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Abstract. In a context of increased competition, companies are looking to optimize all the components of their
systems. They use compression springs with constant pitch for their linear force/length relationship. However, it
appears that the classic formula determining the global load-length of the spring is not always accurate enough.
It does not consider the effects of the spring’s ends, which can induce non-linear behaviour at the beginning of
compression and thus propagate an error over the full load-length estimated. The paper investigates the entire
behaviour of a cylindrical compression spring, not ground, using analytical, simulation and experimental
approaches in order to help engineers design compression springs with greater accuracy. It is built with an
analytical finite element method, considering all the geometry and force components of the spring. As a result,
the global load-length of compression springs can be calculated with more accuracy. Moreover, it is now possible
to determine the effective tri-linear load-length relation of compression springs not ground and thus to enlarge
the operating range commonly defined by standards. This study is the first that enables the behaviour to be
calculated quickly, by saving time on dimensioning optimisation and on the manufacturing process of
compression springs not ground.

Keywords: Springs / compression springs / spring design / initial deflection / spring stiffness
1 Introduction

Helical springs are curved structural elements that may be
cylindrical, conical or more complex and are made in
various materials and sizes. We can find compression,
extension or torsion springs used in many applications. But
the most frequently used one is certainly the cylindrical
compression spring with constant pitch, which is known for
its linear force-length relation. Cylindrical compression
springs can be found in aircraft and automotive systems
such as shock absorbers [1,2], in defence systems [3] and in
medical applications [4], among others. It appears that the
classic formula [5,6] determining the global stiffness of the
spring (Eq. (1)) is not always sufficiently accurate, in
particular because it does not consider the behaviour of the
springs’ ends which are commonly designated as dead or
inactive. These last coils can be closed, ground or not. They
help the external load to be considered as purely axial.

F1 ¼ k L0 � L1ð Þ with k ¼ Gd4
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In the case of cylindrical compression springs with
closed not ground ends, some studies have highlighted
nonlinear behaviour at the beginning, caused by end coils.
The first phase may come from a disequilibrium of the end
coils, which encourage the spring to bend until it is stable.
As P.S. Valsange’s study [7] shows, details such as material
precision, wire surface imperfections, heat treatment or
raw material defects, can have considerable impact.
Neglecting some part of the spring geometry seems to be
the first error that needs to be corrected in order to obtain a
more accurate model. Because of the non-parallel end coils,
the spring rate tends to lag over the initial 20% of the
compression range, often being considerably less
than commonly calculated [8]. The Institute of Spring
Technology [5] gives a reminder that the first and last 15%
of the force-length curvedonot followtheglobal stiffness and
advises to avoid these regions because “load tolerances are
particularly difficult to maintain due to the unpredictable
nature of the stiffening effects” [5]. Previous works have
noted this phenomenon. The problem is usually solved by
cutting the curve and ignoring this first 20% of the springs’
range. In their work, Gubeljak and Vejborn�y [1] voluntarily
neglected the beginning of experimental characteristic
because of its nonlinearity, caused by nonparallel and
defective end coils. In the same way, several studies [2,9,10]
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Fig. 1. Relation between load and deflection of (a) a conical spring and (b) a cylindrical spring [9].
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have cut the first fifth of their curves, whether they define
load or stresses by displacement units. The reason given is
oftenthattheyareoutside the rangeofuseof the spring,anda
preload is set to hide it. Shimoseki et al. [11] noticed this clear
bilinearity (see Fig. 1a) in the behaviour of a conical spring
not ground and a cylindrical spring showed a nonlinear
characteristic at the initial stage of loading (see Fig. 1b).
These effects are not negligible and provide a false deflection
length for a given force. “This is caused by contact between
the ground and end coil. The spring constant determined by
linearanalysis ishigher thannonlinearanalysis sinceonly the
active coils are used in the linear analysis, neglecting the
contribution of end turns” [11]. Unfortunately, this part of
their study is more focused on the contact between the wires
than between the wire and the ground so they ignored it for
the rest of their work. The French standard, on the other
hand, only avoids the last 15% of the curve, considering the
remaining part as strictly linear [6].

In [12], during the creation of a three-dimensional
numerical model, the authors voluntarily neglected the end
turns by freezing them, creating a fictional preload in their
model and simplifying the contact. Because of this
imprecision, manufacturers are often obliged to build
compression springs with a free length greater than
theoretically specified in order to accurately obtain the
right load for a given length.

