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CONVERGENCE OF NONLINEAR NUMERICAL APPROXIMATIONS FOR AN
ELLIPTIC LINEAR PROBLEM WITH IRREGULAR DATA

Robert Eymard* and David Maltese

Abstract. This work is devoted to the study of the approximation, using two nonlinear numerical
methods, of a linear elliptic problem with measure data and heterogeneous anisotropic diffusion matrix.
Both methods show convergence properties to a continuous solution of the problem in a weak sense,
through the change of variable 𝑢 = 𝜓(𝑣), where 𝜓 is a well chosen diffeomorphism between (−1, 1) and
R, and 𝑣 is valued in (−1, 1). We first study a nonlinear finite element approximation on any simplicial
grid. We prove the existence of a discrete solution, and, under standard regularity conditions, we
prove its convergence to a weak solution of the problem by applying Hölder and Sobolev inequalities.
Some numerical results, in 2D and 3D cases where the solution does not belong to 𝐻1(Ω), show that
this method can provide accurate results. We then construct a numerical scheme which presents a
convergence property to the entropy weak solution of the problem in the case where the right-hand side
belongs to 𝐿1. This is achieved owing to a nonlinear control volume finite element (CVFE) method,
keeping the same nonlinear reformulation, and adding an upstream weighting evaluation and a nonlinear
𝑝-Laplace vanishing stabilisation term.
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1. Introduction

This paper is devoted to the numerical approximation of a second order linear elliptic equation in divergence
form with coefficients in 𝐿∞(Ω) and measure data. More precisely we consider the following problem: find a
function 𝑢 defined on Ω such that

−div(Λ∇𝑢) = 𝑓 in Ω, (1.1)

supplemented with the boundary condition
𝑢 = 0 on 𝜕Ω, (1.2)

under the following assumptions:

− Ω ⊂ R𝑑 (𝑑 ≥ 2), is a polytopal bounded open set (polygonal if 𝑑 = 2, polyhedral if 𝑑 ≥ 3), (1.3a)

− Λ ∈ 𝐿∞(Ω)𝑑×𝑑 and there exists 𝜆, 𝜆 > 0 such that, for a.e. 𝑥 ∈ Ω,

Λ(𝑥) is symmetric and, for all 𝜉 ∈ R𝑑, 𝜆|𝜉|2 ≤ Λ(𝑥)𝜉 · 𝜉 ≤ 𝜆|𝜉|2, (1.3b)
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LAMA, Univ. Gustave Eiffel, Univ. Paris Est Créteil, CNRS, F-77454 Marne-la-Vallée, France.
*Corresponding author: robert.eymard@univ-eiffel.fr

c○ The authors. Published by EDP Sciences, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/m2an/2021079
https://www.esaim-m2an.org
https://orcid.org/0000-0002-6035-0104
mailto:robert.eymard@univ-eiffel.fr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0


3044 R. EYMARD AND D. MALTESE

− 𝑓 ∈𝑀(Ω), where we denote by 𝑀(Ω) the space of Radon measures, defined as the topological

dual space of 𝐶
(︀
Ω
)︀
, the space of continuous functions on Ω with its usual norm. (1.3c)

This type of problem may arise for example in some models of underground oil or water resources management.
Then 𝑓 is the source term of the quantity diffused by the system. In the case where it is possible to consider
𝑓 ∈ 𝐿2(Ω), the natural framework of the problem consists in considering the standard weak formulation of (1.1)
in 𝐻1

0 (Ω). But in the case where 𝑓 is modeling a singular source term at the scale of the domain, the right-hand
side can be a measure instead of a function. For example, in underground fluid management [19], the wells,
which are used for injection or production purposes, are cylindrical holes with very small diameters compared
to the size of the domain. Therefore, the source terms are accurately modeled by measures supported by lines.

A proper mathematical sense to a solution of problems (1.1) and (1.2) under Assumptions 1.3 can be given
as follows.

Definition 1.1. We define the space 𝒮𝑑(Ω) containing any solution and the space 𝒯𝑑(Ω) containing the test
functions by

𝒮𝑑(Ω) =
⋂︁

𝑟∈(1, 𝑑
𝑑−1 )

𝑊 1,𝑟
0 (Ω) and 𝒯𝑑(Ω) =

⋃︁
𝑟∈(𝑑,+∞)

𝑊 1,𝑟
0 (Ω) ⊂ 𝐶

(︀
Ω
)︀
. (1.4)

We say that a function 𝑢 defined over Ω is a weak solution of problems (1.1) and (1.2) if

𝑢 ∈ 𝒮𝑑(Ω) and
∫︁

Ω

Λ∇𝑢 · ∇𝑤 d𝑥 =
∫︁

Ω

𝑤 d𝑓, for any 𝑤 ∈ 𝒯𝑑(Ω), (1.5)

where we denote by
∫︀
Ω
𝑤 d𝑓 the quantity ⟨𝑓, 𝑤⟩𝑀(Ω),𝐶(Ω).

The existence of a weak solution for any 𝑑 ≥ 2 is given in [4]. Its uniqueness is proved for 𝑑 = 2 in [20] for
general diffusion fields: the proof relies on a regularity result [22] which holds on domains Ω with 𝐶2 boundary,
extended in [21] to all domains with Lipschitz boundaries. In the case 𝑑 ≥ 3, this uniqueness result remains true
if Λ is sufficiently regular (see [15] for such a proof when Λ = Id), but it is no longer true for general diffusion
fields (as the ones introduced in the numerical examples in Sect. 4, inspired by the counter-example introduced
by Serrin [24] and detailed by Prignet [23]).

This paper is focused on the approximation of problem (1.5). Consistently with the space 𝒮𝑑(Ω) introduced
in Definition 1.1, we investigate weak/strong convergence of approximate solutions in 𝑊 1,𝑟(Ω) for 𝑟 ∈

(︁
1, 𝑑

𝑑−1

)︁
.

Let us cite a few different works providing such convergence results.
In [15], a finite volume method is used. It relies on the Two-Point Flux Approximation in grids satisfying an

orthogonality condition, which is restricting the kind of meshes which can be used and the kind of anisotropy
that can be considered for Λ. The convergence of the approximate solution to the unique weak solution of the
problem is proved in the case Λ = Id. The method of proof implies the use of nonlinear functions of the discrete
unknown as test function, which is easily managed by the use of Two-Point Flux Approximation (see [18] for
a discussion about this problem). Since our goal is to consider general diffusion fields Λ, this scheme no longer
applies.

The standard finite element framework is considered in [8]: it consists in computing the solution 𝑢𝒯 to the
following linear discrete problem

𝑢𝒯 ∈ 𝒱𝒯 (Ω) and
∫︁

Ω

Λ𝒯∇𝑢𝒯 · ∇𝑤 d𝑥 =
∫︁

Ω

𝑤 d𝑓, for any 𝑤 ∈ 𝒱𝒯 (Ω), (1.6)

where 𝒱𝒯 (Ω) is the finite dimensional space resulting from the use of the 𝑃 1 finite elements on triangles or
tetrahedra, and Λ𝒯 is a piecewise constant approximation of Λ. This solution can always be computed, since
𝒱𝒯 (Ω) ⊂ 𝐶

(︀
Ω
)︀
. But the study of its convergence cannot be done in the classical way, which consists in taking

𝑤 = 𝑢𝒯 for getting an estimate. Indeed, for 𝑑 > 1, this method does not yield an estimate of ‖𝑢𝒯 ‖𝐶(Ω), which
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would be necessary for passing to the limit. Nevertheless, the convergence of the approximate solution to a
weak solution (which is moreover the renormalised solution or equivalently the entropy solution in the sense of
Def. 3.1) can be proved in the case where the finite element scheme is similar to that used in the finite volume
framework, that is when it relies on a Two-Point Flux interpretation of the finite element scheme. This requires
the use of 𝑃 1 finite elements on triangles or tetrahedra which satisfy strong geometrical constraints (in 2D,
for two triangles sharing the same edge, the sum of the two opposite angles must be lower than 𝜋 in the case
Λ = Id). The assumption of general diffusion fields Λ only satisfying Assumption (1.3b) is incompatible with
this method of proof.

We therefore propose in this paper two nonlinear numerical methods for the approximation of this problem,
with different goals for the two methods. The first one concerns an accurate nonlinear finite element scheme,
for which a proof of convergence to a weak solution remains available on general simplicial meshes and fields
Λ. The second one concerns a nonlinear Control-Volume Finite-Element scheme (CVFE for short) for which, in
addition, a proof of convergence to the entropy weak solution holds in the case where 𝑓 ∈ 𝐿1(Ω).

Notes applying to the whole paper

– We denote by ‖ · ‖𝑟 the norm of 𝐿𝑟(Ω) for any 𝑟 ≥ 1.
– The Lebesgue measure of any subset 𝑄 of R𝑑 is denoted by |𝑄|.
– We use several times the Sobolev inequalities provided by Lemma A.1, involving the coefficients 𝐶(𝑟,𝑞)

sob .

2. Study of the nonlinear finite element approximation

2.1. Motivation and organisation

Section 2 of this paper explores a non-linear finite element formulation of the problem such that, when
taking the solution of the scheme as test function, we get an estimate leading to a convergence property to
some function 𝑢 ∈ 𝒮𝑑(Ω). Hence we introduce a strictly increasing diffeomorphism 𝜓 : (−1, 1) → R, and we
replace the function 𝑢 by the function 𝜓(𝑣) where 𝑣(Ω) ⊂ (−1, 1). A similar idea, used in [5] for getting such an
estimate, relies on the functions 𝜓 under the form 𝑣 ↦→

(︁
1

(1−|𝑣|)1/𝑚 − 1
)︁
sign(𝑣) for any 𝑚 > 0, where sign(𝑠) = 1

if 𝑠 ≥ 0 and −1 if 𝑠 < 0. Unfortunately, there is no fixed value for 𝑚 providing the estimate 𝑢 ∈ 𝑊 1,𝑟
0 (Ω) for

all 𝑟 ∈ (1, 𝑑/(𝑑 − 1)): one has to let 𝑚 → 0 for covering the whole desired range of values for 𝑟. So this choice
cannot be kept in our framework.

Let us sketch the computations which lead to the expression of 𝜓 chosen in this paper. We first transform
the problem (1.5) into the problem, formally given as follows: find a function 𝑣 : Ω → (−1, 1), such that, for
any regular function 𝑤 vanishing at the boundary,∫︁

Ω

𝜓′(𝑣)Λ∇𝑣 · ∇𝑤 d𝑥 =
∫︁

Ω

𝑤 d𝑓. (2.1)

Assuming that 𝑣 can be taken as a test function, and denoting for all 𝑠 ∈ (−1, 1) by 𝛽(𝑠) =
∫︀ 𝑠
0

√︀
𝜓′(𝑡) d𝑡, the

following relation holds

𝜆‖∇𝛽(𝑣)‖22 = 𝜆

∫︁
Ω

𝜓′(𝑣)|∇𝑣|2 d𝑥 ≤
∫︁

Ω

𝜓′(𝑣)Λ∇𝑣 · ∇𝑣 d𝑥 =
∫︁

Ω

𝑣 d𝑓 ≤ ‖𝑓‖𝑀(Ω).

From this relation, using Hölder and Sobolev inequalities, an estimate on ‖∇𝜓(𝑣)‖𝑟, for all 𝑟 ∈ (1, 𝑑/(𝑑 − 1)),
is derived under the condition that, up to a quantity that can be controlled, 𝛽′ is bounded by 𝛽.

This leads to the following definition for 𝜓 (see Fig. 1 for a graphical representation of 𝜓, 𝜓′ and 𝛽):

𝜓 : (−1, 1) −→ R

𝑠 ↦−→
(︂

exp
|𝑠|

1− |𝑠|
− 1
)︂

sign(𝑠), where sign(𝑠) = 1 if 𝑠 ≥ 0 and − 1 if 𝑠 < 0.
(2.2)



3046 R. EYMARD AND D. MALTESE

Remark 2.1. In fact, the more general definition

𝜓𝛼 : (−1, 1) −→ R

𝑠 ↦−→
(︂

exp
𝛼|𝑠|

1− |𝑠|
− 1
)︂

sign(𝑠),
(2.3)

for a given 𝛼 > 0, is considered in the numerical section. Since choosing values 𝛼 ̸= 1 does not change the
methods of the mathematical analysis, we mainly let 𝛼 = 1 in this paper in order to avoid additional notations.

Note that for any 𝑠 ∈ (−1, 1), we have

𝜓′(𝑠) =
1

(1− |𝑠|)2
exp

|𝑠|
1− |𝑠|

,

and the reciprocal function to 𝜓 is the function 𝜓−1 : R → (−1, 1) defined for any 𝑡 ∈ R by

𝜓−1(𝑡) =
log(1 + |𝑡|)

1 + log(1 + |𝑡|)
sign(𝑡).

Note also that this function satisfies |(𝜓−1)′(𝑡)| ≤ 1 for any 𝑡 ∈ R. It is noticeable that the function 𝑡 ↦→ log(1+|𝑡|)
also plays an important role in the analysis done in [14] or [15].

It is then possible to define a finite element formulation of the nonlinear problem (2.1), and to prove its
convergence to a weak solution of the problem in the sense of Definition 1.1, hence providing a first proof for the
convergence of a numerical scheme, using a general simplicial mesh, for a general diffusion field and an irregular
right-hand side. Note that we are not able to prove, in the case where 𝑓 ∈ 𝐿1(Ω), the convergence of this scheme
to the entropy weak solution in the sense of Definition 3.1 given below, contrary to the modified scheme studied
in Section 3. But, as shown in Section 4, this modification leads to a severe loss of numerical convergence order.

Section 2 is organized as follows. In Section 2.2, we present the numerical scheme and Section 2.3 provides
the main results that we are able to prove on this scheme. In Section 2.4, estimates of the discrete solution are
established, following the ideas sketched above. These estimates allow, in Section 2.5, to prove the existence
of at least one solution to the scheme, using the now classical topological degree arguments. Section 2.6 is
devoted to the convergence proof of a subsequence of discrete solutions to a weak solution of the problem (recall
that the uniqueness of this solution holds only if 𝑑 = 2). The proof of the weak convergence of a sequence of
approximate solutions is based first on the compactness of the sequence of approximate solutions and then on
the identification of the limit.

2.2. The numerical scheme

Elements and nodes

We define a simplex in dimension 𝑑 ≥ 1 as the interior of the convex hull of a given set of 𝑑 + 1 points
(called its vertices) which are not all contained in the same hyperplane (a simplex is a triangle if 𝑑 = 2 and a
tetrahedron if 𝑑 = 3).

We consider a finite family of simplices 𝒯 (called the mesh of the domain), which satisfies the following
properties.

(1) The family containing all the vertices of the elements of the mesh, called the family of the nodes of the
mesh, is denoted by (𝑧𝑖)𝑖∈𝒩 , and, for an element 𝐾 ∈ 𝒯 the family of the 𝑑 + 1 vertices of 𝐾 is denoted
by (𝑧𝑖)𝑖∈𝒩𝐾

, with 𝒩𝐾 ⊂ 𝒩 . The set 𝒩 is partitioned into 𝒩 = 𝒩int ∪𝒩ext, where for all 𝑖 ∈ 𝒩ext, 𝑧𝑖 ∈ 𝜕Ω
(the exterior nodes) and for all 𝑖 ∈ 𝒩int, 𝑧𝑖 ∈ Ω (the interior nodes).

(2) The union of the closure of all the elements of 𝒯 is equal to Ω.
(3) The intersection of two different elements of 𝒯 is empty.
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(4) For any 𝐾 ∈ 𝒯 , and for any subset {𝑖1, . . . , 𝑖𝑑} of distinct elements of 𝒩𝐾 , then, either {𝑧𝑖1 , . . . , 𝑧𝑖𝑑} ⊂ 𝜕Ω,
or there exists a unique 𝐿 ∈ 𝒯 different from 𝐾 such that {𝑖1, . . . , 𝑖𝑑} ⊂ 𝒩𝐿 (which means that neighboring
elements share a complete common face).

Such a family 𝒯 is then a regular simplicial mesh of Ω in the usual sense of the finite element literature [9].
For 𝑖 ∈ 𝒩 , one denotes by 𝒯𝑖 the set of all 𝐾 ∈ 𝒯 such that 𝑖 ∈ 𝒩𝐾 .
For any 𝐾 ∈ 𝒯 , we denote by |𝐾| the measure in R𝑑 of 𝐾, by ℎ𝐾 the diameter of 𝐾 and by 𝜌𝐾 the diameter

of the largest ball included in 𝐾. Then, we define the mesh size ℎ𝒯 and the mesh regularity 𝜃𝒯 by

ℎ𝒯 = max
𝐾∈𝒯

ℎ𝐾 , 𝜃𝒯 = max
𝐾∈𝒯

ℎ𝐾
𝜌𝐾

·

𝑃 1 basis functions and barycentric coordinates

We denote, for any 𝑖 ∈ 𝒩 , by 𝜙𝑖 the continuous function defined on Ω which is piecewise affine in each 𝐾 ∈ 𝒯 ,
continuous, and such that 𝜙𝑖(𝑧𝑖) = 1 and 𝜙𝑖(𝑧𝑗) = 0 for all 𝑗 ∈ 𝒩 ∖ {𝑖}. Recall that, for any 𝐾 ∈ 𝒯 and 𝑥 ∈ 𝐾,
(𝜙𝑖(𝑥))𝑖∈𝒩𝐾

is the family of the barycentric coordinates of point 𝑥 with respect to the vertices (𝑧𝑖)𝑖∈𝒩𝐾
of 𝐾.

Approximation space and scheme

We denote by 𝒱𝒯 (Ω) the conforming finite element space defined by

𝒱𝒯 (Ω) = span(𝜙𝑖)𝑖∈𝒩int .

We approximate Λ by some piecewise constant function Λ𝒯 : Ω → R𝑑×𝑑 such that

Λ𝒯 (𝑥) =
∑︁
𝐾∈𝒯

Λ𝐾1𝐾(𝑥), (2.4)

where for any 𝐾 ∈ 𝒯 , Λ𝐾 ∈ R𝑑×𝑑 is assumed to be symmetric and to satisfy

𝜆|𝜉|2 ≤ Λ𝐾𝜉 · 𝜉 ≤ 𝜆|𝜉|2 for any 𝜉 ∈ R𝑑. (2.5)

The value Λ𝐾 can be chosen as the mean value of Λ𝒯 on 𝐾, but it can also be chosen as the value of Λ at any
point of 𝐾 if Λ is sufficiently regular (which is done in the numerical examples of Sect. 4).

We then consider the following approximation of problems (1.1) and (1.2).

Definition 2.2. We say that 𝑣𝒯 is a solution of the numerical scheme if 𝑣𝒯 ∈ 𝒱𝒯 (Ω), max𝑥∈Ω |𝑣𝒯 (𝑥)| < 1 and∫︁
Ω

𝜓′(𝑣𝒯 )Λ𝒯∇𝑣𝒯 · ∇𝑤 d𝑥 =
∫︁

Ω

𝑤 d𝑓, for any 𝑤 ∈ 𝒱𝒯 (Ω). (2.6)

We remark that, since Λ𝒯 , ∇𝑣𝒯 and ∇𝑤 are constant in each element of 𝒯 , this numerical scheme leads to
the computation, for each 𝐾 ∈ 𝒯 , of the quantity

∫︀
𝐾
𝜓′(𝑣𝒯 ) d𝑥. We provide in Section A.1 the mathematical

computation of this quantity.

2.3. Main results of Section 2

The first main result of this section is the existence of a solution to the nonlinear scheme.

Theorem 2.3. There exists (at least) one solution 𝑣𝒯 ∈ 𝒱𝒯 (Ω) to Scheme (2.6) (in the sense of Def. 2.2).

Once we have a discrete solution 𝑣𝒯 ∈ 𝒱𝒯 (Ω) at hand for all meshes, then we can study the convergence of
the scheme when the discretisation parameter ℎ𝒯 tends to zero. More precisely, consider a sequence

(︀
𝒯 (𝑚)

)︀
𝑚≥1

of meshes of Ω in the sense specified in Section 2.2 such that

ℎ𝒯 (𝑚) −→
𝑚→∞

0, (2.7)
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and such that the sequence of regularity is bounded: there exists 𝜃⋆ such that

𝜃𝒯 (𝑚) ≤ 𝜃⋆, for any 𝑚 ≥ 1. (2.8)

Let (Λ𝒯 (𝑚))𝑚≥1 be such that (2.4) and (2.5) hold and such that

Λ𝒯 (𝑚) −→
𝑚→∞

Λ in 𝐿𝑟(Ω)𝑑×𝑑 for any 𝑟 ∈ [1,+∞). (2.9)

Note that we do not assume that (2.9) holds for 𝑟 = +∞, which enables the convergence result to apply in the
cases considered in the numerical section.

We then consider a sequence (𝑣𝒯 (𝑚))𝑚≥1 of solutions with respect to the sequence
(︀
𝒯 (𝑚)

)︀
𝑚≥1

and we study
the convergence of this sequence to a solution of the continuous problem in the sense of Definition 1.1. Thus
the second main result of this section is that this sequence converges, up to a subsequence, to a weak solution
of the continuous problem in the sense of Definition 1.1, as stated by the following theorem.

Theorem 2.4. Let
(︀
𝒯 (𝑚)

)︀
𝑚≥1

be a sequence of meshes of the computational domain Ω in the sense specified in
Section 2.2 such that (2.7) and (2.8) are satisfied and let (Λ𝒯 (𝑚))𝑚≥1 be such that (2.4), (2.5) and (2.9) hold.
For any 𝑚 ≥ 1, let 𝑣𝒯 (𝑚) be an arbitrary numerical solution in the sense of Definition 2.2 in the case where
𝒯 = 𝒯 (𝑚) (the existence of 𝑣𝒯 (𝑚) is given by Thm. 2.3). Then, there exists 𝑢 ∈ 𝒮𝑑(Ω), weak solution of problems
(1.1) and (1.2) in the sense of Definition 1.1, such that, up to the extraction of a subsequence, (𝜓(𝑣𝒯 (𝑚)))𝑚≥1

converges to 𝑢 weakly in 𝑊 1,𝑟
0 (Ω) for all 𝑟 ∈

(︁
1, 𝑑

𝑑−1

)︁
, strongly in 𝐿𝑞(Ω) for all 𝑞 ∈ [1,+∞) if 𝑑 = 2 and for

all 𝑞 ∈ [1, 𝑑/(𝑑− 2)) if 𝑑 > 2, and almost everywhere in Ω.
Moreover, for all 𝑘 > 0, 𝑇𝑘𝑢 ∈ 𝐻1

0 (Ω) holds.
In the case 𝑑 = 2, the whole sequence converges to the unique solution of the problem.

Remark 2.5. Note also that 𝑢 = 𝜓(𝑣) where 𝑣 is the limit of the subsequence (𝑣𝒯 (𝑚))𝑚≥1 in 𝐿𝑞(Ω) for any
𝑞 ∈ [1,+∞) if 𝑑 = 2 or 𝑞 ∈ [1, 2𝑑

𝑑−2 ) if 𝑑 > 2.

The remaining of this section is dedicated to the proof of Theorems 2.3 and 2.4.

2.4. Estimates

As done in the introduction, we denote in the whole paper by ‖ · ‖𝑟 the norm in 𝐿𝑟(Ω) or in 𝐿𝑟(Ω)𝑑 for any
𝑟 ∈ [1,+∞]. Following the arguments presented in the introduction, we define the following function

𝛽 : (−1, 1) −→ R

𝑠 ↦−→
∫︀ 𝑠
0

√︀
𝜓′(𝑡) d𝑡.

(2.10)

In Figure 1, we propose a graphical representation of functions 𝜓, 𝜓′ and 𝛽.
The following lemma is used in the course of the following computations.

Lemma 2.6. For any 𝜀 ∈ (0, 1), there exists strictly positive reals 𝑎𝜀, 𝑏𝜀 and 𝑐𝜀 only depending on 𝜀, such that

∀𝑠 ∈ (−1, 1),
√︀
𝜓′(𝑠) ≤ 𝑎𝜀|𝛽(𝑠)|(1+𝜀)/(1−𝜀) + 𝑏𝜀 and exp

(1− 𝜀)|𝑠|
2(1− |𝑠|)

≤ 𝑐𝜀|𝛽(𝑠)|+ 1. (2.11)

Proof. We have, for all 𝜀 ∈ (0, 1) and 𝑠 ∈ (−1, 1),

√︀
𝜓′(𝑠) =

1
1− |𝑠|

exp
|𝑠|

2(1− |𝑠|)
≤ 𝐶𝜀 exp

(1 + 𝜀)|𝑠|
2(1− |𝑠|)

, (2.12)
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Figure 1. Functions 𝜓, 𝜓′ and 𝛽.

where

𝐶𝜀 = max
𝑡∈(−1,1)

1
1− |𝑡|

exp
(︂
− 𝜀|𝑡|

2(1− |𝑡|)

)︂
=

2
𝜀

exp
(︁
−1 +

𝜀

2

)︁
·

Besides, we have

exp
(1− 𝜀)|𝑠|
2(1− |𝑠|)

=
∫︁ |𝑠|

0

1− 𝜀

2(1− |𝑡|)2
exp

(1− 𝜀)|𝑡|
2(1− |𝑡|)

d𝑡+ 1

≤ (1− 𝜀)
2

𝐶𝜀

∫︁ |𝑠|

0

1
1− |𝑡|

exp
|𝑡|

2(1− |𝑡|)
d𝑡+ 1 =

(1− 𝜀)
2

𝐶𝜀|𝛽(𝑠)|+ 1. (2.13)

Consequently we obtain that

exp
(1 + 𝜀)|𝑠|
2(1− |𝑠|)

≤
(︂

(1− 𝜀)
2

𝐶𝜀|𝛽(𝑠)|+ 1
)︂(1+𝜀)/(1−𝜀)

.

Owing to (2.12), this gives

∀𝑠 ∈ (−1, 1),
√︀
𝜓′(𝑠) ≤ 𝐶𝜀

(︂
(1− 𝜀)

2
𝐶𝜀|𝛽(𝑠)|+ 1

)︂(1+𝜀)/(1−𝜀)

,

which provides the conclusion of the lemma owing to a convexity argument. �

We have the following estimate.

Lemma 2.7. Let 𝑣𝒯 ∈ 𝒱𝒯 (Ω) be such that

max
𝑥∈Ω

|𝑣𝒯 (𝑥)| < 1 and
∫︁

Ω

𝜓′(𝑣𝒯 )Λ𝒯∇𝑣𝒯 · ∇𝑣𝒯 d𝑥 ≤
∫︁

Ω

𝑣𝒯 d𝑓. (2.14)

Then there exists 𝐶1 depending only on 𝜆 and ‖𝑓‖𝑀(Ω) such that

‖∇𝛽(𝑣𝒯 )‖2 ≤ 𝐶1. (2.15)

Proof. On one hand, using the fact that max𝑥∈Ω |𝑣𝒯 (𝑥)| < 1 we have∫︁
Ω

𝑣𝒯 d𝑓 ≤ ‖𝑓‖𝑀(Ω),
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and on the other hand, accounting for (2.5), we have

𝜆

∫︁
Ω

𝜓′(𝑣𝒯 )|∇𝑣𝒯 |2 d𝑥 ≤
∫︁

Ω

𝜓′(𝑣𝒯 )Λ𝒯∇𝑣𝒯 · ∇𝑣𝒯 d𝑥.

Hence we get
𝜆‖∇𝛽(𝑣𝒯 )‖22 ≤ ‖𝑓‖𝑀(Ω).

�

The next lemma provides a lower bound on 1− |𝑣𝒯 | for any function 𝑣𝒯 such that the estimate (2.14) holds.

