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Introduction

Mathematics can be divided into two main areas: discrete and continuous, both of which are critically important from the theoretical and applied perspectives. For instance, discrete mathematics underlies much of classic computer science where, as a consequence of discrete and finite computational resources, numbers are often represented in binary manner, while data is stored in several types of effective discrete structures including vectors, matrices, lists, trees, and graphs, to name but a few possibilities.

At the same time, continuous mathematics underlies almost the totality of differential and integral calculus. Indeed, the very concepts of continuity, and connectedness underlies substantial portions of integral and differential calculus, real and functional analyses, as well as dynamical systems. Of particular importance is the tendency of more recent approaches to applied problems to adopt and rely on continuous concepts including manifolds and mappings.

The concept of continuity therefore receives great attention not only in mathematics as well as several other fields, where it is often related to metric approaches, therefore involving inner products or distances. Indeed, the availability of a distance operation between two points allows us to define a respective open or closed ball (or interval in 1D spaces), which constitutes one of the most important concepts in metric continuity. Balls provide the basic approach to the very definition of limit and continuity. For instance, a function from real to real values is continuous at a point provided its limit is found to be identical to the value of the function at that point. A set X (blue star) is path-connected provided a continuous function from [0, 1] contained in the set can be found so that f (0) = x and f (1) = y for any x, y ∈ X.

Interestingly, the concept of continuity is not restricted to metric spaces, as it is possible to precisely define and check continuity by using other mathematical approaches. This important fact is one of the main motivations of the interesting area of mathematical area known as topology (e.g. [START_REF] Munkres | Elements of Algebraic Topology[END_REF][START_REF] Mendelson | Elements of Algebraic Topology[END_REF][START_REF] Hatcher | Algebraic Topology[END_REF][START_REF] Basener | Topology and its Applications[END_REF]). Conceptually, a topological space can be defined in terms of closed arbitrary unions and finite intersections between a given collection of open sets, called the respective topology. Among other interesting results, this allows continuity to be defined irrespectively to inner products or distances, involving only open sets being image of open sets. Connectedness and its properties can also be effective approached from the respective topological point of view. Several other concepts can then be stated, including homeomorphic mappings which, informally speaking, preserved the interconnectedness between the points of the respective topological structures.

In addition to its intrinsic interesting conceptual approach, topology also becomes important respectively to many applications in areas including but by no means limited to pattern recognition, neuronal networks, deep learning, optimization, computer graphics, as well as several other areas.

The present work is aimed at providing a hopefully accessible introduction to some of the most basic concepts in continuity and topology. Particularly attention is given to integrating and relating these two approaches to continuity. Indeed, we start by presenting the addressed concepts in terms of metric spaces, and then described how they can be be generalized in topological spaces. Because set theory, which interestingly is intrinsically discrete, underlies much of the concepts and methods in metric and topological spaces, a brief respective revision is presented in the following section. Because some important aspects of topology may not be particularly familiar at first, special attention is focused in discussing these situations in more detail in with the help of respective examples. In particular, the concepts of open and closed sets is not fully intuitive from the perspective of more familiar approaches: in topology the same set can be open, closed, both or neither depending on the respectively adopted topologies.

One particularly interesting aspect of topology is the impressive diversity of possible topological spaces and properties, which constitutes an interesting characteristic in the sense of the respectively generality, but which also demand additional involvement from those interested in the area. Indeed, a topological space can be categoric or numeric with any dimension, be discrete or continuous, have several alternative topologies and bases, and involve spaces that are not metric. In addition, several of the involved properties, such as a set being open or closed, depend on the respectively adopted choices.

It should be observed that the present work is neither completely formal nor comprehensive, and should therefore be complemented by the respective literature (e.g. [START_REF] Munkres | Elements of Algebraic Topology[END_REF][START_REF] Mendelson | Elements of Algebraic Topology[END_REF][START_REF] Hatcher | Algebraic Topology[END_REF][START_REF] Basener | Topology and its Applications[END_REF][START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Garnier | Discrete Mathematics for New Technology[END_REF][START_REF] Kreyszig | Introductory Functional Analysis with Applications[END_REF][START_REF] Rudin | Functional Analysis[END_REF][START_REF] Apostol | Calculus[END_REF][START_REF] Larson | Calculus. Cengage Learning[END_REF][START_REF] Stewart | Multivariable Calculus[END_REF]). In particular, the present work is predominantly aimed as a first informal contact or short review of concepts related to continuity and connectedness from a more applied and practical point of view. Observe also that there are alternative approaches (one another equivalent or not) to some of the presented concepts, such as including or not the empty set or not in some definitions. CDTs can also be reviewed, so it is interesting to check for new versions.

