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We report on observations made on a run of transcritical flows over an obstacle in a narrow channel.
Downstream from the obstacle, the flows decelerate from supercritical to subcritical, typically with
an undulation on the subcritical side (known in hydrodynamics as an undular hydraulic jump). In
the Analogue Gravity context, this transition corresponds to a white-hole horizon. Free surface
deformations are analyzed, mainly via the two-point correlation function which shows the presence
of a checkerboard pattern in the vicinity of the undulation. In non-gated flows where the white-hole
horizon occurs far downstream from the obstacle, this checkerboard pattern is shown to be due to
low-frequency fluctuations associated with slow longitudinal movement of the undulation. It can
thus be considered as an artifact due to a time-varying background. In gated flows, however, the
undulation is typically “attached” to the obstacle, and the fluctuations associated with its movement
are strongly suppressed. In this case, the observed correlation pattern is likely due to a stochastic
ensemble of surface waves, scattering on a background that is essentially stationary.

I. INTRODUCTION

Correlations provide valuable insight into the behav-
ior of fluctuations. They are the observable of choice in
(quantum) field theory, where fluctuations are intrinsic
and correlation functions indispensable. In fluid mechan-
ics they have found utility in the theory of turbulence [1],
though they are also useful in the analysis of wave-current
interaction when the waves present are due to random
noise [2]. That is, if we decompose the flow into a “back-
ground” state (in some sense an average value, typically a
time-average) and fluctuations around this background,
the fluctuations can be considered as a statistical ensem-
ble of waves which interact with each other, or (if their
amplitudes are sufficiently small) with the background
mean flow alone.

The latter case corresponds to the regime of Analogue
Gravity [2–4], which aims to simulate gravitational phe-
nomena using condensed matter experiments [5, 6]. To
this end, the background is identified with an effective
spacetime metric for the fluctuations, which play the role
of test waves propagating in the effective spacetime. As a
realization of field theory in curved spacetime, Analogue
Gravity finds great utility in correlation functions [7, 8].
In particular, they capture the pair-wise nature of the
analogue of Hawking radiation from an effective horizon.
At an analogue white-hole 1 horizon where the flow passes
from supercritical to subcritical, these correlations are
particularly involved: the expected two-point correlation

1 A white hole, or sometimes white fountain, is the time-reversed
version of a black hole, into which nothing can enter and from
which everything is ejected.

function exhibits a checkerboard pattern [9], due in that
case to correlations between two short-wavelength disper-
sive modes of opposite energy. (We shall have more to
say about analogue Hawking radiation in the discussion
section at the end of this paper.)

That being said, there can be subtleties in how the
background (or, in the context of Analogue Gravity, the
effective metric) is to be defined, which in turn affects
the identification of the fluctuations themselves. For ex-
ample, in a quantum system where averages are taken
over an ensemble of experimental realizations, classical
fluctuations of the mean field may pollute the quantum
signal (see [10–12] for such an example involving density
fluctuations in a Bose-Einstein condensate). In a purely
classical context, such as a steady water flow which is ex-
pected to be statistically stationary, the background can
be identified as the constant component of the field (i.e.,
its time-average) while the fluctuations capture the en-
tirety of the time-dependence of the field. However, this
approach can appear too crude if there is some weak time-
dependence of the background. Indeed, since we define
the background via averaging in time, there is some ambi-
guity in the range or interval duration over which such av-
eraging is appropriate. By adopting a certain interval du-
ration which is significantly shorter than the full duration
of the recording, we allow for a degree of time-dependence
in the background, which will inevitably show some fluc-
tuations from one subinterval to the next. This subinter-
val averaging effectively divides all the time-dependence
into “slow” fluctuations (which can be associated with
some movement of the background) and “fast” fluctua-
tions (which occur on top of the background). In this
way, the motion of the background can to some extent
be separated from the field evolution due to the presence
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of a stochastic ensemble of surface waves.
In this paper, we consider free surface deformations on

a particular class of 1D water flows, where we see a notice-
able degree of weak time-dependence of the background.
The flows are transcritical (in contrast to previous ex-
perimental Analogue Gravity works in water flows which
have tended to be purely subcritical [2, 4]). The effective
metric valid in the hydrodynamic (long-wavelength) limit
contains a white-hole horizon 2, and it is downstream
from this white-hole horizon that the time-dependence
of the background is apparent. The flow can be regu-
lated by the partial lowering of a gate at the downstream
end of the channel. For flows that are unobstructed at
the downstream end, the white-hole horizon is generated
by an undular hydraulic jump [14] some distance down-
stream from the obstacle, and the origin of the correla-
tion pattern is shown to be a slow drift in the longitu-
dinal position of the jump. The associated frequencies
are so low that it makes sense to separate this drift from
the familiar surface waves and to treat it instead as a
slow movement of the background; when this is done,
the remaining “fast” fluctuations have a correlation pat-
tern in which the checkerboard is strongly suppressed.
Contrastingly, in flows with a partially closed gate at the
downstream end (inducing a “backwater effect” [15] that
affects the upstream part of the flow), the undulation is
typically seen to be “attached” to the obstacle, and while
there is still a noticeable degree of time-dependence in the
downstream region, we observe no clear contribution to
the two-point correlations associated with a slow drift of
the background. We show that, in this case, the low-
frequency contribution to the full two-point function is
much less significant than in non-gated flows. What this
means for the interpretation of the observed correlations
is discussed; we believe they stem from the “true” scat-
tering of surface waves.

The paper is organized as follows. Section II provides
a description of the experiment: the details of the water
channel, the cameras used to record the free surface, and
the numerical post-processing performed on the data. In
Section III, we describe our observations, paying partic-
ular attention to slow movement on long time scales and
the associated patterns in the two-point correlation func-
tion. This falls into two parts, with subsections III A
and III B dealing with non-gated and gated flows, re-
spectively. We summarize our findings in Section IV and
discuss some of the implications. More information and
technical details are given in the “Materials and Meth-
ods” section.