Lemma 2.8. Let 𝑣𝒯 ∈ 𝒱𝒯 (Ω) be such that (2.14) holds. Then there exists 𝐶2 ∈ (0, 1) depending only on
𝜆, ‖𝑓‖𝑀(Ω), 𝑑, the measure |Ω| of Ω and on 𝒯 such that

max
𝑥∈Ω

|𝑣𝒯 (𝑥)| ≤ 𝐶2.

Proof. Owing to 𝛽(𝑣𝒯 ) ∈ 𝐻1
0 (Ω) and Lemma A.1 with 𝑞 = 1, we can write

‖𝛽(𝑣𝒯 )‖1 ≤ 𝐶
(2,1)
sob ‖∇𝛽(𝑣𝒯 )‖2.

By virtue of (2.11) with 𝜀 = 1/2, together with Lemma 2.7, we obtain,∫︁
Ω

exp
(︂

1
4

|𝑣𝒯 |
1− |𝑣𝒯 |

)︂
d𝑥 ≤ 𝑐1/2𝐶

(2,1)
sob 𝐶1 + |Ω|.

Let 𝑛 ∈ N which will be chosen later, and let us define 𝑀𝑛 = min𝑠∈(−1,1)(1 − |𝑠|)𝑛 exp
(︁

1
4

|𝑠|
1−|𝑠|

)︁
=

1
(4𝑛)𝑛 exp

(︀
𝑛− 1

4

)︀
. Note that we have 𝑀𝑛 > 0 and∫︁

Ω

𝑀𝑛

(1− |𝑣𝒯 |)𝑛
d𝑥 ≤ 𝑐1/2𝐶

(2,1)
sob 𝐶1 + |Ω|.

Since |𝑣𝒯 (𝑧𝑖)| < 1 for any 𝑖 ∈ 𝒩 , and using the fact that

𝑣𝒯 =
∑︁
𝑖∈𝒩

𝑣𝒯 (𝑧𝑖)𝜙𝑖,

we get that, for a.e. 𝑥 ∈ Ω,
|∇𝑣𝒯 (𝑥)| ≤ esssup

𝑦∈Ω

∑︁
𝑖∈𝒩

|∇𝜙𝑖(𝑦)|.

Let 𝑖0 ∈ 𝒩 be such that 1 − |𝑣𝒯 (𝑧𝑖0)| = min𝑖∈𝒩 (1 − |𝑣𝒯 (𝑧𝑖)|). Then denoting 𝐺𝒯 = esssup𝑦∈Ω

∑︀
𝑖∈𝒩 |∇𝜙𝑖(𝑦)|

we have, for any 𝑥 ∈ Ω,
1− |𝑣𝒯 (𝑥)| ≤ 1− |𝑣𝒯 (𝑧𝑖0)|+𝐺𝒯 |𝑥− 𝑧𝑖0 |,

which implies ∫︁
Ω

𝑀𝑛

(1− |𝑣𝒯 |)𝑛
d𝑥 ≥

∫︁
Ω

𝑀𝑛

(1− |𝑣𝒯 (𝑧𝑖0)|+𝐺𝒯 |𝑥− 𝑧𝑖0 |)𝑛
d𝑥.

Let 𝑟𝒯 > 0 be such that 𝐵(𝑧𝑖, 𝑟𝒯 ) ⊂ Ω for all 𝑖 ∈ 𝒩 , and set 𝑅𝒯 = (1− |𝑣𝒯 (𝑧𝑖0)|)𝑟𝒯 ≤ 𝑟𝒯 . Then∫︁
Ω

𝑀𝑛

(1− |𝑣𝒯 (𝑧𝑖0)|+𝐺𝒯 |𝑥− 𝑧𝑖0 |)
𝑛 d𝑥 ≥

∫︁
𝐵(𝑧𝑖0 ,𝑅𝒯 )

𝑀𝑛

(1− |𝑣𝒯 (𝑧𝑖0)|+𝐺𝒯 |𝑥− 𝑧𝑖0 |)
𝑛 d𝑥
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≥ 𝛾𝑑𝑅
𝑑
𝒯

(1 +𝐺𝒯 𝑟𝒯 )𝑛
𝑀𝑛

(1− |𝑣𝒯 (𝑧𝑖0)|)
𝑛

=
𝛾𝑑𝑟

𝑑
𝒯

(1 +𝐺𝒯 𝑟𝒯 )𝑛
𝑀𝑛

(1− |𝑣𝒯 (𝑧𝑖0)|)
𝑛−𝑑 , (2.16)

where 𝛾𝑑 > 0 only depending on 𝑑 is such that |𝐵(𝑧𝑖0 , 𝑅𝒯 )| = 𝛾𝑑𝑅𝒯
𝑑 and

∀𝑥 ∈ 𝐵(𝑧𝑖0 , 𝑅𝒯 ), 1− |𝑣𝒯 (𝑧𝑖0)|+𝐺𝒯 |𝑥− 𝑧𝑖0 | ≤ (1− |𝑣𝒯 (𝑧𝑖0)|)(1 +𝐺𝒯 𝑟𝒯 ).

We then obtain
𝛾𝑑𝑟

𝑑
𝒯

(1 +𝐺𝒯 𝑟𝒯 )𝑛
𝑀𝑛

(1− |𝑣𝒯 (𝑧𝑖0)|)𝑛−𝑑
≤ 𝐶

(2,1)
sob 𝐶1 + |Ω|,

which gives
𝛾𝑑𝑟

𝑑
𝒯

(1 +𝐺𝒯 𝑟𝒯 )𝑛
𝑀𝑛

𝐶
(2,1)
sob 𝐶1 + |Ω|

≤ (1− |𝑣𝒯 (𝑧𝑖0)|)𝑛−𝑑.

Taking 𝑛 = 𝑑+ 1 in the previous inequality gives

𝛾𝑑𝑟
𝑑
𝒯

(1 +𝐺𝒯 𝑟𝒯 )𝑑+1

𝑀𝑑+1

𝐶
(2,1)
sob 𝐶1 + |Ω|

≤ 1− |𝑣𝒯 (𝑧𝑖0)|,

which concludes the proof. �

Lemma 2.9. Let 𝑟 ∈ [1, 𝑑/(𝑑 − 1)). Let 𝑣𝒯 ∈ 𝒱𝒯 (Ω) be such that (2.14) holds. Then, there exists 𝐶3 only
depending on 𝑟, 𝑑, 𝜆 and ‖𝑓‖𝑀(Ω) such that

‖∇𝜓(𝑣𝒯 )‖𝑟 ≤ 𝐶3.

Proof. We have

‖∇𝜓(𝑣𝒯 )‖𝑟𝑟 =
∫︁

Ω

|𝜓′(𝑣𝒯 )|𝑟|∇𝑣𝒯 |𝑟 d𝑥 =
∫︁

Ω

|𝜓′(𝑣𝒯 )|𝑟/2|∇𝛽(𝑣𝒯 )|𝑟 d𝑥.

Thanks to Hölder’s inequality, letting 𝑎 = 2/𝑟, 𝑏 = 2/(2− 𝑟), we get, owing to Lemma 2.7,

‖∇𝜓(𝑣𝒯 )‖𝑟𝑟 ≤ ‖∇𝛽(𝑣𝒯 )‖𝑟2‖𝜓′(𝑣𝒯 )‖𝑟/2𝑟/(2−𝑟) ≤ (𝐶1)𝑟‖𝜓′(𝑣𝒯 )‖𝑟/2𝑟/(2−𝑟).

Owing to (2.11), we can write, for any 𝜀 ∈ (0, 1), and applying Hölder’s inequality,

‖𝜓′(𝑣𝒯 )‖𝑟/(2−𝑟)𝑟/(2−𝑟) ≤
∫︁

Ω

(︁
𝑎𝜀|𝛽(𝑣𝒯 )|(1+𝜀)/(1−𝜀) + 𝑏𝜀

)︁2𝑟/(2−𝑟)
d𝑥 ≤ 𝑎𝜀,𝑟‖𝛽(𝑣𝒯 )‖𝑞𝑞 + 𝑏𝜀,𝑟,

with 𝑎𝜀,𝑟 > 0 and 𝑏𝜀,𝑟 > 0 only depending on 𝜀 and 𝑟, and

𝑞 =
2𝑟(1 + 𝜀)

(2− 𝑟)(1− 𝜀)
·

Let us now choose 𝜀 in order that, for the above value of 𝑞, we can apply the Sobolev inequality provided by
Lemma A.1 to the function 𝛽(𝑣𝒯 ) ∈ 𝐻1

0 (Ω) and Lemma 2.7, which gives

‖𝛽(𝑣𝒯 )‖𝑞 ≤ 𝐶
(2,𝑞)
sob ‖∇𝛽(𝑣𝒯 )‖2 ≤ 𝐶

(2,𝑞)
sob 𝐶1. (2.17)

– In the case 𝑑 = 2, we can choose 𝜀 = 1
2 .
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– In the case 𝑑 > 2, let us select 𝜀 ∈ (0, 1) such that

𝑞 =
2𝑟

2− 𝑟

1 + 𝜀

1− 𝜀
≤ 2𝑑
𝑑− 2

· (2.18)

Since 𝑟 ∈ [1, 𝑑/(𝑑− 1)) implies (2− 𝑟)/𝑟 ∈ ((𝑑− 2)/𝑑, 1], the quantity 𝑎𝑟 such that 𝑎𝑟 = 1
2

(︁
1 + 𝑑

𝑑−2
2−𝑟
𝑟

)︁
is

such that 1 < 𝑎𝑟 ≤ 𝑑
𝑑−2

2−𝑟
𝑟 . It suffices to choose 𝜀 = 𝑎𝑟−1

𝑎𝑟+1 for obtaining both 𝜀 ∈ (0, 1) and (2.18).

For this value of 𝜀, which only depends on 𝑑 and 𝑟, we get the conclusion of the lemma. �

2.5. Existence of a solution to Scheme (2.6)

The purpose of this section is to prove Theorem 2.3, which states the existence of a solution to the numerical
scheme in the sense of Definition 2.2, by applying the topological degree method [12].

Proof of Theorem 2.3. Let us define the continuous function

ℒ : R𝒩int −→ 𝒱𝒯 (Ω)

(𝑢𝑖)𝑖∈𝒩int ↦−→
∑︁
𝑖∈𝒩int

𝜓−1(𝑢𝑖)𝜙𝑖, (2.19)

and the function

ℱ : R𝒩int × [0, 1] −→ R𝒩int

(𝑢, 𝜇) ↦−→ ℱ(𝑢, 𝜇) = (ℱ𝑖(𝑢, 𝜇))𝑖∈𝒩int ,
(2.20)

where for any 𝑢 = (𝑢𝑗)𝑗∈𝒩int ∈ R𝒩int , 𝜇 ∈ [0, 1] and 𝑖 ∈ 𝒩int, the quantity ℱ𝑖(𝑢, 𝜇) is defined by

ℱ𝑖(𝑢, 𝜇) := 𝜇

(︂∫︁
Ω

𝜓′(ℒ(𝑢))Λ𝒯∇ℒ(𝑢) · ∇𝜙𝑖 d𝑥−
∫︁

Ω

𝜙𝑖 d𝑓
)︂

+ (1− 𝜇)𝑢𝑖.

This mapping is well defined and continuous, since, for any 𝑢 = (𝑢𝑖)𝑖∈𝒩int ∈ R𝒩int , we have max𝑥∈Ω |ℒ(𝑢)(𝑥)| ≤
max𝑖∈𝒩int |𝜓−1(𝑢𝑖)| < 1 and ℒ is continuous. We also notice that the equation ℱ(𝑢, 1) = 0 gives

∀𝑖 ∈ 𝒩int,

∫︁
Ω

𝜓′(ℒ(𝑢))Λ𝒯∇ℒ(𝑢) · ∇𝜙𝑖 d𝑥 =
∫︁

Ω

𝜙𝑖 d𝑓.

In particular we obtain ∫︁
Ω

𝜓′(ℒ(𝑢))Λ𝒯∇ℒ(𝑢) · ∇𝑤 d𝑥 =
∫︁

Ω

𝑤 d𝑓 for any 𝑤 ∈ 𝒱𝒯 (Ω),

which means that ℒ(𝑢) is a solution of the numerical scheme (2.6). Let 𝜇 ∈ (0, 1] and let 𝑢 = (𝑢𝑖)𝑖∈𝒩int ∈ R𝒩int

be such that ℱ(𝑢, 𝜇) = 0. We have, for any 𝑖 ∈ 𝒩int,

𝜇

∫︁
Ω

𝜓′(ℒ(𝑢))Λ𝒯∇ℒ(𝑢) · ∇𝜙𝑖 d𝑥+ (1− 𝜇)𝑢𝑖 = 𝜇

∫︁
Ω

𝜙𝑖 d𝑓.

Multiplying the previous identity by 𝜓−1(𝑢𝑖) and summing over the internal nodes leads to

𝜇

∫︁
Ω

𝜓′(ℒ(𝑢))Λ𝒯∇ℒ(𝑢) · ∇ℒ(𝑢) d𝑥+ (1− 𝜇)
∑︁
𝑖∈𝒩

𝑢𝑖𝜓
−1(𝑢𝑖) = 𝜇

∫︁
Ω

ℒ(𝑢) d𝑓.
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Dividing by 𝜇 and using 1−𝜇
𝜇

∑︀
𝑖∈𝒩int

𝑢𝑖𝜓
−1(𝑢𝑖) ≥ 0, we get that∫︁

Ω

𝜓′(ℒ(𝑢))Λ𝒯∇ℒ(𝑢) · ∇ℒ(𝑢) d𝑥 ≤
∫︁

Ω

ℒ(𝑢) d𝑓,

which means that (2.14) holds for ℒ(𝑢). Hence, from Lemma 2.8, we then obtain

max
𝑥∈Ω

|ℒ(𝑢)(𝑥)| ≤ 𝐶2.

We then obtain that |𝜓−1(𝑢𝑖)| ≤ 𝐶2 for all 𝑖 ∈ 𝒩int, and therefore that

|𝑢𝑖| ≤ 𝜓(𝐶2), ∀𝑖 ∈ 𝒩int.

Define the relatively compact open set

𝒰 =
{︀
𝑢 = (𝑢𝑖)𝑖∈𝒩 ∈ R𝒩int such that |𝑢𝑖| < 𝜓(𝐶2) + 1

}︀
.

For 𝜇 = 0, the linear equation ℱ(𝑢, 0) = 0 has the unique solution 𝑢 = 0. The topological degree corresponding
to ℱ(𝑢, 0) and 𝒰 is therefore equal to 1 since 𝑢 = 0 belongs to 𝒰 . Hence for any 𝜇 ∈ [0, 1] any solution to
ℱ(𝑢, 𝜇) = 0 necessarily belongs to 𝒰 . Therefore, owing to the invariance of the topological degree by homotopy,
there exists at least one 𝑢 ∈ R𝒩int (non necessarily unique) such that ℱ(𝑢, 1) = 0, which means that ℒ(𝑢) is a
solution to Scheme (2.6) in the sense of Definition 2.2. �

2.6. Convergence of the nonlinear finite element scheme

The goal of this section is the proof of Theorem 2.4, which uses the following lemma.

Lemma 2.10. Let Ω be an open bounded subset of R𝑑 with 𝑑 ≥ 2. Let
(︀
𝑢(𝑚)

)︀
𝑚≥0

∈ 𝒮𝑑(Ω)N such that there

exists (𝐶𝑟)𝑟≥0 ∈ (R+)N satisfying, for any 𝑟 ∈
(︁
1, 𝑑

𝑑−1

)︁
,⃦⃦⃦

∇𝑢(𝑚)
⃦⃦⃦
𝑟
≤ 𝐶𝑟, for any 𝑚 ≥ 0.

Then there exists 𝑢 ∈ 𝒮𝑑(Ω) such that, up to a subsequence,
(︀
𝑢(𝑚)

)︀
𝑚≥0

weakly converges to 𝑢 in all 𝑊 1,𝑟
0 (Ω)

for all 𝑟 ∈ (1, 𝑑/(𝑑 − 1)), strongly in 𝐿𝑞(Ω) for all 𝑞 ∈ [1,+∞) if 𝑑 = 2 and for all 𝑞 ∈ [1, 𝑑/(𝑑 − 2)) if 𝑑 ≥ 3,
and almost everywhere in Ω.

Proof. Let us first consider a given 𝑟0 ∈
(︁
1, 𝑑

𝑑−1

)︁
. Let us select 𝑢 ∈ 𝑊 1,𝑟0

0 (Ω) and an infinite set 𝑆1 ⊂ N, such

that
(︀
𝑢(𝑚)

)︀
𝑚∈𝑆1

weakly converges to 𝑢 in𝑊 1,𝑟0
0 (Ω). Let 𝑟 ∈ (1, 𝑑/(𝑑−1)) be given. There exists 𝑢′ ∈𝑊 1,𝑟

0 (Ω) and

an infinite set 𝑆2 ⊂ 𝑆1 such that
(︀
𝑢(𝑚)

)︀
𝑚∈𝑆2

weakly converges to 𝑢′ in 𝑊 1,𝑟
0 (Ω). Then 𝑢 = 𝑢′ in 𝑊 1,min(𝑟,𝑟0)

0 (Ω),

which implies, by uniqueness of the limit, that we can take 𝑆2 = 𝑆1, and that 𝑢 ∈ 𝑊
1,max(𝑟,𝑟0)
0 (Ω). Since this

holds for any 𝑟 ∈ (1, 𝑑/(𝑑− 1)), the lemma is proved using Sobolev inequalities. �

We can now prove the weak convergence of a discrete solution to a solution of the continuous problem.

Proof of Theorem 2.4. For all 𝑚 ≥ 1, we let 𝑤 = 𝑣𝒯 (𝑚) in (2.6) (recall that this would not be possible if we were
considering a simple linear finite element approximation of this problem, as we do for comparison purposes in
the numerical section). Hence (2.14) holds (it is in this case an equality instead of an inequality), and we can
apply Lemma 2.9. Therefore the sequence (𝜓(𝑣𝒯 (𝑚)))𝑚≥1 is bounded in 𝑊 1,𝑟

0 (Ω) for any 𝑟 ∈ [1, 𝑑
𝑑−1 ). Applying

Lemma 2.10, we get that there exists 𝑢 ∈ 𝒮𝑑(Ω) such that, up to the extraction of a subsequence, (𝜓(𝑣𝒯 (𝑚)))𝑚≥1

weakly converges to 𝑢 in all 𝑊 1,𝑟
0 (Ω) for all 𝑟 ∈

(︁
1, 𝑑

𝑑−1

)︁
.
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For all 𝑚 ∈ N, we define the following interpolation operator

𝒫𝒯 (𝑚) : 𝐶∞𝑐 (Ω) −→ 𝒱𝒯 (𝑚)(Ω)

𝑣 ↦−→
∑︁

𝑖∈𝒩 (𝑚)

𝑣(𝑧(𝑚)
𝑖 )𝜙(𝑚)

𝑖 . (2.21)

This operator satisfies the following approximation properties (see [16]): for any 𝜙 ∈ 𝐶∞𝑐 (Ω),

‖𝜙− 𝒫𝒯 (𝑚)(𝜙)‖∞ + ℎ𝒯 (𝑚)‖∇𝜙−∇𝒫𝒯 (𝑚)(𝜙)‖∞ ≤ 𝐶interℎ
2
𝒯 (𝑚)

𝑑∑︁
𝑘=1

𝑑∑︁
ℓ=1

⃦⃦⃦⃦
𝜕2𝜙

𝜕𝑥𝑘𝜕𝑥ℓ

⃦⃦⃦⃦
∞
, (2.22)

where 𝐶inter is increasingly depending on 𝜃𝒯 (𝑚) . For a given 𝜙 ∈ 𝐶∞𝑐 (Ω), we let 𝑤 = 𝒫𝒯 (𝑚)(𝜙) in (2.6). We get
for any 𝑚 ≥ 1, ∫︁

Ω

Λ𝒯 (𝑚)∇𝜓(𝑣𝒯 (𝑚)) · ∇𝒫𝒯 (𝑚)(𝜙) d𝑥 =
∫︁

Ω

𝒫𝒯 (𝑚)(𝜙) d𝑓.

Owing to (2.22) and (2.8), we get that the sequence (𝒫𝒯 (𝑚)(𝜙))𝑚≥1 converges to 𝜙 in 𝐿∞(Ω) and that the
sequence (Λ𝒯 (𝑚)∇𝒫𝒯 (𝑚)(𝜙))𝑚≥1 converges to Λ∇𝜙 in 𝐿𝑟(Ω) for all 𝑟 ∈ [1,+∞) owing to (2.9) and to the
convergence of (∇𝒫𝒯 (𝑚)(𝜙))𝑚≥1 to ∇𝜙 in 𝐿∞(Ω). Since the sequence (𝜓(𝑣𝒯 (𝑚)))𝑚≥1 weakly converges to 𝑢 in
all 𝑊 1,𝑟

0 (Ω) for all 𝑟 ∈ (1, 𝑑/(𝑑− 1)) we then obtain that

lim
𝑚→∞

∫︁
Ω

Λ𝒯 (𝑚)∇𝜓(𝑣𝒯 (𝑚)) · ∇𝒫𝒯 (𝑚)(𝜙) d𝑥 =
∫︁

Ω

Λ∇𝑢 · ∇𝜙d𝑥.

The continuity property of 𝑓 ∈𝑀(Ω) implies

lim
𝑚→∞

∫︁
Ω

𝒫𝒯 (𝑚)(𝜙) d𝑓 =
∫︁

Ω

𝜙d𝑓.

Consequently, equation (1.5) holds for any 𝜙 ∈ 𝐶∞𝑐 (Ω). By a density argument we obtain that (1.5) holds for
any 𝑤 ∈ 𝒯𝑑(Ω), which gives that 𝑢 is a weak solution of problems (1.1) and (1.2) in the sense of Definition 1.1.

Let us now prove that, for all 𝑘 > 0, 𝑇𝑘𝑢 ∈ 𝐻1
0 (Ω). Using that 𝑇 ′𝑘(𝑠) = 0 for |𝑠| > 𝑘 and 𝑇 ′𝑘(𝑠) = 1 for |𝑠| ≤ 𝑘,

we have that∫︁
Ω

|∇𝑇𝑘𝑢𝒯 (𝑚) |2 d𝑥 =
∫︁

Ω

|∇𝑇𝑘𝜓(𝑣𝒯 (𝑚))|2 d𝑥 =
∫︁

Ω

𝜓′(𝑣𝒯 (𝑚))2𝑇 ′𝑘(𝜓(𝑣𝒯 (𝑚)))2|∇𝑣𝒯 (𝑚) |2 d𝑥

≤
𝜓′
(︀
𝜓−1(𝑘)

)︀
𝜆

∫︁
Ω

Λ𝒯 (𝑚)𝜓′(𝑣𝒯 (𝑚))∇𝑣𝒯 (𝑚) · ∇𝑣𝒯 (𝑚) d𝑥 ≤
𝜓′
(︀
𝜓−1(𝑘)

)︀
𝜆

‖𝑓‖𝑀(Ω). (2.23)

Using the above inequality, selecting a convenient subsequence, we have∫︁
Ω

|∇𝑇𝑘𝑢|2 d𝑥 ≤ lim inf
𝑚→∞

∫︁
Ω

|∇𝑇𝑘𝑢𝒯 (𝑚) |2 d𝑥,

which leads to 𝑇𝑘𝑢 ∈ 𝐻1
0 (Ω). �

3. Study of the nonlinear CVFE scheme

3.1. Motivation and organisation

As already noticed, for some diffusion fields Λ satisfying Hypothesis (1.3b), there exist non-zero weak solutions
to problems (1.1) and (1.2) in the sense of Definition 1.1 for 𝑓 = 0. One such diffusion field is precisely considered
in the numerical examples presented in Section 4. But, among these solutions, there is one and only one which
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is in some sense the limit of more regular problems, as proved in [3]. This solution must satisfy a regularity
criterion which is the basis of the notion of entropy weak solution, in the case where 𝑓 ∈ 𝐿1(Ω). We give in
Definition 3.1 below this entropy weak solution sense, formulated in the particular case of bounded domains
and linear uniformly elliptic operators.

Definition 3.1. Entropy solution to the linear elliptic problem with right-hand side in 𝐿1(Ω).
Let 𝒮𝑑(Ω) be the set of functions defined in (1.4), and, for all 𝑘 > 0, let 𝑇𝑘 : R → R be the truncation function

defined by 𝑠 ↦→ min(|𝑠|, 𝑘)sign(𝑠). We assume that 𝑓 ∈ 𝐿1(Ω).
An entropy solution of problems (1.1) and (1.2) in the sense of [3] is a function 𝑢 ∈ 𝒮𝑑(Ω) satisfying that

(1) for any 𝑘 > 0, 𝑇𝑘(𝑢) ∈ 𝐻1
0 (Ω),

(2) for any 𝑘 > 0 and for any 𝜑 ∈ 𝐶∞𝑐 (Ω),∫︁
|𝑢−𝜑|≤𝑘

Λ∇𝑢 · ∇(𝑢− 𝜑) d𝑥 ≤
∫︁

Ω

𝑇𝑘(𝑢− 𝜑)𝑓(𝑥) d𝑥. (3.1)

Remark 3.2. It is proved in [3] that it is equivalent to replace (3.1) and the truncations 𝑇𝑘 by∫︁
Ω

Λ∇𝑢 · ∇𝑇 (𝑢− 𝜑) d𝑥 ≤
∫︁

Ω

𝑇 (𝑢− 𝜑)𝑓(𝑥) d𝑥, (3.2)

for any 𝜑 ∈ 𝐶∞𝑐 (Ω) and for any 𝑇 ∈ ℱ , where ℱ is defined as the set of all functions 𝑇 ∈ 𝐶2(R) ∩ 𝐿∞(R) such
that

𝑇 (0) = 0, 𝑇 ′ ≥ 0, 𝑇 ′(𝑠) = 0 for 𝑠 large enough;

𝑇 (−𝑠) = −𝑇 (𝑠), 𝑇 ′′(𝑠) ≤ 0 for 𝑠 ≥ 0.

It is also proved in [3] that the entropy solution exists, is unique and is a weak solution in the sense of Defini-
tion 1.1.

Remark 3.3. In fact, Andrea Dall’Aglio proved in 1996 that the inequality (3.1) can be replaced by an equality
[11]. This result is stated and briefly proved in Lemma A.6 in the appendix, as well as the fact that (3.2) can
also be replaced by an equality.

The above entropy solution sense is reviewed in Prignet [23], as well as different mathematical senses for a
solution to this problem. It is proved to be equivalent to the renormalised sense introduced in [8,10]. See [3,4,25]
for more detailed definitions and properties; one can also refer to [13,14] for some extensions to the case where
the problem is not coercive.

Recall that, in [8], the authors prove the convergence of the approximate solution obtained by the linear finite
element approximation (1.6) to the entropy (or renormalised) solution, but only under strong restrictions on the
meshes and Λ-fields that can be considered. These restrictions are not requested for the nonlinear finite element
scheme studied in Section 2 of this work, which is shown to converge to a weak solution of the problem on any
simplicial grid, with any diffusion field. Nevertheless, the convergence of this nonlinear finite element scheme
to the entropy solution of the problem could not be proved, mainly because no inequality can be obtained by
introducing nonlinear functions of the primary unknown as test functions.

We therefore propose in Section 3 of this paper a nonlinear scheme which holds for any simplicial grid and
for any diffusion field Λ satisfying Hypothesis (1.3b). We construct this scheme in such a way that we can prove
its convergence to the entropy weak solution of the problem, owing to three ideas.

