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We numerically study the dynamics of an ensemble of Marangoni surfers in a two-dimensional and unconfined
space. The swimmers are modeled as Gaussian sources of surfactant generating surface tension gradients and
are shown to follow the Marangoni flow filtered at their spatial scale in the lubrication regime, an unstable
situation leading to spontaneous motion as soon as the Marangoni effect is intense enough. As the system is fully
unconstrained, it is possible to study the various dynamical regimes from single swimmer, two-body interaction,
to the many-particles case characterized by an efficient particle dispersion. We show that, although the present
model is very simple, it reproduces the experimentally observed transition between a regime of dispersion by
random agitation when the number of swimmers is moderate to the regime of crystallization with imperfect
hexagonal lattice at high density.

DOI: 10.1103/PhysRevE.104.064608

I. INTRODUCTION

Active matter, made of a collection of self-propelled en-
tities, has emerged over the past decades as a new class
of out-of-equilibrium system with rich collective properties
[1–7]. Inspired by animal, biological, or more synthetic self-
propelled objects, propulsion direction is usually hard-coded
in an intrinsic asymmetry. Accordingly, the numerous and
fruitful modelizations to date mostly considered a propulsion
of fixed velocity or force whose direction is bound to the
particle orientation and whose dynamics depends on external
interaction [8–10].

However, the appealing possibility to have self-propelled
particles without demanding the requirement of asymmetric
fabrication emerged with swimming droplets or surfers that
exhibit spontaneous symmetry breaking [11–13]. So far, stud-
ies on such active particles mostly addressed the swimming
instability of isolated individuals [14,15], or collective dynam-
ics in one-dimensional (1D) geometries [16,17]. Far less is
known concerning multiparticles dynamics in higher dimen-
sions, although such a complex system, driven by long-range
chemical interaction, can exhibit strongly fluctuating states
[7] or crystallized states [12] depending on the number of
swimmers per unit area. Yet, with the swimming direction
not slaved to the particle orientation, one may expect these
systems to escape generic flocking or motility-induced phase
separation (MIPS) scenario [18,19] and define a new class of
dynamics.

*Corresponding author: romain.volk@ens-lyon.fr

In the present article, we propose a two-dimensional (2D)
model of symmetric active particles inspired by Marangoni
surfers, i.e., self-propelled particles floating at an air–water in-
terface. The spontaneous propulsion mechanism arising from
these isotropic objects was first described qualitatively and,
more recently, different numerical and analytical models were
proposed [15,20,21]. On a qualitative level, particles act as
chemical sources continuously releasing a surfactant sub-
stance in the surrounding water (in experiments this would
typically be camphor), inducing surface tension gradients at
the origin of Marangoni flows in their vicinity. Depending
on the physical and geometrical parameters, a spontaneous
symmetry breaking can occur so that a single particle would
start to move at constant velocity in an unbounded space. Such
a picture led to numerical models of camphor boats treating
the swimmers as moving sources of camphor, which were
successful in reproducing observations made in 1D confined
systems [16,17,22,23].

The present study builds upon these works and proposes an
implementation of multi-swimmer dynamics in a 2D and un-
confined space so that the dynamics of the swimmers is fully
unconstrained. Relaxing these constraints allows for the study
of two-body interaction and reveals all the richness of the
model when increasing the number of swimmers, for which all
interactions are mediated by the camphor concentration field.

The article is structured as follows. In Sec. II, we introduce
the model and show that the swimmers can be considered as
tracers following the Marangoni flow filtered at their spatial
scale. We then explain its numerical implementation, which
combines the use of spectral methods to solve the transport
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equation for the camphor and Lagrangian interpolation using
Gaussian filters to compute the velocity of the swimmers. We
then show in Sec. III that the model reproduces the generic
features of spontaneous swimming by symmetry breaking as
observed in a point particle model [15] and characterize the
interaction between two colliding swimmers in Sec. IV. We
then address the multiparticle dynamics in Sec. V where we
investigate the dispersion of the particles due to the random
agitation generated by all the swimmers. In particular, we
show that, although the present model is very simple, it re-
produces the transition between a regime of dispersion by
random agitation when the number of swimmers is moderate
[7] to the regime of crystallization with imperfect hexagonal
lattice for high swimmers density [12]. Finally, the last section
is devoted to a discussion of the results and a conclusion.