2 The occurrence of such a white-hole horizon, where the flow
passes from supercritical to subcritical, is highly non-trivial in
water flows. It cannot be stably realised using the geometry of
a single obstacle alone (see Fig. 1(d) of [13] and the discussion
around it). We thus rely here on dissipative effects to induce
the transition via an undular hydraulic jump, or on the back-
water effect induced by lowering the gate which yields a short
supercritical region on top of the obstacle.

II. EXPERIMENTAL SETUP

We used an open flow channel (reference H23 from Pro-
didac), of which a photograph is shown in Figure 1. The
channel walls are made of transparent plexiglass with an-
odized aluminum support, with dimensions (L = 2.5 m)
× (Z = 12 cm) × (W = 5.3 cm). The maximum flow rate
is 35 L/min, provided by a volumetric hydraulic power
bench. The flow rate is measured with a flowmeter Vor-
tex F 20 (DN20) from Bamo Mesures, with a range from
5 to 85 L/min. Obstacles to be placed on the channel
floor are made by an Ultimaker 5S 3D printing machine
with the Cura software, using either PLA (black) or ABS
(blue) filaments of diameter 2.85 mm. These obstacles
have notches measuring 6 mm in width and 3.5 mm in
depth, with which they are fixed on both sides of the
channel. The presence of the obstacle forces a modula-
tion of the flow due to the variation in the geometry of
the flume. As well as the obstacle, there is a gate at
the downstream end of the flume that can be lowered to
control the flow.

An overhead LED lighting system illuminates the free
surface of the flow and allows the side visualization of
the meniscus, which is recorded by two grayscale (256)
Point Grey cameras with CMOS technology. The images
from the two cameras are combined by a Matlab algo-
rithm. They record a total length of 2.05 m with spatial
resolution δx = 0.5 mm, and (for the experiments here
considered) a total duration of around 5 minutes at an
acquisition rate of fac = 32 fps. No wave maker is used;
instead, the fluctuations of the free surface are provided
by the noise inherent to the system (turbulence, mechan-
ical vibrations, etc.).

The Matlab script processes the interface with a sub-
pixel detection method applied to the side meniscus (see
Refs. [2, 4, 16–19] for details). The meniscus shows a
maximum intensity on the reconstituted image. A first
calculation makes it possible to detect this maximum for
each position x and each time t. After a first detection
of maxima, the aberrant points (due to image problems
like drops, blurs, etc.) are replaced by an average value
of their neighbors, and the maximum brightness is sought
again around the positions previously found. This two-
step detection has a precision of one pixel. It is then
followed by a subpixel approach: around its maximum
value, the luminosity is assumed to decrease in the verti-
cal direction according to a Gaussian (normal) distribu-
tion. By fitting the observed luminosity to a Gaussian
over five neighboring points, it is possible to find the po-
sition of the meniscus to within a fraction of the pixel
size δx.

III. OBSERVATIONS

A series of transcritical flows were realised, and
recorded for a total duration of ∼ 340 seconds. By “tran-
scritical”, we mean that the Froude number Fr = v/c
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Figure 1. Photograph of the channel, with an ABS obstacle
(in blue) placed on the bottom. The variation of the water
height can be clearly seen, including the undular hydraulic
jump on the far downstream (right) side of the flow.

(where v is the flow velocity and c the speed of surface
waves with respect to the flow) crosses 1. In our narrow
flume, we find that Fr tends to always be smaller than
1 at the ends, and therefore that any transitition from
subcritical to supercritical (i.e., from Fr < 1 to Fr > 1)
is followed somewhere by the opposite transition; that is,
a black-hole horizon is typically followed by a white-hole
horizon.

We present here two main cases, distinguished by the
presence or absence of a gate at the downstream end
of the channel. We observe that this feature seems to
determine whether the white-hole horizon occurs close to
the obstacle, or a significant distance downstream from
it. We also observe that this property has implications for
the content of the fluctuations of the free surface around
its mean profile.

Here we describe the most important observations, for
non-gated flows in §III A and for gated flows in §III B.
Technical details on how the key quantities are defined
and extracted, as well as some supplementary observa-
tions, can be found in the Supplemental Material.

A. Non-gated flows

In the absence of a gate at the downstream end, the
flow typically remains supercritical for a significant dis-
tance downstream from the obstacle, then returns to
subcriticality via an undular hydraulic jump: the wa-
ter height increases quite abruptly, and is followed by an
undulation of gradually decreasing amplitude [14]. The
jump occurs far in the downstream region, and is thus
unlikely to be driven by the geometry of the obstacle.
This makes it quite different from the flows that are typ-
ically considered in theoretical Analogue Gravity works.
Instead, the form of the jump (and the white-hole horizon
associated with it) is likely to be controlled by dissipa-
tive processes induced by turbulence.3 Such a hydraulic
jump was not observed in our previous experimental work
involving transcritical flows, in which a wider channel
was used [18]. We thus conjecture that the narrowing

3 Note that a dissipative term associated with turbulence is a re-
quired ingredient in theoretical treatments of the undular hy-
draulic jump; see, e.g., Refs. [20–22].

Figure 2. We show here a series of plots characterizing a
flow which is free (non-gated) at the downstream end. These
are: (1) The obstacle height and the mean water height, av-
eraged over the entire recording. In vertical dashed lines are
shown the positions of the black- and white-hole horizons. (2)
The flow velocity v(x) and wave speed c(x). (3) A zoom on
the region shown by a dotted rectangle in panel (1), but now
with the mean water height calculated separately in a series of
∼ 10 s subintervals, all shown simultaneously. The thickness
of the curve thus indicates the degree of variation in time. (4)
The position of the white-hole horizon, calculated in subin-
tervals of duration ∼ 40 s (in sold blue) and ∼ 10 s (in dashed
red). The flow rate is Q = 15 L/min, or (reducing to two
dimensions) q = Q/W = 4.7 × 10−3m2/s (where W = 5.3 cm
is the channel width).

of the channel with respect to previous works (5.3 cm
here compared to 39 cm in [2, 18]) increases the effective
dissipation, leading generically to the presence of a jump
whenever the flow becomes supercritical, and whenever
the downstream end of the flow is free so that there is no
backwater effect [15] due to the gate.