(1) The first one is motivated in Section 2.1 above: it relies on writing 𝑢 = 𝜓(𝑣), using the function 𝜓 defined
by (2.2). Then, as in Section 2, an estimate is deduced when one takes the approximation of the bounded
function 𝑣 as test function in the numerical scheme.
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(2) The second one is the use of a control volume-finite element scheme (called for short CVFE in this work),
which allows to simultaneously adopt the finite element point of view, for computing the coefficients of a
rigidity matrix, and the finite volume point of view, for the computation of some nonlinear expressions with
respect to the unknown.
Then, following [2,6,7] and other works by the same authors, the evaluation of 𝜓′ is upstream weighted with
respect to the sign of the so-called “transmissibility” between control volumes (this quantity, which only
depends on the mesh and on Λ, is defined by (3.4)). Owing to this technique, it becomes possible to derive
estimates with using test functions under the form of nonlinear functions of the primary unknown. For this
purpose, these nonlinear functions must satisfy some specific properties (see (A.3)), which is restricting the
range of the nonlinear functions which can be considered: for example, truncations 𝑇𝑘 do not provide such
monotony inequalities, see Remark 3.16.
As in Section 2, Sobolev inequalities (see Lem. A.1) play an important role for establishing these estimates;
the application of these inequalities to the CVFE scheme is done through the equivalence property between
continuous and discrete norms (see Lem. A.2). The discrete Sobolev inequalities as stated in [17] could also
be used, up to the adaptation of the treatment of the homogeneous Dirichlet boundary conditions.

(3) We notice in Remark 3.11 that this upstream weighting yields a kind of weak 𝑝-Laplace stabilisation term
with 𝑝 = 3 (in analogy with the Godunov scheme for scalar hyperbolic equation, which provides a weak
BV-inequality). Nevertheless, we could not conclude the convergence proof to the entropy solution only
using this weak inequality, and we had to introduce in the scheme a nonlinear vanishing stabilisation term,
based on a 𝑝-Laplace operator with 𝑝 > 3. This term is not necessary for proving, up to a subsequence,
the convergence of the scheme to a weak solution; but it is strongly used in the proof of the convergence to
the entropy weak solution in the case where 𝑓 ∈ 𝐿1(Ω). One of the difficulties in the definition of this term
is that it must be sufficiently large for bounding the expressions which must tend to zero, and sufficiently
small for vanishing against regular test functions.

The organisation of Section 3 is similar to that of Section 2. In Section 3.2, we present the CVFE numeri-
cal scheme and give the main results (existence and convergence) concerning this scheme in Section 3.3. In
Section 3.4, estimates on the discrete solution are established, including an inequality induced by the stabili-
sation term. These estimates allow, in Section 3.5, to derive the existence of a solution to the scheme, using a
topological degree argument (similarly to what is done in Sect. 2). Section 3.6 is first devoted to the convergence
proof of a subsequence of discrete solutions to a weak solution of the problem in the general case 𝑓 ∈ 𝑀(Ω)
(recall that the uniqueness of this solution holds only if 𝑑 = 2). Then the convergence of the whole sequence
to the entropy weak solution is proved in the case where 𝑓 ∈ 𝐿1(Ω). This last proof strongly relies on the
presence of the 𝑝-Laplace stabilisation term. Let us observe that the complexity of these convergence proofs is
largely greater than that of the convergence to a weak solution of the nonlinear finite element scheme studied
in Section 2.

3.2. Definition of the scheme

The Control Volume Finite Element (CVFE) scheme is based on 𝑃 1-finite elements on a primal simplicial
mesh, and on piecewise constant functions on a dual mesh (see Fig. 2 for an illustration in the case 𝑑 = 2).
Let us introduce the geometrical objects used in the definition of this scheme, which will be considered in the
following to be all collected by the notation 𝒯 .

Primal mesh

We use the elements, nodes, 𝑃 1 basis functions defined in Section 2.2 which define the primal mesh of Ω.

Edges

We denote by ℰ the set of all pairs {𝑖, 𝑗} such that there exists 𝐾 ∈ 𝒯 with {𝑖, 𝑗} ⊂ 𝒩𝐾 . For any {𝑖, 𝑗} ∈ ℰ ,
the length of the segment [𝑧𝑖, 𝑧𝑗 ] (called an edge of the mesh) is denoted by 𝑑𝑖𝑗 . For all 𝐾 ∈ 𝒯 , we denote by ℰ𝐾
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Figure 2. Triangular mesh 𝒯 (solid line) and dual mesh ℳ (dashed line).

the subset of ℰ containing all the edges of 𝐾, and for any {𝑖, 𝑗} ∈ ℰ , we denote by 𝒯𝑖𝑗 the set of all 𝐾 ∈ 𝒯 such
that {𝑖, 𝑗} ∈ ℰ𝐾 . Accounting for the fact that any simplex has 𝑑(𝑑+ 1)/2 edges, we define for any {𝑖, 𝑗} ∈ ℰ ,

𝑚𝑖𝑗 =
2

𝑑(𝑑+ 1)

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾|.

Dual mesh

Once the primal triangular mesh has been built, we can define its dual barycentric mesh ℳ as follows. To
each 𝑖 ∈ 𝒩 and 𝐾 ∈ 𝒯𝑖, we define the set 𝜔𝑖,𝐾 of all 𝑥 ∈ 𝐾 such that 𝜙𝑖(𝑥) > 𝜙𝑗(𝑥) for all 𝑗 ∈ 𝒩𝐾 ∖ {𝑖} (we
then have 𝐾 =

⋃︀
𝑖∈𝒩𝐾

𝜔𝑖,𝐾). Then we define 𝜔𝑖 =
⋃︀
𝐾∈𝒯𝑖

𝜔𝑖,𝐾 and ℳ = {𝜔𝑖, 𝑖 ∈ 𝒩}.
Note that Ω =

⋃︀
𝑖∈𝒩 𝜔𝑖 and 𝜔𝑖 ∩ 𝜔𝑗 = ∅ for 𝑖 ̸= 𝑗. We refer to Figure 2 for an illustration of the primary

and dual barycentric meshes in the 2D case. The Lebesgue measure of 𝜔𝑖 is denoted by 𝑚𝑖. The geometrical
construction of 𝜔𝑖 ensures that ∫︁

Ω

𝜙𝑖(𝑥) d𝑥 =
∫︁
𝜔𝑖

1 d𝑥 =: 𝑚𝑖, ∀𝑖 ∈ 𝒩 .

We then denote by 𝜒𝜔𝑖
: Ω → R the characteristic function of the subset 𝜔𝑖 for any 𝑖 ∈ 𝒩 .

The space of all real families (𝑣𝑖)𝑖∈𝒩 is classically denoted by R𝒩 . Then we set

R𝒩0 :=
{︀
(𝑣𝑖)𝑖∈𝒩 ∈ R𝒩 , 𝑣𝑖 = 0 for all 𝑖 ∈ 𝒩ext

}︀
.

For all 𝑣 ∈ R𝒩 and for any continuous function 𝑔 : R → R, we denote by 𝑔(𝑣) the element of R𝒩 such that
(𝑔(𝑣))𝑖 = 𝑔(𝑣𝑖) for any 𝑖 ∈ 𝒩 .

Given a family 𝑣 = (𝑣𝑖)𝑖∈𝒩 ∈ R𝒩 , we denote Π𝒯 𝑣 ∈ 𝐶
(︀
Ω
)︀

and Πℳ𝑣 ∈ 𝐿1(Ω) the functions defined by

Π𝒯 𝑣 =
∑︁
𝑖∈𝒩

𝑣𝑖𝜙𝑖 and Πℳ𝑣 =
∑︁
𝑖∈𝒩

𝑣𝑖𝜒𝜔𝑖 .
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Transmissibility coefficients

In order to define the CVFE scheme, we define the transmissibility coefficients (whose sign is not specified,
contrary to the case of the finite volume-type schemes)

Λ𝐾𝑖𝑗 = −
∫︁
𝐾

Λ∇𝜙𝑖 · ∇𝜙𝑗 d𝑥 = Λ𝐾𝑗𝑖 , ∀𝐾 ∈ 𝒯 , ∀(𝑖, 𝑗) ∈ 𝒩 2, (3.3)

and

Λ𝑖𝑗 = Λ𝑗𝑖 = −
∫︁

Ω

Λ∇𝜙𝑖 · ∇𝜙𝑗 d𝑥 =
∑︁
𝐾∈𝒯

Λ𝐾𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝒩 2. (3.4)

Note that Λ𝑖𝑗 = 0 unless {𝑖, 𝑗} ∈ ℰ . Moreover, since
∑︀

𝑖∈𝒩𝐾

∇𝜙𝑖 = 0, we have that:

−Λ𝐾𝑖𝑖 =
∑︁

𝑗∈𝒩𝐾∖{𝑖}

Λ𝐾𝑖𝑗 > 0. (3.5)

As a consequence of (3.4) and (3.5), given 𝑣 and 𝑤 two elements of R𝒩0 , one has∫︁
Ω

Λ∇Π𝒯 𝑣 · ∇Π𝒯 𝑤 d𝑥 =
∑︁

{𝑖,𝑗}∈ℰ

Λ𝑖𝑗(𝑣𝑖 − 𝑣𝑗)(𝑤𝑖 − 𝑤𝑗) =
∑︁
𝐾∈𝒯

∑︁
{𝑖,𝑗}∈ℰ𝐾

Λ𝐾𝑖𝑗 (𝑣𝑖 − 𝑣𝑗)(𝑤𝑖 − 𝑤𝑗). (3.6)

Upstream weighted CVFE scheme

We then introduce, for all {𝑖, 𝑗} ∈ ℰ , the function

Ψ𝑖𝑗 : (−1, 1)2 −→ R

(𝑎, 𝑏) ↦−→

{︃
max𝑠∈𝐼(𝑎,𝑏) 𝜓′(𝑠) if Λ𝑖𝑗 ≥ 0
min𝑠∈𝐼(𝑎,𝑏) 𝜓′(𝑠) if Λ𝑖𝑗 < 0,

(3.7)

where for any 𝑎, 𝑏 ∈ R, we denote by 𝐼(𝑎, 𝑏) = [min(𝑎, 𝑏),max(𝑎, 𝑏)].
We then consider the following approximation of problems (1.1) and (1.2).

Definition 3.4. Let 𝑎0 ∈ [0,+∞) and 𝑝 ∈ (2,+∞) be given. We say that 𝑣 is a solution of the numerical
scheme if there holds 𝑣 ∈ R𝒩0 , max𝑖∈𝒩 |𝑣𝑖| < 1 and

∑︁
{𝑖,𝑗}∈ℰ

(Λ𝑖𝑗Ψ𝑖,𝑗(𝑣𝑖, 𝑣𝑗) + 𝑆𝑖𝑗(𝑣))(𝑣𝑖 − 𝑣𝑗)(𝑤𝑖 − 𝑤𝑗) =
∫︁

Ω

Π𝒯 𝑤 d𝑓, for any 𝑤 ∈ R𝒩0 ,

with 𝑆𝑖𝑗(𝑣) = 𝑎0ℎ𝒯
|𝑣𝑖 − 𝑣𝑗 |𝑝−2

𝑑𝑝𝑖𝑗

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾|
∑︁
𝑘∈𝒩𝐾

𝜓′(𝑣𝑘), for any {𝑖, 𝑗} ∈ ℰ . (3.8)

Remark 3.5. The term
∑︀

(𝑖,𝑗)∈ℰ 𝑆𝑖𝑗(𝑣)(𝑣𝑖 − 𝑣𝑗)(𝑤𝑖−𝑤𝑗) can be seen as a discrete 𝑝-Laplace stabilisation term
since, interpreting each 𝑣𝑖−𝑣𝑗

𝑑𝑖𝑗
as a gradient, it behaves as 𝑎0ℎ𝒯

∫︀
Ω
𝜓′(𝑣)|∇𝑣|𝑝−2∇𝑣 · ∇𝑤d𝑥. We notice that this

stabilisation term vanishes as ℎ𝒯 → 0, since the definition of the term 𝑆𝑖𝑗(𝑣) implies that the term 𝐵
(𝑚)
20 in the

proof of Theorem 3.7 behaves as ℎ1/𝑝
𝒯 , thus decreasing the order of convergence if 𝑎0 > 0. Note that, although

we let 𝑎0 = 0 in the numerical results given in this paper, we observe suboptimal convergence orders, resulting
from the upstream weighting scheme used in the definition of Ψ𝑖,𝑗(𝑣𝑖, 𝑣𝑗).



CONVERGENCE OF NONLINEAR NUMERICAL APPROXIMATIONS 3059

3.3. Main results of Section 3

The first main result of this section is similar to that of Section 2.

Theorem 3.6. There exists (at least) one solution 𝑣 ∈ R𝒩0 to Scheme (3.8) (in the sense of Def. 3.4).

Therefore we can consider a sequence
(︀
𝒯 (𝑚)

)︀
𝑚≥1

of meshes of Ω in the sense specified in Section 2.2 such
that (2.7) and (2.8) are satisfied. For this sequence, owing to Theorem 3.6, we can consider for all 𝑚 ≥ 1 a
solution 𝑣(𝑚) to Scheme (3.8) with respect to 𝒯 (𝑚). The second main result of this section, also similar to that
of Section 2, is that the functions reconstructed from this sequence converge, up to a subsequence, to a weak
solution of the continuous problem in the sense of Definition 1.1, as stated by the following theorem.

Theorem 3.7. Let
(︀
𝒯 (𝑚)

)︀
𝑚≥1

be a sequence of meshes of the computational domain Ω in the sense specified in
Section 2.2 such that (2.7) and (2.8) are satisfied. Let 𝑎0 ≥ 0 and 𝑝 ∈ (2,+∞) be given. For any 𝑚 ≥ 1, let 𝑣(𝑚)

be an arbitrary numerical solution to Scheme (3.8) in the sense of Definition 3.4 in the case where 𝒯 = 𝒯 (𝑚) and
let 𝑢(𝑚) = 𝜓

(︀
𝑣(𝑚)

)︀
(the existence of 𝑣(𝑚) is given by Thm. 3.6). Then, there exists 𝑢 ∈ 𝒮𝑑(Ω), weak solution

of problems (1.1) and (1.2) in the sense of Definition 1.1, such that, up to the extraction of a subsequence,(︀
Π𝒯 (𝑚)𝑢(𝑚)

)︀
𝑚≥1

weakly converges to 𝑢 in 𝑊 1,𝑟
0 (Ω) for all 𝑟 ∈

(︁
1, 𝑑

𝑑−1

)︁
, and the sequences

(︀
Π𝒯 (𝑚)𝑢(𝑚)

)︀
𝑚≥1

and
(︀
Πℳ(𝑚)𝑢(𝑚)

)︀
𝑚≥1

strongly converge to 𝑢 in 𝐿𝑞(Ω) for all 𝑞 ≥ 1 is 𝑑 = 2 and for all 𝑞 ∈ [1, 𝑑/(𝑑 − 2)) if
𝑑 > 2.

Moreover, for all 𝑘 > 0, 𝑇𝑘𝑢 ∈ 𝐻1
0 (Ω) holds.

In the case 𝑑 = 2, the whole sequence converges to the unique solution of the problem.

Remark 3.8. Note also that, as in Section 2, 𝑢 = 𝜓(𝑣) where 𝑣 is the limit of the subsequence
(︀
Π𝒯 (𝑚)𝑣(𝑚)

)︀
𝑚≥1

in 𝐿𝑞(Ω), for all 𝑞 ≥ 1 if 𝑑 = 2 and for all 𝑞 ∈ [1, 2𝑑/(𝑑− 2)) if 𝑑 > 2.

Finally, we have the following important property in the case 𝑓 ∈ 𝐿1(Ω), which is not proved for the scheme
studied in Section 2.

Theorem 3.9. Under the hypotheses and conclusions of Theorem 3.7, moreover assuming that 𝑓 ∈ 𝐿1(Ω),
𝑎0 ̸= 0 and 𝑝 ∈ (3,+∞), then 𝑢 is the unique weak entropy solution of problems (1.1) and (1.2) in the sense of
Definition 3.1, and the whole sequence converges in the sense specified in Theorem 3.7. Moreover, Π𝒯 (𝑚)𝑢(𝑚)

converges to 𝑢 in 𝑊 1,𝑟
0 (Ω) for all 𝑟 ∈

(︁
1, 𝑑

𝑑−1

)︁
.

The remaining part of this section is dedicated to the proof of Theorems 3.6, 3.7 and 3.9.

3.4. Estimates

As in Section 2, we use the function 𝛽 defined by (2.10) (also represented in the left part of Fig. 3). We define
for any 𝑞 ∈ [0, 1) the functions 𝜓𝑞 : (−1, 1) → R and ̃︀𝜓𝑞 : (−1, 1) −→ R, for any 𝑠 ∈ (−1, 1) (represented in the
left part of Fig. 3), by

𝜓𝑞(𝑠) =

⎧⎨⎩𝜓(𝑠) if |𝑠| ≤ 𝑞,
𝜓(𝑞) + 𝜓′(𝑞)(𝑠− 𝑞) if 𝑠 > 𝑞,
−𝜓(𝑞) + 𝜓′(𝑞)(𝑠+ 𝑞) if 𝑠 < −𝑞,

and ̃︀𝜓𝑞(𝑠) =
∫︁ 𝑠

0

√︀
𝜓′(𝑡)

√︁
𝜓′𝑞(𝑡) d𝑡. (3.9)

Note that we have for any 𝑠 ∈ (−1, 1),

̃︀𝜓𝑞(𝑠) =

⎧⎨⎩
𝜓(𝑠) if |𝑠| ≤ 𝑞,

𝜓(𝑞) +
√︀
𝜓′(𝑞)(𝛽(𝑠)− 𝛽(𝑞)) if 𝑠 > 𝑞,

−𝜓(𝑞) +
√︀
𝜓′(𝑞)(𝛽(𝑠) + 𝛽(𝑞)) if 𝑠 < −𝑞.

(3.10)
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Figure 3. Left: functions 𝜓, 𝛽, 𝜓𝑞 and ̃︀𝜓𝑞 with 𝑞 = 1
2 . Right: functions 𝜎𝑞 and ̃︀𝜎𝑞 with 𝑞 = 1

2 .
The lines 𝑦 = 𝜓𝑞(±1) are the asymptotes of the function 𝜎𝑞 at ±∞.

We finally define the functions 𝜎𝑞 : R → R and ̃︀𝜎𝑞 : R −→ R, for any 𝑠 ∈ R (represented in the right part of
Fig. 3), by

𝜎𝑞(𝑠) = 𝜓𝑞
(︀
𝜓−1(𝑠)

)︀
and ̃︀𝜎𝑞(𝑠) = ̃︀𝜓𝑞(︀𝜓−1(𝑠)

)︀
. (3.11)

Note that, for all |𝑠| ≤ 𝜓(𝑞), 𝜎𝑞(𝑠) = ̃︀𝜎𝑞(𝑠) = 𝑠.
We have the following estimate.

Lemma 3.10. Let 𝑣 ∈ R𝒩0 be such that

max
𝑖∈𝒩

|𝑣𝑖| < 1 and
∑︁

{𝑖,𝑗}∈ℰ

Λ𝑖𝑗Ψ𝑖,𝑗(𝑣𝑖, 𝑣𝑗)(𝑣𝑖 − 𝑣𝑗)(𝑣𝑖 − 𝑣𝑗) ≤
∫︁

Ω

Π𝒯 𝑣 d𝑓. (3.12)

Then we can write

‖∇Π𝒯 𝛽(𝑣)‖2 ≤
(︂‖𝑓‖𝑀(Ω)

𝜆

)︂1/2

· (3.13)

As a consequence, for any 𝑟 ∈ [1, 𝑑/(𝑑− 2)) if 𝑑 > 2 and for any 𝑟 ∈ [1,+∞) if 𝑑 = 2, and for any 𝛾 ∈ [0,+∞)
there exists 𝐶(𝑟,𝛾)

4 , which also depends on 𝜆, ‖𝑓‖𝑀(Ω), 𝑑 and Ω such that⃦⃦⃦⃦
Πℳ

𝜓′(𝑣)
(1− |𝑣|)𝛾

⃦⃦⃦⃦
𝑟

≤ 𝐶
(𝑟,𝛾)
4 . (3.14)

Proof. On one hand, using that max𝑖∈𝒩 |𝑣𝑖| < 1, we have∫︁
Ω

Π𝒯 𝑣 d𝑓 ≤ ‖𝑓‖𝑀(Ω).

On the other hand, for any {𝑖, 𝑗} ∈ ℰ , since 𝛽(𝑣𝑖)− 𝛽(𝑣𝑗) =
√︀
𝜓′(𝑣𝑖𝑗)(𝑣𝑖 − 𝑣𝑗) with 𝑣𝑖𝑗 ∈ 𝐼(𝑣𝑖, 𝑣𝑗), we can write

Λ𝑖𝑗(𝛽(𝑣𝑖)− 𝛽(𝑣𝑗))
2 + Γ𝑖𝑗 = Λ𝑖𝑗Ψ𝑖𝑗(𝑣𝑖, 𝑣𝑗)(𝑣𝑖 − 𝑣𝑗)

2
,

with
Γ𝑖𝑗 = Λ𝑖𝑗(Ψ𝑖𝑗(𝑣𝑖, 𝑣𝑗)− 𝜓′(𝑣𝑖𝑗))(𝑣𝑖 − 𝑣𝑗)

2 ≥ 0.

(Recall that if Λ𝑖𝑗 ≥ 0, then Ψ𝑖𝑗(𝑣𝑖, 𝑣𝑗) ≥ 𝜓′(𝑣𝑖𝑗), and if Λ𝑖𝑗 ≤ 0, then Ψ𝑖𝑗(𝑣𝑖, 𝑣𝑗) ≤ 𝜓′(𝑣𝑖𝑗).) Hence we get

𝜆‖∇Π𝒯 𝛽(𝑣)‖22 ≤
∫︁

Ω

Λ∇Π𝒯 𝛽(𝑣) · ∇Π𝒯 𝛽(𝑣) d𝑥 =
∑︁

{𝑖,𝑗}∈ℰ

Λ𝑖𝑗(𝛽(𝑣𝑖)− 𝛽(𝑣𝑗))2 ≤ ‖𝑓‖𝑀(Ω),
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which concludes the proof of (3.13). Let us now turn to the proof of (3.14). For any 𝜀 ∈ (0, 1) and 𝑠 ∈ (−1, 1),
we have

𝜓′(𝑠)
(1− |𝑠|)𝛾

=
1

(1− |𝑠|)𝛾+2
exp

|𝑠|
1− |𝑠|

≤
(︂

2 + 𝛾

𝜀

)︂2+𝛾

𝑒𝜀−(2+𝛾) exp
(1 + 𝜀)|𝑠|
1− |𝑠|

·

We deduce from (2.13) in the proof of Lemma 2.6 that

exp
(1− 𝜀)|𝑠|
2(1− |𝑠|)

≤ 1− 𝜀

2
𝐶𝜀|𝛽(𝑠)|+ 1.

Gathering the above results and denoting by 𝜇 := 2(1+𝜀)
1−𝜀 , we obtain that

∀𝑠 ∈ (−1, 1),
(︂

𝜓′(𝑠)
(1− |𝑠|)𝛾

)︂𝑟
≤ 𝑎1|𝛽(𝑠)|𝑟𝜇 + 𝑎2, (3.15)

where 𝑎1 > 0 and 𝑎2 > 0 are only depending on 𝜀, 𝛾 and 𝑟 thanks to Hölder’s inequality.

– In the case 𝑑 = 2, let us define 𝜀 = 1
2 . Then a Sobolev inequality (see Lem. A.1) and the equivalence of

norms (A.1) provide
‖Πℳ𝛽(𝑣)‖𝑟𝜇 ≤ 𝐶

(2,𝑟𝜇)
sob 𝐶

(𝑟𝜇)
7 ‖∇Π𝒯 𝛽(𝑣)‖2.

– In the case 𝑑 > 2, let us select 𝜀 ∈ (0, 1) such that

2
1 + 𝜀

1− 𝜀
𝑟 ≤ 2𝑑

𝑑− 2
, which means that

1 + 𝜀

1− 𝜀
≤ 𝑑

𝑟(𝑑− 2)
·

This is possible, since 𝑎𝑟 := 𝑑
𝑟(𝑑−2) ∈ (1, 𝑑

𝑑−2 ]. It suffices to choose 𝜀 = 𝑎𝑟−1
𝑎𝑟+1 ∈ (0, 1) for obtaining 𝑟𝜇 ≤

2𝑑
𝑑−2 .Then a Sobolev inequality and the equivalence of norms (A.1) lead to

‖Πℳ𝛽(𝑣)‖𝑟𝜇 ≤ 𝐶
(2,𝑟𝜇)
sob 𝐶

(𝑟𝜇)
7 ‖∇Π𝒯 𝛽(𝑣)‖2.

The above relation and (3.15) yield (3.14). �

Remark 3.11. We get from the previous proof that
∑︀
{𝑖,𝑗}∈ℰ Γ𝑖𝑗 remains bounded, where Γ𝑖𝑗 behaves as a

weak 3-Laplace stabilisation. Indeed, such a stabilisation would involve a term
∫︀
Ω
|∇𝑣|∇𝑣 ·∇𝑤d𝑥 whose discrete

version, when 𝑤 = 𝑣, behaves as
∑︀

(𝑖,𝑗)∈ℰ(𝑚𝑖+𝑚𝑗)
(𝑣𝑖−𝑣𝑗)

3

𝑑3𝑖𝑗
. In the term Γ𝑖𝑗 , since Ψ𝑖𝑗(𝑣𝑖, 𝑣𝑗)−𝜓′(𝑣𝑖𝑗) behaves as

𝑣𝑖−𝑣𝑗 and Λ𝑖𝑗 behaves as 𝑚𝑖+𝑚𝑗

𝑑2𝑖𝑗
, the sum of terms Γ𝑖𝑗 happens to behave as ℎ

∫︀
Ω
|∇𝑣|∇𝑣 ·∇𝑤d𝑥. Nevertheless,

we need a greater stabilisation in the convergence proof to the entropy solution.

As a consequence of the previous result, we can obtain a bound away from one on a function |Π𝒯 𝑣| such that
the estimate (3.12) holds.

Lemma 3.12. Let 𝑣 ∈ R𝒩0 be such that (3.12) holds. Then there exists 𝐶5 ∈ (0, 1) depending only on
𝜆, ‖𝑓‖𝑀(Ω), 𝑑, |Ω| and on 𝒯 such that

max
𝑖∈𝒩

|𝑣𝑖| ≤ 𝐶5.

Proof. Owing to Lemma A.1 with 𝑟 = 1 and to (A.1), we can write

‖Πℳ𝛽(𝑣)‖1 ≤ 𝐶
(1)
7 𝐶

(2,1)
sob ‖∇Π𝒯 𝛽(𝑣)‖2.

Consequently using Lemma 3.10 we obtain

∑︁
𝑖∈𝒩

𝑚𝑖|𝛽(𝑣𝑖)| ≤ 𝐶
(1)
7 𝐶

(2,1)
sob

(︂‖𝑓‖𝑀(Ω)

𝜆

)︂1/2

,
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which gives in particular for any 𝑖 ∈ 𝒩 ,

|𝛽(𝑣𝑖)| ≤
𝐶

(1)
7 𝐶

(2,1)
sob

min𝑖∈𝒩int 𝑚𝑖

(︂‖𝑓‖𝑀(Ω)

𝜆

)︂1/2

·

Using the fact that the function 𝛽 is a continuous strictly increasing one-to-one function from (−1, 1) to R, we
then obtain for any 𝑖 ∈ 𝒩int,

|𝑣𝑖| ≤ 𝐶5 := 𝛽−1

(︃
𝐶

(1)
7 𝐶

(2,1)
sob

min𝑖∈𝒩int 𝑚𝑖

(︂‖𝑓‖𝑀(Ω)

𝜆

)︂1/2
)︃
< 1.