Set Theory Concepts

Both metric and topological approaches to mathematics rely strongly on set theory, an area of discrete mathematics (e.g. [START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Garnier | Discrete Mathematics for New Technology[END_REF]), which is briefly reviewed in this section.

A set is a collection of elements whose order is immaterial and which are not allowed to repeat. Every set contains the empty set Φ, though this is often not indicated.

The universe of a set contains all the elements that are possible respectively to a specific collection of sets. One possibility to obtain a universe set, in case it has not been specified, is to define it as containing all elements respectively to a specific collection of sets.

A set Y is said to be contained into another set X, therefore being a respective subset Y ⊂ X, provided all elements of Y are also elements of X.

The union of two sets X and Y is the set Z = X ∪ Y containing all the elements of both X and Y .

An elements x is said to belong to a set X, which is indicated as x ∈ X, provided {x} ∩ X = Φ.

The intersection between two sets X and Y is the set X = X ∩Y containing all the elements that are in both X and Y . Two sets X and Y are disjoint provided X ∩ Y = Φ.

The difference between two sets X and Y is a set Z = X -Y containing all elements that belong to X but are not in Y .

If Ω is the universe set, the complement of a set x is X C = X -Ω. We also have that Ω-Φ = Ω and Ω-Ω = Φ.

The elements of a set can also be sets.

All the following are valid constructions:

A 1 = {a, b, c, d} ; a ∈ A 1 ; {a, b} ⊂ A 1 ; A 2 = {a, b, c, d, {a} , {a, b}} ; a ∈ A 2 ; {a} ∈ A 2 ; {a, b} ∈ A 2 ; {a, b} ⊂ A 2 . (1) 
Observe that a set can be both an element or subset of another set, but an element cannot be a subset of another set. The main difference between an element and a set is that the latter can incorporate new elements. A set is typically represented between {}, but can also correspond to intervals in the real line.

Metric Spaces

A metric space (X, d) is a set X of real values with an associated distance operation d(x, y) ∈ R satisfying the following conditions:

(i) d(x, x) = 0, x ∈ X; (2) 
(ii) d(x, y) ≥ 0 ∀x, y ∈ X; (3) 
(iii) d(x, y) = d(y, x) ∀x, y ∈ X; (4) 
(iv) d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X. (5) 
Let p ∈ X. A set Y is a neighborhood of a point p provided an open ball B p,r centered at p with radius r > 0, r ∈ R can be found so that:

B p,r = {x ∈ X|d(x, p) < r} ⊂ Y (6) 
A subset Y of a metric space (X, d) is said to be open if any p ∈ Y has at least a neighborhood contained in Y . The ball B p,r on a metric space is an open set. In addition, we have that: 

A classic example of an infinite number of intersections between open sets yielding a closed set is:

n∈N - 1 n , 1 n = {0} = [0] (7) A subset Y of a metric space (X, d) is closed if its com- plement X -y is open. A set can be open, closed, both, or neither.

Real Sequences and Convergence

Let n ∈ N, i.e. n = 1, 2, . . ., then any function f that associates a real value x n ∈ R to each possible i, i.e. x n = f (n), defines a respective sequence of real values. More informally, we can understand that the list of real numbers:

S = x 1 , x 2 , . . . , x n , . . . = f (1), f (2), . . . , f (n), . . . (8) 
is a sequence. Observe that, unlike in sets, the order of these elements is all important. Examples of real sequences include:

S A : x n = n; S A = 1, 2, 3, . . . (9) 
S B :

x n = √ n; S B = 1, √ 2, √ 3, . . . ( 10 
)
S C : x n = 1 n ; S C = 1, 1 2 , 1 3 , . . . (11) 
S D : x n = 1 √ n ; S D = 1, 1 √ 2 , 1 √ 3 , . . . (12) 
S E : x n = log(n); S E = 0, log(2), log(3), . . . (13) S F : x n = rand(n) (14) 
where rand(n) yields a uniformly distributed random real value.