Cylindrical compression springs are the most common-
ly used type of springs. However, manufacturers are asking
for improvements in the common current formula because,
even if it is quite accurate for ground springs, springs with
small wire diameter cannot be ground. So, many studies
have tried to upgrade it by setting up new analytical and
finite elements methods. The study [13] uses discretization,
although it is more focused on the dynamic behaviour of
springs. Other studies have shown that is not necessary to
change the common formula but only to correct the input
data values. Paredes [4], working in this way, fixed the
numbers of active coils and free lengths approach the
experimental behaviour of the springs. However, this study
cannot be generalized for compression springs. Other
studies [9,14] worked on a three-dimensional numerical
model but either neglected the beginning of the spring
behaviour or set unspecified boundary conditions. One of
the most common methods used to try to improve the
compression spring formula is based on finite element
analysis. De Crescenzo and Salvini [15] chose to cut each
coil in half in order to transfer the problem from a
volumetric to a beam system. This method is more able to
manage contact between coils but still does not consider
contact with the floor. Also based on finite element analysis
[16] sets a local system into the wire in order to apply force
and momentum. However, it focuses more on the stresses
than the displacements. More complex analytical methods
have been proposed such as the variational one in [17],
where parameters evolve along the deformation. Gu et al.
[18] combined finite elements and evolutive characteristics
to propose their model. With iteration, their program
calculates several coefficients and, like genetic evolution,
selects the best values for each step. Finally, some studies,
for instance that of Qiu [19] work to delete the linear phase.
Nevertheless, three-dimensional numerical models with
detailed end coils contact are time consuming. There is a
real need for a tool that could define the beginning of the
load-length relation of compression springs for a moderate
computational cost. This could be useful for researchers
seeking to perform complex studies like optimisation. It
could also be useful for manufacturers in the design phases,
for which they do not have accurate predictive tools.

The importance of the curved elements can be seen from
the number of research works that have been reported in
the literature. Rodriguez [20], Paredes [21], and Qiu [19]
have tried to improve the force-length relationship formula
for conical springs. Paredes’ work [21] reveals a polynomial
formula andRodriguez [20] uses amodel where each coil is a
single, unique spring, and underlines the weight of the end
coils on the spring. For extension springs, Paredes et al. [22]
worked on the validity range of the common formula [5,6]
and extended it close to their free length. To do so, they
considered the mechanical behaviour of the end coils and
included it in the classic formula. On composite rings, Tse
and Lung [23] used curved beam element analysis for
nonlinear radial extension with large deflection. Their
numerical procedure includes the effects of flexural
bending, stretching and through-the-thickness parabolic
distribution of transverse shear deformations. Other
studies [24,25] are based on finite element and Lax-



Fig. 2. Curved beam characteristics.
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Wendroff methods to define the dynamic characteristics of
cylindrical compression springs. Dynamic and resonance
behaviour are beyond the scope of our study. Palaninathan
and Chandrasekharan [26] created a 12� 12 stiffness
matrix of a curved beam element obtained by including
the effects of normal and transverse shear forces and
considering all the in-plane and normal-to-plane forces
together. They chose to restrict their work to one element
and neglect the helix angle of the spring, thus simulta-
neously ignoring many combinations of relations between
forces. Dym [27] considered the helix angle of the spring but
simplified the loads in order to obtain only the axial load
and the momentums along the orthogonal axes of this load.

The goal of this study is to build an analytical finite
element method, considering all the spring’s geometry and
force components. In this way, the helix angle, the
geometry of the end coils, the in-plane and normal-to-
plane forces, the spring’s manufacturing imperfections and
the non-parallel ends will be considered.

First the stiffness matrix of any curved beam element is
built by using Castigliano’s second theorem, then the
particular points of the spring are calculated geometrically,
and finally its load-length curve is computed. This curve
can then be compared with the numerical Abaqus results
and the experimental ones.

2 Analytical study

The following study was intended to highlight the impact
of the geometry, the stiffness and the spatial behaviour of
the end coils on the global spring. In order to do that, it is
necessary to understand what happens during deflection of
the spring. At the start, a cylindrical compression spring
with constant pitch, not ground, and axially guided, has
only a single contact point between the end coil and the
floor. The axial load is, therefore, not centred on the spring
but is located on its side. During the compression, this
eccentric axial load causes a momentum, bending the
spring until another point of the wire touches the floor.
Thus, an associated contact force is created. This force
evolves, as does the contact position, tending to an
equilibrium state. It can be considered that, after this
stabilization, the end coils have a limited impact on the
remaining deflection.