�

Remark 3.13. Note that the proof of Lemma 3.12 is shorter and simpler than the proof of Lemma 2.8, owing
to the finite volume point of view allowed by the CVFE scheme.

Lemma 3.14. We define, for any 1 ≤ 𝑟 <∞, the following norm on R𝒩0 :

‖𝑣‖𝑟1,𝑟,ℳ =
∑︁

{𝑖,𝑗}∈ℰ

𝑚𝑖𝑗

⃒⃒⃒⃒
𝑣𝑖 − 𝑣𝑗
𝑑𝑖𝑗

⃒⃒⃒⃒𝑟
· (3.16)

Let 𝑟 ∈ [1, 𝑑/(𝑑 − 1)) and let 𝑣 ∈ R𝒩0 be such that (3.12) holds. Then, denoting by 𝑢 = 𝜓(𝑣), there exists 𝐶6

only depending on 𝑟, 𝑑, 𝜆, ‖𝑓‖𝑀(Ω) and increasingly on 𝜃𝒯 such that

‖𝑢‖1,𝑟,ℳ ≤ 𝐶6. (3.17)

Proof. We have for any {𝑖, 𝑗} ∈ ℰ , using max𝑠∈𝐼(𝑣𝑖,𝑣𝑗)

√︀
𝜓′(𝑠) = max

(︁√︀
𝜓′(𝑣𝑖),

√︀
𝜓′(𝑣𝑗)

)︁
,

|𝜓(𝑣𝑖)− 𝜓(𝑣𝑗)| =
⃒⃒⃒⃒∫︁ 𝑣𝑗

𝑣𝑖

√︀
𝜓′(𝑠)

√︀
𝜓′(𝑠) d𝑠

⃒⃒⃒⃒
≤ |𝛽(𝑣𝑖)− 𝛽(𝑣𝑗)|

(︂√︀
𝜓′(𝑣𝑖) +

√︁
𝜓′(𝑣𝑗)

)︂
,

which gives
|𝑢𝑖 − 𝑢𝑗 |𝑟 ≤ 2𝑟−1|𝛽(𝑣𝑖)− 𝛽(𝑣𝑗)|𝑟

(︁
𝜓′(𝑣𝑖)

𝑟
2 + 𝜓′(𝑣𝑗)

𝑟
2

)︁
.

Summing over the edges, we then obtain∑︁
{𝑖,𝑗}∈ℰ

𝑚𝑖𝑗

⃒⃒⃒⃒
𝑢𝑖 − 𝑢𝑗
𝑑𝑖𝑗

⃒⃒⃒⃒𝑟
≤ 2𝑟−1

∑︁
{𝑖,𝑗}∈ℰ

𝑚𝑖𝑗

⃒⃒⃒⃒
𝛽(𝑣𝑖)− 𝛽(𝑣𝑗)

𝑑𝑖𝑗

⃒⃒⃒⃒𝑟(︁
𝜓′(𝑣𝑖)

𝑟
2 + 𝜓′(𝑣𝑗)

𝑟
2

)︁
.

Using Hlder’s inequality with conjugate exponents 2
𝑟 and 2

2−𝑟 gives

‖𝑢‖𝑟1,𝑟,ℳ ≤ 2
3𝑟−2

2 ‖𝛽(𝑣)‖𝑟1,2,ℳ

⎛⎝ ∑︁
{𝑖,𝑗}∈ℰ

𝑚𝑖𝑗

(︁
𝜓′(𝑣𝑗)

𝑟
2−𝑟 + 𝜓′(𝑣𝑗)

𝑟
2−𝑟

)︁⎞⎠
2−𝑟
2

.

Recall that owing to Lemma 3.10 and to (A.2) in Lemma A.2, we have

‖𝛽(𝑣)‖21,2,ℳ ≤ (𝐶(𝜃𝒯 ,2)
8 )2

‖𝑓‖𝑀(Ω)

𝜆
·

Note that, referring to the geometrical definitions of 𝑚𝑖𝑗 and 𝑚𝑖, we have
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∑︁
{𝑖,𝑗}∈ℰ

𝑚𝑖𝑗

(︁
𝜓′(𝑣𝑗)

𝑟
2−𝑟 + 𝜓′(𝑣𝑗)

𝑟
2−𝑟

)︁
=
∑︁
𝑖∈𝒩

∑︁
𝑗∈𝒩∖{𝑖}

∑︁
𝐾∈𝒯

2|𝐾|
𝑑(𝑑+ 1)

1𝐾∈𝒯𝑖
1𝐾∈𝒯𝑗

𝜓′(𝑣𝑖)
𝑟

2−𝑟 = 2
∑︁
𝑖∈𝒩

𝜓′(𝑣𝑖)
𝑟

2−𝑟𝑚𝑖.

This provides

‖𝑢‖𝑟1,𝑟,ℳ ≤ 2
3𝑟−2

2 2
2−𝑟
2 ‖𝛽(𝑣)‖𝑟1,2,ℳ‖Πℳ𝜓′(𝑣)‖

𝑟
2

𝑟
2−𝑟

=
(︁
2‖𝛽(𝑣)‖1,2,ℳ‖Πℳ𝜓′(𝑣)‖1/2𝑟

2−𝑟

)︁𝑟
.

Since, for 𝑑 = 2, we have 𝑟 ∈ [1, 2) and therefore 𝑟/(2 − 𝑟) ∈ [1,+∞), and for 𝑑 > 2, 𝑟 < 𝑑/(𝑑 − 1) implies
𝑟/(2− 𝑟) < 𝑑/(𝑑− 2), we can apply (3.14) in Lemma 3.10, which provides

‖Πℳ𝜓′(𝑣)‖ 𝑟
2−𝑟

≤ 𝐶
( 𝑟
2−𝑟 ,0)

4 .

Gathering the preceding inequalities provides the conclusion of the lemma. �

Lemma 3.15. Let 𝑣 ∈ R𝒩0 be a solution of the numerical scheme (3.8), and let 𝑢 = 𝜓(𝑣). Then, for any
𝑞 ∈ (0, 1), we have

‖∇Π𝒯 ̃︀𝜎𝑞(𝑢)‖2 ≤ ‖𝑓‖𝑀(Ω)

𝜆
(𝜓(𝑞) + 𝜓′(𝑞)(1− 𝑞)). (3.18)

Proof. We take 𝜓𝑞(𝑣) in the numerical scheme (3.8) and we obtain∑︁
{𝑖,𝑗}∈ℰ

Λ𝑖𝑗Ψ𝑖𝑗(𝑣𝑖, 𝑣𝑗)(𝑣𝑖 − 𝑣𝑗)(𝜓𝑞(𝑣𝑖)− 𝜓𝑞(𝑣𝑗)) ≤
∫︁

Ω

Π𝒯 𝜓𝑞(𝑣) d𝑓.

Using the definition of 𝜓𝑞 we have∫︁
Ω

Π𝒯 𝜓𝑞(𝑣) d𝑓 ≤ ‖𝑓‖ℳ(Ω)(𝜓(𝑞) + 𝜓′(𝑞)(1− 𝑞)).

Using Lemma A.4, we obtain for 𝑣𝑖 ̸= 𝑣𝑗 ,

min
𝑠∈𝐼(𝑣𝑖,𝑣𝑗)

𝜓′(𝑠) ≤

(︁ ̃︀𝜓𝑞(𝑣𝑖)− ̃︀𝜓𝑞(𝑣𝑗))︁2

(𝑣𝑖 − 𝑣𝑗)(𝜓𝑞(𝑣𝑖)− 𝜓𝑞(𝑣𝑗))
≤ max
𝑠∈𝐼(𝑣𝑖,𝑣𝑗)

𝜓′(𝑠).

This yields∫︁
Ω

Λ∇Π𝒯 ̃︀𝜓𝑞(𝑣) · ∇Π𝒯 ̃︀𝜓𝑞(𝑣) d𝑥 =
∑︁

{𝑖,𝑗}∈ℰ

Λ𝑖𝑗
(︁ ̃︀𝜓𝑞(𝑣𝑖)− ̃︀𝜓𝑞(𝑣𝑗))︁2

≤ ‖𝑓‖ℳ(Ω)(𝜓(𝑞) + 𝜓′(𝑞)(1− 𝑞)),

By definition (3.11) of ̃︀𝜎𝑞, we have the equality ̃︀𝜎𝑞(𝑢) = ̃︀𝜓𝑞(𝑣), which provides the conclusion. �

Remark 3.16. One cannot directly get an estimate on 𝑇𝑘(𝑢) by taking 𝑇𝑘(𝜓(𝑣)) as test function in (3.8).
Indeed, letting 𝑞 = 𝜓−1(𝑘), this would request that, for any (𝑎, 𝑏) ∈ (−1, 1)2 with 𝑇𝑞(𝑎) ̸= 𝑇𝑞(𝑏), it holds

min
𝑠∈𝐼(𝑎,𝑏)

𝜓′(𝑠) ≤ (𝜓(𝑇𝑞(𝑏))− 𝜓(𝑇𝑞(𝑎)))
2

(𝑏− 𝑎)(𝜓(𝑇𝑞(𝑏))− 𝜓(𝑇𝑞(𝑎)))
≤ max
𝑠∈𝐼(𝑎,𝑏)

𝜓′(𝑠).

But, although the right above inequality holds, this is not the case for the left one: considering 0 < 𝑎 < 𝑞 < 𝑏

and letting 𝑎 tend to 𝑞, then (𝜓(𝑞)−𝜓(𝑎))2

(𝑏−𝑎)(𝜓(𝑞)−𝜓(𝑎)) tends to 0 whereas min𝑠∈𝐼(𝑎,𝑏) 𝜓′(𝑠) ≥ 1. Recall that the left side,
only used in the case Λ𝑖𝑗 < 0, is not used in finite volume-type approaches.
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Lemma 3.17 (Weak 𝑝-Laplace inequality). Let 𝑣 ∈ R𝒩0 be such that Scheme (3.8) holds. Then it holds

𝑎0ℎ𝒯
∑︁

{𝑖,𝑗}∈ℰ

(𝑣𝑖 − 𝑣𝑗)
𝑝

𝑑𝑝𝑖𝑗

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾|
∑︁
𝑘∈𝒩𝐾

𝜓′(𝑣𝑘) ≤ ‖𝑓‖𝑀(Ω). (3.19)

Proof. We let 𝑣 as test function in the numerical scheme (3.8) and we obtain∑︁
{𝑖,𝑗}∈ℰ

(︁
Λ𝑖𝑗Ψ𝑖,𝑗(𝑣𝑖, 𝑣𝑗)(𝑣𝑖 − 𝑣𝑗)

2 + 𝑆𝑖𝑗(𝑣)
)︁
(𝑣𝑖 − 𝑣𝑗)

2 =
∫︁

Ω

Π𝒯 𝑣 d𝑓.

Since the proof of Lemma 3.10 provides
∑︀
{𝑖,𝑗}∈ℰ Λ𝑖𝑗Ψ𝑖,𝑗(𝑣𝑖, 𝑣𝑗)(𝑣𝑖 − 𝑣𝑗)

2 ≥ 0, we get

∑︁
{𝑖,𝑗}∈ℰ

𝑆𝑖𝑗(𝑣)(𝑣𝑖 − 𝑣𝑗)
2 ≤

∫︁
Ω

Π𝒯 𝑣 d𝑓 ≤ ‖𝑓‖𝑀(Ω),

which yields, introducing the expression of 𝑆𝑖𝑗(𝑣),∑︁
{𝑖,𝑗}∈ℰ

𝑎0ℎ𝒯
(𝑣𝑖 − 𝑣𝑗)

𝑝

𝑑𝑝𝑖𝑗

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾|
∑︁
𝑘∈𝒩𝐾

𝜓′(𝑣𝑘) ≤ ‖𝑓‖𝑀(Ω).

This is (3.19). �

3.5. Existence of a solution to CVFE Scheme (3.8)

The purpose of this section is to prove Theorem 3.6, which states the existence of a solution to the numerical
scheme in the sense of Definition 3.4, by applying the topological degree method [12]. This proof follows the
same lines as that of Theorem 2.3.

Proof of Theorem 3.6. We define the canonical basis (𝛿𝑘)𝑘∈𝒩int of R𝒩0 , by setting 𝛿𝑘𝑖 = 1 if 𝑖 = 𝑘 and 0 otherwise,
for any 𝑖 ∈ 𝒩 . Let us define the continuous function

ℱ : R𝒩0 × [0, 1] −→ R𝒩0
(𝑢, 𝜇) ↦−→ ℱ(𝑢, 𝜇) = (ℱ𝑘(𝑢, 𝜇))𝑘∈𝒩 ,

(3.20)

where for any 𝑢 = (𝑢𝑖)𝑖∈𝒩 , 𝜇 ∈ [0, 1] and for any 𝑘 ∈ 𝒩ext, ℱ𝑘(𝑢, 𝜇) := 0 and for any 𝑘 ∈ 𝒩int, the function
ℱ𝑘(𝑢, 𝜇) is defined by

ℱ𝑘(𝑢, 𝜇) := 𝜇

⎛⎝ ∑︁
{𝑖,𝑗}∈ℰ

(Λ𝑖𝑗Ψ𝑖,𝑗(𝑣𝑖, 𝑣𝑗) + 𝑆𝑖𝑗(𝑣))(𝑣𝑖 − 𝑣𝑗)(𝛿𝑘𝑖 − 𝛿𝑘𝑗 )−
∫︁

Ω

Π𝒯 𝛿𝑘 d𝑓

⎞⎠+ (1− 𝜇)𝑢𝑘,

where for all 𝑖 ∈ 𝒩 , we denote by 𝑣𝑖 = 𝜓−1(𝑢𝑖) (notice that Π𝒯 𝛿𝑘 = 𝜙𝑘). This mapping is well defined and
continuous, since, for any 𝑢 = (𝑢𝑖)𝑖∈𝒩 ∈ R𝒩0 , we have max𝑖∈𝒩 |𝜓−1(𝑢𝑖)| < 1. We also notice that the equation
ℱ(𝑢, 1) = 0 is equivalent to state that 𝑣 = 𝜓−1(𝑢) ∈ R𝒩0 is a solution to Scheme (3.8). Let 𝜇 ∈ (0, 1] and let
𝑢 = (𝑢𝑖)𝑖∈𝒩 ∈ R𝒩0 be such that ℱ(𝑢, 𝜇) = 0. Multiplying ℱ𝑘(𝑢, 𝜇) by 𝜓−1(𝑢𝑘) = 𝑣𝑘 and summing on 𝑘 ∈ 𝒩int,
we obtain

𝜇

⎛⎝ ∑︁
{𝑖,𝑗}∈ℰ

(Λ𝑖𝑗Ψ𝑖,𝑗(𝑣𝑖, 𝑣𝑗) + 𝑆𝑖𝑗(𝑣))(𝑣𝑖 − 𝑣𝑗)
2 −

∫︁
Ω

Π𝒯 𝑣 d𝑓

⎞⎠+ (1− 𝜇)
∑︁

𝑘∈𝒩int

𝑢𝑘𝜓
−1(𝑢𝑘) = 0.
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This implies, since 𝜇 ∈ (0, 1] and 𝑆𝑖𝑗(𝑣) ≥ 0, that (3.12) holds for 𝑣. Hence, from Lemma 3.12, we obtain

max
𝑖∈𝒩

|𝑣𝑖| ≤ 𝐶5 < 1,

leading to
|𝑢𝑖| ≤ 𝜓(𝐶5), ∀𝑖 ∈ 𝒩 .

Define the relatively compact open set

𝒰 = {𝑢 = (𝑢𝑖)𝑖∈𝒩 ∈ R𝒩0 such that |𝑢𝑖| < 𝜓(𝐶5) + 1 for all 𝑖 ∈ 𝒩}.

For 𝜇 = 0, the linear equation ℱ(𝑢, 0) = 0 has the unique solution 𝑢 = 0. The topological degree corresponding
to ℱ(𝑢, 0) and 𝒰 is therefore equal to 1 since 𝑢 = 0 belongs to 𝒰 . Hence for any 𝜇 ∈ [0, 1] any solution to
ℱ(𝑢, 𝜇) = 0 necessarily belongs to 𝒰 . Therefore, owing to the invariance of the topological degree by homotopy,
there exists at least one 𝑢 ∈ R𝒩0 (not necessarily unique) such that ℱ(𝑢, 1) = 0, which means that 𝑣 = 𝜓−1(𝑢)
is a solution to Scheme (3.8) in the sense of Definition 3.4. �

3.6. Convergence to a weak solution in the general case 𝑓 ∈ 𝑀(Ω)

The goal of this section is the proof of Theorem 3.7. In this section, it is possible to let 𝑎0 = 0, which
means that the convergence results to a weak solution also hold without the stabilisation term. We could as
well consider 𝑝 ∈ (1, 2] in the stabilisation term under a suitable definition of 𝑆𝑖𝑗(𝑣) in the case 𝑣𝑖 = 𝑣𝑗 . The
first step is the following compactness lemma.

Lemma 3.18. Let Ω be an open bounded subset of R𝑑 with 𝑑 ≥ 2. Let
(︀
𝒯 (𝑚)

)︀
𝑚≥0

be a sequence of simplicial
meshes in the sense of Section 3.2, such that (2.7) and (2.8) hold. For any 𝑚 ≥ 0, let 𝑣(𝑚) be a solution to
Scheme (3.8) and let 𝑢(𝑚) = 𝜓

(︀
𝑣(𝑚)

)︀
. Then there exist 𝑢 ∈ 𝒮𝑑(Ω) and a subsequence of

(︀
𝒯 (𝑚), 𝑣(𝑚)

)︀
𝑚≥0

, again
denoted

(︀
𝒯 (𝑚), 𝑣(𝑚)

)︀
𝑚≥0

, such that:

(1) for all 𝑟 ∈ [1, 𝑑/(𝑑− 1)), ∇Π𝒯 (𝑚)𝑢(𝑚) weakly converges to ∇𝑢 in 𝐿𝑟(Ω)𝑑,
(2) for all 𝑠 ∈ [1,+∞) if 𝑑 = 2 and for all 𝑠 ∈ [1, 𝑑/(𝑑− 2)) if 𝑑 > 2, Π𝒯 (𝑚)𝑢(𝑚) and Πℳ(𝑚)𝑢(𝑚) converge to 𝑢

in 𝐿𝑠(Ω) and almost everywhere in Ω,
(3) for all 𝑞 ∈ (0, 1), ∇Π𝒯 (𝑚)̃︀𝜎𝑞(︀𝑢(𝑚)

)︀
weakly converges to ∇̃︀𝜎𝑞(𝑢) in 𝐿2(Ω) and ̃︀𝜎𝑞(𝑢) ∈ 𝐻1

0 (Ω) which implies
that 𝑇𝑘(𝑢) ∈ 𝐻1

0 (Ω) for all 𝑘 > 0.

Proof. Let us denote the initial sequence by
(︀
𝒯 (𝑚), 𝑣(𝑚)

)︀
𝑚∈N. Thanks to (3.17) in Lemma 3.14 and to (A.2)

in Lemma A.2, for a given 𝑟0 ∈
(︁
1, 𝑑

𝑑−1

)︁
, we can select 𝑢 ∈ 𝑊 1,𝑟0

0 (Ω) and an infinite subset 𝑆1 ⊂ N such that(︀
Π𝒯 (𝑚)𝑢(𝑚)

)︀
𝑚∈𝑆1

weakly converges to 𝑢 in 𝑊 1,𝑟0
0 (Ω) and converges almost everywhere in Ω.

Let 𝑟 ∈ (1, 𝑑/(𝑑−1)) be given. Owing again to the same arguments, we deduce that there exists 𝑢′ ∈𝑊 1,𝑟
0 (Ω)

and an infinite subset 𝑆2 ⊂ 𝑆1 such that
(︀
Π𝒯 (𝑚)𝑢(𝑚)

)︀
𝑚∈𝑆2

weakly converges to 𝑢′ in 𝑊 1,𝑟
0 (Ω). Then 𝑢 = 𝑢′ in

𝑊
1,min(𝑟,𝑟0)
0 (Ω), which implies, by uniqueness of the limit, that in fact we can take 𝑆2 = 𝑆1 and that we have

𝑢 ∈ 𝑊
1,max(𝑟,𝑟0)
0 (Ω). Since this holds for all 𝑟 ∈ (1, 𝑑/(𝑑 − 1)), we get that 𝑢 ∈ 𝒮𝑑(Ω) and that the sequence(︀

𝒯 (𝑚), 𝑣(𝑚)
)︀
𝑚∈𝑆1

satisfies the weak convergence property for any 𝑟 ∈ (1, 𝑑/(𝑑 − 1)). This concludes the first
item.

The second item is a direct consequence of Sobolev inequalities for the convergence properties of(︀
Π𝒯 (𝑚)𝑢(𝑚)

)︀
𝑚∈𝑆1

in 𝐿𝑠(Ω) and almost everywhere in Ω. Then the application of (A.1) in Lemma A.2 and
of Lemma A.3 provides the same conclusion for

(︀
Πℳ(𝑚)𝑢(𝑚)

)︀
𝑚∈𝑆1

.
We then get, remarking that ̃︀𝜎𝑞(︀Πℳ(𝑚)𝑢(𝑚)

)︀
= Πℳ(𝑚)̃︀𝜎𝑞(︀𝑢(𝑚)

)︀
(important property of the piecewise func-

tions) that
(︀
Πℳ(𝑚)̃︀𝜎𝑞(︀𝑢(𝑚)

)︀)︀
𝑚∈𝑆1

converges to ̃︀𝜎𝑞(𝑢) in 𝐿2(Ω), and applying again Lemma A.3 in addition
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to Lemma 3.15, we get that
(︀
Π𝒯 (𝑚)̃︀𝜎𝑞(︀𝑢(𝑚)

)︀)︀
𝑚∈𝑆1

converges to ̃︀𝜎𝑞(𝑢) in 𝐿2(Ω). This yields, accounting from
Lemma 3.15, the weak convergence of ∇Π𝒯 (𝑚)̃︀𝜎𝑞(︀𝑢(𝑚)

)︀
to ∇̃︀𝜎𝑞(𝑢) in 𝐿2(Ω).

We then get that ̃︀𝜎𝑞(𝑢) ∈ 𝐻1
0 (Ω) by considering the convergence of the continuation by 0 outside Ω of

Π𝒯 (𝑚)̃︀𝜎𝑞(𝑢(𝑚)) in 𝐿2(R𝑑) and the weak convergence of its gradient in 𝐿2(R𝑑). In order to prove that 𝑇𝑘(𝑢) ∈
𝐻1

0 (Ω) for any 𝑘 > 0,we choose 𝑞 ∈ (0, 1) such that 𝜓(𝑞) > 𝑘. Since we have

𝑇𝑘(𝑢) = 𝑇𝑘(̃︀𝜎𝑞(𝑢)),
we get that, applying Stampacchia’s results [25],∫︁

Ω

|∇𝑇𝑘(𝑢)|2 d𝑥 =
∫︁

Ω

|∇𝑇𝑘(̃︀𝜎𝑞(𝑢))|2 d𝑥 =
∫︁

Ω

(𝑇 ′𝑘(̃︀𝜎𝑞(𝑢))2|∇̃︀𝜎𝑞(𝑢)|2 d𝑥.

Since |𝑇 ′𝑘(𝑠)| ≤ 1, we deduce that
‖∇𝑇𝑘(𝑢)‖2 ≤ ‖∇̃︀𝜎𝑞(𝑢)‖2,

which proves that 𝑇𝑘𝑢 ∈ 𝐻1
0 (Ω). �

We now turn to the convergence proof to a weak solution of the continuous problem.

Proof of Theorem 3.7. Applying Lemma 3.18, let us prove that 𝑢 is a weak solution of problems (1.1) and (1.2)
in the sense of Definition 1.1.

For all 𝑚 ∈ N, we rewrite (2.21) and (2.22) with the notations of CVFE schemes: the interpolation operator

𝒫𝒯 (𝑚) : 𝐶∞𝑐 (Ω) −→ R𝒩 (𝑚)

0

𝜑 ↦−→
(︁
𝜑
(︁
𝑧
(𝑚)
𝑖

)︁)︁
𝑖∈𝒩 (𝑚)

,
(3.21)

satisfies the following approximation properties (see [16]): for any 𝜑 ∈ 𝐶∞𝑐 (Ω),

‖𝜑−Π𝒯 (𝑚)𝒫𝒯 (𝑚)(𝜑)‖∞ + ℎ𝒯 (𝑚)‖∇𝜑−∇Π𝒯 (𝑚)𝒫𝒯 (𝑚)(𝜑)‖∞ ≤ 𝐶
(𝜃𝒯 (𝑚))
inter ℎ2

𝒯 (𝑚)

𝑑∑︁
𝑘=1

𝑑∑︁
ℓ=1

⃦⃦⃦⃦
𝜕2𝜑

𝜕𝑥𝑘𝜕𝑥ℓ

⃦⃦⃦⃦
∞
, (3.22)

where 𝐶
(𝜃𝒯 (𝑚) )

inter is increasingly depending on 𝜃𝒯 (𝑚) . For a given 𝜑 ∈ 𝐶∞𝑐 (Ω), we let 𝒫𝒯 (𝑚)(𝜑) in (3.8). Dropping
some indices 𝑚 and denoting for short 𝜑𝑖 instead of 𝜑(𝑧𝑖), we get for any 𝑚 ≥ 1,

𝐵
(𝑚)
1 +𝐵

(𝑚)
2 = 𝐵

(𝑚)
3 ,

with

𝐵
(𝑚)
1 :=

∑︁
{𝑖,𝑗}∈ℰ

Λ𝑖𝑗Ψ𝑖,𝑗(𝑣𝑖, 𝑣𝑗)(𝑣𝑖 − 𝑣𝑗)(𝜑𝑖 − 𝜑𝑗),

𝐵
(𝑚)
2 :=

∑︁
{𝑖,𝑗}∈ℰ

𝑆𝑖𝑗(𝑣)(𝑣𝑖 − 𝑣𝑗)(𝜑𝑖 − 𝜑𝑗),

𝐵
(𝑚)
3 :=

∫︁
Ω

Π𝒯 𝒫𝒯 (𝜑) d𝑓.

From (3.22) and the continuity property of 𝑓 ∈𝑀(Ω), we get that

lim
𝑚→∞

𝐵
(𝑚)
3 =

∫︁
Ω

𝜑 d𝑓.
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Studying 𝐵(𝑚)
2 , we have the existence of 𝐶𝜑 such that |𝜑𝑖 − 𝜑𝑗 | ≤ 𝐶𝜑𝑑𝑖𝑗 for all {𝑖, 𝑗} ∈ ℰ . Therefore⃒⃒⃒

𝐵
(𝑚)
2

⃒⃒⃒
≤ 𝐵

(𝑚)
20 := 𝐶𝜑𝑎0ℎ𝒯

∑︁
{𝑖,𝑗}∈ℰ

(𝑣𝑖 − 𝑣𝑗)
𝑝−1

𝑑𝑝−1
𝑖𝑗

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾|
∑︁
𝑘∈𝒩𝐾

𝜓′(𝑣𝑘).

This provides, thanks to Hölder’s inequality with exponents 𝑝/(𝑝− 1) and 𝑝, and using Lemma 3.17,⃒⃒⃒
𝐵

(𝑚)
20

⃒⃒⃒
≤ 𝐶𝜑(𝑎0ℎ𝒯 )

1
𝑝
(︀
‖𝑓‖𝑀(Ω)

)︀ 𝑝−1
𝑝

(︁
𝐵

(𝑚)
21

)︁ 1
𝑝

,

with

𝐵
(𝑚)
21 =

∑︁
{𝑖,𝑗}∈ℰ

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾|
∑︁
𝑘∈𝒩𝐾

𝜓′(𝑣𝑘) =
𝑑(𝑑+ 1)2

2
‖Πℳ𝜓′(𝑣)‖1 ≤

𝑑(𝑑+ 1)2

2
𝐶

(1,0)
4 ,

owing to (3.14) in Lemma 3.10. Hence we get

lim
𝑚→∞

𝐵
(𝑚)
20 = lim

𝑚→∞
𝐵

(𝑚)
2 = 0.