A real sequence is said to converge to a real value a provided that given an arbitrary real value > 0, we can always find N ∈ N so that;

|x n -a| < , n ≥ N (15)
and a can be said to be the limit value of the sequence, in which case we can write:

lim n→∞ x n = a (16)
Observe that the convergence criterion above depends on having a candidate for the respective limit a. A possible manner to identify this candidate consists in calculating its limit as n ← ∞. For instance, in the case of the S D sequence above, we would have:

lim n→∞ 1 √ n = 0 (17)
Importantly, the existence of the limit implies that the sequence converges. In cases where it is difficult to find the limit, the squeeze theorem can be considered.

In the case of the above examples of sequences, we have that the sequences S C ad S D converge to 0, while all the other sequences do not converge.

There are other criteria for the convergence of a sequence. One of particular interest consists in the Cauchy convergence, which is presented as follows.

Given a sequence S, it is said to be Cauchy convergent whenever given any real value > 0 and a positive integer N , for all natural numbers n and m, we necessarily have:

|x n -x m | < , n, m ≥ N (18) 
In other words, all the sequence values will be comprised within an interval of width .

It can be proved that, for real values, the two above convergence criteria are equivalent, in the sense that every Cauchy sequence is convergent and vice-versa. This result is often called the Cauchy criterion for convergence. The Cauchy approach has the interesting characteristic of not depending on finding a limit value a as required by the first criterion above.

A normed vector space containing the limit points to which any respective Cauchy sequence converge is called a Banach space. The convergence property accounts for the completeness of the space. Examples of Banach spaces are all multidimensional real spaces R N . A counter example is the set of rational numbers, in which at least the limit of the following rational sequence is an irrational and therefore does not belong to that numeric space:

a n = 1 + 1 n n , lim n→∞ a n = e (19) 
Informally speaking, incomplete spaces (or sets) have 'gaps', therefore being disconnected (or 'discontinuous', see Section 6).

The Limit of a Function and Continuity

Given a function y = f (x), x, y ∈ R, it is said to have limit L at a point x 0 ∈ R if for any given ∈ R we can find a δ ∈ R so that:

|x -x 0 | < δ =⇒ |f (x) -L| < (20)
and then we can write:

lim x→x0 f (x) = L (21)
This definition is often denominated the -δ approach. Given a function y = f (x), x, y ∈ R, it is said to be continuous at a point x 0 ∈ R if for any given ∈ R we can find a δ ∈ R so that:

|x -x 0 | < δ =⇒ |f (x) -f (x 0 )| < (22)
From the perspective of the above definition of limit, a function y = f (x) can be defined to be continuous at a point x 0 provided:

lim x→x0 f (x) = f (x 0 ) (23) 
In case a function is continuous at all its domain points, it is said to be continuous.

Examples of continuous functions include:

f (x) = x, x ∈ R (24) g(x) = a 0 + a 1 x + a 2 x 2 + . . . , with: x ∈ R, a 0 , a 1 , a 2 , . . . ∈ R (25) h(x) = cos(x), x ∈ R (26) (27) 
An example of function that is not continuous is:

r(x) = cos(x), x ∈ (R -{0}) 0, x = 0 because: lim x→0 cos(x) = 1 = r(0) = 0. ( 28 
)
6 Connected Sets

In the context of sets, the concept of connectedness is applied in a manner that is analogous to our intuition of continuity, in the sense of interconnectivity. Let A be a set and x and y be any respective pair of points, i.e. x, y ∈ A. A path between x and y, in case it exists, is any continuous function f from the interval [0, 1] into A so that:

f (0) = x and f (1) = y (29)
The set A is said to be path connected provided it contains at least one path between any of its pairs of points x and y. See an example in Figure 1.

A subset S of a metric space (X, d) is said to be bounded it there is a value r ∈ R so that, for any x, y ∈ X, we have that d(x, y) < r.