In Figure 2 are shown four plots related to a non-gated
flow (over an obstacle which is a scaled-down version of
that used in Ref. [4]). In the first panel, the mean wa-
ter height h0(x), averaged over the entire duration of the
recording, is shown, with the expected positions of the
black- and white-hole horizons indicated by dashed lines.
The second shows the profiles of the flow velocity v(x)
and the wave speed c(x), as calculated using Eqs. (5) in
the Supplemental Material. In the third panel are shown
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Figure 3. The two-point correlation function of free surface
fluctuations in the downstream region, for the same non-gated
flow of Fig. 2. The dashed lines indicate the average position
of the white-hole horizon. The three correlation functions
correspond to different definitions of the fluctuation δh: the
full fluctuations (where the background is the time-average
over the entire recording), the “slow” fluctuations associated
with movement of the background (found by averaging over
10-second subintervals), and the “fast” fluctuations on top of
this slowly-varying background.

Figure 4. In black is shown a cross-section of the “slow” corre-
lation of Fig. 3, with x′ ≈ 1.1 m fixed close to the point where
Cslow(x, x′) reaches its maximum value. In red is shown the
spatial derivative of the mean water height h0(x) (averaged
over the entire recording), multiplied by a prefactor found by
fitting it to the black curve. Through prediction (1), this pref-
actor gives the variance

〈
δx2d

〉
= 2.7 mm2 of the longitudinal

position of the undular jump.

the background profiles h0(x, t) averaged separately in
each of 32 equal subintervals of ∼ 10 s duration each,
having zoomed in on the region of interest where the non-
stationarity of the background is most prominent. The
various h0(x, t) are shown simultaneously, so the thick-
ness of the curve illustrates the degree of variation of the
background over the entire recording. Notice that, while
the upstream side of the flow is relatively stable 4, there
is a significant degree of variation of the background on
the downstream side, and the beginning of the growth of
this variation appears to coincide with the position of the
undular hydraulic jump. To get an idea of how the back-
ground actually varies in time from one subinterval to the
next, the measured position of the white-hole horizon is
shown in the fourth panel, suggesting a slow oscillatory
nature.

In Figure 3 we turn our attention to the two-
point correlation function for free surface deformations:
C(x, x′) = 〈δh(x) δh(x′)〉. We focus on the region of
interest in the vicinity of the undular hydraulic jump,
i.e., x > 1 m (marked by the dotted rectangle in the top
panel of Fig. 2). In the first panel, the background to be
subtracted is taken as the time-average over the entire
duration of the recording, so that all time-dependence of
the free surface is contained in the fluctuations. In the
second and third panels, the background is defined and
subtracted separately in 32 equal subintervals of dura-
tion ∼ 10 s. This procedure effectively defines a time-
dependent background and divides the data into “slow”
and “fast” fluctuations: those associated with movement
of the background from one subinterval to the next (fluc-
tuations of the background), and those occurring within
each subinterval (fluctuations on top of the background).
The most prominent feature, clearly visible in both the
full and “slow” correlation functions, is a checkerboard

4 The stability of the upstream part of the flow, around the ana-
logue black-hole horizon, allows us to conclude that the time-
dependence we see further downstream is not due to the pump –
and therefore the flow – having yet to stabilize. It seems instead
to be an inherent feature of the system.
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pattern in the vicinity of the undulation. The “fast”
correlation function is essentially just the autocorrela-
tion along x = x′, indicating only that fluctuations are
present but not necessarily correlated.

The observations described above lead us to make the
following postulate on the nature of the “slow” fluctua-
tions giving rise to the checkerboard pattern of Fig. 3:
namely, that they are mainly due to small longitudinal
shifts in the position of the jump and the undulation. 5

To this end, we adopt the following ansatz for the pro-
file of the undular hydraulic jump at any given time:
h0(x, t) ≈ h0 (x− δxd(t)), where δxd(t) is the instanta-
neous shift in the position of the jump with respect to
its mean position. Assuming that this shift is always
sufficiently small – in particular, that it remains at all
times much smaller than the wavelength of the undu-
lation – we can make a first-order Taylor expansion of
this expression to get the instantaneous fluctuation of
the background profile: δh0(x, t) ≈ −δxd(t)h′0(x). Then
the equal-time two-point correlation function associated
with these fluctuations is

〈δh0(x, t) δh0(x′, t)〉 =
〈
δx2

d(t)
〉
h′0(x)h′0(x′) . (1)

This prediction is borne out by Fig. 4, where the two-
point correlation function associated with “slow” back-
ground fluctuations is shown along a line of fixed x′ (cho-
sen to be close to the maximum of the two-point func-
tion). This is plotted alongside the derivative of the mean
water height, h′0(x), after multiplication by a fitting pa-
rameter. The two curves agree reasonably well, corrob-
orating our claim that the checkerboard pattern is due
to a slow longitudinal drift of the undulation. Accord-
ing to prediction (1), the value of the fitting parameter
multiplying h′0(x) is to be equated with

〈
δx2

d

〉
h′0 (x′);

the fitting procedure thus yields an estimate for the vari-
ance of δxd, which is given in the legend of each plot
and whose associated r.m.s value is 1.6 mm. This in turn
seems to be consistent with the spread of the position
of the white-hole horizon shown in the fourth panel of
Fig. 2.