2.1 Castigliano’s second theorem and stiffness matrix
building

The goal of this part is to compute the global stiffness
matrix of a spring element. The stiffness matrix for a
curved beam element having twelve degrees of freedomwas
calculated by Palaninathan and Chandrasekharan [26].
The effects of axial and transverse shear forces have also
been considered. However, this work has neglected the
pitch of the coils, which makes the calculation easier but
may well also be the source of precision mistakes. It was
decided to recreate this matrix by considering the pitch of
the coils. The pitchm and the helix angle a are included as
shown below (see Fig. 2) and the variable v defines the
angle of the travel along the spring’s primitive line,
measured clockwise positive. The length of the beam is
defined by v0, the angle subtended by the curve at the
centre.

A global coordinate system and a local coordinate
system are created. The first system is fixed and the second
follows the primitive line with v until the point arbitrarily
called B is reached. Let A be the point at the start of the coil
line, where the forces and momentum are applied. The
forces represented in Figure 3 are X, Y and Z, along global
axes directions. The momentum L, M and N are not
represented but are on the same axes and direction as X, Y
and Z, respectively.

We need now to know the internal forces and the
momentums for each point on the line. First, the forces
have to be transferred into the local coordinate system:

!
FB;L ¼ !

FA;G

� �T

� QG!L

( )T

Fx

Fy

Fz

24 35 ¼
X
Y
Z

24 35T8<:
�

cos að Þcos vð Þ sin vð Þ sin að Þcos vð Þ
�cos að Þsin vð Þ cos vð Þ �sin að Þsin vð Þ

�sin að Þ 0 cos að Þ

24 35)T

:

ð2Þ
The matrixQG!L is the transfer matrix from the global

to the local coordinate system. In the same way, the
momentums have to be transferred but with consideration
being given to the influence of the forces:

!
MB;L ¼ !

MA;G þ!BA ^
!
FA;G

� �T

� QG!L

( )T
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See equation (3) below.

Finally, the internal forces and the moments at B may
be expressed in terms of the forces at the node A as in
equations (4)

Fx ¼ Xcos að Þcos vð Þ � Y cos að Þsin vð Þ � Zsin að Þ
Fy ¼ Xsin vð Þ þ Y cos vð Þ

Fx ¼ Xsin að Þcos vð Þ � Y sin að Þsin vð Þ þ Zcos að Þ

Mx ¼ X
D

2
sin að Þ 1� cos vð Þð Þ � vm

2p
cos að Þsin vð Þ

� �
þY

D

2
sin að Þsin vð Þ � vm

2p
cos að Þcos vð Þ

� �
� Z

D

2
cos að Þ 1� cos vð Þð Þ þ Lcos að Þcos vð Þ

�Mcos að Þsin vð Þ �Nsin að Þ

My ¼ X
vm

2p
cos vð Þ � Y

vm

2p
sin vð Þ þ Z

D

2
sin vð Þ

þ Lsin vð Þ þMcos vð Þ

Mz ¼ X �D

2
cos að Þ 1� cos vð Þð Þ � vm

2p
sin að Þsin vð Þ

� �
� �

Fig. 3. Curved beam coordinate force system.
þY �D

2
cos að Þsin vð Þ � vm

2p
sin að Þcos vð Þ

� Z
D

2
sin að Þ 1� cos vð Þð Þ þ Lsin að Þcos vð Þ

�Msin að Þsin vð Þ þNcos að Þ: ð4Þ
Mx

My

Mz

24 35¼ L
M
N

24 35þ

�D

2
sin !ð Þ

D

2
1� cos !ð Þð Þ
!m

2�

266664
377775 b

X
Y
Z

24 35
0BBBB@

1CCCCA
8>>>>><>>>>>:

Ti!j ¼

�1
0
0
0
0
0

0
�1
0
0
0
0

0
0

�1
0
0
0

0
!m=2�

�Dð1�cos !ð Þ
�1
0
0

2666664
The strain energy in the beam can be expressed as:

UC ¼
D

4
∫
v0

0

Fxð Þ2
EA

þ Fy

� �2
GA

þ Fzð Þ2
GA

þ Mxð Þ2
GJ

þ My

� �2
EI

þ Mzð Þ2
EI

 !
dv ð5Þ

Using Castigliano’s second theorem, the deformation
components can be obtained from equation (5) as:

u1 ¼ dUC

dX
;u2 ¼ dUC

dY
;u3 ¼ dUC

dZ
;u4 ¼ dUC

dL
;

u5 ¼ dUC

dM
;u6 ¼ dUC

dN
: ð6Þ

The displacement along x, y and z global axes are
respectively u1, u2 and u3. The rotations along these same
axes are respectively u4, u5 and u6.