II. MODEL

A. Camphor field evolution

The model we develop hereafter is inspired from sym-
metric surfers such as well-known floating camphor disks
[16,17,22,23]. The main difference with previous numerical
works is that we build here a 2D model so that the dynamics of
the swimmers is less constrained than in one dimension, while
being enough computationally efficient to study the multipar-
ticle dynamics for very long timescales. To achieve this goal,
we model the dynamics of the swimmers as an ensemble of
floaters at location Ri(t ), free to move on a surface S while
behaving as chemical sources of a scalar with surface concen-
tration � (called hereafter camphor concentration by analogy
with experimental systems). In the presence of a surface flow
u, which may be a superposition of an external flow and the
Marangoni flow caused by the sources, the scalar � obeys
an advection-diffusion equation in the presence of chemical
reaction and sources

∂t� + ∇ · j = −α� +
N∑

i=1

s[r − Ri(t )]. (1)

In this equation j = −D0∇ � + u � is the total scalar cur-
rent incorporating diffusive and advective contributions, D0

being the camphor diffusivity, while −α� accounts for the
sublimation of camphor at the surface [24] and s(r) is the
source term of camphor released by a single particle. Note
that, except where otherwise mentioned, all variables, vectors,
and operators are defined in the surface plane so that this
equation may be regarded as averaged over the thickness of
the water.

Experimentally, camphor is both advected by Marangoni
flows and autodiffused with Péclet numbers of the order of
O(104). Very long simulations of the system with realistic
numbers would then be prohibitive, so that we chose to model
the combination of both effects as a single effective diffusion
process; this assumption is in accordance with experimental
results [25–27], and reinforced by numerical and theoretical
approaches [28,29]. We therefore set

j = −D∇�, (2)

where D is an effective diffusion coefficient, orders of magni-
tude larger than the actual diffusion coefficient D0 [28,29]. We

finally obtain

∂t� = D�� − α� +
N∑

i=1

s(r − Ri ). (3)

B. Marangoni flow

In the absence of external driving, the flow in the liquid re-
sults from the interfacial forcing by surface tension gradients.
These Marangoni flows thus relate to camphor distribution �.
In the following, this relationship is taken as a linear form

u = −A∇�. (4)

Indeed, such a form naturally emerges from a lubrication
approximation for the hydrodynamic problem. Within this
framework and further, assuming a classical linear regime
between the surface tension γ and the concentration

γ = γ0 − β�, (5)

we can show that the surface velocity us ≡ u reads

us = −hβ

4η
∇ �, (6)

where η is the viscosity of water and h the shallow water depth
(see the Appendix for the detailed derivation).

C. Swimmers’ dynamics

1. Camphor sources

Swimmers of size σ act as extended sources typically re-
leasing camphor throughout their surface. We choose to model
source terms as Gaussian functions centered on each swimmer

s[r − Ri(t )] = s0

2πσ 2
exp (−[r − Ri(t )]2/2σ 2), (7)

where s0 is the average value of the source term. The use of
such a smooth function is motivated by the numerical algo-
rithm implemented to solve Eq. (3), which is based on spectral
methods and uses the 2D fast Fourier transform with finite
resolution. Indeed, using discontinuous functions such as gate
functions as in [16,17,22,23], which used finite differences,
would require truncation in spectral space, thus introduc-
ing spurious oscillations in all fields in the vicinity of the
swimmers.

2. Dynamics of swimmers

In the presence of Marangoni flows (or surface tension
gradients), a swimmer moving at velocity

V i = dRi

dt
(8)

will be submitted to the action of various forces such as
capillary and viscous forces, respectively, denoted by Fc and
Fη. The capillary driving force writes

Fc =
∮

∂D
γ ndl =

∫∫
D

∇γ dS, (9)

where ∂D is the perimeter of the swimmer and D its surface.
In the case of a thin layer of fluid with depth h and viscosity
η, it is possible to express the capillary force acting on a
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swimmer covering a surface
∫∫

D dS (see the Appendix for
more details). It reads

Fc = 4η

h

∫∫
D

u dS = 4η

h
〈u〉D[Ri(t ), t]

∫∫
D

dS, (10)

which shows that the capillary force is proportional to the ve-
locity of the swimmer averaged over its surface 〈u〉D(Ri(t ), t ).
In this lubrication regime, a similar result is obtained for the
drag force

Fη = −4η

h
V i

∫∫
D

dS (11)

so that a single swimmer traveling at constant speed moves at
the average velocity V i = 〈u〉D[Ri(t ), t].