A compact subset of an Euclidean (metric) space is a set that is both closed and bounded. Examples are the closed intervals [a, b] ⊂ R. Examples of sets that are closed but not bounded include R N and the graph (x, f (x)) of the function f (x) = tan(x) for x ∈ (-π/2, π/2).

Compact sets are mapped into compact sets by continuous functions in metric spaces. A metric space is compact provided it is complete and bounded.

Topological Spaces

From this section, we start discussing the main basic topological concepts that allow us to consider connectivity and connectedness from a non-metric perspective. Though topological spaces do not need to be connected, the several interesting concepts developed from the perspective of open and closed sets constitute a powerful framework for addressing connectivity and connectedness, as well as many other interesting concepts and properties, including homeomorphism.

Let X be a universe set, Φ be the empty set, and T be a set of subsets of X obeying the following axioms: (i) Φ and X belongs to T ;

(ii) any finite or infinite union of the members of T belongs to T ;

(iii) any finite intersection of members of T belongs to T.

(30)

The ordered pair (X, T ) is said to be a topological space, the elements of T are said to be open and T is called a topology on X. X and Φ are both open and closed (open because they belong to the topology, and closed because the complement on X also belongs to the topology).

The concept of being open (or closed) is so important in topology that saying that a set is open in X is the same as saying that it is an element of X (in the case of the above definition, which adopts open sets -other definitions exist that adopt, for instance, closed sets).

The reason why the above conditions refer to finite or infinite unions but only to finite intersections is that there are countable infinite intersections of open sets that are closed (see, for instance, Section 3). Contrariwise, all unions of open intervals are open.

The above definition is plainly oriented at ensuring that both unions and finite intersections operations are closed in the topology T (i.e. their result is guaranteed to be a member of the topology). Observe the analogy with a vector space, in which the sum and scalar product are both required to be closed.

Any subset Y of X is said to be closed if and only its complement X -Y is an element of T which means, being open.

In order to present some simple examples of topological space (X, T ), let's consider:

X = {a, b, c} (31) 
Then, examples of respective possible topologies include but are not limited to the following:

T 1 = {Φ, X} (32) 
T 2 = {Φ, X, {a} , {a, b}} (33) 
T 3 = {Φ, X, {a} , {b} , {a, b}} (34) 
T 4 = {Φ, X, {a} , {a, b} , {a, b, c}} (35) 
T 5 = {Φ, X, {a} , {a, b} , {b, c} , {a, c} , {a, b, c}} (36)

Topology T 1 above is called trivial or indiscrete. The set of all possible subsets of X, namely T 5 above, corresponds to the discrete topology of X.

In the case of T 2 , we have that Y = {c} is closed because its complement, namely X -Y = {a, b} belongs to T 2 , therefore being necessarily open. However, Y = {c} is also open because it belongs to the topology τ 2 .

An example of a set that does not define a topology for X above is:

C = {Φ, X, {a} , {b} , {c}} (37) 
because, for instance, {a} ∪ {b} = {a, b} ⊂ C.

The above examples were respective to a categoric set X. Now, let X = R. Possible respective topologies include, but are by no means limited to:

τ 1 = {Φ, X} (38) 
τ 2 = {Φ, X, 1, {1, 2}} (39) 
τ 3 = {Φ, X, [0, 1], [2, 3), [0, 3)} (40) 
and we have that [0, 1], [2, 3) and [0, 3) are open sets in the topology

τ 3 , while Y = (-∞, 0) ∪ (1, ∞) is closed in τ 3 because R -Y = [0, 1] ⊂ τ 3 , therefore
being necessarily open (recall that a closed set is such that its complement is closed). Evidently, special attention needs to be taken regarding the concept of open and closed sets, which are relative to specific adopted topologies.

Every metric space is also a topological space, with topology corresponding to the the union of all unions of open balls. Not every topological space is a metric space, but the counter-examples are not particularly simple.

It should also be kept in mind that there are several other definitions of topological spaces, including those based on closed sets (obtained from the definition presented above by using De Morgan's theorem from Boolean algebra) and Hausdorff's definition based on the concept of neighborhoods (e.g. [START_REF] Munkres | Elements of Algebraic Topology[END_REF][START_REF] Mendelson | Elements of Algebraic Topology[END_REF][START_REF] Hatcher | Algebraic Topology[END_REF][START_REF] Basener | Topology and its Applications[END_REF]).