Using equations (4) and (5) in (6) and carrying
out the indicated partial differentiation and
integration, the following equation in matrix form is
obtained, where the displacements are located at the
point A:

u1

u2

u3

u4

u5

u6

2666664

3777775 ¼

k01 k07 k08
k07 k02 k12
k08 k12 k03

k09 k10 k11
k13 k14 k15
k16 k17 k18

k09 k13 k16
k10 k14 k17
k11 k15 k18

k04 k19 k20
k19 k05 k21
k20 k21 k06

2666664

3777775
X
Y
Z
L
M
N

2666664

3777775
Ui ¼ MFii

:Fi: ð7Þ
It can be observed that the matrix is symmetrical. The

detailed equations are available in Appendix A. Now, the
6� 6 stiffness matrix can be created, based on the
flexibility one already made.

MKii
¼ M�1

Fii
: ð8Þ

To build the stiffness of the whole element, we create a
transfer matrix Ti!j based on a hypothesis of small
displacements. It represents the impact of the displace-
ments or loads of one extremity on the other:

And we have:
See equation (9) below.
T

�
cos �ð Þcos !ð Þ sin !ð Þ sin �ð Þcos !ð Þ
cos �ð Þsin !ð Þ cos !ð Þ sin �ð Þsin !ð Þ

sin �ð Þ 0 cos �ð Þ

24 35
9>>>>>=>>>>>;

T

: ð3Þ

Þ=2

�!m=2�
0

�Dsin !ð Þ=2
0

�1
0

Dð1�cos !ð ÞÞ=2
Dsin !ð Þ=2
0
0
0

�1

3777775 ð9Þ



Fig. 4. Abaqus geometry of the spring.
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MKij
¼ MKii

:Ti!j ð10Þ

MKji
¼ TT

i!j:MKii
¼ MT

Kij
ð11Þ

MKjj
¼ TT

i!j:MKij
: ð12Þ

We can build the local stiffness matrix of our element:

MKelemL
¼ MKii

MKij

MKji
MKjj

� �
: ð13Þ

To check the accuracy of the matrix, a finite element
model was made on Abaqus. It was designed by placing
data points and by connecting them with a spline. This
spline allowed the exact shape of the spring’s mean wire to
be well approximated without having to compute a large
amount of points (see Fig. 4). Several tests were performed
with whole and non-whole numbers of coils. The average
error between the models was around 1% which confirms
the accuracy of this matrix.
2.2 Geometrical calculation of the contact points

Geometrical calculation was used to determine where the
spring touched the floor at a point other than the one where
the force is applied. In order to set the boundary conditions
of the model, it is necessary to know the positions of its
particular points. The following calculation considers the
end coil as a rigid body, which is a good approximation
because it is slightly deformed. We create a curved line for
the last coil of the spring and a plane. To simplify
the equations, let us consider that it is the plane, not the
coil, that is inclined. We have a curved line with a pitchme
and a diameter D and a plane in rotation around the
y axis, displaced from the z axis by D/2, inclined by u
(see Fig. 5). The origin for both the cylindrical and
Cartesian coordinate systems is in the centre of the coil, on
the floor.

The coil expression in cylindrical coordinates is defined
by:

r ¼ D

2
and zc ¼ vme

2p
: ð14Þ

The plane expression can be written in Cartesian
coordinates as:

zp ¼ D

2
� x

� �
tan uð Þ: ð15Þ

In order to compare them, the plane of coordinate
system has to be changed. In cylindrical coordinates, the
vertical expression for the planes becomes:

zp ¼ D

2
tan uð Þ 1� cos vð Þð Þ: ð16Þ

Now we have the two expressions in the same
coordinate system, giving two curves. At the contact
point, the curves have to touch and also be tangent to each
other. So, we have contact when:

zp ¼ zc and z0p ¼ z0c ð17Þ
with:

z0c ¼ me

2p
and z0p ¼ D

2
tan uð Þsin vð Þ: ð18Þ

Now, if p is the percentage of this coil, we have v=p2p.
From equations (14), (16), (17) and (18) we can compute:

p2p
me

2p
�D

2
tan uð Þ 1� cos p2pð Þð Þ ¼ 0

me

2p
�D

2
tan uð Þsin p2pð Þ ¼ 0

So : p� 1� cos p2pð Þ
2psin p2pð Þ ¼ 0: ð19Þ



Fig. 5. End coil’s mean line and inclined plane. Fig. 6. Curved beam contact point.