Let us now turn to 𝐵(𝑚)
1 = 𝐵

(𝑚)
11 +𝐵

(𝑚)
12 , defining

𝐵
(𝑚)
11 :=

∑︁
{𝑖,𝑗}∈ℰ

Λ𝑖𝑗(𝑢𝑖 − 𝑢𝑗)(𝜑𝑖 − 𝜑𝑗) =
∫︁

Ω

Λ∇Π𝒯 (𝑚)𝑢 · ∇Π𝒯 (𝑚)𝒫𝒯 (𝑚)(𝜑) d𝑥,

𝐵
(𝑚)
12 :=

∑︁
{𝑖,𝑗}∈ℰ

Λ𝑖𝑗(Ψ𝑖,𝑗(𝑣𝑖, 𝑣𝑗)− 𝜓′(𝑣1,𝑖𝑗))(𝑣𝑖 − 𝑣𝑗)(𝜑𝑖 − 𝜑𝑗),

with
𝑣1,𝑖𝑗 ∈ 𝐼(𝑣𝑖, 𝑣𝑗) such that 𝑢𝑖 − 𝑢𝑗 = 𝜓′(𝑣1,𝑖𝑗)(𝑣𝑖 − 𝑣𝑗). (3.23)

Owing to (3.22) and (2.8), we get that the sequence (Π𝒯 (𝑚)𝒫𝒯 (𝑚)(𝜑))𝑚≥1 converges to 𝜑 in 𝐿∞(Ω) and that
the sequence (∇Π𝒯 (𝑚)𝒫𝒯 (𝑚)(𝜑))𝑚≥1 converges to ∇𝜑 in 𝐿∞(Ω). Since the sequence

(︀
Π𝒯 (𝑚)𝑢(𝑚)

)︀
𝑚≥1

weakly

converges to 𝑢 in all 𝑊 1,𝑝
0 (Ω) for all 𝑝 ∈ (1, 𝑑/(𝑑− 1)) we then obtain

lim
𝑚→∞

𝐵
(𝑚)
11 = lim

𝑚→∞

∫︁
Ω

Λ∇Π𝒯 (𝑚)𝑢 · ∇Π𝒯 (𝑚)𝒫𝒯 (𝑚)(𝜑) d𝑥 =
∫︁

Ω

Λ∇𝑢 · ∇𝜑d𝑥.

Turning to the study of 𝐵(𝑚)
12 , we have, again using |𝜑𝑖 − 𝜑𝑗 | ≤ 𝐶𝜑𝑑𝑖𝑗 and writing |Λ𝑖𝑗 | ≤ 𝜆

∑︀
𝐾∈𝒯𝑖𝑗

|𝐾| 𝜃
2
𝒯
𝑑2𝑖𝑗

,

⃒⃒⃒
𝐵

(𝑚)
12

⃒⃒⃒
≤ 𝐵

(𝑚)
120 := 𝜆

∑︁
{𝑖,𝑗}∈ℰ

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾| 𝜃
2
𝒯
𝑑2
𝑖𝑗

|Ψ𝑖,𝑗(𝑣𝑖, 𝑣𝑗)− 𝜓′(𝑣1,𝑖𝑗)||𝑣𝑖 − 𝑣𝑗 |𝐶𝜑𝑑𝑖𝑗 .

We observe that
Ψ𝑖,𝑗(𝑣𝑖, 𝑣𝑗) = 𝜓′(𝑣2,𝑖𝑗) with 𝑣2,𝑖𝑗 ∈ 𝐼(𝑣𝑖, 𝑣𝑗), (3.24)

and |𝜓′(𝑣2,𝑖𝑗)− 𝜓′(𝑣1,𝑖𝑗)| ≤ max𝑠∈𝐼(𝑣𝑖,𝑣𝑗) 𝜓
′(𝑠)−min𝑠∈𝐼(𝑣𝑖,𝑣𝑗) 𝜓

′(𝑠). This provides

𝐵
(𝑚)
120 ≤ 𝐶𝜑𝜃

2
𝒯 𝜆

∑︁
{𝑖,𝑗}∈ℰ

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾| |𝑣𝑖 − 𝑣𝑗 |
𝑑𝑖𝑗

(𝜓′(𝑣𝑖) + 𝜓′(𝑣𝑗))𝜁𝑖𝑗 .

with

𝜁𝑖𝑗 :=
max𝑠∈𝐼(𝑣𝑖,𝑣𝑗) 𝜓

′(𝑠)−min𝑠∈𝐼(𝑣𝑖,𝑣𝑗) 𝜓
′(𝑠)

𝜓′(𝑣𝑖) + 𝜓′(𝑣𝑗)
∈ [0, 1).
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For a value 𝜀 ∈ (0, 7
4 ) such that 0 < 𝜀 < 𝑑

𝑑−2 − 1 if 𝑑 > 2, 𝜀 = 1
2 if 𝑑 = 2, we apply (A.4) in Lemma A.5. We

thus get

𝐵
(𝑚)
120 ≤ 𝐶𝜑𝜃

2
𝒯 𝜆𝜈𝜀

∑︁
{𝑖,𝑗}∈ℰ

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾| |𝛽(𝑣𝑖)− 𝛽(𝑣𝑗)|
𝑑𝑖𝑗

(2 + |𝛽(𝑣𝑖)|1+𝜀 + |𝛽(𝑣𝑗)|1+𝜀)𝜁𝑖𝑗 .

Owing to the Cauchy–Schwarz inequality, we have
(︁
𝐵

(𝑚)
120

)︁2

≤ 3
(︀
𝐶𝜑𝜃

2
𝒯 𝜆𝜈𝜀

)︀2
𝐵

(𝑚)
121 𝐵

(𝑚)
122 with

𝐵
(𝑚)
121 :=

∑︁
{𝑖,𝑗}∈ℰ

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾| (𝛽(𝑣𝑖)− 𝛽(𝑣𝑗))
2

𝑑2
𝑖𝑗

,

and
𝐵

(𝑚)
122 :=

∑︁
{𝑖,𝑗}∈ℰ

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾|
(︀
4 + |𝛽(𝑣𝑖)|2+2𝜀 + |𝛽(𝑣𝑗)|2+2𝜀

)︀
𝜁2
𝑖𝑗 .

We have, applying (A.2) in Lemmas A.2 and 3.10,

𝐵
(𝑚)
121 =

𝑑(𝑑+ 1)
2

‖𝛽(𝑣)‖21,2,ℳ ≤ 𝑑(𝑑+ 1)
2

(︁
𝐶

(𝜃𝒯 ,2)
8

)︁2

‖∇Π𝒯 𝛽(𝑣)‖22 ≤
𝑑(𝑑+ 1)

2
𝐶

(𝜃𝒯 ,2)
8

‖𝑓‖𝑀(Ω)

𝜆
·

Turning to 𝐵(𝑚)
122 , we have

𝐵
(𝑚)
122 =

∑︁
𝑖∈𝒩

𝜔𝑖
(︀
2 + |𝛽(𝑣𝑖)|2+2𝜀

)︀
𝜁𝑖,

defining for all 𝑖 ∈ 𝒩 ,

𝜁𝑖 :=
1
𝜔𝑖

∑︁
𝐾∈𝒯𝑖

|𝐾|
∑︁

𝑗∈𝒩𝐾∖{𝑖}

𝜁2
𝑖𝑗 .

This yields

𝐵
(𝑚)
122 =

∫︁
Ω

Πℳ
(︀
2 + |𝛽(𝑣)|2+2𝜀

)︀
Πℳ𝜁 d𝑥.

We now apply Hölder’s inequality with conjugate exponents 𝑒1, 𝑒2, where 𝑒1 is such that 𝑒1(2+2𝜀) = 2𝑑/(𝑑−2)
if 𝑑 > 2 (hence 𝑒1 > 1 owing to the choice of 𝜀), 𝑒1 = 2 if 𝑑 = 2, and 𝑒2 > 1 is such that 1/𝑒1 + 1/𝑒2 = 1. We
obtain

𝐵
(𝑚)
122 ≤

(︁⃦⃦
Πℳ

(︀
2 + |𝛽(𝑣)|2+2𝜀

)︀⃦⃦
𝑒1

)︁1/𝑒1(︀
‖Πℳ𝜁‖𝑒2

)︀1/𝑒2
,

This choice of 𝑒1 suffices for obtaining that
⃦⃦
Πℳ

(︀
2 + |𝛽(𝑣)|2+2𝜀

)︀⃦⃦
𝑒1

remains bounded thanks to (A.1) in
Lemma A.2, to Lemma 3.10 and to a Sobolev inequality.

Applying Lemma 3.19 below, we get that

lim
𝑚→∞

⃦⃦⃦
Πℳ(𝑚)𝜁(𝑚)

⃦⃦⃦
𝑒2

= 0,

which suffices to prove that
lim
𝑚→∞

𝐵
(𝑚)
122 = lim

𝑚→∞
𝐵

(𝑚)
120 = lim

𝑚→∞
𝐵

(𝑚)
12 = 0.

Consequently, equation (1.5) holds for any 𝜑 ∈ 𝐶∞𝑐 (Ω). By a density argument we obtain that (1.5) holds
for any 𝜑 ∈ 𝒯𝑑(Ω), which gives that 𝑢 is a weak solution of problems (1.1) and (1.2) in the sense of
Definition 1.1. �

Lemma 3.19. Under the hypotheses of Theorem 3.7, the function Πℳ(𝑚)𝜁(𝑚) defined in the proof of this the-
orem is such that

∀𝑟 ∈ [1,+∞), lim
𝑚→∞

⃦⃦⃦
Πℳ(𝑚)𝜁(𝑚)

⃦⃦⃦
𝑟

= 0.
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Proof. Using 𝜓′ ≥ 1, we first remark that, for all 𝑖 ∈ 𝒩 ,

𝜁𝑖 ≤
1
𝜔𝑖

∑︁
𝐾∈𝒯𝑖

|𝐾|
∑︁

𝑗∈𝒩𝐾∖{𝑖}

(︂
max

𝑠∈𝐼(𝑣𝑖,𝑣𝑗)
𝜓′(𝑠)− min

𝑠∈𝐼(𝑣𝑖,𝑣𝑗)
𝜓′(𝑠)

)︂
.

Since for all 𝑠 ∈ (−1, 0) ∪ (0, 1), we have |𝜓′′(𝑠)| = 3−2|𝑠|
(1−|𝑠|)2𝜓

′(𝑠), we have for any 𝑎 < 𝑏 ∈ (−1, 1)

max
𝑠∈𝐼(𝑎,𝑏)

𝜓′(𝑠)− min
𝑠∈𝐼(𝑎,𝑏)

𝜓′(𝑠) ≤
∫︁ 𝑏

𝑎

|𝜓′′(𝑠)|d𝑠 ≤ 3
∫︁ 𝑏

𝑎

𝜓′(𝑠)
(1− |𝑠|)2

d𝑠

≤ 3
∫︁ 𝑏

𝑎

√︀
𝜓′(𝑠) d𝑠

(︃ √︀
𝜓′(𝑎)

(1− |𝑎|)2
+

√︀
𝜓′(𝑏)

(1− |𝑏|)2

)︃

= 3(𝛽(𝑏)− 𝛽(𝑎))

(︃ √︀
𝜓′(𝑎)

(1− |𝑎|)2
+

√︀
𝜓′(𝑏)

(1− |𝑏|)2

)︃
·

We therefore get, dividing and multiplying by 𝑑𝑖𝑗 , that

‖Πℳ𝜁‖1 ≤ 3ℎ𝒯
∑︁
𝑖∈𝒩

∑︁
𝐾∈𝒯𝑖

|𝐾|
∑︁

𝑗∈𝒩𝐾∖{𝑖}

|𝛽(𝑣𝑗)− 𝛽(𝑣𝑖)|
𝑑𝑖𝑗

(︃ √︀
𝜓′(𝑣𝑖)

(1− |𝑣𝑖|)2
+

√︀
𝜓′(𝑣𝑗)

(1− |𝑣𝑗 |)2

)︃
·

Applying the Cauchy–Schwarz inequality provides

‖Πℳ𝜁‖21 ≤ 9ℎ2
𝒯

⎛⎝∑︁
𝑖∈𝒩

∑︁
𝐾∈𝒯𝑖

|𝐾|
∑︁

𝑗∈𝒩𝐾∖{𝑖}

(𝛽(𝑣𝑗)− 𝛽(𝑣𝑖))2

𝑑2
𝑖𝑗

⎞⎠
×

⎛⎝∑︁
𝑖∈𝒩

∑︁
𝐾∈𝒯𝑖

|𝐾|
∑︁

𝑗∈𝒩𝐾∖{𝑖}

(︂
𝜓′(𝑣𝑖)

(1− |𝑣𝑖|)4
+

𝜓′(𝑣𝑗)
(1− |𝑣𝑗 |)4

)︂⎞⎠·
Using (3.13) in Lemma 3.10 and (A.2) in Lemma A.2, we have

∑︁
𝑖∈𝒩

∑︁
𝐾∈𝒯𝑖

|𝐾|
∑︁

𝑗∈𝒩𝐾∖{𝑖}

(𝛽(𝑣𝑗)− 𝛽(𝑣𝑖))
2

𝑑2
𝑖𝑗

= 𝑑(𝑑+ 1)‖𝛽(𝑣)‖21,2,ℳ ≤ 𝑑(𝑑+ 1)
(︁
𝐶

(𝜃𝒯 ,2)
8

)︁2 ‖𝑓‖𝑀(Ω)

𝜆
,

and using (3.14) in Lemma 3.10, we have

∑︁
𝑖∈𝒩

∑︁
𝐾∈𝒯𝑖

|𝐾|
∑︁

𝑗∈𝒩𝐾∖{𝑖}

(︂
𝜓′(𝑣𝑖)

(1− |𝑣𝑖|)4
+

𝜓′(𝑣𝑗)
(1− |𝑣𝑗 |)4

)︂
= 2𝑑(𝑑+ 1)‖Πℳ

𝜓′(𝑣)
(1− |𝑣|)4

‖1 ≤ 2𝑑(𝑑+ 1)𝐶(1,4)
4 .

The preceding inequalities imply that

lim
𝑚→∞

⃦⃦⃦
Πℳ(𝑚)𝜁(𝑚)

⃦⃦⃦
1

= 0.

Remarking that 𝜁𝑖 ∈ [0, 𝑑(𝑑+ 1)], we have, for 𝑟 ≥ 1

‖Πℳ𝜁‖𝑟𝑟 ≤ (𝑑(𝑑+ 1))𝑟−1‖Πℳ𝜁‖1,

hence concluding the proof. �
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3.7. Convergence to the entropy solution in the case 𝑓 ∈ 𝐿1(Ω)

In this section, we assume that the right hand side of (1.1) is defined by 𝑓 ∈ 𝐿1(Ω), and that 𝑎0 > 0 and 𝑝 > 3,
which are requested in the course of the convergence proof. The next lemma provides a general convergence
result due to the presence of the 𝑝-Laplace stabilisation term. This result is used several times in the proof of
convergence to the entropy solution.

Lemma 3.20. Let
(︀
𝒯 (𝑚)

)︀
𝑚≥1

be a sequence of simplicial meshes of Ω such that (2.7) and (2.8) hold. Let
(𝑣𝒯 (𝑚))𝑚≥1 be a sequence of solutions to the numerical scheme (3.8) in the sense of Definition 3.4 with 𝑎0 > 0
and 𝑝 > 3. Let us define, for any 𝛼 ∈ (0, 3], 𝛾 ∈ [0,+∞), and for any 𝑚 ≥ 1 (dropping some indices 𝑚 in the
discrete quantities involved in the right-hand side),

𝐴(𝑚)(𝛼, 𝛾) = ℎ𝒯
∑︁

{𝑖,𝑗}∈ℰ

|𝑣𝑖 − 𝑣𝑗 |𝛼

𝑑𝛼𝑖𝑗

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾|
∑︁
𝑘∈𝒩𝐾

𝜓′(𝑣𝑘)
(1− |𝑣𝑘|)𝛾

, (3.25)

then
lim
𝑚→∞

𝐴(𝑚)(𝛼, 𝛾) = 0. (3.26)

Proof. Applying Hölder’s inequality with exponents 𝑝
𝛼 and 𝑝

𝑝−𝛼 where 𝑝 > 3 ≥ 𝛼 we get

𝐴(𝑚)(𝛼, 𝛾) ≤ ℎ𝒯

(︁
𝐴

(𝑚)
1

)︁𝛼/𝑝(︁
𝐴

(𝑚)
2

)︁(𝑝−𝛼)/𝑝

,

with

𝐴
(𝑚)
1 =

∑︁
{𝑖,𝑗}∈ℰ

|𝑣𝑖 − 𝑣𝑗 |𝑝

𝑑𝑝𝑖𝑗

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾|
∑︁
𝑘∈𝒩𝐾

𝜓′(𝑣𝑘),

and

𝐴
(𝑚)
2 =

∑︁
{𝑖,𝑗}∈ℰ

∑︁
𝐾∈𝒯𝑖𝑗

|𝐾|
∑︁
𝑘∈𝒩𝐾

𝜓′(𝑣𝑘)

(1− |𝑣𝑘|)
𝑝𝛾

𝑝−𝛼

·

Let us reorder the sum in 𝐴(𝑚)
2 . We have, from the definition of the dual mesh,

𝐴
(𝑚)
2 =

𝑑(𝑑+ 1)
2

∑︁
𝑘∈𝒩

𝜓′(𝑣𝑘)

(1− |𝑣𝑘|)
𝑝𝛾

𝑝−𝛼

∑︁
𝐾∈𝒯𝑘

|𝐾| = 𝑑(𝑑+ 1)2

2

⃦⃦⃦⃦
⃦Πℳ 𝜓′(𝑣)

(1− |𝑣|)
𝑝𝛾

𝑝−𝛼

⃦⃦⃦⃦
⃦

1

·

Applying (3.14) in Lemma 3.10, we get

𝐴
(𝑚)
2 ≤ 𝑑(𝑑+ 1)2

2
𝐶

(1, 𝑝𝛾
𝑝−𝛼 )

4 .

Therefore 𝐴(𝑚)
2 remains bounded for all 𝑚 ≥ 0. Since, from Lemma 3.17, we have that

𝐴
(𝑚)
1 ≤

‖𝑓‖𝑀(Ω)

𝑎0ℎ𝒯
,

we conclude using the fact 𝑝 > 3 ≥ 𝛼 that

𝐴(𝑚)(𝛼, 𝛾) ≤ (ℎ𝒯 )1−
𝛼
𝑝

(︂‖𝑓‖𝑀(Ω)

𝑎0

)︂𝛼/𝑝(︁
𝐴

(𝑚)
2

)︁(𝑝−𝛼)/𝑝

,

which implies that (3.26) holds. �
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We now turn to the proof of convergence to the entropy solution.

Proof of Theorem 3.9. Let us prove that 𝑢 satisfies (3.2), for any function 𝑇 ∈ ℱ and 𝜑 ∈ 𝐶∞𝑐 (Ω) (see Rem. 3.2).
Denoting by 𝑠𝑇 > 0 such that 𝑇 ′(𝑠) = 0 for all |𝑠| ≥ 𝑠𝑇 , let us select 𝑞 ∈ (0, 1) such that 𝜓(𝑞) > 𝑠𝑇 +
max𝑥∈Ω |𝜑(𝑥)|.

Let us denote 𝜑𝑖 = 𝜑(𝑧𝑖) for any 𝑖 ∈ 𝒩 . We remark that

𝑇 (𝑢𝑖 − 𝜑𝑖) = 𝑇 (𝜎𝑞(𝑢𝑖)− 𝜑𝑖) = 𝑇 (𝜓𝑞(𝑣𝑖)− 𝜑𝑖).

Letting 𝑤 = 𝑇 (𝜓𝑞(𝑣)− 𝑃𝒯 𝜑) in (3.8), we get

∑︁
{𝑖,𝑗}∈ℰ

(Λ𝑖𝑗Ψ𝑖𝑗(𝑣𝑖, 𝑣𝑗) + 𝑆𝑖𝑗(𝑣))(𝑣𝑖 − 𝑣𝑗)(𝑇 (𝜓𝑞(𝑣𝑖)− 𝜑𝑖)− 𝑇 (𝜓𝑞(𝑣𝑗)− 𝜑𝑗)) =
∫︁

Ω

𝑓Π𝒯 𝑇 (𝜓𝑞(𝑣)− 𝑃𝒯 𝜑) d𝑥.

This implies∑︁
{𝑖,𝑗}∈ℰ

(Λ𝑖𝑗Ψ𝑖𝑗(𝑣𝑖, 𝑣𝑗) + 𝑆𝑖𝑗(𝑣))(𝑣𝑖 − 𝑣𝑗)𝑇 ′(𝑤𝑖𝑗)(𝜓𝑞(𝑣𝑖)− 𝜓𝑞(𝑣𝑗)− (𝜑𝑖 − 𝜑𝑗)) =
∫︁

Ω

𝑓Π𝒯 𝑇 (𝜓𝑞(𝑣)− 𝑃𝒯 𝜑) d𝑥,

where 𝑤𝑖𝑗 ∈ 𝐼(𝜓𝑞(𝑣𝑖)− 𝜑𝑖, 𝜓𝑞(𝑣𝑗)− 𝜑𝑗). We then have

𝐴
(𝑚)
11 +𝐴

(𝑚)
12 −𝐴

(𝑚)
21 −𝐴

(𝑚)
22 = 𝐴

(𝑚)
3 , (3.27)

with

𝐴
(𝑚)
11 :=

∑︁
{𝑖,𝑗}∈ℰ

Λ𝑖𝑗Ψ𝑖𝑗(𝑣𝑖, 𝑣𝑗)(𝑣𝑖 − 𝑣𝑗)𝑇 ′(𝑤𝑖𝑗)(𝜓𝑞(𝑣𝑖)− 𝜓𝑞(𝑣𝑗)),

𝐴
(𝑚)
12 :=

∑︁
{𝑖,𝑗}∈ℰ

𝑆𝑖𝑗(𝑣)(𝑣𝑖 − 𝑣𝑗)𝑇 ′(𝑤𝑖𝑗)(𝜓𝑞(𝑣𝑖)− 𝜓𝑞(𝑣𝑗)),

𝐴
(𝑚)
21 :=

∑︁
{𝑖,𝑗}∈ℰ

Λ𝑖𝑗Ψ𝑖𝑗(𝑣𝑖, 𝑣𝑗)(𝑣𝑖 − 𝑣𝑗)𝑇 ′(𝑤𝑖𝑗)(𝜑𝑖 − 𝜑𝑗)

𝐴
(𝑚)
22 :=

∑︁
{𝑖,𝑗}∈ℰ

𝑆𝑖𝑗(𝑣)(𝑣𝑖 − 𝑣𝑗)𝑇 ′(𝑤𝑖𝑗)(𝜑𝑖 − 𝜑𝑗),

and

𝐴
(𝑚)
3 :=

∫︁
Ω

𝑓Π𝒯 𝑇 (𝜓𝑞(𝑣)− 𝑃𝒯 𝜑) d𝑥.

The remaining of the proof consists in studying the limit or the limitinf of each of these terms.

Term 𝐴11

Using Lemma A.4 and 𝑇 ′ ≥ 0, we have

𝐴
(𝑚)
11 ≥

∑︁
{𝑖,𝑗}∈ℰ

Λ𝑖𝑗𝑇 ′(𝑤𝑖𝑗)
(︁ ̃︀𝜓𝑞(𝑣𝑖)− ̃︀𝜓𝑞(𝑣𝑗))︁2

= 𝐴
(𝑚)
111 +𝐴

(𝑚)
112 , (3.28)

with, denoting by

𝑤𝐾 = 𝜓𝑞(𝑣𝑖0)− 𝜑𝑖0 with 𝑖0 ∈ 𝒩𝐾 such that |𝜓𝑞(𝑣𝑖0)− 𝜑𝑖0 | = max
𝑖∈𝒩𝐾

|𝜓𝑞(𝑣𝑖)− 𝜑𝑖|, (3.29)
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and by 𝑤𝒯 the function defined on Ω, equal a.e. to 𝑤𝐾 on 𝐾 ∈ 𝒯 , we have

𝐴
(𝑚)
111 :=

∑︁
𝐾∈𝒯

∑︁
{𝑖,𝑗}∈ℰ𝐾

Λ𝐾𝑖𝑗𝑇
′(︀𝑤𝐾)︀(︁ ̃︀𝜓𝑞(𝑣𝑖)− ̃︀𝜓𝑞(𝑣𝑗))︁2

=
∫︁

Ω

𝑇 ′(𝑤𝒯 )Λ∇Π𝒯 ̃︀𝜎𝑞(𝑢) · ∇Π𝒯 ̃︀𝜎𝑞(𝑢) d𝑥,

and
𝐴

(𝑚)
112 :=

∑︁
𝐾∈𝒯

∑︁
{𝑖,𝑗}∈ℰ𝐾

Λ𝐾𝑖𝑗
(︀
𝑇 ′(𝑤𝑖𝑗)− 𝑇 ′

(︀
𝑤𝐾
)︀)︀(︁ ̃︀𝜓𝑞(𝑣𝑖)− ̃︀𝜓𝑞(𝑣𝑗))︁2

.

Definition (3.29) for 𝑤𝐾 is motivated, on one hand, by defining a piecewise constant function on the elements,
on the other hand, by the fact that 𝑇 ′

(︀
𝑤𝐾
)︀
̸= 0 implies that max𝑖∈𝒩𝐾

|𝜓𝑞(𝑣𝑖)| ≤ 𝜓(𝑞), used in the proof of the
convergence of the gradient. Note that, owing to the inequality |𝑏𝑖 − 𝑏𝑖0 | ≤

∑︀
𝑗∈𝒩𝐾

|𝑏𝑗 − 𝑏𝑖0 | for any 𝑖, 𝑖0 ∈ 𝒩𝐾
and (𝑏𝑖)𝑖∈𝒩𝐾

, we have the relation

‖𝑇 ′(𝑤𝒯 )−Πℳ𝑇 ′(𝜓𝑞(𝑣)− 𝑃𝒯 𝜑)‖1 ≤ max(|𝑇 ′′|)ℎ𝒯
∑︁
𝐾∈𝒯

|𝐾|
𝑑+ 1

∑︁
𝑖∈𝒩𝐾

∑︁
𝑗∈𝒩𝐾

|𝜓𝑞(𝑣𝑖)− 𝜓𝑞(𝑣𝑗)|+ |𝜑𝑖 − 𝜑𝑗 |
𝑑𝑖𝑗

·

Remarking that |𝜓𝑞(𝑣𝑖)−𝜓𝑞(𝑣𝑗)| ≤ 𝜓′(𝑞)|𝑣𝑖−𝑣𝑗 |, we can apply the Cauchy–Schwarz inequality and the inequality∑︁
𝐾∈𝒯

|𝐾|
𝑑+ 1

∑︁
𝑖∈𝒩𝐾

∑︁
𝑗∈𝒩𝐾

(𝑣𝑖 − 𝑣𝑗)2

𝑑2
𝑖𝑗

≤
∑︁
𝐾∈𝒯

|𝐾|
𝑑+ 1

∑︁
𝑖∈𝒩𝐾

∑︁
𝑗∈𝒩𝐾

(𝛽(𝑣𝑖)− 𝛽(𝑣𝑗))2

𝑑2
𝑖𝑗

= 𝑑‖𝛽(𝑣)‖21,2,ℳ.