One may wonder if the result derived above still holds
when the system is composed of several swimmers so that the
surface flow is no longer stationary in any reference frame.
To this end one may turn to a more complete force balance
such as the one derived by Maxey and Riley and Gatignol
[30,31] for inertial particles. In the case of a material particle
moving in three dimensions in a flow with velocity u and
acceleration Du

Dt , the Maxey Riley Gatignol equation takes the
complex form

mp
dV i

dt
= m f

〈Du
Dt

〉
+ 1

2
m f

(〈
du
dt

〉
− dV i

dt

)
+ Fc + Fη + Fhistory, (12)

where mp and m f are the mass of the particle and the mass
of fluid corresponding to the volume of the particle. In this
equation, the two first terms in the right-hand side (R.H.S.)
are the acceleration of the fluid averaged over the particle and
the added mass force, while the last corresponds to the history
force which was proved to be negligible in turbulent flows
[32]. In the case of a neutrally buoyant particle (mp = m f ),
this equation has the property to have a trivial solution Vi =
〈u〉 so that such a particle has no inertia. This solution proved
to be verified in practice in turbulent flows whatever the initial
conditions [33]. This limiting case is specifically relevant for
floaters because as they are less dense than the fluid, they dis-
place a mass of fluid equal to their own mass so that m f = mp.
Extrapolating this result established in three dimensions to our
2D case, swimmers should then be considered as a special
case of neutrally buoyant particles. They have no inertia and
follow the surface flow averaged over their surface so that their
equation of motion reads

dRi

dt
= 〈u〉D[Ri(t ), t]. (13)

Consistently with our modeling of the sources as Gaussian
functions, we will define a finite-size particle of size σ using
the same Gaussian function. Such a particle will therefore
have the velocity

dRi

dt
= 〈u〉[Ri(t ), t] (14)

the average being obtained as a convolution 〈u〉(r, t ) = G ∗ u
with the Gaussian Kernel

G(r) = exp(−r2/2σ 2)∫∫
S exp(−r2/2σ 2) dS

, (15)

where S is the surface over which we solve Eq. (3). Such
modeling of finite-size particles using Gaussian filters is in-
spired from previous works [34,35], which showed that results
obtained with this model compares well with the experimen-
tal data of finite-size particles transported in turbulent flows
[36–38].

The system of swimmers is then modeled by a closed set
of three coupled equations for the camphor concentration �,
the surface flow u, and the swimmer positions Ri(t ):

∂t� = D�� − α� + s0

2πσ 2

N∑
i=1

exp[−(r − Ri )
2/2],

u = −M ∇�,
dRi

dt
= 〈u〉(Ri, t ),

(16)

where D, α, s0, σ , M, and N are parameters which can
be tuned independently. In this regime, the swimmers are
entirely coupled through chemical interactions, ignoring hy-
drodynamic interactions.

D. Dimensionless form

1. Equations

To reduce the number of free parameters in the simula-
tion, we now introduce non-dimensional numbers. The typical
lengthscale of the flow is σ , and the typical concentration
heterogeneity has the size of a swimmer; therefore the typical
time for such heterogeneity to get smeared out is

t∗ = σ 2

D
. (17)

The heterogeneity is renewed constantly by the sources, so
that, equating the first and last terms of Eq. (3) and using
Eq. (7), we obtain a typical concentration �∗ as �∗/t∗ ∼
s0/σ

2, that is,

�∗ ∼ s0

D
. (18)

Note finally that the typical Marangoni velocity induced by
camphor gradients can be obtained from Eq. (4) as UM ∼
A�∗/σ .

We now introduce non-dimensional variables t̃ = t/t∗,
�̃ = �/�∗, ũ = u t∗/σ , r̃ = r/σ , R̃ = R/σ and operators
∇̃ = σ∇ and �̃ = σ 2�, and we obtain the coupled equations

∂̃t �̃ = �̃�̃ − ᾱ �̃ + 1

2π

N∑
i=1

exp[−(̃r − R̃i )
2/2],

ũ = −M ∇̃�̃,

dR̃i

dt̃
= 〈ũ〉(R̃i, t̃ ).

(19)

with two dimensionless parameters

M = As0

D2
= UM

σ

σ 2

D
,

ᾱ = ασ 2

D
.

(20)

M is the Marangoni number of the flow that compares
the Marangoni-stress-induced flow transport to the diffusion
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transport; it thus appears as a Péclet number based on the typ-
ical Marangoni velocity UM . ᾱ compares camphor evaporation
rate to the camphor diffusion rate; it is essentially identical to
a second Damköhler number for reactive systems.

2. Numerical implementation

The system (19) involves equations written both in the
Eulerian framework for the concentration �̃, and in the
Lagrangian framework for the position of the particles R̃i(t ).
The Eulerian equation for the concentration is solved with
periodic boundary conditions using a pseudospectral method
with an implicit treatment of the diffusion term. The grid
size is 1282 for a square box of length L = 2π , with fixed
diffusion D = 0.15, camphor flux s0 = 1, σ = 9.85 × 10−2,
variable attenuation α ∈ [0 − 10], and A ∈ [0 − 10]. Using
such fine resolution ensures that the Marangoni flow filtered at
the scale of the particles, 〈u〉 = −A〈∇�〉, which is computed
in spectral space by multiplication with the Fourier transform
of the normalized Gaussian function defined in Eq. (15) is
resolved with high accuracy. Lagrangian velocities of particles
can then be obtained by spline interpolation of 〈u〉 at parti-
cle positions in physical space with a relative error smaller
than 10−3. Both Eulerian and Lagrangian equations use an
identical Adams-Bashford temporal scheme of order 2 with
a timestep dt = 5 × 10−3 so that non-dimensional parame-
ters are L̃ = 63.8, α̃ ∈ [0 − 0.65], M ∈ [0 − 450], and d̃t =
7.7 × 10−2. The code, implemented in MATLAB as a modified
version of [39], can run on common desktop computers so as
to obtain very long trajectories in the statistically stationary
regime when using O(50) active particles.