Fig. 7. Complete Abaqus #4 model.
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We obtain a solvable equation with p (Eq. (19)). Note
that this equation does not depend on original input data
like the pitch or the diameter of the coil. We can conclude
this point is a common value for all the coils (with a
constant pitch) and p=0.371=37.1%. For this kind of coil,
this value can be understood in two ways: the contact is
made at 37.1% of the pitch starting at the floor or at 37.1%
of the angle of the coil, starting at the floor (see Fig. 6). The
second phase of the curve occurs during the stabilisation of
the end coils.We now know that the end coils bend until the
point at p reaches the floor. But we suppose that there is
another transition during the deflection. The end coil has to
tend toward an equilibrium state where the second
application point becomes at the radial position opposite
of the point where the force is applied. From this state, the
end coil no longermoves and it canbe frozen during the third
phase and until the end of compression. This stabilisation
point is geometrically positioned at 50% of the end coil.

This was later confirmed by numerical tests on Abaqus.
Two supports that managed contact with the wire, set
boundary conditions and connectors between the wires and
forced displacement of the upper support were modelled
(see Fig. 7). The number of meshes on the end coils was
high, with close to 200 elements. Figure 8 shows the contact
force distribution during the compression and its position
along the end coil. The left red curve at 0%, the start of the
coil, is where the force is applied. The right blue curve
represents the second point of contact. The first contact
clearly appears close to 35%, then slides along the coil until
it reaches approximately 50% of it. The slight difference
comes from our hypothesis of y axis rotation only and our
rigid body hypothesis but it can be assumed as negligible
because of the small height difference between two points
situated 2% of the coil away from each other. For all the
springs modelled, the first contact point appeared between
33 and 39% and travelled until a stabilised point was
reached between 48 and 51%.
2.3 Global spring stiffness building

Once the points of interest were known, it is necessary to
partition the spring. In order to reach data from points
located at 0.371 (points B and G) and 0.500 (pointsC and
F) on the end coils, several partitions are needed, leading to
a total of seven elements (see Fig. 9). Each of them includes
its diameters D and d, its pitch m (therefore its helix angle
a) and its angular length v0.

To include all the elements in a global system, it is
necessary to rotate the local element stiffness matrixes by



Fig. 8. Abaqus results on contact reaction forces for spring #4.
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the sum of the angular length v0 of the coils above it. The
starting element is at the top, where the forces are applied.

vr1 ¼ 0

vrn ¼ vrn�1
þ v0n�1

qG!L ¼
cosvr sinvr 0
�sinvr cosvr 0

0 0 1

24 35

QG!L ¼
qG!L 03;3
03;3 qG!L

03;3 03;3
03;3 03;3

03;3 03;3
03;3 03;3

qG!L 03;3
03;3 qG!L

2664
3775
MK ¼

M 1ii M 1ij 0
M 1ji M 1ij þM 2ii M
0 M 2ji M 2jj þ

0 0 0
0 0 0

26666664
MKelemG
¼ QG!L:MKelemL

:QG!L
T

¼ Melemii
Melemij

Melemji
Melemjj

� �
: ð20Þ

The spring stiffness matrix can now be built in the
global system with all seven elements:

See equation (21) below.