Owing to (A.2) in Lemma A.2 and to (3.13) in Lemma 3.10, this leads to

lim
𝑚→∞

⃦⃦⃦
𝑇 ′
(︁
𝑤

(𝑚)
𝒯

)︁
−Πℳ(𝑚)𝑇 ′

(︁
𝜓𝑞

(︁
𝑣(𝑚)

)︁
− 𝑃

(𝑚)
𝒯 𝜑

)︁⃦⃦⃦
1

= 0,

and therefore that
lim
𝑚→∞

⃦⃦⃦
𝑇 ′
(︁
𝑤

(𝑚)
𝒯

)︁
− 𝑇 ′(𝜎𝑞(𝑢)− 𝜑)

⃦⃦⃦
1

= 0.

Up to the extraction of a subsequence we can assume the convergence a.e. of 𝑇 ′
(︁
𝑤

(𝑚)
𝒯

)︁
to 𝑇 ′(𝜎𝑞(𝑢)− 𝜑).

Term 𝐴111

We have 𝐴(𝑚)
111 = 𝐴

(𝑚)
1111 + 2𝐴(𝑚)

1112 −𝐴
(𝑚)
1113 with

𝐴
(𝑚)
1111 :=

∫︁
Ω

𝑇 ′(𝑤𝒯 )Λ(∇Π𝒯 ̃︀𝜎𝑞(𝑢)−∇̃︀𝜎𝑞(𝑢)) · (∇Π𝒯 ̃︀𝜎𝑞(𝑢)−∇̃︀𝜎𝑞(𝑢)) d𝑥 ≥ 0,

𝐴
(𝑚)
1112 :=

∫︁
Ω

𝑇 ′(𝑤𝒯 )Λ∇Π𝒯 ̃︀𝜎𝑞(𝑢) · ∇̃︀𝜎𝑞(𝑢) d𝑥,

𝐴
(𝑚)
1113 :=

∫︁
Ω

𝑇 ′(𝑤𝒯 )Λ∇̃︀𝜎𝑞(𝑢) · ∇̃︀𝜎𝑞(𝑢) d𝑥.

The nonnegativity of 𝐴(𝑚)
1111 implies

lim inf
𝑚→∞

𝐴
(𝑚)
1111 ≥ 0.

By weak convergence in 𝐿2 of ∇Π𝒯 ̃︀𝜎𝑞(𝑢) (proved in Lem. 3.18) and strong convergence in 𝐿2 of 𝑇 ′(𝑤𝒯 )∇̃︀𝜎𝑞(𝑢)
(indeed, ‖(𝑇 ′(𝑤𝒯 ) − 𝑇 ′(𝜎𝑞(𝑢) − 𝜑))∇̃︀𝜎𝑞(𝑢)‖22 tends to 0 a.e. with being dominated by 2 max(𝑇 ′)|∇̃︀𝜎𝑞(𝑢)|2 ∈
𝐿1(Ω)), we obtain

lim
𝑚→∞

𝐴
(𝑚)
1112 = lim

𝑚→∞
𝐴

(𝑚)
1113 =

∫︁
Ω

𝑇 ′(𝜎𝑞(𝑢)− 𝜑)Λ∇̃︀𝜎𝑞(𝑢) · ∇̃︀𝜎𝑞(𝑢) d𝑥.

Therefore
lim inf
𝑚→∞

𝐴
(𝑚)
111 ≥

∫︁
Ω

𝑇 ′(𝜎𝑞(𝑢)− 𝜑)Λ∇̃︀𝜎𝑞(𝑢) · ∇̃︀𝜎𝑞(𝑢) d𝑥.
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Term 𝐴112

We remark that, for all 𝑠 ∈ (−1, 1), since 𝜓′𝑞(𝑠) ≤ 𝜓′(𝑞), the function 𝜓𝑞 admits the Lipschitz constant 𝜓′(𝑞).
Besides, we have, for all 𝑎, 𝑏 ∈ (−1, 1),

(︁ ̃︀𝜓𝑞(𝑎)− ̃︀𝜓𝑞(𝑏))︁2

=

(︃∫︁ 𝑏

𝑎

√︁
𝜓′(𝑠)𝜓′𝑞(𝑠) d𝑠

)︃2

≤ 𝜓′(𝑞)(𝜓′(𝑎) + 𝜓′(𝑏))(𝑎− 𝑏)2.

This enables to write, denoting by 𝐶𝑇 a bound of 𝑇 ′′,⃒⃒⃒
𝐴

(𝑚)
112

⃒⃒⃒
≤ 𝐶𝑇𝜓

′(𝑞)𝜆𝜃2𝒯
∑︁
𝐾∈𝒯

∑︁
{𝑘,𝑙}∈ℰ𝐾

(𝜓′(𝑞)|𝑣𝑘 − 𝑣𝑙|+ 𝐶𝜑ℎ𝐾)
∑︁

{𝑖,𝑗}∈ℰ𝐾

|𝐾|
ℎ2
𝐾

(𝑣𝑖 − 𝑣𝑗)
2(𝜓′(𝑣𝑖) + 𝜓′(𝑣𝑗)).

We obtain, using 𝜓′(𝑣𝑖)+𝜓′(𝑣𝑗) ≤
∑︀
𝑚∈𝒩𝐾

𝜓′
(︀
𝑣(𝑚)

)︀
and the Young inequality |𝑣𝑘 − 𝑣𝑙|(𝑣𝑖 − 𝑣𝑗)

2 ≤ 1
3 |𝑣𝑘 − 𝑣𝑙|3+

2
3 |𝑣𝑖 − 𝑣𝑗 |3, the inequality

⃒⃒⃒
𝐴

(𝑚)
112

⃒⃒⃒
≤ 𝐴

(𝑚)
1121 +𝐴

(𝑚)
1122 with

𝐴
(𝑚)
1121 := 𝐶𝑇𝜓

′(𝑞)2𝜆𝜃2𝒯
∑︁
𝐾∈𝒯

|𝐾|
ℎ2
𝐾

∑︁
{𝑘,𝑙}∈ℰ𝐾

∑︁
{𝑖,𝑗}∈ℰ𝐾

(︂
1
3
|𝑣𝑘 − 𝑣𝑙|3 +

2
3
|𝑣𝑖 − 𝑣𝑗 |3

)︂ ∑︁
ℓ∈𝒩𝐾

𝜓′(𝑣ℓ),

and

𝐴
(𝑚)
1122 := 𝐶𝑇𝜓

′(𝑞)𝜆𝜃2𝒯 𝐶𝜑ℎ𝒯
𝑑(𝑑+ 1)

2

∑︁
𝐾∈𝒯

∑︁
{𝑖,𝑗}∈ℰ𝐾

|𝐾|
ℎ2
𝐾

(𝑣𝑖 − 𝑣𝑗)
2(𝜓′(𝑣𝑖) + 𝜓′(𝑣𝑗)).

We get, using 𝑑𝑖𝑗 ≤ ℎ𝐾 ,

𝐴
(𝑚)
1121 ≤ 𝐶𝑇𝜓

′(𝑞)2𝜆𝜃2𝒯
𝑑(𝑑+ 1)

2
ℎ𝒯

∑︁
𝐾∈𝒯

|𝐾|
∑︁

{𝑖,𝑗}∈ℰ𝐾

|𝑣𝑖 − 𝑣𝑗 |3

𝑑3
𝑖𝑗

∑︁
ℓ∈𝒩𝐾

𝜓′(𝑣ℓ),

which provides

𝐴
(𝑚)
1121 ≤ 𝐶𝑇𝜓

′(𝑞)2𝜆𝜃2𝒯
𝑑(𝑑+ 1)

2
𝐴(𝑚)(3, 0),

where 𝐴(𝑚)(·, ·) is defined by (3.25), and

𝐴
(𝑚)
1122 ≤ 𝐶𝑇𝜓

′(𝑞)𝜆𝜃2𝒯 𝐶𝜑
𝑑(𝑑+ 1)

2
𝐴(𝑚)(2, 0).

Applying Lemma 3.20, we get that

lim
𝑚→∞

𝐴
(𝑚)
1121 = lim

𝑚→∞
𝐴

(𝑚)
1122 = lim

𝑚→∞
𝐴

(𝑚)
112 = 0.

Hence the conclusion of the study of 𝐴11 is

lim inf
𝑚→∞

𝐴
(𝑚)
11 ≥

∫︁
Ω

𝑇 ′(𝜎𝑞(𝑢)− 𝜑)Λ∇̃︀𝜎𝑞(𝑢) · ∇̃︀𝜎𝑞(𝑢) d𝑥. (3.30)

Term 𝐴12

We have 𝐴(𝑚)
12 ≥ 0, therefore

lim inf
𝑚→∞

𝐴
(𝑚)
12 ≥ 0. (3.31)
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Term 𝐴21

Using 𝑣1,𝑖𝑗 defined by (3.23), 𝑣2,𝑖𝑗 defined by (3.24), 𝑤𝐾 and the function 𝑤𝒯 defined above, we have 𝐴(𝑚)
21 =

𝐴
(𝑚)
211 +𝐴

(𝑚)
212 +𝐴

(𝑚)
213 with

𝐴
(𝑚)
211 :=

∑︁
{𝑖,𝑗}∈ℰ

Λ𝑖𝑗(𝑢𝑖 − 𝑢𝑗)𝑇 ′
(︀
𝑤𝐾
)︀
(𝜑𝑖 − 𝜑𝑗) =

∫︁
Ω

𝑇 ′(𝑤𝒯 )Λ∇Π𝒯 𝑢 · ∇Π𝒯 𝑃𝒯 𝜑 d𝑥,

𝐴
(𝑚)
212 :=

∑︁
{𝑖,𝑗}∈ℰ

Λ𝑖𝑗(𝜓′(𝑣2,𝑖𝑗)− 𝜓′(𝑣1,𝑖𝑗))(𝑣𝑖 − 𝑣𝑗)𝑇 ′
(︀
𝑤𝐾
)︀
(𝜑𝑖 − 𝜑𝑗),

𝐴
(𝑚)
213 :=

∑︁
{𝑖,𝑗}∈ℰ

Λ𝑖𝑗Ψ𝑖𝑗(𝑣𝑖, 𝑣𝑗)(𝑣𝑖 − 𝑣𝑗)
(︀
𝑇 ′(𝑤𝑖𝑗)− 𝑇 ′

(︀
𝑤𝐾
)︀)︀

(𝜑𝑖 − 𝜑𝑗).

We have, by weak convergence of ∇Π𝒯 𝑢 in 𝐿𝑟 for any 1 < 𝑟 < 𝑑/(𝑑 − 1) and strong convergence of
𝑇 ′(𝑤𝒯 )∇Π𝒯 𝑃𝒯 𝜑 in 𝐿𝑟

′
with 1/𝑟 + 1/𝑟′ = 1 (recall that 𝑇 ′ is bounded, hence dominated convergence applies),

lim
𝑚→∞

𝐴
(𝑚)
211 =

∫︁
Ω

𝑇 ′(𝜎𝑞(𝑢)− 𝜑)Λ∇𝑢 · ∇𝜑d𝑥.

Turning to 𝐴(𝑚)
212 , we have, referring to the proof of Theorem 3.7,

𝐴
(𝑚)
212 ≤ max(𝑇 ′)𝐵(𝑚)

120 ,

which proves that this term tends to 0 as 𝑚→ +∞.
Studying 𝐴(𝑚)

213 , we write⃒⃒⃒
𝐴

(𝑚)
213

⃒⃒⃒
≤ max(𝑇 ′)𝜆

∑︁
𝐾∈𝒯

∑︁
{𝑖,𝑗}∈ℰ𝐾

|𝐾| 𝜃
2
𝒯
ℎ2
𝐾

∑︁
ℓ∈𝒩𝐾

𝜓′(𝑣ℓ)|𝑣𝑖 − 𝑣𝑗 |
∑︁

{𝑘,𝑙}∈ℰ𝐾

(𝜓′(𝑞)|𝑣𝑘 − 𝑣𝑙|+ 𝐶𝜑ℎ𝐾)𝐶𝜑ℎ𝐾 .

Following the treatment of 𝐴(𝑚)
112 , where Young’s inequality is replaced by |𝑣𝑖−𝑣𝑗 ||𝑣𝑘−𝑣𝑙| ≤ 1

2 (𝑣𝑖−𝑣𝑗)2 + 1
2 (𝑣𝑘−

𝑣𝑙)2, we get ⃒⃒⃒
𝐴

(𝑚)
213

⃒⃒⃒
≤ max(𝑇 ′)𝐶𝜑𝜃2𝒯 𝜆

𝑑(𝑑+ 1)
2

(︁
𝜓′(𝑞)𝐴(𝑚)(2, 0) + 𝐶𝜑𝐴

(𝑚)(1, 0)
)︁
,

which also shows that this term tends to 0 as 𝑚→ +∞.
Hence the conclusion of the study of 𝐴21 is

lim
𝑚→∞

𝐴
(𝑚)
21 =

∫︁
Ω

𝑇 ′(𝜎𝑞(𝑢)− 𝜑)Λ∇𝑢 · ∇𝜑d𝑥. (3.32)

Term 𝐴22

Comparing 𝐴(𝑚)
22 with Term 𝐵

(𝑚)
20 in the proof of Theorem 3.7, we remark that⃒⃒⃒

𝐴
(𝑚)
22

⃒⃒⃒
≤ max(𝑇 ′)𝐵(𝑚)

20 ,

which shows that
lim
𝑚→∞

𝐴
(𝑚)
22 = 0. (3.33)

Term 𝐴3

We have, by almost everywhere and dominated convergence,

lim
𝑚→∞

𝐴
(𝑚)
3 =

∫︁
Ω

𝑇 (𝜎𝑞(𝑢)− 𝜑)𝑓 d𝑥. (3.34)
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Conclusion from (3.27), (3.30)–(3.34)

We deduce from these equations that∫︁
Ω

𝑇 ′(𝜎𝑞(𝑢)− 𝜑)Λ∇̃︀𝜎𝑞(𝑢) · ∇̃︀𝜎𝑞(𝑢)− ∫︁
Ω

𝑇 ′(𝜎𝑞(𝑢)− 𝜑)Λ∇𝑢 · ∇𝜑 d𝑥 ≤
∫︁

Ω

𝑇 (𝜎𝑞(𝑢)− 𝜑)𝑓(𝑥) d𝑥. (3.35)

Since 𝜓(𝑞) > 𝑠𝑇 +max |𝜑|, recalling that 𝜎𝑞 = ̃︀𝜎𝑞 = Id on [−𝜓(𝑞), 𝜓(𝑞)], we get that 𝑇 ′(𝜎𝑞(𝑢)− 𝜑) = 𝑇 ′(𝑢− 𝜑),̃︀𝜎′𝑞(𝑢) = 1 if 𝑇 ′(𝜎𝑞(𝑢)− 𝜑) ̸= 0, and 𝑇 (𝜎𝑞(𝑢)− 𝜑) = 𝑇 (𝑢− 𝜑). This allows to conclude that (3.2) holds, which
implies that 𝑢 is the unique entropy solution of the problem. From the uniqueness property of the limit, we
deduce that the convergence properties proved by Lemma 3.18 (except the almost everywhere convergence) hold
for the whole sequence.

Let us now turn to the strong convergence of the gradient

We let 𝜑 = 0, and, for a given function 𝑇 ∈ ℱ , we again denote by 𝑠𝑇 > 0 such that 𝑇 ′(𝑠) = 0 for all
|𝑠| ≥ 𝑠𝑇 , and define 𝑞 ∈ (0, 1) such that 𝜓(𝑞) > 𝑠𝑇 . Letting 𝑤 = 𝑇 (𝜓𝑞(𝑣)) in (3.8), we consider all the terms 𝐴𝑖,
𝑖 = 1, 11, 2, . . . as defined above, and we get (3.27), which leads, owing to (3.28) to

𝐴
(𝑚)
111 +𝐴

(𝑚)
112 +𝐴

(𝑚)
12 −𝐴

(𝑚)
21 −𝐴

(𝑚)
22 ≤ 𝐴

(𝑚)
3 .

Since 𝜑 = 0 implies 𝐴(𝑚)
21 = 0 and using 𝐴(𝑚)

12 ≥ 0, we obtain

𝐴
(𝑚)
111 +𝐴

(𝑚)
112 −𝐴

(𝑚)
22 ≤ 𝐴

(𝑚)
3 .

Since we prove above that the terms 𝐴(𝑚)
112 and 𝐴(𝑚)

22 tend to 0 as 𝑚→∞, using Lemma A.6, we get

lim sup
𝑚→∞

𝐴
(𝑚)
111 ≤ lim

𝑚→∞
𝐴

(𝑚)
3 =

∫︁
Ω

𝑇 (𝜎𝑞(𝑢))𝑓 d𝑥 =
∫︁

Ω

𝑇 (𝑢)𝑓 d𝑥 =
∫︁

Ω

𝑇 ′(𝑢)Λ∇𝑢 · ∇𝑢.

We have 𝐴(𝑚)
1111 = 𝐴

(𝑚)
111 − 2𝐴(𝑚)

1112 +𝐴
(𝑚)
1113, which leads to

lim sup
𝑚→∞

𝐴
(𝑚)
1111 ≤ lim sup

𝑚→∞
𝐴

(𝑚)
111 − 2

∫︁
Ω

𝑇 ′(𝑢)Λ∇𝑢 · ∇𝑢+
∫︁

Ω

𝑇 ′(𝑢)Λ∇𝑢 · ∇𝑢 ≤ 0.

This proves that

lim
𝑚→∞

∫︁
Ω

𝑇 ′(𝑤𝒯 (𝑚))Λ
(︁
∇Π𝒯 (𝑚)̃︀𝜎𝑞(︁𝑢(𝑚)

)︁
−∇̃︀𝜎𝑞(𝑢))︁ · (︁∇Π𝒯 (𝑚)̃︀𝜎𝑞(︁𝑢(𝑚)

)︁
−∇̃︀𝜎𝑞(𝑢))︁d𝑥 = 0,

and therefore that
lim
𝑚→∞

∫︁
Ω

𝑇 ′(𝑤𝒯 (𝑚))
⃒⃒⃒
∇Π𝒯 (𝑚)̃︀𝜎𝑞(︁𝑢(𝑚)

)︁
−∇̃︀𝜎𝑞(𝑢)⃒⃒⃒2 d𝑥 = 0.

From Definition (3.29) of 𝑤𝒯 , 𝑇 ′(𝑤𝒯 (𝑚)(𝑥)) ̸= 0 means that, if 𝐾 ∈ 𝒯 (𝑚) is such that 𝑥 ∈ 𝐾, we have
max𝑖∈𝒩𝐾

|𝜓𝑞(𝑣𝑖)| ≤ 𝜓(𝑞), which implies that ∇Π𝒯 (𝑚)̃︀𝜎𝑞(︀𝑢(𝑚)
)︀
(𝑥) = ∇Π𝒯 (𝑚)𝑢(𝑚)(𝑥). We thus get

lim
𝑚→∞

∫︁
Ω

𝑇 ′(𝑤𝒯 (𝑚))
⃒⃒⃒
∇Π𝒯 (𝑚)𝑢(𝑚) −∇̃︀𝜎𝑞(𝑢)⃒⃒⃒2 d𝑥 = 0. (3.36)

The remaining of the proof is dedicated to show that (3.36) implies the strong convergence of ∇Π𝒯 (𝑚)𝑢(𝑚) to
∇𝑢.

We now denote a given representative of the functions 𝑢, ∇𝑢 and for any 𝑚 ∈ N, of 𝑤𝒯 (𝑚) and of ∇Π𝒯 (𝑚)𝑢(𝑚),
defined everywhere in Ω, by the same notation.
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Step 1. Construction of a decreasing sequence (𝑁𝑛)𝑛∈N of infinite subsets of N, and of a sequence (Ω𝑛)𝑛∈N of
subsets of Ω such that
– |Ω ∖ Ω𝑛| → 0 as 𝑛 tends to infinity.
– For all 𝑛 ≥ 1 and 𝑥 ∈ Ω𝑛, ∇Π𝒯 (𝑚)𝑢(𝑚)(𝑥) converges to ∇𝑢(𝑥) as 𝑚 ∈ 𝑁𝑛 tends to infinity.

We let 𝑁0 = N.
We suppose that, for a given strictly positive integer 𝑛, is given an infinite set 𝑁𝑛−1 ⊂ N.
We then define 𝑇𝑛 ∈ ℱ such that 𝑇𝑛(𝑠) = 𝑠 for all |𝑠| ≤ 𝑛, and 𝑞 ∈ (0, 1) such that 𝑛 ≤ 𝑠𝑇𝑛

≤ 𝜓(𝑞) (which
means that 𝑇 ′𝑛(𝑠) = 0 for all |𝑠| ≥ 𝜓(𝑞)). Letting Ω0,𝑛 be defined by

Ω0,𝑛 := {𝑥 ∈ Ω; |𝑢(𝑥)| ≤ 𝑛},

we get |Ω ∖ Ω0,𝑛| ≤ ‖𝑢‖1
𝑛 . We then have ̃︀𝜎𝑞(𝑢(𝑥)) = 𝑢(𝑥) and 𝑇 ′𝑛(̃︀𝜎𝑞(𝑢(𝑥))) = 𝑇 ′𝑛(𝑢(𝑥)) = 1 for all 𝑥 ∈ Ω0,𝑛.

We now define Ω𝑛 ⊂ Ω0,𝑛 with |Ω0,𝑛 ∖ Ω𝑛| = 0 and an infinite set 𝑁𝑛 ⊂ 𝑁𝑛−1 such that

– for any 𝑥 ∈ Ω𝑛, we have ∇𝑢(𝑥) = ∇̃︀𝜎𝑞(𝑢)(𝑥), since it holds ∇̃︀𝜎𝑞(𝑢)(𝑥) = ̃︀𝜎′𝑞(𝑢(𝑥))∇𝑢(𝑥) for a.e. 𝑥 ∈ Ω0,𝑛

from [25];
– using the convergence in 𝐿1 of 𝑇 ′𝑛(𝑤𝒯 (𝑚)) to 𝑇 ′𝑛(𝑢) and extracting a subsequence, for any 𝑥 ∈ Ω𝑛,
𝑇 ′𝑛(𝑤𝒯 (𝑚)(𝑥)) converges to 𝑇 ′𝑛(𝑢(𝑥)) = 1 as 𝑚 ∈ 𝑁𝑛 tends to infinity;

– using (3.36) and extracting a subsequence, for any 𝑥 ∈ Ω𝑛, 𝑇 ′𝑛(𝑤𝒯 (𝑚)(𝑥))
⃒⃒
∇Π𝒯 (𝑚)𝑢(𝑚)(𝑥)−∇̃︀𝜎𝑞(𝑢(𝑥))⃒⃒2

tends to 0 as 𝑚 ∈ 𝑁𝑛 tends to infinity.

We have, for any 𝑥 ∈ Ω𝑛, that 𝑇 ′𝑛(𝑤𝒯 (𝑚)(𝑥)) > 1
2 for 𝑚 ∈ 𝑁𝑛 large enough, which means that ∇Π𝒯 (𝑚)𝑢(𝑚)(𝑥)

tends to ∇̃︀𝜎𝑞(𝑢(𝑥)) = ∇𝑢(𝑥).
We then have |Ω ∖ Ω𝑛| = |Ω ∖ Ω0,𝑛| ≤ ‖𝑢‖1

𝑛 .

Step 2. Diagonal process and convergence almost everywhere of the gradient.

Since all the infinite sets (𝑁𝑛)𝑛∈N are ordered, we denote by 𝑁
(𝑘)
𝑛 the 𝑘th element of 𝑁𝑛. The property

𝑁𝑛 ⊂ 𝑁𝑛−1 implies that 𝑁 (𝑛)
𝑛 > 𝑁

(𝑛−1)
𝑛−1 . The diagonal process consists in defining

𝑁∞ =
{︁
𝑁 (𝑛)
𝑛 , 𝑛 ∈ N

}︁
,

which therefore satisfies that
{︁
𝑁

(𝑘)
∞ , 𝑘 ≥ 𝑛

}︁
⊂ 𝑁𝑛. Then we denote by

Ω∞ =
⋃︁
𝑛≥1

Ω𝑛.

We remark that |Ω ∖ Ω∞| ≤ ‖𝑢‖1
𝑛 for all 𝑛 ≥ 1 implies that |Ω ∖ Ω∞| = 0. For any 𝑥 ∈ Ω∞, there exists 𝑛 ≥ 1

such that 𝑥 ∈ Ω𝑛. Since
{︁
𝑁

(𝑘)
∞ , 𝑘 ≥ 𝑛

}︁
⊂ 𝑁𝑛, we deduce that ∇Π𝒯 (𝑚)𝑢(𝑚)(𝑥) converges to ∇𝑢(𝑥) as 𝑚 ∈ 𝑁∞

tends to +∞.
This concludes the proof that there exists a subset Ω∞ ⊂ Ω such that |Ω ∖ Ω∞| = 0, and a subsequence of

approximate solutions indexed by 𝑚 ∈ 𝑁∞, such that, for all 𝑥 ∈ Ω∞, ∇Π𝒯 (𝑚)𝑢(𝑚)(𝑥) converges to ∇𝑢(𝑥) as
𝑚 ∈ 𝑁∞ tends to +∞.

Step 3. Convergence in 𝐿𝑞 for 1 < 𝑞 < 𝑑/(𝑑− 1).

We now apply a classical reasoning. Since
(︀
∇Π𝒯 (𝑚)𝑢(𝑚)

)︀
𝑚∈𝑁∞

is bounded in 𝐿𝑟(Ω) for a given 𝑟 ∈ (1, 𝑑/(𝑑−
1)) by Lemma 3.14, it is therefore equi-integrable. Since Ω is bounded, and since

(︀
∇Π𝒯 (𝑚)𝑢(𝑚)

)︀
𝑚∈𝑁∞

converges
almost everywhere to ∇𝑢, we deduce from Vitali’s theorem that

(︀
∇Π𝒯 (𝑚)𝑢(𝑚)

)︀
𝑚∈𝑁∞

converges in 𝐿1(Ω) to
∇𝑢. By interpolation 𝐿𝑞 − 𝐿𝑟, we get that this convergence holds for any 𝑞 ∈ (1, 𝑑/(𝑑 − 1)). By uniqueness of
the limit, we conclude that the whole sequence converges for this topology. �
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4. Numerical tests

We present here some illustrations of the behavior of the numerical schemes (2.6) and (3.8) with 𝑑 = 2 or
𝑑 = 3. The implementation of Scheme (3.8) is simply done in the case 𝑎0 = 0, using a Picard iteration for
handling the term Ψ𝑖𝑗(𝑣𝑖, 𝑣𝑗).

Let us detail the implementation of Scheme (2.6). We also adopt a simple Picard iteration method for
approximating the solution of the resulting systems of nonlinear equations, since we observe good convergence
properties in the studied test cases. It consists in computing the sequence

(︁
𝑣
(𝑘)
𝒯

)︁
𝑘=0,...,𝑁

such that 𝑣(0)
𝒯 = 0

and, for all 𝑘 = 1, . . . , 𝑁 , ∫︁
Ω

𝜓′
(︁
𝑣
(𝑘−1)
𝒯

)︁
Λ𝒯∇𝑣(𝑘)

𝒯 · ∇𝑤 d𝑥 =
∫︁

Ω

𝑓𝑤 d𝑥 for all 𝑤 ∈ 𝒱𝒯 .