B. Gated flows

In Fig. 5 is shown a series of plots associated with a
gated flow, where the upper gate at the end of the water
channel has been partially closed, leaving a gap of 0.8
cm at the bottom through which the flow can pass (the
full downstream water height is 3.1 cm). The obstacle
here has the same shape as that used in Figs. 2-4, but

5 In a different context (namely a 1D Bose gas on which phonons
propagate), the randomness in the position of the white-hole
horizon from realization to realization might lead to a similar
checkerboard-like correlation pattern due to the varying phase
of the undulation [11, 12].

its dimensions are twice as large. The plots are analo-
gous to those shown in Fig. 2, showing the mean water
depth averaged over all time, the mean water depth av-
eraged over ∼ 10 s subintervals, and the position of the
white-hole horizon as a function of time. As before, there
is a noticeable degree of variation of the background in
the downstream region, while the upstream region is rel-
atively stable.

A very noticeable difference with respect to Fig. 2 is
that, while there is still an undulation as the flow deceler-
ates on the downstream side of the obstacle, it occurs on
top of the obstacle, and not some distance downstream
after an abrupt change in the flow. The undular hy-
draulic jump is suppressed by the presence of the gate at
the downstream end of the flume: there is a “backwater
effect” [15] that prevents its appearance far downstream
from the obstacle. Consequently, since the flow deceler-
ates rather quickly, the supercritical region between the
two horizons is rather short. Less intuitively, the undula-
tion itself is also significantly shorter than its counterpart
in non-gated flows. 6 Numerical simulations of the flow
are able to reproduce this observation (see the Supple-
mental Material).

With the undulation occurring on top of the obstacle,
we might intuitively expect that it has no room to move
around longitudinally, and that the checkerboard pattern
observed in non-gated flows to be associated with the
movement of the undular jump is strongly suppressed.
This indeed seems to be the case, as illustrated by the
two-point correlation functions for the gated flow, shown
in Fig. 6. As before, we show first the full correlation
function, followed by its division into “slow” and “fast”
contributions. The obvious difference with respect to the
previous case is that the “slow” contribution to the corre-
lations is much less significant; indeed, the full correlation
function is practically indistinguishable from the “fast”
contribution alone. Moreover, while the “slow” fluctua-
tions generate a checkerboard pattern reminiscent of that
in the non-gated flow (albeit much weaker), for the gated
flow they are not straightforwardly related to shifts in the
longitudinal position of the undulation. The most telling
sign of this appears in Fig. 7, where a cross-section of
the “slow” correlation function is plotted alongside the
spatial derivative of the water height (multiplied by a
fitted prefactor) in order to check the validity of predic-
tion (1). Unlike what was observed in Fig. 4, there is
a clear discrepancy here, and the two profiles cannot be
said to match.

Notice also that, in the “slow” contribution to the two-
point correlation function, there is a clear offset in the far
downstream region where the water surface is flat. This

6 This is likely related to the existence of a threshold flow velocity
(∼ 23 cm/s in water) below which no zero-frequency solution for
surface waves exists [23]; if this is crossed, then the undulation
will be suppressed, and any corresponding checkerboard pattern
will vanish. In Figs. 5 and 6, this happens at around x = 1.1 m.
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Figure 5. We show here a series of plots characterizing a
flow which is gated at the downstream end. These are: (1)
The obstacle height profile and the mean water height profile,
averaged over the entire recording. In vertical dashed lines are
shown the positions of the black- and white-hole horizons. (2)
The flow velocity v(x) and wave speed c(x), calculated using
Eqs. (5) in the Appendix. (3) A zoom on the region shown by
a dotted rectangle in panel (1), but now with the mean water
height calculated separately in a series of ∼ 10 s subintervals,
all shown simultaneously. The thickness of the curve thus
indicates the degree of variation in time. (4) The position of
the white-hole horizon, calculated in subintervals of duration
∼ 40 s (in sold blue) and ∼ 10 s (in dashed red). The flow
rate is Q = 9.8 L/min, or (reducing to two dimensions) q =
Q/W = 3.1 × 10−3m2/s (where W = 5.3 cm is the channel
width).

indicates a significant vertical shift in the water height as
opposed to a horizontal one, since horizontal motion of a
flat surface generates no fluctuation. We do not know the
cause of this vertical motion, though it could be related
to the same kind of back-reaction effects observed in [24],
due to the transport of mass by surface waves. In any
case, since the value of this offset is about an order of
magnitude smaller than the amplitude of the oscillations
seen on the right of Fig. 4, we cannot rule out its presence
in Fig. 4 and are thus unable to pin down this feature as
being unique to gated flows.

Finally, we note that, while there is a clear but weak
checkerboard pattern associated with “slow” fluctua-
tions, there is a much stronger checkerboard-like pattern
associated with “fast” fluctuations (in addition to the

Figure 6. The two-point correlation function of free surface
fluctuations in the downstream region, for the same gated flow
of Fig. 5. The three correlation functions correspond to dif-
ferent definitions of the fluctuation δh: the full fluctuations
(where the background is the time-average over the entire
recording), the “slow” fluctuations associated with movement
of the background (found by averaging over 10-second subin-
tervals), and the “fast” fluctuations on top of this slowly-
varying background.
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Figure 7. In black is shown a cross-section of the “slow” corre-
lation of Fig. 6, with x′ ≈ 0.85 m fixed close to the point where
Cslow(x, x′) reaches its maximum value. In red is shown the
spatial derivative of the mean water height h0(x) (averaged
over the entire recording), multiplied by a prefactor found by
fitting it to the black curve. If the two curves were in good
agreement, this would have been associated with a value of〈
δx2d

〉
through prediction (1); however, given the clear dis-

crepancies between the two curves, prediction (1) is not valid
here and the quoted value of

〈
δx2d

〉
is not physically meaning-

ful.