Topological Basis and Subspaces

Let X be a set, and B be a set of subsets of X, which constitute the basis elements of B. B will be a basis of a topology on X provided the following conditions are verified:

(i) For each x ∈ X, at least one basis element b can be found so that x ∈ b;

(ii) Any finite intersection of elements of B can be expressed as a union of the elements in B.

Observe the distinction between basis B and basis element b, with b ∈ B.

Condition (ii) can be understood as ensuring that the finite intersections between the elements of the basis B can be alternatively expressed in terms of unions between the elements of B. The two above conditions imply that unions between elements of B will necessarily be a topology on X, i.e. to generate that topology.

As an example, the set B = {Φ, X, {a} , {b} , {c}} constitutes a basis for any of the topologies T 1 to T 5 in Section 7.

Comparing the concept of topology as implied by the definitions in Equation 30 with the two conditions above, we see that the existence of a basis allows us to generate topologies using only the union operation, while intersections are also required by the previous definition.

The standard topology on the real line R consists of the topology generated by the basis B containing all of its open intervals (a, b). More formally, we have: Given a topological space (X, T ) and a subset Y ⊂ X, then:

X = R; B =
T Y = {Y ∩ R|R ∈ T } (41)
is called the subspace topology on S, and (S, T S ) is a topological subspace of (X, T ). The sets of Y that are the result of intersections between open sets of X and Y are necessarily open.

Topological Continuity

A function f () from a topological space X into another topological space Y is said to be continuous if for every open subset S ⊂ Y we have that its pre-image R = f -1 (S) is an open subset of X. Observe that the continuity of f () will depend both on the function itself as well as on the topologies adopted for X and Y .

Let's consider two topological spaces (X A , T A ) and (X B , T B ) defined as follows:

X A = {r, s, t} , T A = {Φ, X, {r} , {r, s} {r, s, t}}

X B = {x, y} , T B = {Φ, X, {x} , {x, y}}
Now, let the function f : X A → X B so that:

f (r) = y; f (s) = x; f (t) = x.
This function is not continuous because the pre-image of {x} ⊂ X B is {s, t}, with Y = X A -{s, t} = {r} ⊂ T A , so that {s, t} is closed in that topology.

As examples of continuous functions we have the real functions of one real variable discussed in Section 5.

An example of discontinuous numeric function is:

f (x) = x if x ∈ (R -{2}) 0 x = 2.
we have that the open set (1, 3) is inversely mapped into {(1, 2) ∪ (2, 3) ∪ {0}) which is not an open set in the standard topology on R. However, this function will be continuous if the set {(1, 2) ∪ (2, 3) ∪ {0}) is considered in its own topology:

T = {Φ, R, {(1, 2) ∪ (2, 3) ∪ {0})} (42) 
as this set will then be necessarily open.

Topological Connectedness

As defined in topology, therefore being extensible to metric spaces, a topological space is said to be disconnected whenever it can be expressed as the union of two disjoint and non-empty open sets (in the respectively inherited topological subspace).

A connected set is a set that is not disconnected. For instance, the space A = (0, 1) ∪ (1, 2) is disconnected because it corresponds to the union of two disjoint, non-empty open sets. So it is with A = [0, 1] ∪ [2, 3] because these intervals are considered open in the respective topological space. The space R is connected. R -{0} is disconnected since it can be expressed as (-∞, 0)∪(0, ∞), which are both open sets in R. Observe that (-∞, 0] and [0, ∞) are closed sets in R.

Path-connectedness, seen in Section 6, is actually a topological concept. Every path connected set is connected, but not every connected set is path connected.

The counter examples, however, are somewhat specific and include the Warsaw sine curve, which basically consists in the graph of the function sin(1/x) seen from the topological point of view. It is connected, but not path connected since it is impossible to reach the point (0, 0) from any other point (x, sin(1/x)), x ∈ (0, 1].

A particularly interesting theorem is as follows: let X and Y be two topological spaces, and let f () be a continuous function from X to Y . If X is path connected, so is its respective image f (X).