F ¼ MK :U : ð22Þ
With the global stiffness matrix built, the degrees of

freedom have to be set. For all the 8 points, 6 degrees of
freedom have to be assigned for each of the 3 phases. For
each of them, either it is known to be free, so the
displacement is unknown and the external force is null, or
⋯ 0 0

2ij ⋯ 0 0
M 3ii ⋯ 0 0

⋱
⋯ M 6jj þM 7ii M 7ij

⋯ M 7ji M 7jj

37777775 ð21Þ



Fig. 9. Spring partitions.
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we set the displacement and the force linked to it is
unknown. So, for each row, either the value of F, or the
value of U is known. All set values are available in
Appendix B. Because this model is created with 7
elements, this involves solving 48 equations with 48
unknown values for each phase. To dissociate the
unknown and the known values, we use:

048;1 ¼ MK :U � I48:F ð23Þ

048;1 ¼ A:X � b: ð24Þ
The vector b is the sum of the products between the

known values and their associated matrix column (MK for
displacement and �I48 for loads). Matrix A is the
concatenation of the associated matrix column of the
unknown values. Both have to be structured in the same
order: the first row corresponds to the x behaviour
(displacement or force) of point A, the second row to the
y behaviour to the same point, and so on. The vector X is
the storage vector of all unknown values, it is what needs to
be calculated. Therefore:

X ¼ A�1:b: ð25Þ
By solving X for each phase, we can calculate the

stiffness of the spring during the whole deflection. We
obtain a tri-linear curve with only six input parameters: the
spring diameter D, the wire diameter d, the Young’s
modulusE, the shear modulusG, the number of active coils
na, the active pitch ma.

Moreover, end coils (one turn at each side) are
commonly designed with an axial pitch equal to the wire
diameter. Such a design induces a sudden change in the
spring pitch at the end of the end coil when passing from d
to the pitch of the active coils as can been seen in Figure 10
left. Unfortunately, manufacturers cannot make this
angular geometry. The pitch must evolve smoothly and
therefore the initial pitchmust be lower. To preciselymodel
the end coils a seventh parameter has been implemented for
the first time in this analytical model: the helix angle
coefficient of end coils f. It represents the design geometry
ratio between the real pitch of end coils and the common
one (d). Figure 10 presents the evolution of the height (z) as
a function of the angle of the travel along the spring’s
primitive line (v) for several values of f. For “classic” spring
geometry, f ≈ 0.7. In our study, some of the springs had end
coils where the points C and F were already in contact with
the floor. In this case, the helix angle coefficient f ≈ 0 and
only the third phase exists.

This f ratio is applied to the heights of points B, C, F
and G. It has a non-negligible impact on the curve,
pushing the third phase forward by modifying stiffnesses
and the necessary deflection to obtain contacts. These
phenomena strengthen our idea that end coils must no
longer be neglected. Both their stiffness and their
geometry have to be considered during dimensioning
and designing phases.
3 Comparison with experimental data

To verify our model, it was confronted with experimental
values. The method consisted of measuring all the
dimensions of the springs precisely, evaluating the elastic
and torsion moduli and then computing the new analytical
model curve. Even though the springs had no risk of
buckling, it was desirable to avoid any misplacement for
the compression start, so the experimental tests were
carried out with an axial guide.

Each experiment included three springs and each spring
was measured several times. The value of f was estimated
from the geometry of the end coils (see Tab. 1).

All the springs were made from the same wire (which is
why d was always 1.8mm). Thus, they were all known to
share the same material characteristics. In order to
accurately estimate E and G, it was decided to take the
biggest spring available, which had no bilinearity, so the
analytical curve could be adjusted (see Fig. 11i). We found
E=180000MPa and G=73500MPa.

All the input data being known, it was possible to create
all the curves. Among them (see Fig. 11), the springs with
small index (D/d ratio) and small number of active coils
showed the greatest imprecision of the classic formula. For
springs with large dimensions, the impact of the end coils
was almost negligible but for smaller ones, there were as
many end coils as active coils. Ignoring them would mean
ignoring half of the spring.



Fig. 10. Impact of helix angle ratio on geometry.

Table 1. Geometric dimensions of springs.

Experiment D (mm) D (mm) L0 (mm) na ma (mm) f

1 8.965 1.8 11.440 1.946 3.103 0.7
2 8.980 1.8 20.173 5.000 2.955 0.7
3 8.986 1.8 38.147 13.00 2.519 0.1
4 14.350 1.8 14.697 2.000 4.648 0.3
5 14.359 1.8 29.077 5.000 4.735 0
6 14.331 1.8 55.730 12.90 3.902 0
7 28.790 1.8 24.238 2.030 9.054 0
8 28.680 1.8 52.440 4.970 14.35 0
9 28.831 1.8 103.76 12.84 28.51 0
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Figures 11a, 11b, 11d compare the experimental and
analytical curves of springs #1, #2 and #4. Predictions by
the classic formula are far from the behaviour of these real
springs, even though they are still in the validity range of
the formula [6,28]. The new analytical model is super-
imposed on the experimental data. It finds very good
stiffnesses and accurate transition points.
4 Discussion