The value 𝑁 is determined by the criterion ‖𝑣(𝑘)
𝒯 − 𝑣

(𝑘−1)
𝒯 ‖𝐿∞(Ω) ≤ 𝜎tol. In the following examples, we let

𝜎tol = 10−8 and 𝑁 is about 10 in the numerical examples. This choice of an 𝐿∞ criterion is done in order to
accurately approximate the large values of the unknown function; it can be expected that an 𝐿1 criterion would
lead to a smaller number of iterations.

The implementation of this Picard iteration method leads to the evaluation of
∫︀
𝐾
𝜓′
(︁
𝑣
(𝑘−1)
𝒯

)︁
d𝑥 for any

𝐾 ∈ 𝒯 . We use the formulas given in Section A.1, which implies to numerically determine which case of
equality is satisfied by the values (𝑣𝑖)𝑖=1,...,𝑑+1. This is done by comparing the differences between the values
with 10−3 (smaller values lead to less precise results due to the divisions by these differences).

A second problem in the implementation of the method, in the case where the measure 𝑓 is in fact an
element of 𝐿1(Ω) and 𝑓(𝑥) is singular at some points 𝑥 of the domain, is the computation of the right-hand
sides

∫︀
Ω
𝑓(𝑥)𝜙𝑖(𝑥) d𝑥. The key point for the precision of the method is to preserve the exactness of the integrals:

the use of approximate quadrature formulas with Gauss points leads to very poor accuracy in this case. We
complete this goal by replacing

∫︀
Ω
𝑓(𝑥)𝜙𝑖(𝑥) d𝑥 with

∫︀
𝜔𝑖
𝑓(𝑥) d𝑥, where 𝜔𝑖 is a dual cell associated with the

vertex 𝑧𝑖 (the exact shape of 𝜔𝑖 has no influence on the precision of the computation), and by computing the
exact integration of

∫︀
𝜔𝑖
𝑓(𝑥) d𝑥.

Finally, let us observe that, in the examples below, we compare numerical solutions computed with polygonal
meshes to analytical solutions available on non-polygonal domains (circles, cylinder). These analytical solutions
are vanishing at the boundary of these domains, which leads to an error lower than ℎ2, where ℎ is the size of
the mesh.

4.1. Case 𝑑 = 2, measure

We consider the case where Ω = 𝐵(0, 1) and

Λ(𝑥) =

⎛⎝1 + (𝛽 − 1) 𝑥2
1

𝑥2
1+𝑥

2
2

(𝛽 − 1) 𝑥1𝑥2
𝑥2
1+𝑥

2
2

(𝛽 − 1) 𝑥1𝑥2
𝑥2
1+𝑥

2
2

1 + (𝛽 − 1) 𝑥2
2

𝑥2
1+𝑥

2
2

⎞⎠ with 𝛽 = 5 for all 𝑥 ∈ Ω. (4.1)

This heterogeneous and anisotropic diffusion field corresponds in 2D to the case described by Prignet [23] and
Serrin [24]. We replace the average values of Λ in the elements by the values at the center of gravity of the
elements.

We let 𝑓 = 𝛽𝛿(0,0), which corresponds to the analytical solution given by 𝑢(𝑥) = − 1
2𝜋 log |𝑥| (see the right

part of Fig. 4 for a representation of the numerical solution).
In this test case, the solution is no longer in 𝐻1

0 (Ω) nor in 𝐿∞(Ω).
We use triangular meshes which are refined around the point (0, 0) (see the left part of Fig. 4), and we

compute 𝜓(𝑣𝒯 ) solution to Scheme (2.6), Π𝒯 𝑢 solution to the control-volume finite-element scheme (3.8) with
𝑎0 = 0 (as detailed in Sect. 3, this value suffices for the convergence of the scheme to a weak solution, but
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Figure 4. Domain Ω and mesh in the case 𝑛 = 817 (left), numerical solution with 𝑛 = 12 481
(right).

Table 1. 𝐿1(Ω) errors in the measure 2D case (𝑛 is the total number of vertices).

𝑛 err𝑢,I Order err𝑢,II Order err𝑢,III Order err∇𝑢,I Order err∇𝑢,II Order err∇𝑢,III Order

217 0.00437 0.0151 0.00523 0.193 0.198 0.221

817 0.00106 2.14 0.00635 1.31 0.00128 2.12 0.101 0.98 0.106 0.94 0.116 0.97
3169 0.000263 2.06 0.00289 1.16 0.000318 2.05 0.0513 1.00 0.0542 0.99 0.0590 1.00

12 481 0.0000649 2.04 0.00138 1.08 0.0000793 2.03 0.0258 1.00 0.0274 1.00 0.0297 1.00

49 537 0.0000162 2.01 0.000672 1.04 0.0000198 2.01 0.0129 1.01 0.0138 1.00 0.0149 1.00

not to the entropy solution; in practice, increasing 𝑎0 leads to an increase of the observed numerical error) and
𝑢𝒯 ∈ 𝒱𝒯 solution to the linear scheme (1.6). These solutions are respectively denoted by I, II and III in the
tables below.

We let 𝛼 = 10 in the definition (2.3) of 𝜓𝛼; in this case, the Picard iterations do not converge with 𝛼 = 1.
The quantities err𝑢,I := ‖𝜓𝛼(𝑣𝒯 ) − 𝑢‖𝐿1(Ω) for Scheme I, err𝑢,II := ‖Π𝒯 𝜓𝛼(𝑣𝒯 ) − 𝑢‖𝐿1(Ω) for Scheme II,
and err𝑢,III := ‖𝑢𝒯 − 𝑢‖𝐿1(Ω) for Scheme (1.6), err∇𝑢,I := ‖∇𝜓𝛼(𝑣𝒯 ) − ∇𝑢‖𝐿1(Ω) for Scheme I, err∇𝑢,II :=
‖∇Π𝒯 𝜓𝛼(𝑣𝒯 ) − ∇𝑢‖𝐿1(Ω) for Scheme II, and err∇𝑢,III := ‖∇𝑢𝒯 − ∇𝑢‖𝐿1(Ω) for Scheme (1.6) are provided in
Table 1, using 5 meshes whose the total number of vertices is denoted by 𝑛. In this table, we define the meshsize
as 𝑛−1/2 and we compute the order of convergence with respect to the preceding line. The errors on the gradients
are computed at the mid-edges of the triangles.

We observe that the non-linear method I provides slightly more accurate results than the linear method III,
and that a numerical order, approximately equal to 2, is observed for 𝑢 and an order 1 is observed for ∇𝑢.
Method II seems to provide an order 1, both for 𝑢 and ∇𝑢.

4.2. Case 𝑑 = 2, 𝑓 ∈ 𝐿1(Ω)

We consider the case where Ω = 𝐵
(︀
0, 1

2

)︀
and Λ is defined by (4.1). We let 𝑓(𝑥) = 𝛽𝛾(1−𝛾)(− log |𝑥|)𝛾−2/|𝑥|2

with 𝛾 = 3/4, which corresponds to the analytical solution given by 𝑢(𝑥) = (− log |𝑥|)𝛾− (− log( 1
2 ))𝛾 (see Fig. 5

for a representation of the numerical solution).
In this test case, the solution is no longer in 𝐻1

0 (Ω) nor in 𝐿∞(Ω) (recall that it belongs to 𝐻1
0 (Ω) only for

𝛾 ∈
(︀
0, 1

2

)︀
). The right-hand side 𝑓 is then in 𝐿1(Ω), but this is not the case for the product 𝑓𝑢 which is not

locally integrable around the point 0 (this prevents from using the solution as test function at the continuous
level).

We use triangular meshes which are refined around the point (0, 0) (see Fig. 5 for an example of solution
computed with such a mesh), and we again compute the solutions to Schemes I given by (2.6), II given by (3.8)
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Figure 5. Numerical solution with 𝑛 = 12 481.

Table 2. 𝐿1(Ω) errors in the 2D case (𝑛 is the total number of vertices).

𝑛 err𝑢,I Order err𝑢,II Order err𝑢,III Order err∇𝑢,I Order err∇𝑢,II Order err∇𝑢,III Order

217 0.00272 0.0735 0.0136 0.335 0.667 0.584
817 0.000896 1.68 0.03854 0.97 0.00315 2.21 0.177 0.96 0.386 0.83 0.319 0.91
3169 0.000308 1.58 0.0203 0.95 0.000770 2.08 0.0896 1.00 0.207 0.92 0.163 0.99
12 481 0.0000840 1.90 0.0105 0.96 0.000197 1.99 0.0446 1.02 0.107 0.96 0.0817 1.01
49 537 0.0000162 2.39 0.00533 0.98 0.0000485 2.03 0.0223 1.01 0.0546 0.98 0.0409 1.00

with 𝑎0 = 0 and III given by (1.6). Letting 𝛼 = 10 and using the same notations as in the preceding section,
we obtain the results provided in Table 2.

The orders of convergence are similar to the ones observed in Table 1.

4.3. Case 𝑑 = 3

In accordance with the introduction of this paper, we detail the example provided by Prignet [23] for the
non-uniqueness of a solution in the sense of Definition 1.1. One considers Ω = 𝐵

(︀
0, 1

2

)︀
× (−1, 1) ⊂ R3, and one

defines the following diffusion field: denoting any point 𝑥 ∈ Ω with 𝑥 = (𝑥1, 𝑥2, 𝑥3), let us define

Λ(𝑥) =

⎛⎜⎝1 + (𝛽 − 1) 𝑥2
1

𝑥2
1+𝑥

2
2

(𝛽 − 1) 𝑥1𝑥2
𝑥2
1+𝑥

2
2

0

(𝛽 − 1) 𝑥1𝑥2
𝑥2
1+𝑥

2
2

1 + (𝛽 − 1) 𝑥2
2

𝑥2
1+𝑥

2
2

0
0 0 1

⎞⎟⎠ (4.2)

with 𝛽 = 16 (we then have 𝛽 = 1
𝜀2 with 𝜀 = 1

4 ∈ (0, 1
3 )). Then, for any pair of reals (𝜂1, 𝜂2) ̸= (0, 0), the function

𝑤𝜂1,𝜂2(𝑥) = (𝜂1𝑥1 + 𝜂2𝑥2)
(︂√︁

𝑥2
1 + 𝑥2

2

)︂1−𝑑−𝜀

for any 𝑥 ∈ Ω

is shown to satisfy:

– −div(Λ(𝑥)∇𝑤𝜂1,𝜂2)(𝑥) = 0 a.e. in Ω,

– 𝑤𝜂1,𝜂2 ∈𝑊 1,𝑟(Ω) for 𝑟 ∈
(︁
1, 𝑑

𝑑−1

)︁
and 𝑤𝜂1,𝜂2 /∈ 𝐻1(Ω),

– the restriction of 𝑤𝜂1,𝜂2 to the boundary of Ω belongs to 𝐻1/2(𝜕Ω), which means that there exists 𝑧𝜂1,𝜂2 ∈
𝐻1(Ω), with the same trace, solution to the non-homogeneous Dirichlet problem

∀𝑤 ∈ 𝐻1
0 (Ω),

∫︁
Ω

Λ∇𝑧𝜂1,𝜂2 · ∇𝑤 d𝑥 = 0.
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Table 3. 𝐿1(Ω) errors in the 3D case (𝑛 is the total number of vertices).

𝑛 err𝑢,I Order err𝑢,II Order err𝑢,III Order err∇𝑢,I Order err∇𝑢,II Order err∇𝑢,III Order

135 0.139 0.260 0.128 5.19 4.00 5.72

765 0.0221 3.18 0.245 0.10 0.0661 1.14 2.64 1.17 3.28 0.34 3.56 0.82

5049 0.00911 1.41 0.200 0.32 0.0220 1.75 1.33 1.09 2.55 0.40 1.92 0.98

36 465 0.00282 1.78 0.151 0.43 0.00591 1.99 0.651 1.08 1.85 0.49 0.974 1.03

276 705 0.000731 2.00 – 0.00146 2.07 0.319 1.06 – 0.485 1.03

Therefore, problem (1.5) with 𝑓 = 0 has both the strong solution 0 and the weak solutions 𝑤𝜂1,𝜂2−𝑧𝜂1,𝜂2 ̸= 0
for any (𝜂1, 𝜂2) ∈ R2 ∖ {(0, 0)}.

We then denote, for all 𝑥 = (𝑥1, 𝑥2, 𝑥3), by 𝑣(𝑥) =
(︁
− log

(︁√︀
𝑥2

1 + 𝑥2
2

)︁)︁𝛾
−
(︀
− log

(︀
1
2

)︀)︀𝛾 , with 𝛾 = 3/4, and
by

𝑔(𝑥) = −div(Λ∇𝑣)(𝑥) = 𝛽𝛾(1− 𝛾)

(︁
− log

(︁√︀
𝑥2

1 + 𝑥2
2

)︁)︁𝛾−2

𝑥2
1 + 𝑥2

2

,

and we define
𝑓(𝑥) =

(︀
1− 𝑥2

3

)︀
𝑔(𝑥) + 2𝑣(𝑥),

for all 𝑥 ∈ Ω. Then the function given by 𝑢(𝑥) =
(︀
1− 𝑥2

3

)︀
𝑣(𝑥) is a weak solution in the sense of Definition 1.1,

as well as 𝑢 + 𝑤𝜂1,𝜂2 − 𝑧𝜂1,𝜂2 for any (𝜂1, 𝜂2) ∈ R2 ∖ {(0, 0)}. In this test case, none of these solutions belongs
to 𝐻1

0 (Ω) or to 𝐿∞(Ω). We know from Prignet [23] that, for (𝜂1, 𝜂2) ̸= (0, 0), the truncated functions 𝑇𝑘𝑤𝜂1,𝜂2 ,
for any 𝑘 > 0, are not in 𝐻1(Ω). This is not the case for 𝑢. We extend the 2D refined triangular meshes of
𝐵
(︀
0, 1

2

)︀
(see the preceding section) on Ω by generating prisms with constant height, which are then shared into 3

tetrahedra. Letting 𝛼 = 1, the following 𝐿1(Ω) errors compared to that given by the linear method are provided
in Table 3, with respect to the weak solution 𝑢 (the references to the 3 schemes compared in this numerical
section being the same as in the 2D case). In this table, we define the meshsize as 𝑛−1/3 for computing the
order of convergence.

One notices that all schemes seem to converge to 𝑢 (recall that we proved that the truncations of the limit
belong to𝐻1

0 (Ω), which excludes any solution including a non-zero term 𝑤𝜂1,𝜂2−𝑧𝜂1,𝜂2). The non-linear method I
seems to provide slightly more accurate results than the linear method III, with a numerical order of convergence
close to 2 for the values and 1 for the gradients considering the finest meshes. The linear scheme was not expected
in this case to numerically converge to any weak solution different from 𝑢, since in the case where 𝑓 = 0, the
only solution of the linear scheme is 0. The numerical order of convergence for method II seems to be closer to
1/2 than to 1, both for 𝑢 and ∇𝑢.

5. Some open and closed problems

The two nonlinear methods presented in this paper are proved to converge to a weak solution of the linear
elliptic problem with general measure data and heterogeneous anisotropic diffusion fields, which does not seem
to have been proved for earlier schemes. The convergence of the nonlinear CVFE scheme to the entropy weak
solution seems also to be the first one in this framework. But it was necessary to assess the numerical performance
of these schemes, which is done in Section 4, where we present numerical results for 2D and 3D cases obtained
with these two schemes and with the simpler linear scheme (1.6) (for which no convergence properties are proved
for general meshes and diffusion field). We observe that the accuracy of the nonlinear finite element scheme is
comparable to that of the simpler linear scheme (1.6), but that of the CVFE scheme is disappointing.

Two questions (at least) remain open problems.
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The first one is to prove the convergence for a stronger topology of the gradient of the numerical solution
obtained by the nonlinear finite element scheme, since it seems to be observed in the numerical results.

The second one is to prove that the nonlinear finite element scheme or the nonlinear CVFE scheme without
the stabilisation term converge to the entropy solution, which could be expected since the entropy solution is
in fact designed to be the limit of the solutions to regularised problems.

Appendix A. Technical lemmas

We first recall the following Sobolev inequalities (see [1]).

Lemma A.1. Let Ω be an open bounded Lipschitz subset of R𝑑 and let 𝑟 ∈ [1,+∞). Let 𝑞 ∈
[︁
1, 𝑟𝑑

𝑑−𝑟

]︁
if 𝑟 < 𝑑,

𝑞 ∈ [1,+∞) if 𝑟 = 𝑑 and 𝑞 ∈ [1,+∞] if 𝑟 > 𝑑. Then there exists 𝐶(𝑟,𝑞)
sob , also depending on 𝑑 and |Ω|, such that

for any 𝑢 ∈𝑊 1,𝑟
0 (Ω) we have

‖𝑢‖𝑞 ≤ 𝐶
(𝑟,𝑞)
sob ‖∇𝑢‖𝑟.

A.1. Computation of some integrals in simplices

We consider here the discrete framework of Section 2. Let us compute, in the cases 𝑑 = 2 and 𝑑 = 3, the
quantity

∫︀
𝐾
𝜁(𝑣𝒯 ) d𝑥, where 𝜁 is any continuous function on R. For any continuous function 𝜇 on R, we denote

by ℐ(𝜇) the primitive of 𝜇 equal to 0 at point 0. For a given 𝐾 ∈ 𝒯 , let us denote the values of 𝑣𝒯 at the vertices
of 𝐾 by (𝑣𝑖)𝑖=1,...,𝑑+1. The following holds:

Case 𝑑 = 2.

– If 𝑣1 = 𝑣2 = 𝑣3, then
1
|𝐾|

∫︁
𝐾

𝜁(𝑣𝒯 (𝑥)) d𝑥 = 𝜁(𝑣1).

– If 𝑣1 ̸= 𝑣2 = 𝑣3, then

1
|𝐾|

∫︁
𝐾

𝜁(𝑣𝒯 (𝑥)) d𝑥 = 2
(︂
ℐ(𝜁)(𝑣2)
(𝑣2 − 𝑣1)

− ℐ2(𝜁)(𝑣2)− ℐ2(𝜁)(𝑣1)
(𝑣2 − 𝑣1)2

)︂
·

– In the case where all the values 𝑣𝑖 are distinct, we get

1
|𝐾|

∫︁
𝐾

𝜁(𝑣𝒯 (𝑥)) d𝑥 = 2
3∑︁
𝑖=1

ℐ2(𝜁)(𝑣𝑖)∏︀
𝑗∈{1,2,3}∖{𝑖}(𝑣𝑖 − 𝑣𝑗)

·

Case 𝑑 = 3.
– If 𝑣1 = 𝑣2 = 𝑣3 = 𝑣4, then

1
|𝐾|

∫︁
𝐾

𝜁(𝑣𝒯 (𝑥)) d𝑥 = 𝜁(𝑣1).

– If 𝑣1 ̸= 𝑣2 = 𝑣3 = 𝑣4, then

1
|𝐾|

∫︁
𝐾

𝜁(𝑣𝒯 (𝑥)) d𝑥 = 6
(︂
ℐ(𝜁)(𝑣2)

2(𝑣2 − 𝑣1)
− ℐ2(𝜁)(𝑣2)

(𝑣2 − 𝑣1)2
+
ℐ3(𝜁)(𝑣2)− ℐ3(𝜁)(𝑣1)

(𝑣2 − 𝑣1)3

)︂
·

– If 𝑣1 = 𝑣3 ̸= 𝑣2 = 𝑣4, then

1
|𝐾|

∫︁
𝐾

𝜁(𝑣𝒯 (𝑥)) d𝑥 = 6
(︂
ℐ2(𝜁)(𝑣1) + ℐ2(𝜁)(𝑣2)

(𝑣2 − 𝑣1)2
− 2

ℐ3(𝜁)(𝑣2)− ℐ3(𝜁)(𝑣1)
(𝑣2 − 𝑣1)3

)︂
·
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– If 𝑣1 ̸= 𝑣2 ̸= 𝑣3 = 𝑣4, then

1
|𝐾|

∫︁
𝐾

𝜁(𝑣𝒯 (𝑥)) d𝑥 = 6
(︂

ℐ2(𝜁)(𝑣3)
(𝑣3 − 𝑣1)(𝑣3 − 𝑣2)

− ℐ3(𝜁)(𝑣3)
(𝑣3 − 𝑣1)(𝑣3 − 𝑣2)2

− ℐ3(𝜁)(𝑣3)
(𝑣3 − 𝑣2)(𝑣3 − 𝑣1)2

+
ℐ3(𝜁)(𝑣1)

(𝑣1 − 𝑣3)2(𝑣1 − 𝑣2)
+

ℐ3(𝜁)(𝑣2)
(𝑣2 − 𝑣3)2(𝑣2 − 𝑣1)

)︂
·

– In the case where all the values 𝑣𝑖 are distinct, we get

1
|𝐾|

∫︁
𝐾

𝜁(𝑣𝒯 (𝑥)) d𝑥 = 6
4∑︁
𝑖=1

ℐ3(𝜁)(𝑣𝑖)∏︀
𝑗∈{1,2,3,4}∖{𝑖}(𝑣𝑖 − 𝑣𝑗)

·

Since the numerical results are computed in the particular case where 𝜁 = 𝜓′𝛼, we have ℐ(𝜁) = 𝜓𝛼. Let us
now provide expressions for ℐ2(𝜁) = ℐ(𝜓𝛼) and ℐ3(𝜁) = ℐ2(𝜓𝛼).

We introduce the so-called “expintegral” function, defined by

∀𝑥 ≤ 0, Ei(𝑥) :=
∫︁ 𝑥

−∞

𝑒𝑡

𝑡
d𝑡 and ∀𝑥 > 0, Ei(𝑥) := lim

ℎ→0,ℎ>0

(︃∫︁ −ℎ

−∞

𝑒𝑡

𝑡
d𝑡+

∫︁ 𝑥

ℎ

𝑒𝑡

𝑡
d𝑡

)︃
.

We then have

∀𝑠 ∈ [0, 1), ℐ(𝜓𝛼)(𝑠) = (1− 𝑠)
(︂

1− exp
(︂

𝛼𝑠

1− 𝑠

)︂)︂
+

𝛼

𝑒𝛼

(︂
Ei
(︂

𝛼

1− 𝑠

)︂
− Ei(𝛼)

)︂
,

with ℐ(𝜓𝛼)(−𝑠) = ℐ(𝜓𝛼)(𝑠) for all 𝑠 ∈ [0, 1), and

∀𝑠 ∈ [0, 1), ℐ2(𝜓𝛼)(𝑠) = 𝑠− 𝑠2

2
+

(1− 𝑠)(1− 𝑠− 𝛼)
2

exp
(︂

𝛼𝑠

1− 𝑠

)︂
+ 𝛼

𝑠− 1 + 𝛼
2

𝑒𝛼

(︂
Ei
(︂

𝛼

1− 𝑠

)︂
− Ei(𝛼)

)︂
+
𝛼− 1

2
,

with ℐ2(𝜓𝛼)(−𝑠) = −ℐ2(𝜓𝛼)(𝑠) for all 𝑠 ∈ [0, 1).

A.2. Equivalence of norms

Partial proofs of the following lemma are done in the literature, for example in [6], and we only provide the
sketch of the proof for the sake of completeness.

Lemma A.2. For any 𝑟 ∈ (1,+∞), there exists 𝐶(𝑟)
7 > 0, also depending on 𝑑, such that, for any 𝑣 ∈ R𝒩 ,

1

𝐶
(𝑟)
7

‖Π𝒯 𝑣‖𝑟 ≤ ‖Πℳ𝑣‖𝑟 ≤ 𝐶
(𝑟)
7 ‖Π𝒯 𝑣‖𝑟, (A.1)

and there exists 𝐶(𝜃𝒯 ,𝑟)
8 > 0, which is increasing with respect to 𝜃𝒯 and also depending on 𝑑, such that, for any

𝑣 ∈ R𝒩 ,
1

𝐶
(𝜃𝒯 ,𝑟)
8

‖∇Π𝒯 𝑣‖𝑟 ≤ ‖𝑣‖1,𝑟,ℳ ≤ 𝐶
(𝜃𝒯 ,𝑟)
8 ‖∇Π𝒯 𝑣‖𝑟 (A.2)

where ‖ · ‖1,𝑟,ℳ is defined by (3.16).
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Proof. We denote by 𝐾0 the reference simplex with vertices 0 and all the extremities of the canonical unit
vectors. Let 𝜇𝐾 be the affine mapping which transforms 𝐾0 into 𝐾 ∈ 𝒯 with vertices (𝑧𝑖0 , . . . , 𝑧𝑖𝑑). Then
Π𝒯 𝑣 ∘ 𝜇𝐾 is an affine function on 𝐾0 with values (𝑣𝑖0 , . . . , 𝑣𝑖𝑑) at the vertices of 𝐾0. By equivalence of norms
in finite dimension, there exists 𝐶 > 0 only depending on 𝑑 and 𝑟 such that

1
𝐶

∫︁
𝐾0

|Π𝒯 𝑣(𝜇𝐾(𝑥))|𝑟 d𝑥 ≤
𝑑∑︁
𝑘=0

|𝑣𝑖𝑘 |𝑟 ≤ 𝐶

∫︁
𝐾0

|Π𝒯 𝑣(𝜇𝐾(𝑥))|𝑟 d𝑥.

Then (A.1) results from ∫︁
𝐾

|Π𝒯 𝑣(𝑥)|𝑟 d𝑥 =
|𝐾|
|𝐾0|

∫︁
𝐾0

|Π𝒯 𝑣(𝜇𝐾(𝑥))|𝑟 d𝑥.

Denoting by 𝐷𝜇𝐾 the Jacobian matrix of the change of variable, we have∫︁
𝐾

|∇Π𝒯 𝑣(𝑥)|𝑟 d𝑥 =
|𝐾|
|𝐾0|

∫︁
𝐾0

|𝐷𝜇𝐾∇(Π𝒯 𝑣 ∘ 𝜇𝐾)(𝑥))|𝑟 d𝑥,

where ∇(Π𝒯 𝑣 ∘ 𝜇𝐾)(𝑥) is the constant vector with components (𝑣𝑖𝑘 − 𝑣𝑖0)𝑘=1,...,𝑑. Remarking that

|∇(Π𝒯 𝑣 ∘ 𝜇𝐾)(𝑥)| =

(︃
𝑑∑︁
𝑘=1

(𝑣𝑖𝑘 − 𝑣𝑖0)
2

)︃1/2

,

equation (A.2) follows from the equivalence of norms in finite dimension spaces, from a bound of the coefficients
of 𝐷𝜇𝐾 by ℎ𝐾 , from ℎ𝐾 ≤ 𝑑𝑖𝑗𝜃𝐾 and from a bound of the coefficients of (𝐷𝜇𝐾)−1 by ℎ𝑑−1

𝐾 /|𝐾| involving
𝜃𝐾 . �

The following lemma and its proof can be found in [6].

Lemma A.3. For any 1 ≤ 𝑟 ≤ ∞, there exists 𝐶9(𝑟) such that, for all 𝑣 = (𝑣𝑖)𝑖∈𝒩 ∈ R𝒩 ,

‖Π𝒯 𝑣 −Πℳ𝑣‖𝑟 ≤ 𝐶9(𝑟)ℎ𝒯 ‖∇Π𝒯 𝑣‖𝑟.

Proof. Writing |Π𝒯 𝑣(𝑥) − Πℳ𝑣(𝑥)|𝑟 = |∇Π𝒯 𝑣(𝑥) · (𝑥 − 𝑧𝑖)|𝑟 for 𝑥 ∈ 𝜔𝑖,𝐾 and 𝑖 ∈ 𝒩𝐾 , the conclusion follows
from the upper bound of |𝑥− 𝑧𝑖| by ℎ𝒯 and the integration on 𝜔𝑖,𝐾 . �

A.3. Comparison lemmas

The next lemma plays an important role in the convergence properties of Scheme (3.8).