strong autocorrelation along the diagonal x = x′). Since
we cannot link it straightforwardly to the motion of the
background flow, we believe that this checkerboard-like
feature is really due to the scattering of surface waves, in
particular to a scattering process that efficiently produces
short-wavelength dispersive modes just downstream of
the white-hole horizon. It is known in Analogue Grav-
ity that a long-wavelength counter-current wave inci-
dent on the white-hole horizon from the downstream side
will scatter into two short-wavelength dispersive modes,
which play the role of the Hawking pairs [9, 25]. Fourier
analysis of the noise in the far downstream region indicate
that the required incident modes are indeed present (see
the last section of the Supplemental Material). More-
over, the presence of a checkerboard-like feature seems
to imply that the two dispersive modes are correlated
with each other; for, in the absence of such correlations,
each plane wave mode ∝ eik(ω)x−iωt would contribute to

the two-point function via a term of the form eik(ω)(x−x′)

that is a function of x − x′ only. (In the Supplemental
Material, we also see signs of these correlations in Fourier
space.) It is thus tempting to conclude that the rather
complex correlation pattern in the first and third panels
of Fig. 6 is to some degree a signal of the classical ana-
logue of the Hawking process taking place at the white-
hole horizon. This could be verified by a careful analysis
of the corresponding scattering coefficients, which is be-
yond the scope of this paper but is an intriguing direction
for further research.

IV. SUMMARY AND DISCUSSION

We have performed a series of experimental runs in
which a stationary transcritical flow is realised in a nar-
row 1D channel. The analogue white-hole in the down-
stream region (where the flow passes from super- to sub-
critical) is observed to coincide with the onset of a visible
motion of the background, as defined by averaging over

subintervals much shorter than the full duration of the
recording. Broadly speaking, the flows can be catego-
rized into two groups according to the behavior of the
white-hole horizon and the associated undulation, which
is linked to the presence or absence of a gate restricting
the upper part of the flow at the downstream end of the
channel. In the absence of such a gate, the white-hole
horizon occurs some distance downstream from the ob-
stacle, being generated spontaneously by the occurrence
of an undular hydraulic jump. In the two-point function
of free surface deformations, we observe a checkerboard
pattern in this downstream region that is associated with
slow fluctuations, and can be reasonably well-described
by a degree of randomness in the longitudinal position of
the jump. On the other hand, when a gate is present, the
white-hole horizon and its associated undulation tend to
occur on top of the obstacle. In this case, while there is
still a checkerboard-like pattern in the vicinity of the un-
dulation, it is not associated with slow fluctuations nor
with a straightforward longitudinal shift of the undula-
tion.

Although we are not yet able to give precise physical
reasons for the observed behavior, it seems to be phys-
ically intuitive, at least in part. That the undulation is
longitudinally mobile in the free flow seems reasonable,
given that the flow is not restricted at the downstream
end, nor much at the white-hole horizon which occurs
some distance from the obstacle. Indeed, being far from
the obstacle, the undulation in this case occurs in a back-
ground which is approximately translation-invariant, so
it makes sense that there is some translational freedom
that manifests through a degree of variability in the lon-
gitudinal position.

By contrast, the “attachment” of the undulation to the
obstacle in the case of gated flows removes this transla-
tional freedom, and the checkerboard pattern associated
with slow fluctuations is strongly suppressed. The back-
ground motion is no longer longitudinal, seeming to be
largely in the vertical direction. Nevertheless, there re-
mains a checkerboard-like pattern associated with fast
fluctuations. As pointed out above (and elaborated upon
in the Supplemental Material), there are strong indica-
tions that a stimulated analogue Hawking process is oc-
curring – namely, the required ancestor modes are clearly
present on the downstream side, and the two dispersive
modes that ought to be produced by the Hawking process
are correlated. It is thus tempting to view the correla-
tion pattern in this case as a signature of the Hawking
effect. A more precise and convincing proof would be
to extract the scattering coefficients associated with this
process; these should be approximately given by a Planck
spectrum 7 whose temperature is determined by the flow
properties at the horizon [9, 25]. With the particular

7 We should recall that, at low frequencies, the thermal behavior ∼√
ωH/ω of the associated scattering coefficients is recovered only

in a finite range [ωc , ωH ], where ωH is the Hawking temperature
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flow in question, this is difficult to achieve, as the pro-
duced dispersive modes exist only in a relatively short
region downstream from the white-hole horizon, where
the background flow is varying a lot (and is not well-
known thanks to the likely presence of flow circulation
on the bottom of the channel – see “Numerical simula-
tion of background flow” in the Supplemental Material).
Therefore, such an analysis likely requires the realisation
of a gated flow where the undulation and the dispersive
modes exist over an extended region where the flow is
relatively flat.

Finally, it should be pointed out that the precise ori-
gins of the movement of the undulation in the free flows
are not known, despite the possibility of such movement
being rather intuitive. In particular, we cannot rule out
the possibility that these slow fluctuations are themselves
the result of an analogue Hawking effect. For the Hawk-
ing process, being described by a thermal spectrum, is (in
1D) most prevalent for very low frequencies. Moreover,
since the downstream side of the flow lies far from the ob-
stacle in a regime where the system is almost translation-
invariant, it makes sense that one of the zero-frequency
solutions be characteristic of this symmetry, and thus
that δh ∝ h′0(x) be a solution of the linearized wave equa-
tion on top of such a flow. A more definitive answer to
this question requires a more precise treatment of the lin-
earized wave equation on top of a background flow where
the undulation is already at its saturated level. This is

beyond the scope of the present work, but would be an
interesting direction for further research.
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SUPPLEMENTAL MATERIAL

Background and fluctuations

In this section, we give some theoretical details con-
cerning the decomposition of the full water height h(x, t)
into a “background” and a fluctuation propagating on
top of that background.