III. MARANGONI SWIMMING: SINGLE SWIMMER

A single swimmer is introduced in the box, with an initial
camphor field �̃ = 0 and a vanishingly small velocity Ṽ0 =
10−3 in the ȳ direction. We first set ᾱ = 0.13, a regime in
which the effect of camphor sublimation is weak compared to
camphor diffusion. The Marangoni number is M ∈ [0, 480].

As evidenced in Fig. 1(a), a swimming transition is ob-
served above a critical Marangoni number Mc ≈ 23.9. Below
Mc the final steady state is motionless with a camphor
concentration remaining symmetric (see the inset, left with
M = 23.1 < Mc). This concentration generates axisymmet-
ric Marangoni flows as can be observed experimentally with
a fixed source of surfactant [40], but does not yield self-
propulsion because the concentration gradient is exactly zero
at the location of the swimmer. Above Mc, a stationary state
without motion is unstable. Given the very small initial veloc-
ity, a symmetry breaking occurs (as in the experiments) so that
the surfer velocity increases rapidly and reaches a constant
value Ṽs. This symmetry breaking can be traced back to the
camphor concentration field displayed as middle and right
insets in Fig. 1(a) in the case of a swimmer moving toward the
top. After a transient during which the camphor cloud grows
and looses its symmetry, a steady-state distribution is reached
in the reference frame of the surfer which is distorted towards
its rear, all the more that M increases.

More into details, Figs. 1(a) and 1(b) show the swimming
velocity evolution with M. As can be seen, the bifurcation

FIG. 1. Spontaneous swimming of single surfers. (a) Velocity Ṽs

for different M, keeping ᾱ = 0.13: swimming is observed above a
critical value Mc = 23.9. Inset: Isoconcentration lines of the camphor
field for different M just below (M = 23.1, no swim) just above
(M = 26.7) and far above (M = 44.4) the swimming threshold. The
center of the swimmer is indicated by a red circle, its swimming
direction is towards the top. (b) Ṽs evolution in the vicinity of the
swimming threshold showing a (M − Mc )1/2 dependency. (c) Critical
Marangoni number Mc as a function of ᾱ: red dotted line shows an
affine regression; blue dash-dotted line is the toy-model prediction
Mc = 4π/K0(

√
ᾱ) [15].

occurs through a supercritical pitchfork transition, with Ṽs

scaling as (M − Mc)1/2 above the threshold. In addition the
influence of ᾱ on the critical Marangoni number Mc is shown
in Fig. 1(c): the stronger the evaporation (large ᾱ) the higher
Mc. Indeed, a stronger evaporation rate decreases the extent
of the camphor field at the steady state. For the advective
transport to dominate diffusion over the cloud extent and to be
able to trigger a symmetry breaking thus requires more intense
Marangoni effects and hence larger M values.

Overall, these different behaviors are consistent with an-
alytical predictions that can be drawn from an even simpler
toy (a model where the surfer is modeled as a camphor point-
source) [15]. Within this approach, a swimming transition in
the form of a supercritical pitchfork bifurcation is obtained
with Mc = 4π/K0(

√
ᾱ) with K0 the modified Bessel function

of the second kind. While the qualitative picture, together with
the correct orders of magnitudes, are successfully captured
by this simplified framework, Fig. 1(c) shows that the present
model predicts a higher swimming threshold whatever ᾱ. This
is a consequence of the spatial extension of our source, which
induces that spontaneous symmetry breaking is harder to ob-
tain than with a point source.
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(a)

(b)

FIG. 2. (a) Trajectories of swimmers planned to collide syn-
chronously at the origin for different initial angle �i ∈ {16, 48, 114}.
M = 44.4, ᾱ = 0.13. (b) Angle � f after the synchronous collision
with respect to the angle �i for M ∈ {6.7, 11.1, 22.2} with ᾱ = 0.13.

IV. TWO-BODY INTERACTION

With the swimming properties of single surfers defined,
the next step is to address the two-body interactions. This is
readily done according to Eq. (19) by introducing two sources
in the periodic box. Box size and surfer initial separation are
taken large enough so that they initially behave as isolated
swimmers.