Homeomorphism

Let X and Y be any topological spaces, and f () a bijective function from X to Y . This function is called a homeomorphism provided both f () and f -1 () are both continuous. Recall that continuity depends not only on the mappings, but also on the respectively adopted topologies.

An example of a function that is a homeomorphism is:

f : R → R, f (x) = 1 2 x (43) 
which is bijective and, together with its inverse f -1 (x) = 2x, also continuous. Now, let g(x) = Γ(x) be a mapping from the X in the topological space S = (X = [0, 1), {Φ, [0, 1)}), as shown in Figure 2. Therefore, [0, 1) is an open interval in its own trivial topology. We also have that Γ(0) = lim x→1 Γ(x).

The mapping g(x) above is not a homeomorphism because the inverse mapping g -1 (x) is not continuous. Indeed, any open interval [0, a) ⊂ X, with a ≤ 1, will not have an open pre-image in G, for there is no open interval in the latter space that contains the point 0. However, the function g(x) will become a homeomorphism if the topological space is assumed to correspond to that implied by the image of g(x), and not G as defined by Γ(x). A homeomorphism maps open sets into open sets, and closed sets into closed sets. In addition, connectedness is preserved by homeomorphic mappings. That is why a cup of coffee is often said to be topologically equivalent to a doughnut.

Concluding Remarks

The concepts of limit, continuity and connectedness are central for continuous mathematics, including differential and integral calculus, as well as real and functional analysis, among other possibilities.

As these concepts can be approached from two main perspectives relative to metric and topological spaces, it is particularly important to approach them from both these perspectives. This provides a motivation not only to learning two major mathematical areas, but also paves the way to seeing and addressing several theoretical and applied related problems from a wider perspective. For instance, the topological approach to continuity does not depend on distances, but only on open and closed sets and intersection and union set operations, being therefore more general.

We presented the concepts of continuity and connectedness first, as they are probably more familiar to readers, only them proceeding to the respective topological approaches. Several concepts and properties have been approached in a hopefully introductory manner.

It should be observed that the present work provides but a very first step into substantially vast interesting areas covered in related textbooks (e.g. [START_REF] Munkres | Elements of Algebraic Topology[END_REF][START_REF] Mendelson | Elements of Algebraic Topology[END_REF][START_REF] Hatcher | Algebraic Topology[END_REF][START_REF] Basener | Topology and its Applications[END_REF][START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Garnier | Discrete Mathematics for New Technology[END_REF][START_REF] Kreyszig | Introductory Functional Analysis with Applications[END_REF][START_REF] Rudin | Functional Analysis[END_REF][START_REF] Apostol | Calculus[END_REF][START_REF] Larson | Calculus. Cengage Learning[END_REF][START_REF] Stewart | Multivariable Calculus[END_REF]).

Figure 1 :

 1 Figure 1: The interesting topological concept of path-connectedness.A set X (blue star) is path-connected provided a continuous function from [0, 1] contained in the set can be found so that f (0) = x and f (1) = y for any x, y ∈ X.

  (a) The empty set Φ and X are open (and also closed); (b) Any number of unions os open sets is open; (c) Any finite intersections of open sets is open.

  Given a subset Y of a metric space, a point p ∈ Y is an accumulation (or limit) point of Y if any ball of radius ∈ R, > 0 contains at least another point of Y . A subset Y is closed if and only if every point of Y is an accumulation point of Y . The closure of a subset Y consists of all the elements of Y united with the respective accumulation points. The closure of any subset Y of a metric space is closed. For instance, the interval Y = (0, 1) is open because 0 and 1 are accumulation points not belonging to Y . The closure of Y is [0, 1], which is a closed set. Intervals of the types (a, b] and [a, b) are neither open nor closed, being called semi-open.

  {(a, b)} ; Let [a, b], a, b ∈ R, a < b, be an interval in R. This interval is closed because its complement (-∞, 0)∪(0, -∞) is the union of two open intervals. Intervals of the type (a, b) are open because they can be expressed as union of the open sets belonging to the respective basis.

Figure 2 :

 2 Figure2: A continuous mapping g(x) from the set X in the topological space S = (X = [0, 1), {Φ, [0, 1)}) into the topological space G The latter is considered to be defined by the parametric curve Γ(x) as presented in the main text.
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