There is inevitably some ambiguity in the decompo-
sition of the full water depth into a background plus a
fluctuation:

h(x, t) = h0(x, t) + δh(x, t) . (2)

Only the full water depth, h(x, t), is measured exper-
imentally. The decomposition into the background,
h0(x, t), and the fluctuation, δh(x, t), is imposed in the
data analysis, and is inherently ambiguous, for there are
many ways to define h0(x, t) (at least when averaging
over time, rather than taking an ensemble average). The
simplest way is simply to define a time-independent h0(x)
as being the average of h(x, t) over the entire duration of
the recording. If the background profile drifts over this
duration, then that drift will be included in the fluctu-
ation δh(x, t). We may, however, split the full duration
into shorter subintervals, defining h0(x, t) as the local av-
erage over each segment. Crucially, we should see a clear
dependence on the duration of the segments if there is a
separation of scales between the typical time associated
with the passage of surface waves and the typical time
associated with the evolution of the background. If the
segment duration is much shorter than the latter, then
the background will be approximately constant over each
segment, and the movement of the background will be in-
cluded in h0(x, t) rather than in δh(x, t), the latter then
capturing the “true” surface waves. On the other hand,
if the segment duration is large compared to the time
scale associated with the movement of the background,
then this movement will be included in δh(x, t) and will
be treated as a fluctuation on an equal footing with the
surface waves.

This, of course, affects all quantities used to charac-
terise the statistical properties of the fluctuations. In par-
ticular, the (time-averaged) two-point correlation func-
tion 〈δh (x, t) δh (x′, t′)〉t is affected. To see this explic-
itly, let us write the fully time-dependent water depth
as:

h(x, t) = h0(x) + δhslow(x, t) + δhfast(x, t) . (3)

We identify h0(x) + δhslow(x, t) with the time-dependent
background, h0(x, t). h0(x) is just the average of h(x, t)
over the entire duration of the recording. The division of
the remainder into δhslow(x, t) and δhfast(x, t) is then a
matter of choice, depending on the duration of the sub-
intervals averaged over in order to define h0(x, t). The
equal-time two-point function for the total height is

〈h(x, t)h(x′, t)〉t = h0(x)h0(x′)+〈δhslow(x, t)δhslow(x′t)〉t
+ 〈δhfast(x, t)δhfast(x

′, t)〉t . (4)
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The cross-terms must vanish because h0(x) and
δhslow(x, t) are themselves defined as averages over time,
with the average of the perturbation over each sub-
interval necessarily vanishing. Now, 〈h(x, t)h(x′, t)〉t and
h0(x)h0(x′) are unambiguously defined for any single
recording. The only ambiguity rests in the division into
the two-point functions for δhslow and δhfast. So we can-
not lose any information when exploring different parti-
tions of the whole duration into sub-intervals; we only
divide the information differently into “slow” and “fast”
perturbations.

Extraction of relevant quantities

The mean water height h0(x) is calculated by averag-
ing h(x, t) over all time, with the typical recording dura-
tion being 340 seconds. Once this is known, the (depth-
averaged) flow velocity profile v(x) and the wave speed
c(x) are calculated using

v(x) =
q

h0(x)
, c(x) =

√
g h0(x) , (5)

where q = Q/b is the flow rate per unit width (b = 5.3 cm
is the width of the channel) and g = 9.8 m/s2 is the ac-
celeration due to gravity. These expressions hold in the
absence of significant vorticity and when the surface is
relatively flat (i.e., |dz/dx| � 1). They are expected to
be accurate in the upstream region, though the presence
of vorticity downstream from the obstacle is expected to
make them less accurate there. The horizons are simply
defined as the points where v(x) = c(x), the black-hole
horizon in the upstream region where the flow passes from
sub- to supercritical, and the white-hole horizon in the
downstream region where it returns to subcritical. It is
interesting to note that, even though the white-hole hori-
zon occurs in the downstream region where the validity
of Eqs. (5) could be questioned, it typically coincides well
with the beginning of the region where significant move-
ment of the background is observed.

The instantaneous free surface deformation is simply
defined as δh(x, t) = h(x, t) − h0(x). The full two-point
correlation function is then just the average over all time
of the product of δh(x, t) observed simultaneously at two
points:

Cfull(x, x
′) = 〈δh(x, t) δh(x′, t)〉t

=
1

Nt

Nt∑
j=1

δh(x, tj) δh(x′, tj) , (6)

where Nt is the total number of discrete measurement
times (typically Nt = 213 = 8192).

The division into subintervals is achieved by factorizing
Nt = nsub ×N sub

t , representing a total of nsub subinter-
vals each containing N sub

t discrete measurement times.
Then profile of the mean water height hsub

0 (x, t) can be
calculated within each subinterval. The “slow” fluctu-
ation is defined as the difference between this and the

overall mean h0(x), while the “fast” fluctuation is de-
fined as the remainder:

δhslow(x, t) = hsub
0 (x, t)− h0(x)

δhfast(x, t) = δh(x, t)− δhslow(x, t) = h(x, t)− hsub
0 (x, t) .

(7)

The “slow” and “fast” contributions to the two-point cor-
relation function are then straightforwardly defined:

Cslow(x, x′) = 〈δhslow(x, t) δhslow(x′, t)〉t ,
Cfast(x, x

′) = 〈δhfast(x, t) δhfast(x
′, t)〉t . (8)

The derivative h′0(x), needed to compare the observed
“slow” two-point correlation function with the predic-
tion (1), is calculated as follows. The height profile h0(x)
is smoothed by applying a window in the Fourier trans-
form so as to remove noise of high spatial frequency. The
window takes the form

W (k) =
1

2

(
tanh

(
k + kcut

σk

)
− tanh

(
k − kcut

σk

))
,

(9)
where we take kcut = 400 m−1 and σk = 50 m−1. We then
multiply by i k and take the inverse Fourier transform,
which yields h′0(x) for the relevant values of x. (It gen-
erates rather large deviations at the edges of the spatial
window, but these are not relevant for our purposes.)

In comparing the two-point function with the predic-
tion (1), we fix x′ to be close to the first maximum
of Cslow(x, x′), and then simply perform a linear fit of
the amplitude needed to match h′0(x)h′0(x′) with the ob-
served two-point function. We only include those points
within the displayed spatial window (corresponding to
the dotted rectangle on the plots of the mean water
height).