To accumulate systematic information and control the in-
teraction parameters, we first consider configurations with
vanishing impact parameter: the surfers are initially located at
equal distance from the center; their velocities are identical in
magnitude, equal to that of a single swimmer, and both point
towards the box center. Surfers trajectories corresponding to
swimming characteristics M = 44.4 and ᾱ = 0.13 are shown
in Fig. 2(a) for different initial angle of collision �i. While
the collision from nearly parallel surfers look quasispecular,
the behavior evolves at higher angles with exiting trajectory
that seems to hardly depend on the initial �i.

These results are summarized in Fig. 2(b), showing the
final exit angle � f as a function of the initial collision angle
�i, for different swimming parameter M, and fixed ᾱ = 0.13.
Three regimes can be identified while increasing the collision
angle. As already mentioned, for weak angles �i < 50◦, the
collision is almost specular with surfers exchanging their ve-
locity directions. This regime is followed by a wide range of
collision angles �i ∈ [50◦, 150◦] where the final separation

angle is almost constant around � f � 50◦, therefore corre-
sponding to a partial alignment regime. Note that, unlike
alignment mechanisms in other active systems with an in-
trinsic asymmetry [41], here the alignment seems bounded:
it kicks in only at high-enough angle, and aligns to within a
minimum angle. Note also that this partial alignment tends to
disappear for smaller values of M − Mc where the chemical
cloud asymmetry is weaker; in this case the collision remains
closer to specular throughout the first two regimes. Finally,
near head-on collisions with �i > 150◦ result in an antialign-
ment with a final trajectories showing opposite directions with
� f � 180◦.

As already mentioned, model investigations to date
with Marangoni surfers have essentially dealt with 1D ap-
proaches of often asymmetric particles; consequently, the
state-of-the-art for interactions also considers 1D systems
[25,42,43]. Recent advances have, however, been obtained
for a closely connected case: active droplets embedded in a
three-dimensional (3D) liquid phase that also exhibit swim-
ming by spontaneous symmetry breaking. In this system,
which proved more amenable to analytical development of
the full problem than surfers, the properties of 2D binary
interactions were recently addressed [44–46]. The collision
data reported for these active droplets are in agreement with
experimental investigations [47,48], and display properties
very similar to those presented here. This suggests that the
interaction of symmetric active swimmers share generic fea-
tures that make them distinct from the mostly described active
systems [10,49].

Finally, let us mention that fully generic interaction events
also include the case of finite impact parameters. As compared
to the previous case, this can be viewed as launching the two
surfers of initial velocity angle �i, at different times. With
increasing delay, the interaction progressively occurs through
the chemical wake until the delay is large enough so that the
surfers move independently. This generic situation was fully
explored for active droplets: while for small delays the colli-
sion features are little changed, they overall exhibit a rich set
of rebounds or crossing behaviors [46]. As for the symmetric
collisions, the present system displays qualitatively the same
features (not shown here).

V. COLLECTIVE BEHAVIORS

We now examine the collective properties of our
Marangoni surfer model. While intensively studied for asym-
metric swimmers, little investigations have addressed the
dynamics and collective response of symmetric active parti-
cles. A few experimental articles dealt with the dynamics of
semi-dilute to concentrated assemblies of interfacial surfers,
either in one dimension [50] or in two dimensions [7,12,51].
Theoretically, the collective case of chemical sources at a fluid
interface has been considered, but without allowing for their
self-propulsion [52–54]. In addition, very recent studies inves-
tigate the 2D dynamics of semi-dilute active droplets showing
caging effects [48]. In addition, confinement-dependent clus-
tering and polar ordering were reported in a few experimental
and numerical approaches of these droplet systems [55–57].
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FIG. 3. Instantaneous camphor concentration field obtained for
N = 25 swimmers, M = 44.4, and ᾱ = 0.13, long enough after ini-
tialization to avoid any memory from the initial state. Each white
arrow starts at the center of a swimmer and its direction and length
indicates its velocity.

A. Transport properties

1. Characterization

In the following, we consider N identical surfers with
characteristics set to M = 44.4 and ᾱ = 0.13. We define their
surface density in the simulation box as [7,40]

� = Nπσ 2

L2
. (21)

Varying N from 5 to 200 corresponds to densities � from
1.9 to 76 %. Figure 3 presents a snapshot of the surface
concentration field obtained for N = 25 (� � 9.5%), with the
origin of each white arrow being the surfer center and the
length its instantaneous velocity.

