761
http://dx.doi.org/10.1145/355759.355761
http://dx.doi.org/10.1007/s10092-020-00361-x
http://dx.doi.org/10.1016/0010-4485(78)90111-2
http://dx.doi.org/10.1016/0010-4485(78)90111-2
http://dx.doi.org/10.1016/0010-4485(78)90111-2
http://dx.doi.org/10.1007/978-3-030-14085-4_36
http://dx.doi.org/10.1007/978-3-030-14085-4_36
http://dx.doi.org/10.1007/978-3-030-14085-4_36
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1007/11751649_46

	Inferring topological operations on generalized maps: Application to subdivision schemes
	Introduction
	Related works
	Generalized maps
	Vocabulary
	Topological structure
	Cells and orbits
	Embedded G-maps

	Modeling operations
	Graph rewriting
	G-map rewriting
	Relabeling functions
	Relabeling function
	Instantiation

	Example of rule scheme for the quad subdivision
	Embedded operations
	Consistency preservation

	Topological folding algorithm
	Notations
	Algorithm
	Step 1 (Orbit graph and construction of the hook)
	Step 2 (Traversal)
	Step 2.1 (Construction of the explicit arcs incident to a node)
	Step 2.2 (Construction of a node label)

	Illustrative examples
	Folding of the cube
	Counterexamples

	Generalization to a rule scheme
	Algorithm analysis
	Correctness analysis
	Topological consistency
	Complexity analysis

	Application to subdivision schemes
	Subdivision schemes for surface refinement
	Quad subdivision and Catmull–Clark
	Loop and butterfly
	Powell–Sabin
	Kobbelt's 3
	Doo-Sabin

	Subdivision schemes for volume refinement
	Menger sponge
	(2,2,2)-Menger sponge

	Advanced exploitation
	Target cell parameter
	Inference of other operations
	Plurality of inferred operations

	Conclusion and perspectives
	Declaration of competing interest
	Appendix A. Correctness analysis
	Appendix B. Supplementary data
	References