Numerical simulation of background flow

An original two-dimensional free-surface flow code
was used to simulate numerically the transcritical flows
studied experimentally in this paper. A projection
method is applied to the incompressible variable den-
sity Navier-Stokes equations to decouple velocity and
pressure unknowns. Away from the interfaces (water-air
and obstacle-water), partial differential operators (diver-
gence, gradient, Laplacian operator) and nonlinear terms
are discretized on a fixed Cartesian grid using standard
second-order finite difference approximations. Several
techniques are used to account for the presence of the
two interfaces while avoiding the generation of conformal
meshes. An Immersed Boundary Method [27] enforces
the no-slip boundary condition on the rigid obstacle and
the free surface evolution is tackled with the Level-Set
technique [28].

Results for a gated flow, with the obstacle of Figs. 5-
7, are given in Figure 8. This shows the streamlines of
the flow once a steady state has been reached, starting
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Figure 8. Numerical simulation of background flow. Here are
shown the streamlines of the flow over the obstacle as pro-
duced by the numerical simulation (see details in text), for a
flow with a gate at the downstream end. The short undula-
tion on top of the obstacle is clearly seen. It is also observed
to be associated with a circulation layer on the bottom of the
flow, shown here in green. This makes the upper part of the
flow effectively flat, allowing the undulation to extend further
downstream than it otherwise would have.

from an initial water height of 3.3 cm (so that the ob-
stacle is always completely submerged). The simulation
neglects the transverse direction, so in order to mimic
the increased effective dissipation due to the narrowness
of the channel and friction at the walls, the viscosity of
water has been increased by a factor of 10. The results
are in qualitative agreement with what is seen experi-
mentally in Fig. 5: after an initial acceleration on top
of the obstacle, the flow immediately decelerates and in-
duces an undulation, which exists over a short region and
vanishes in the asymptotic downstream region.

Notice that the undulation appears to be coupled with
a circulation layer on the bottom of the channel, and that
the non-circulatory layer on top has a depth which is es-
sentially constant in the vicinity of the undulation, effec-
tively cancelling out the downstream slope of the obsta-
cle. This helps to explain why the undulation extends as
far as it does and why it disappears rather abruptly. The
undulation is essentially a (rather large-amplitude) zero-
frequency free surface deformation, satisfying ω(k) = 0
where k is the wave vector of the undulation. This
means that the phase velocity of the undulation, ω/k,
vanishes, but by addition of velocities this is just equal
to vph(k)+vflow, where vph(k) is the phase velocity in the
rest frame of the fluid and vflow is the flow speed. Due
to capillary effects, vph(k) has a minimum at ∼ 23 cm/s
(this is the threshold mentioned in footnote 6), so vflow

needs to be larger than this in order for a non-trivial
zero-frequency solution to exist. A straightforward ap-
plication of the formula v̄(x) = q/h(x) (for the depth-
averaged flow velocity v̄) indicates that v̄(x) dips below
23 cm/s significantly before the end of the undulation.
However, in the numerical results of Fig. 8 we see that
the non-circulating flow near the surface has a relatively
shallow constant depth some distance from the obstacle,
so that the surface flow dips below 23 cm/s only towards

Figure 9. Cslow(x, x′) of Figs. 2 (upper, non-gated flow) and 5
(lower, for gated flow), for different values of the subinterval
duration. In both cases the profile is quite stable.

the end of the circulation layer. We indeed see that the
undulation ends in rough coincidence with the end of the
circulation layer.

Dependence on subinterval duration

In Fig. 9 are plotted the “slow” correlation functions
of Figs. 4 and 7 for varying durations of subintervals
in which the background is defined by time-averaging.
What is most notable is the relative stability of the curves
with respect to the subinterval duration. We do see a
significant change in the non-gated case when changing
from a duration of 43 seconds to 21 seconds. This in-
dicates that we cross the time scale associated with the
slow fluctuations: a duration of 43 seconds is long enough
that the background has already undergone a noticeable
change, and this change gets labelled as “fast” rather
than “slow”.

Correlations in Fourier space

Given that scattering on a stationary background pro-
ceeds independently for different frequencies, it can be
illuminating to consider correlations between different
Fourier modes rather than between different points in
space. To this end, restricting our attention to the non-
gated flow of Fig. 2, we define the Fourier amplitudes

δhj(k, t) =
1

x2 − x1

∫ x2

x1

dxH(x) e−ikx δhj(x, t) . (10)

where H(x) is a window function called the Hamming
window:

H(x) =
25

46
+

21

46
cos

(
2π
x− 1

2 (x1 + x2)

x2 − x1

)
. (11)

This choice of window is convenient as it suppresses the
first side-lobe in the Fourier transform over a finite win-
dow size [2]. We do not restrict k to discrete values; this
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Figure 10. Magnitude of the two-point correlation function in
Fourier space, for the “slow” fluctuations in the downstream
region of the non-gated flow of Figs. 2-4.

means that while Fourier amplitudes which are nearby in
k are not independent, they are smooth rather than pixel-
lated. The subscript j stands for the various definitions
of δh(x, t) defined above, with j ∈ {full , slow , fast}.
Then we can define the Fourier-space two-point corre-
lation function analogously to that in position-space:

Cj(k, k
′) =

〈
δhj(k, t) δh

?
j (k′, t)

〉
t
. (12)

By construction, we have Cj(k, k
′) = C?

j (k′, k); more-
over, since δh(x, t) is real and consequently δh(k, t) =
δh?(−k, t), we also have Cj(k, k

′) = Cj(−k′,−k). These
mean that the magnitude |Cj(k, k

′)| must be symmet-
ric under reflection in both the diagonal k = k′ and the
anti-diagonal k = −k′.