The surfers collective dispersion properties are character-
ized via the mean square displacement (MSD) as a function
of time lag �̃t

σ 2
msd(�̃t ) = 1

N

N∑
i=1

〈(R̃i (̃t0 + �̃t ) − R̃i (̃t0))2〉̃t0 , (22)

where 〈·〉̃t0 is an average over every possible t̃0 values. The
computed MSDs are shown in Fig. 4(a) for different numbers
of swimmers N . Overall, the dynamics in the multisurfers
system resembles the classical one of single active Brownian
particles [58,59]: a short-term ballistic regime (σ 2

msd ∝ �̃t2)
followed by a long-term effective diffusion regime (σ 2

msd ∝
�̃t ). However, the ballistic dynamics of the single surfer
shows that there is no rotational diffusion of the swimming di-
rection. Randomization of the orientation occurs only through
surfers interactions, and indeed occurs earlier (shorter �̃t) at
higher densities, in accordance with experimental observa-
tions on camphor disks [7].

The ballistic velocities ṽ′ and effective diffusivities D̃eff are
obtained from fits of the associated asymptotic regimes for
each N according to

σ 2
msd ≈ ṽ′2�̃t2 at small �̃t (23)

and

σ 2
msd ≈ 4 D̃eff�̃t at large �̃t, (24)

(a)

(b)

(c)

FIG. 4. (a) Mean square displacement of the swimmers for
various number of particles in the box. M = 44.4, ᾱ = 0.13. (b) Vari-
ation of D̃eff (blue marks) and ṽ′ (red dots), the characteristic
coefficients of respectively the diffusive and ballistic regime with
respect to the number of swimmers N . The dotted horizontal line
indicates the velocity of a single swimmer Ṽs; the dotted blue line
shows a power-law fit D̃eff = 34 N−1.55. (c) Probability density func-
tion of velocity field magnitude for different number of swimmers.

respectively. The variation of both coefficients is displayed in
Fig. 4(b) as a function of the number of swimmers N . For low
surface density (N � 45; � � 17 %), the ballistic velocity ṽ′
remains unchanged, equal to that of a single surfer. In this
regime, swimmers behave as if isolated except for interaction
events which modify their direction. At higher densities, the
ballistic regime eventually becomes density dependent: the
velocity decreases with increasing crowding.

This transition between low and high density regimes
can be simply understood on qualitative grounds: one may
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expect that permanent interaction between surfers occurs
when chemical wakes fill the whole surface. Indeed, Fig. 3
shows a snapshot of the concentration field at N = 25, before
the transition, with significant remaining zones with no chem-
ical pollution. This translates in the probability distribution
function (PDF) of the surface velocity amplitude [Fig. 4(c)] by
a finite probability to find locations with no Marangoni flow.
When reaching the transition around N = 45 this feature dis-
appears and no remaining fraction of the surface is motionless.

In the high density regime, one may be tempted to asso-
ciate the slowing down of ballistic motion to a smoothing of
chemical gradients. However, this is not what comes out of the
previous PDFs in Fig. 4(c), which show that the probability of
high surface velocities increases with N . Indeed, it is really
the hindering of the motion by surrounding neighbors that is
responsible of the dynamics slowing down. This cage effect
characteristic of dense systems shows up in the high density
regime [Fig. 4(a), N > 100] as a short plateau between the
ballistic and diffusive regimes [60]. This is in line with recent
experimental reports on active drops dynamics in semi-dilute
regimes [48]. Interestingly, this plateau is accompanied in the
present system by oscillations in the MSD, arising from a
rattling motion of the caged particles.

As already mentioned, in all N > 1 configurations, surfers
interactions induce a randomisation of the swimming orienta-
tion at large time which results in an effective diffusion regime
in the MSD. Classically, we define the decorrelation time τ̃R

as the cross-over time between ballistic and diffusive regimes.
From Eqs. (23) and (24), we obtain the relation

D̃eff ∼ ṽ′2 τ̃R/4. (25)

Intuitively, we expect the time τ̃R to decrease with N due to the
higher rate of collisions, in agreement with results in Fig. 4(a).
With both the velocity ṽ′ and the time τ̃R decreasing function
of N , so is the effective diffusivity. A fit of the numerical data
shows that this decay is consistent with a power-law behavior
D̃eff ∝ N−1.55.