Lemma A.4. For any (𝑎, 𝑏) ∈ (−1, 1)2 with 𝑎 ̸= 𝑏 and for any 𝑞 ∈ [0, 1), we have

min
𝑠∈𝐼(𝑎,𝑏)

𝜓′(𝑠) ≤

(︁ ̃︀𝜓𝑞(𝑎)− ̃︀𝜓𝑞(𝑏))︁2

(𝑎− 𝑏)(𝜓𝑞(𝑎)− 𝜓𝑞(𝑏))
≤ max
𝑠∈𝐼(𝑎,𝑏)

𝜓′(𝑠), (A.3)

where the function 𝜓 is defined by (2.2) and the functions 𝜓𝑞, ̃︀𝜓𝑞 are defined by (3.9).

Proof. Note that (A.3) is proved for 𝑞 = 0 in the proof of Lemma 3.10, since it holds ̃︀𝜓0 = 𝛽 and 𝜓0 = Id.
Let (𝑎, 𝑏) ∈ (−1, 1)2 and 𝑞 ∈ [0, 1). We assume that 𝑎 ≤ 𝑏. Let us begin with the right inequality of (A.3).

̃︀𝜓𝑞(𝑏)− ̃︀𝜓𝑞(𝑎) =
∫︁ 𝑏

𝑎

̃︀𝜓′𝑞(𝑡) d𝑡 =
∫︁ 𝑏

𝑎

√︀
𝜓′(𝑡)

√︁
𝜓′𝑞(𝑡) d𝑡.
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Consequently, we get, owing to the Cauchy–Schwarz inequality,

(︁
̃︀𝜓𝑞(𝑏)− ̃︀𝜓𝑞(𝑎)

)︁2

≤
∫︁ 𝑏

𝑎

𝜓′(𝑡) d𝑡

∫︁ 𝑏

𝑎

𝜓′𝑞(𝑡) d𝑡 ≤ (𝜓(𝑏)− 𝜓(𝑎))(𝜓𝑞(𝑏)− 𝜓𝑞(𝑎)) ≤ max
𝑠∈𝐼(𝑎,𝑏)

𝜓′(𝑠)(𝑏 − 𝑎)(𝜓𝑞(𝑏)− 𝜓𝑞(𝑎)),

which proves the right inequality of (A.3). Let us now turn to the left inequality of (A.3). We prove this
inequality considering the different possible cases for −1 ≤ 𝑎 ≤ 𝑏 ≤ 1 (which are 𝑞 ≤ 𝑎 ≤ 𝑏, −𝑞 ≤ 𝑎 ≤ 𝑞 ≤ 𝑏,
𝑎 ≤ −𝑞 ≤ 𝑞 ≤ 𝑏, −𝑞 ≤ 𝑎 ≤ 𝑏 ≤ 𝑞, 𝑎 ≤ −𝑞 ≤ 𝑏 ≤ 𝑞 and 𝑎 ≤ 𝑏 ≤ −𝑞). In the next computations, we denote, for
short, by 𝜓′

[𝑎,𝑏]
:= min𝑠∈𝐼(𝑎,𝑏) 𝜓′(𝑠).

Case 1. Let us assume that 𝑞 ≤ 𝑎 ≤ 𝑏, which also handles the case 𝑎 ≤ 𝑏 ≤ −𝑞 by symmetry. We have{︃ ̃︀𝜓𝑞(𝑎) =
√︀
𝜓′(𝑞)(𝛽(𝑎)− 𝛽(𝑞)) + 𝜓(𝑞) and 𝜓𝑞(𝑎) = 𝜓(𝑞) + 𝜓′(𝑞)(𝑎− 𝑞),̃︀𝜓𝑞(𝑏) =

√︀
𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑞)) + 𝜓(𝑞) and 𝜓𝑞(𝑏) = 𝜓(𝑞) + 𝜓′(𝑞)(𝑏− 𝑞).

We then obtain, writing 𝛽(𝑎)− 𝛽(𝑏) =
√︀
𝜓′(𝑐)(𝑎− 𝑏) with 𝑐 ∈ 𝐼(𝑎, 𝑏),(︁ ̃︀𝜓𝑞(𝑎)− ̃︀𝜓𝑞(𝑏))︁2

= 𝜓′(𝑞)(𝛽(𝑎)− 𝛽(𝑏))2 = 𝜓′(𝑞)𝜓′(𝑐)(𝑎− 𝑏)2.

Since it holds 𝜓𝑞(𝑎)− 𝜓𝑞(𝑏) = 𝜓′(𝑞)(𝑎− 𝑏), we obtain(︁ ̃︀𝜓𝑞(𝑎)− ̃︀𝜓𝑞(𝑏))︁2

= 𝜓′(𝑐)(𝜓𝑞(𝑎)− 𝜓𝑞(𝑏))(𝑎− 𝑏) ≥ 𝜓′
[𝑎,𝑏]

(𝜓𝑞(𝑎)− 𝜓𝑞(𝑏))(𝑎− 𝑏).

Case 2. Let us assume −𝑞 ≤ 𝑎 ≤ 𝑞 ≤ 𝑏, which also handles the case 𝑎 ≤ −𝑞 ≤ 𝑏 ≤ 𝑞 by symmetry. In this case
we have {︂ ̃︀𝜓𝑞(𝑎) = 𝜓(𝑎) and 𝜓𝑞(𝑎) = 𝜓(𝑎),̃︀𝜓𝑞(𝑏) = 𝜓(𝑞) +

√︀
𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑞)) and 𝜓𝑞(𝑏) = 𝜓(𝑞) + 𝜓′(𝑞)(𝑏− 𝑞).

We have
(︁ ̃︀𝜓𝑞(𝑎)− ̃︀𝜓𝑞(𝑏))︁2

− 𝜓′
[𝑎,𝑏]

(𝑏− 𝑎)(𝜓𝑞(𝑏)− 𝜓𝑞(𝑎)) = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 with

𝑇1 = 𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑎))2 − 𝜓′
[𝑎,𝑏]

𝜓′(𝑞)(𝑏− 𝑞)2,

𝑇2 =
√︀
𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑞))(𝜓(𝑞)− 𝜓(𝑎))− 𝜓′

[𝑎,𝑏]
(𝑏− 𝑞)(𝜓(𝑞)− 𝜓(𝑎)),

𝑇3 =
√︀
𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑞))(𝜓(𝑞)− 𝜓(𝑎))− 𝜓′

[𝑎,𝑏]
𝜓′(𝑞)(𝑏− 𝑞)(𝑞 − 𝑎),

𝑇4 = (𝜓(𝑞)− 𝜓(𝑎))2 − 𝜓′
[𝑎,𝑏]

(𝑞 − 𝑎)(𝜓(𝑞)− 𝜓(𝑎)).

Using the fact that 𝑞 ∈ 𝐼(𝑎, 𝑏) and writing 𝛽(𝑏)− 𝛽(𝑞) =
√︀
𝜓′(𝑐)(𝑏− 𝑞) with 𝑐 ∈ 𝐼(𝑞, 𝑏) ⊂ 𝐼(𝑎, 𝑏), we have

𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑞))2 = 𝜓′(𝑞)𝜓′(𝑐)(𝑏− 𝑞)2 ≥ 𝜓′
[𝑎,𝑏]

𝜓′(𝑞)(𝑏− 𝑞)2,

which proves that 𝑇1 ≥ 0. We can also write√︀
𝜓′(𝑞)(𝛽(𝑏) − 𝛽(𝑞))(𝜓(𝑞) − 𝜓(𝑎)) =

√︀
𝜓′(𝑞)

√︀
𝜓′(𝑐)(𝑏 − 𝑞)(𝜓(𝑞) − 𝜓(𝑎)) ≥ 𝜓′

[𝑎,𝑏]
(𝑏 − 𝑞)(𝜓(𝑞) − 𝜓(𝑎)),

hence proving that 𝑇2 ≥ 0. Owing to 𝜓(𝑞)−𝜓(𝑎) = 𝜓′(𝑒)(𝑞−𝑎) with 𝑒 ∈ 𝐼(𝑎, 𝑞) ⊂ 𝐼(𝑎, 𝑏), and to 𝜓′(𝑐) ≥ 𝜓′(𝑞)
since 0 ≤ 𝑞 ≤ 𝑐 ≤ 𝑏, we have
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𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑞))(𝜓(𝑞)− 𝜓(𝑎)) =

√︀
𝜓′(𝑞)

√︀
𝜓′(𝑐)(𝑏− 𝑞)𝜓′(𝑒)(𝑞 − 𝑎)

≥ 𝜓′(𝑞)(𝑏− 𝑞)𝜓′(𝑒)(𝑞 − 𝑎) ≥ 𝜓′
[𝑎,𝑏]

𝜓′(𝑞)(𝑏− 𝑞)(𝑞 − 𝑎),

which shows that 𝑇3 ≥ 0. We now write

(𝜓(𝑞)− 𝜓(𝑎))2 = 𝜓′(𝑒)(𝑞 − 𝑎)(𝜓(𝑞)− 𝜓(𝑎)) ≥ 𝜓′
[𝑎,𝑏]

(𝑞 − 𝑎)(𝜓(𝑞)− 𝜓(𝑎)),

hence concluding that 𝑇4 ≥ 0, which completes the study of Case 2.
Case 3. 𝑎 ≤ −𝑞 ≤ 𝑞 ≤ 𝑏. In this case, we have 𝜓′

[𝑎,𝑏]
= 1 and{︂ ̃︀𝜓𝑞(𝑎) = −𝜓(𝑞) +

√︀
𝜓′(𝑞)(𝛽(𝑎) + 𝛽(𝑞)) and 𝜓𝑞(𝑎) = −𝜓(𝑞) + 𝜓′(𝑞)(𝑎+ 𝑞),̃︀𝜓𝑞(𝑏) = 𝜓(𝑞) +

√︀
𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑞)) and 𝜓𝑞(𝑏) = 𝜓(𝑞) + 𝜓′(𝑞)(𝑏− 𝑞).

Since

̃︀𝜓𝑞(𝑏)− ̃︀𝜓𝑞(𝑎) = 2𝜓(𝑞) +
√︀
𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑞)− (𝛽(𝑎) + 𝛽(𝑞)))

𝑏− 𝑎 = 2𝑞 + 𝑏− 𝑞 − (𝑎+ 𝑞),
𝜓𝑞(𝑏)− 𝜓𝑞(𝑎) = 2𝜓(𝑞) + 𝜓′(𝑞)(𝑏− 𝑞 − (𝑎+ 𝑞)),

we compute
(︁ ̃︀𝜓𝑞(𝑏)− ̃︀𝜓𝑞(𝑎))︁2

− (𝑏− 𝑎)(𝜓𝑞(𝑏)− 𝜓𝑞(𝑎)) = 4𝑇1 + 2𝑇2 + 2𝑇3 + 𝑇4 with

𝑇1 = 𝜓(𝑞)2 − 𝑞𝜓(𝑞),

𝑇2 = 𝜓(𝑞)
√︀
𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑞)− (𝛽(𝑎) + 𝛽(𝑞)))− 𝑞𝜓′(𝑞)(𝑏− 𝑞 − (𝑎+ 𝑞)),

𝑇3 = 𝜓(𝑞)
√︀
𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑞)− (𝛽(𝑎) + 𝛽(𝑞)))− 𝜓(𝑞)(𝑏− 𝑞 − (𝑎+ 𝑞)),

𝑇4 = 𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑞)− (𝛽(𝑎) + 𝛽(𝑞)))2 − 𝜓′(𝑞)(𝑏− 𝑞 − (𝑎+ 𝑞))2.

The property 𝜓(𝑞) ≥ 𝑞 immediately implies that 𝑇1 ≥ 0.
Owing to 𝛽(𝑏)− 𝛽(𝑞) ≥

√︀
𝜓′(𝑞)(𝑏− 𝑞) and −(𝛽(𝑎) + 𝛽(𝑞)) ≥

√︀
𝜓′(𝑞)(−(𝑎+ 𝑞)) which gives

𝛽(𝑏)− 𝛽(𝑞)− (𝛽(𝑎) + 𝛽(𝑞)) ≥
√︀
𝜓′(𝑞)(𝑏− 𝑞 − (𝑎+ 𝑞)) ≥ 0.

Multiplying by 𝜓(𝑞)
√︀
𝜓′(𝑞) ≥ 𝑞

√︀
𝜓′(𝑞) ≥ 0, we obtain 𝑇2 ≥ 0. Since

√︀
𝜓′(𝑞) ≥ 1, we have√︀

𝜓′(𝑞)(𝛽(𝑏)− 𝛽(𝑞)− (𝛽(𝑎) + 𝛽(𝑞))) ≥ 𝑏− 𝑞 − (𝑎+ 𝑞)) ≥ 0,

which gives 𝑇3 ≥ 0, and the inequality

𝛽(𝑏)− 𝛽(𝑞)− (𝛽(𝑎) + 𝛽(𝑞)) ≥ 𝑏− 𝑞 − (𝑎+ 𝑞)) ≥ 0,

implies that 𝑇4 ≥ 0, hence concluding the study of Case 3.
Case 4. Let us assume that −𝑞 ≤ 𝑎 ≤ 𝑏 ≤ 𝑞. We have{︂ ̃︀𝜓𝑞(𝑎) = 𝜓𝑞(𝑎) = 𝜓(𝑎)̃︀𝜓𝑞(𝑏) = 𝜓𝑞(𝑏) = 𝜓(𝑏).

We then obtain (︁ ̃︀𝜓𝑞(𝑎)− ̃︀𝜓𝑞(𝑏))︁2

= (𝜓(𝑎)− 𝜓(𝑏))2 = (𝜓(𝑎)− 𝜓(𝑏))(𝜓(𝑎)− 𝜓(𝑏)).

Now we write (𝜓(𝑎)− 𝜓(𝑏)) = 𝜓′(𝑐)(𝑎− 𝑏) with 𝑐 ∈ 𝐼(𝑎, 𝑏). Using the monotonicity of 𝜓 we have
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(𝜓(𝑎)− 𝜓(𝑏))(𝜓(𝑎)− 𝜓(𝑏)) = 𝜓′(𝑐)(𝑎− 𝑏)(𝜓(𝑎)− 𝜓(𝑏)) ≥ 𝜓′
[𝑎,𝑏]

(𝑎− 𝑏)(𝜓(𝑎)− 𝜓(𝑏)),

which concludes the proof of the lemma.

�

The following lemma is needed for the proof of the convergence to a weak solution.

Lemma A.5. For any 𝜀 ∈ (0, 7
4 ), there exists 𝜈𝜀 > 0 only depending on 𝜀 such that, for any 𝑎, 𝑏 ∈ (−1, 1), it

holds
|𝑏− 𝑎|(𝜓′(𝑎) + 𝜓′(𝑏)) ≤ 𝜈𝜀|𝛽(𝑏)− 𝛽(𝑎)|

(︀
2 + |𝛽(𝑎)|1+𝜀 + |𝛽(𝑏)|1+𝜀

)︀
, (A.4)

where 𝜓 is defined by (2.2) and 𝛽 is defined by (2.10).

Proof. We first remark that, if 𝑎 ≤ 0 ≤ 𝑏, setting 𝑐 = max(|𝑎|, |𝑏|) ∈ [0, 1), then

|𝑏− 𝑎|(𝜓′(𝑎) + 𝜓′(𝑏)) ≤ 4𝑐𝜓′(𝑐) ≤ 4|𝑐− 0|(𝜓′(𝑐) + 𝜓′(0)),

and
|𝛽(𝑐)− 𝛽(0)|

(︀
2 + |𝛽(𝑐)|1+𝜀 + |𝛽(0)|1+𝜀

)︀
≤ |𝛽(𝑏)− 𝛽(𝑎)|

(︀
2 + |𝛽(𝑎)|1+𝜀 + |𝛽(𝑏)|1+𝜀

)︀
.

It is therefore sufficient to prove (A.4) in the case 0 ≤ 𝑎 ≤ 𝑏, which includes the case where 0 ≤ 𝑎 := 0 ≤ 𝑏 := 𝑐.
Denoting by 𝐴 = 𝑎/(1− 𝑎) and 𝐵 = 𝑏/(1− 𝑏), let us prove that, for any 𝜈 ∈ (0, 1

4 ), we have(︀
𝑒𝜈𝐵 − 𝑒𝜈𝐴

)︀(︁
𝑒(1+𝜈)𝐵 + 𝑒(1+𝜈)𝐴

)︁
≤
(︁
𝑒(

1
2−𝜈)𝐵 − 𝑒(

1
2−𝜈)𝐴

)︁(︁
𝑒(

1
2+3𝜈)𝐵 + 𝑒(

1
2+3𝜈)𝐴

)︁
. (A.5)

Indeed, we have(︁
𝑒(

1
2−𝜈)𝐵 − 𝑒(

1
2−𝜈)𝐴

)︁(︁
𝑒(

1
2+3𝜈)𝐵 + 𝑒(

1
2+3𝜈)𝐴

)︁
−
(︀
𝑒𝜈𝐵 − 𝑒𝜈𝐴

)︀(︁
𝑒(1+𝜈)𝐵 + 𝑒(1+𝜈)𝐴

)︁
= 𝑒(1+2𝜈)𝐴𝑓𝜈(𝐵 −𝐴),

with, for all 𝑥 ∈ [0,+∞),

𝑓𝜈(𝑥) :=
(︁
𝑒(

1
2−𝜈)𝑥 − 1

)︁(︁
𝑒(

1
2+3𝜈)𝑥 + 1

)︁
− (𝑒𝜈𝑥 − 1)

(︁
𝑒(1+𝜈)𝑥 + 1

)︁
.

After simplification, we obtain

𝑓𝜈(𝑥) = 𝑒(1+𝜈)𝑥 − 𝑒𝜈𝑥 − 𝑒(
1
2+3𝜈)𝑥 + 𝑒(

1
2−𝜈)𝑥 = 𝑒(1+𝜈)𝑥(1− 𝑒−𝑥)− 𝑒(

1
2+3𝜈)𝑥(1− 𝑒−4𝜈𝑥).

Using the fact that 𝜈 ∈ (0, 1
4 ) implies 1 + 𝜈 ≥ 1

2 + 3𝜈, we can write

𝑒(1+𝜈)𝑥 ≥ 𝑒(
1
2+3𝜈)𝑥 and 1− 𝑒−𝑥 ≥ 1− 𝑒−4𝜈𝑥.

Therefore we get that 𝑓𝜈(𝑥) ≥ 0, which proves (A.5). Following the computations of Lemma 2.6, we recall that
there exists 𝜇 > 0 only depending on 𝜈 > 0 such that we have

𝜓′(𝑎) ≤ 𝜇𝑒(1+𝜈)𝐴 and 𝜓′(𝑏) ≤ 𝜇𝑒(1+𝜈)𝐵 ,

𝑏− 𝑎 ≤ 𝜇
(︀
𝑒𝜈𝐵 − 𝑒𝜈𝐴

)︀
,

𝑒(
1
2−𝜈)𝐵 − 𝑒(

1
2−𝜈)𝐴 ≤ 𝜇(𝛽(𝑏)− 𝛽(𝑎)),

and
𝑒(

1
2+3𝜈)𝐴 ≤ 𝜇|𝛽(𝑎)|1+7𝜈 + 1 and 𝑒(

1
2+3𝜈)𝐵 ≤ 𝜇|𝛽(𝑏)|1+7𝜈 + 1.

Gathering the previous inequalities and (A.5) provides (A.4), letting 𝜀 = 7𝜈 with 𝜈 ∈
(︀
0, 1

4

)︀
. �
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Lemma A.6. Let 𝑢 ∈ 𝒮𝑑(Ω) be an entropy solution of problems (1.1) and (1.2) in the sense of Definition 3.1.
Then, for for any 𝑘 > 0 and for any 𝜑 ∈ 𝐶∞𝑐 (Ω), we have∫︁

|𝑢−𝜑|≤𝑘
Λ∇𝑢 · ∇(𝑢− 𝜑) d𝑥 =

∫︁
Ω

𝑇𝑘(𝑢− 𝜑)𝑓 d𝑥. (A.6)

As a consequence, we obtain ∫︁
Ω

Λ∇𝑢 · ∇𝑇 (𝑢− 𝜑) d𝑥 =
∫︁

Ω

𝑇 (𝑢− 𝜑)𝑓 d𝑥, (A.7)

for any 𝜑 ∈ 𝐶∞𝑐 (Ω) and for any 𝑇 ∈ ℱ , where ℱ is defined in Remark 3.2.

Proof. We first use Lemma 3.3 of [3], which proves by a density argument that (3.1) also holds for any 𝜑 ∈
𝐻1

0 (Ω) ∩ 𝐿∞(Ω). We therefore let 𝜑 = 2𝑇ℎ(𝑢)− ̃︀𝜑 in (3.1), for given ℎ > 0 and ̃︀𝜑 ∈ 𝐶∞𝑐 (Ω). This gives∫︁
Ω

Λ∇𝑢 · ∇𝑇𝑘
(︁
𝑢− 2𝑇ℎ(𝑢) + ̃︀𝜑)︁d𝑥 ≤

∫︁
Ω

𝑇𝑘

(︁
𝑢− 2𝑇ℎ(𝑢) + ̃︀𝜑)︁𝑓 d𝑥. (A.8)

Let 𝑀 = 𝑘 + ‖̃︀𝜑‖∞. For ℎ > 𝑀 , we obtain that:

– 𝑇𝑘(𝑢− 2𝑇ℎ(𝑢) + ̃︀𝜑) = 𝑢+ 2ℎ+ ̃︀𝜑 for
⃒⃒⃒
𝑢+ 2ℎ+ ̃︀𝜑⃒⃒⃒ ≤ 𝑘,

– 𝑇𝑘(𝑢− 2𝑇ℎ(𝑢) + ̃︀𝜑) = −𝑢+ ̃︀𝜑 for
⃒⃒⃒
−𝑢+ ̃︀𝜑⃒⃒⃒ ≤ 𝑘,

– 𝑇𝑘(𝑢− 2𝑇ℎ(𝑢) + ̃︀𝜑) = 𝑢− 2ℎ+ ̃︀𝜑 for
⃒⃒⃒
𝑢− 2ℎ+ ̃︀𝜑⃒⃒⃒ ≤ 𝑘,

– otherwise 𝑇𝑘
(︁
𝑢− 2𝑇ℎ(𝑢) + ̃︀𝜑)︁ = ±𝑘,

and that
𝑇𝑘

(︁
𝑢− 2𝑇ℎ(𝑢) + ̃︀𝜑)︁ = 𝑇𝑘

(︁
−𝑢+ ̃︀𝜑)︁ if |𝑢| ≤ 2ℎ−𝑀. (A.9)

This leads to

∇𝑇𝑘
(︁
𝑢− 2𝑇ℎ(𝑢) + ̃︀𝜑)︁ = ∇𝑇𝑘

(︁
−𝑢+ ̃︀𝜑)︁+∇𝑇𝑘

(︁
𝑢+ 2ℎ+ ̃︀𝜑)︁+∇𝑇𝑘

(︁
𝑢− 2ℎ+ ̃︀𝜑)︁.

We thus obtain ∫︁
Ω

Λ∇𝑢 · ∇𝑇𝑘
(︁
𝑢− 2𝑇ℎ(𝑢) + ̃︀𝜑)︁ d𝑥 =

∫︁
Ω

Λ∇𝑢 · ∇𝑇𝑘
(︁
−𝑢+ ̃︀𝜑)︁d𝑥+𝑅ℎ,

with
|𝑅ℎ| ≤ 𝜆

∫︁
2ℎ−𝑀<|𝑢|<2ℎ+𝑀

|∇𝑢|
(︁
|∇𝑢|+

⃒⃒⃒
∇̃︀𝜑⃒⃒⃒)︁d𝑥.

Applying Lemma A.7, we get that
lim
ℎ→∞

𝑅ℎ = 0.

Besides, we get from (A.9) that⃒⃒⃒⃒∫︁
Ω

𝑇𝑘

(︁
𝑢− 2𝑇ℎ(𝑢) + ̃︀𝜑)︁𝑓 d𝑥−

∫︁
Ω

𝑇𝑘

(︁
−𝑢+ ̃︀𝜑)︁𝑓 d𝑥

⃒⃒⃒⃒
≤ 2𝑘

∫︁
|𝑢|≥2ℎ−𝑀

|𝑓 |d𝑥.

By dominated convergence, we get that

lim
ℎ→∞

∫︁
|𝑢|≥2ℎ−𝑀

|𝑓 |d𝑥 = 0.
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Letting ℎ→∞ in (A.8), we therefore obtain∫︁
Ω

Λ∇𝑢 · ∇𝑇𝑘
(︁
−𝑢+ ̃︀𝜑)︁d𝑥 ≤

∫︁
Ω

𝑇𝑘

(︁
−𝑢+ ̃︀𝜑)︁𝑓 d𝑥,

which, in addition to (3.1) with 𝜑 = ̃︀𝜑, provides (A.6).
We then deduce (A.7), using for any 𝑇 ∈ ℱ the relation

∀𝑠 > 0, 𝑇 (𝑠) =
∫︁ +∞

0

(−𝑇 ′′(𝑘))𝑇𝑘(𝑠) d𝑘,

multiplying (A.6) by (−𝑇 ′′(𝑘)) and integrating with respect to 𝑘 (as it is suggested in [3]). �

Lemma A.7. Let 𝑢 ∈ 𝒮𝑑(Ω) be an entropy solution of problems (1.1) and (1.2) in the sense of Definition 3.1.
Then, for all 𝑘 > 0, we have

lim
ℎ→+∞

∫︁
ℎ−𝑘<|𝑢|≤ℎ+𝑘

|∇𝑢|2 d𝑥 = 0. (A.10)

Proof. As in the proof of Lemma A.6, we use the fact that (3.1) also holds for any 𝜑 ∈ 𝐻1
0 (Ω)∩𝐿∞(Ω). Letting,

for given 𝑘, ℎ > 0, 𝜑 = 𝑇ℎ(𝑢) in (3.1), we get∫︁
Ω

Λ∇𝑢 · ∇𝑇𝑘(𝑢− 𝑇ℎ(𝑢)) d𝑥 ≤
∫︁

Ω

𝑓𝑇𝑘(𝑢− 𝑇ℎ(𝑢)) d𝑥.

Using ∇𝑢 = ∇𝑇𝑘(𝑢−𝑇ℎ(𝑢)) for a.e. 𝑥 such that ∇𝑇𝑘(𝑢−𝑇ℎ(𝑢))(𝑥) ̸= 0, we get, denoting by 𝐸ℎ = {𝑥 ∈ Ω, ℎ <
|𝑢(𝑥)| ≤ ℎ+ 𝑘},

𝜆‖∇𝑢‖2𝐿2(𝐸ℎ) ≤
∫︁

Ω

𝑓𝑇𝑘(𝑢− 𝑇ℎ(𝑢)) d𝑥,

which gives

𝜆‖∇𝑢‖2𝐿2(𝐸ℎ) ≤
∫︁
|𝑢|>ℎ

𝑘|𝑓 |d𝑥.

By dominated convergence, we get

lim
ℎ→+∞

∫︁
|𝑢|>ℎ

𝑘|𝑓 |d𝑥 = 0,

and therefore we obtain
lim

ℎ→+∞
𝜆‖∇𝑢‖2𝐿2(𝐸ℎ) = 0. (A.11)

Note that (A.11) implies, replacing ℎ by ℎ− 𝑘, that

lim
ℎ→+∞

∫︁
ℎ<|𝑢|≤ℎ+𝑘

|∇𝑢|2 d𝑥 = lim
ℎ→+∞

∫︁
ℎ−𝑘<|𝑢|≤ℎ

|∇𝑢|2 d𝑥 = 0,

hence providing (A.10). �
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