Non-gated flow

In Fig. 10 is shown the magnitude of Cslow(k, k′) for
the Fourier-space correlation function in the downstream
region (i.e., in the vicinity of the undulation) of the non-
gated flow of Fig. 2. Here, we have chosen x1 = 1.15 m
and x2 = 2.06 m, so as to capture the entire downstream
region beyond the hydraulic jump. The key observation
here is the simple 3× 3 structure of the correlations, oc-
curring between three distinct wave vectors: k = 0 and
k = ±ku, where ku is the wave vector associated with the
undulation. (We see that ku ∼ 110 m−1, corresponding
to a wavelength of 2π/ku ∼ 6 cm, which is consistent with
the undulation pattern seen in Figs. 2-4.) This is consis-
tent with the physical interpretation given in Eq. (1).
Fourier transforming δh(t, x) ≈ −δxd(t)h′0(x) in space,
we have δh(k, t) ≈ −δxd(t) [h′0]k, where [h′0]k is just the
Fourier transform of h′0(x). Then

Cslow(k, k′) ≈
〈
δx2

d(t)
〉
t

[h′0]k [h′0]
?
k′ . (13)

Figure 11. Magnitude of the two-point correlation function in
Fourier space, for the “fast” fluctuations in the vicinity of the
undulation in the gated flow of Figs. 5-7. The dashed ellipse
points out the feature of interest: a correlation between the
short-wavelength dispersive modes of positive and negative
wave number.

This particular form of Cslow(k, k′) requires that, not
only are the required symmetries described above re-
spected, but we also have |Cslow(k, k′)| = |Cslow(k,−k′)|
(and similarly for k → −k). That is, the magnitude of
the correlation function is symmetric under reflection in
the horizontal and vertical axes. Although this is only
an approximate symmetry that depends on the valid-
ity of prediction (1), it is borne out by the correlations
in Fig. 10: the ratio |Cslow(ku,−ku)| / |Cslow(ku, ku)| is
0.93 where |Cslow(ku, ku)| reaches its maximum value at
ku ∼ 110 m−1.

Gated flow

In Fig. 11 we show the magnitude of the Fourier-
space correlation function Cfast(k, k

′) for the region on
top of the obstacle in the gated flow of Figs. 5-7, from
x1 = 0.8 m to x2 = 1.1 m. (We choose to show this for
the “fast” fluctuations since it is these that generate the
main checkerboard-like feature in the position-space cor-
relation functions of Fig. 6.) Since the flow varies a lot in
this region, the normal modes are not strict plane waves
and there will be considerable “smudging” of the corre-
lation pattern. Nevertheless, it is sufficient to show the
main feature of interest: a clear correlation between pos-
itive and negative k, extending from about |k| = 100 m−1

to |k| = 200 m−1 (and indicated by the dashed ellipse in
Fig. 11). This correlation between short-wavelength dis-
persive modes of positive and negative k is precisely what
is engendered by the Hawking scattering process [9, 25].
More precisely, the dispersion relation around the posi-
tive zero-frequency solution k0 can be written, to lowest
order in a Taylor expansion, as ω ≈ vg,0 (k − k0), where
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Figure 12. Power spectra of fluctuations on the gated flow of
Fig. 5, both in the relatively flat downstream region(top) and
in the vicinity of the undulation (bottom).

k0 is the zero-frequency mode and vg,0 its group velocity.
Around the negative solution −k0, it instead takes the
form ω ≈ vg,0 (k + k0). So, at fixed ω not too far from
zero, the two short-wavelength solutions of the dispersion
relation are kpos = k0 + ω/vg,0 and kneg = −k0 + ω/vg,0.
Those with the same ω are correlated by the scattering
and thus correlated. On the (kpos, kneg) plane, the locus
of these correlations describes a line of slope 1 centered
at (k0,−k0); on the full (k, k′) plane, this line appears in
both the lower right quadrant and the upper left quad-

rant. This is exactly what we see in Fig. 11, and we
may read off k0 ≈ (150± 10) m−1 (corresponding to a
wavelength λ0 ≈ (4.2± 0.3) cm, compatible with the un-
dulation seen in Fig. 5). Unfortunately, we are unable
to check this value against theoretical predictions due to
the relatively large variation of the water height h and
the corresponding flow velocity v = q/h in the region of
interest.

To further corroborate our claim that the correlations
mentioned above are likely due to the analogue Hawking
process associated with scattering at the white-hole hori-
zon, we show in Fig. 12 the power spectra of the “fast”
fluctuations in both the downstream region (where the
background is relatively flat) and in the region of the un-
dulation (where it varies a lot). This power spectrum is
defined somewhat analogously to Eq. (10) for the Fourier

amplitudes: we define S(ω, k) =

〈∣∣∣δ̃h(ω, k)
∣∣∣2〉, where

δ̃h(ω, k) =
1

t2 − t1
1

x2 − x1

∫ t2

t1

dt

∫ x2

x1

dx

H(x) eiωt−ikxδh(t, x) . (14)

The double Fourier transform δ̃h(ω, k) is calculated sep-
arately in each of 32 subintervals of ∼ 10 s each, and its
squared magnitude is averaged over the subintervals to
get S(ω, k). This is particularly illuminating as the oc-
cupied modes will lie along the dispersion relation char-
acterising the surface waves [4]. The key observations of
Fig. 12 are:

1. The counter-propagating branch of surface waves
propagating in the upstream direction is signifi-
cantly populated in the downstream region (prob-
ably because some of the co-propagating waves are
reflected by the gate). These will therefore be in-
cident on the white-hole horizon, where they are
expected to scatter into the two available disper-
sive modes by a process analogous to the Hawking
effect [9, 25].

2. The dispersive branch of the dispersion relation in
the vicinity of the undulation is clearly populated,
most significantly on the positive-energy side of that
branch. This is important because the counter-
propagating mode incident from the downstream
side has positive energy, so it is expected to scatter
preferentially into the positive-energy mode.
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