2. Persistent random walk model

Up to moderate densities, surfers essentially propel at
the velocity of isolated particles and have their swimming
direction randomized by successive collision events. It is
therefore natural to compare this dynamics to a persistent
random walk model. Because of the nature of reorientations,
two elements need be specified for the random walk (i) the
frequency 1/̃τR of collision events and (ii) the statistics of the
direction changes upon collision. The collision frequency can
be estimated based on classical gas kinetics arguments, and
corresponds to the rate at which a swimmer sweeps an area
containing on average one other surfer( N

L̃2

)
�̃⊥ ṽ ′̃τR = 1, (26)

where �̃⊥ stands for the collision cross-section. In the follow-
ing, it is taken as the transverse extension of the chemical
wake associated to the surfers. Choosing a threshold at 5%
of the maximum concentration sets �̃⊥ = 13 for the param-
eters considered (M = 44.4, ᾱ = 0.13), see also Fig. 3. For
the statistics of reorientations, one assumes that all collisions

(a)

(b)

FIG. 5. Persistent random walk model. (a) Mean-square dis-
placement for different numbers of swimmers N . (b) Variation of D̃eff

with N . Dotted black line indicates a power-law fit D̃eff = 93 N−0.94.

are symmetric so that for a given initial angle �i drawn in
a uniform distribution in [0◦, 360◦], the deviation angle � f

follows according to Fig. 2(b).
Figure 5(a) shows MSDs computed according to this sim-

ple random walk model, for different number N of surfers. As
expected from persistent random walk, MSDs exhibit a ballis-
tic and diffusive regime, with effective diffusivity decreasing
with N (Fig. 5).

By construction, the present approach can only be com-
pared to the moderate density regime described previously: ṽ′
is independent of N and only binary collisions are considered,
forbidding any caging regime. Overall this simple approach
yields consistent magnitude for the effective diffusivities in
the relevant range N � 45 (Figs. 4 and 5), although the
power-law decrease of D̃eff is weaker (exponent −0.94 versus
−1.55). In the present approach, the N dependency is entirely
encoded in the mean free path argument for binary collisions.
Potential origins of this discrepancy are the possibility of
many (three) body interactions, or the existence of asymmetric
collisions, not captured in this model.

B. Active phase transition

Looking in more detail at the transition between the
ballistic and diffusive regimes in Fig. 4(b), we observe for
N = 150 some oscillations. Indeed, for this parameter the
particles are almost stuck between their neighbors [Fig. 6(a)],
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(a)

(b)

FIG. 6. Camphor concentration field obtained for M = 44.4 and
ᾱ = 0.13. (a) N = 150; white arrows indicate the velocity of the
swimmers. (b) N = 200; the system is almost crystallized.

and oscillate in this trap with a typical amplitude equal to their
diameter, diffusing only over very long timescales.

Finally, when increasing up to N = 200 (� = 76%), swim-
mers slowly self-organize to occupy the available space, being
regularly spaced and almost motionless despite the periodic
boundary conditions [see Fig. 6(b)]. Because the system
clearly evolves toward a hexagonal lattice, we define an ori-
entational hexagonal order parameter for each swimmer j,
denoted by �6, j , as in [61,62]:

�6, j = 1

6

∑
k∈n j

exp(6i � j,k ), (27)

where nj is the set of six nearest neighbors of the particle
j and � j,k is the angle of the vector between particle j and
particle k with respect to the reference frame. Averaging over
Nj = 2000 swimmers (taken at different times), we obtain the
average hexagonal order parameter �6:

�6 = 1

Nj

∣∣∣∣∣
Nj∑
j=1

�6, j

∣∣∣∣∣. (28)

(a)

(b)

FIG. 7. (a) Mean hexagonal order parameter with respect to
the number of swimmers. We observe a phase transition between
no order (N < 150) and an almost crystallized state (N = 200).
(b) Evolution of g6 with respect to the time for different numbers
of swimmers. The t−1/8 behavior recalls the expected trend for the
case of a colloidal hexatic phase.

Figure 7(a) shows the variations of �6 as a function of
the number of swimmers N in the periodic box: we clearly
see that an hexagonal organization appears around N = 150,
indicating a transition between two phases. This transition is
analogous to the liquid-hexatic transition observed for ther-
mal passive particles and is already well described [62–64].
The same transition was also described for active Brownian
particles [65], yet we report it here for an athermal system. To
characterize better the transition, we use g6, the autocorrela-
tion function of �6, defined as

g6(�t ) = Re

(〈
�6, j (t0 + �t ) · �∗

6, j (t0)
〉
t0, j

〈|�6, j |2〉t0, j

)
. (29)

It is now well known [63] that this function, at large
timescales, exhibits in the colloidal hexatic phase a power law
g6 ∝ �̃t−η6/2 where η6 depends on the density of particles
and is equal to 1/4 at the transition. Figure 7(b) shows on
a logarithmic scale the evolution of g6 for different number
of swimmers N ; as for colloidal phases we observe for this
athermal system a clear evolution of g6 with N . Understanding
how the transition is influenced by the activity parameters
(M, ᾱ), investigating the possibility of a full mapping to the
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at-equilibrium hexatic transition, are open questions that we
hope will generate future theoretical investigations.