The aim of this study was to propose a new approach to
cylindrical compression springs with constant pitch, not
ground by performing analytical, finite-element and experi-
mental analyses. In this case, the force-length relationship
was governed by a linear equation. It appeared that this
formula did not predict the springs’ behaviour with enough
accuracy. The experimental study clearly showed the non-
linearbehaviourof springswithasmallnumberofactive coils
and small index (ratio of mean diameter/wire diameter).
Numerical simulations highlighted that the initial rate of the
spring was due to the disequilibrium of loads in the end coils.
For thefirst time, an analyticalmodel now enables the initial
behaviour of compression springs to be defined precisely.
This was achieved using Castigliano’s second theorem on
curved beam elements and considering the helix angle, the
geometry of the end coils, the in-plane and normal-to-plane
forces, the spring’s manufacturing imperfections and the
non-parallel ends.
The results given by this tri-linear model were
successfully confronted with experimental data. The model
gave more accurate results for all spring dimensions but, in
particular, for compression springs with a small number of
active coils. This model was also compared with the
numerical Abaqus wire model. The average stiffness error
between the two was around 0.5%. Even if we consider that
both models give the same results, this new analytical one
compute instantly where numerical programs take around
20min to calculate (if just the “job” calculation time is
considered, without the time needed to design the
geometry of the object and the time needed to exploit
the results).

This tool can simplify the dimensioning phase by saving
a lot of computing time and will be useful for researchers
seeking to perform optimisation as in [29,30] with
compression springs. In domains where high precision is
required, the accuracy level of the model can enable
researchers to understand the behaviour of the springs with
more exactitude and provide more efficient systems [3]. It
can be opportunely exploited to enlarge the common
operating and validity ranges of compression springs,
which currently appears to be very restrictive [6,28].
Finally, it can assist manufacturers in the design phases to
predict the actual free length needed in order to accurately
reach the loads theoretically specified for given lengths [5].

This work may be continued to upgrade future spring
calculation. The evaluation of forces can be used to
calculate all stresses everywhere along the wire. Also, the



Fig. 11. Analytical and experimental load-deflection curves.

10 G. Cadet et al.: Mechanics & Industry 22 50 (2021)



G. Cadet et al.: Mechanics & Industry 22 50 (2021) 11
stiffness element matrix calculated in Section 2.1 can be
used for extension and torsion springs.

However, the model can still be improved. For
example, all experimental springs have numbers of active
coils that are close to integers. More tests have to be done
to confirm whether the model is still accurate with more
random numbers of active coils. We can imagine
recreating this model by considering an eventual mis-
placement of the spring during the initial compression.
Moreover, the model does not yet consider the final
compression behaviour of the spring, when it approaches
its solid length. We can imagine adding a fourth phase to
include this.

Appendix A: Local flexibility matrix elements
calculation
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Appendix B: All phases degrees of freedom
DOFs A B C D E F G H

Phase 1
0 �
0 �
�d �

24 35 � �
� �
� �

24 35 � �
� �
� �

24 35 0 �
0 �
�d �

24 35 0 �
0 �
0 �

24 35 � �
� �
� �

24 35 � �
� �
� �

24 35 0 �
0 �
0 0

24 35

Phase 2
0 �
0 �

�2uc �

24 35 � �
� �

2uc þ hc �

24 35 � �
� �
� �

24 35 0 �
0 �

�2uc �

24 35 0 �
0 �
0 �

24 35 � �
� �
� �

24 35 � �
� �
�hc �

24 35 0 �
0 �
0 0

24 35

Phase 3
0 �
0 �
�e �

24 35 � �
� �
� �

24 35 � �
� �

�eþ hs �

24 35 0 �
0 �
�e �

24 35 0 �
0 �
0 �

24 35 � �
� �
�hs �

24 35 � �
� �
� �

24 35 0 �
0 �
0 0

24 35

dis a random value of small displacement.
hc is the height distance between points A and B before any loads are applied.
uc is the necessary deflection of point A for point B to touch the floor.
It is calculated by solving phase 1.
hs is the height distance between points A and C before any loads are applied.
e is the difference between the free length and the solid length of the spring.
–means the displacement is unknown and the corresponding load is null.
0 means the displacement is blocked (see Fig. 9).
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