VI. SUMMARY AND CONCLUSION

In the present article, we proposed a 2D model of
Marangoni surfers in unconfined space. The model is based
on the use of an effective diffusion equation for the trans-
port of camphor on the surface, with a sublimation term and
Gaussian source terms representing the swimmers which in
turn follow the Marangoni flow filtered at their spatial scale.
The present model is fully unconstrained so that several inter-
esting problems can be addressed with the same code.

In the most simple case of a single swimmer we demon-
strated that this model reproduces the swimming instability
which arises following a supercritical bifurcation similar
to the one obtained in several models from the literature
[15,17,22]. We then showed that it allows to reproduce most
of the known features of the multiparticle case, from the
regime of dispersion enhancement by random agitation when
the number of swimmers is moderate [7] to the regime
of crystallization with imperfect hexagonal lattice when the
swimmers reach high densities [12]. The imperfection is due
to the geometry of the computational domain, which imposes
a periodicity along x and y axes. It could be possible to
obtain an ideal crystal by using a hexagonal computational
domain which could be achieved at low cost with penalization
methods [66].

Finally, the main disagreement with the experimental ob-
servations reported in [7] is the absence in the simulation
of a turbulent signature in the swimmers velocities. Such
effect may be due to the strong assumptions made to get a
closed model, for which one only needs to solve the transport
equation for the camphor without solving the Navier-Stokes
equation to obtain the velocity. Indeed, in the lubrication
regime where the Reynolds number is vanishingly small, the
Marangoni flow is purely potential as it is proportional to the
gradient of camphor concentration. To get a more realistic
surface flow, one may relax the lubrication approximation
to obtain a weakly nonlinear model of the 3D flow in the
subphase, which would then have both potential and rotational
contributions. In this regime, the system would still be closed
for the camphor concentration so that it would be possible to
simulate for a very long time even in the multiparticle regime
characterized by strong spatiotemporal fluctuations.
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APPENDIX: RELATION BETWEEN MARANGONI FLOW
AND CAMPHOR CONCENTRATION

We hereafter show how the simple relationship between
camphor concentration and Marangoni-driven surface flow
[Eq. (4)] adopted in the model, naturally arises in the limit of
lubrication flows. Unlike previous calculations, we here con-

sider a 3D problem, with camphor (bulk) concentration c in
the subphase of thickness h � σ . Assuming a Henry isotherm
for dilute camphor regimes, the surface tension writes

γ = γ0 − εc(x, y, z = h), (A1)

where ε is a constant. This leads to

∇‖γ = −ε ∇‖ c |(z=h), (A2)

where ∇‖ is the gradient operator components parallel to the
interface.

To proceed toward a simple closed form for the induced
surface velocity, we consider as already mentioned, the limit
of the shallow waters. In this limit camphor diffusion across
the liquid depth is very fast compared to the lateral transport
so that

c(x, y, z) ≈ c(x, y), (A3)

from which we can define a surface concentration as

� = h c(x, y). (A4)

For the flow field, in the lubrication limit, vertical velocity
is negligible compared to horizontal ones

u ≈ uxex + uyey = u‖. (A5)

Accordingly the pressure gradient along the liquid depth is
ignored so that the Stokes equation reduces to

η
∂2u‖
∂z2

≈ ∇‖P(x, y), (A6)

which integrates to [67]

u‖(x, y, z) =
(

z2 − zh

2η

)
∇‖P + z

h
us, (A7)

with η the fluid dynamic velocity, and us ≡ u(x, y, z = h) the
velocity field at the interface. Neglecting surface deformation
so that h is constant over (x, y), we define the depth-average
velocity field ū as

ū(x, y) = 1

h

∫ h

0
u‖(x, y, z)dz. (A8)

Using the divergence-free condition for u together with the
vanishing of the vertical velocity at z = 0 and h, we obtain

∇‖ · ū = 0, (A9)

which in combination with Eq. (A7) leads to

�‖P = 6η

h2
∇‖ · us. (A10)

The Marangoni boundary condition at the interface leads to

∇‖γ = η
∂u‖
∂z

∣∣∣∣
(z=h)

, (A11)

and using Eq. (A7):

∇‖γ = −h

2
∇‖P + η

us

h
. (A12)

The curl of this equation gives ∇ × us = 0. Consequently,
there exists a function φ such that us = ∇‖φ. Injecting this
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last relation into Eq. (A10) leads to

�‖P = 6η

h2
�‖φ. (A13)

We then deduce

P = 6η

h2
φ + ψ, (A14)

where ψ is solution of �‖ψ = 0. Assuming that ψ =
f (r) cos(θ ), possible solutions are f (r) ∝ 1/r or f (r) ∝ r.
The last one can be discarded due to relaxation of the velocity
field far from the disk. To avoid an infinite value of the field
in r = 0, the only solution left is ψ = 0. Finally, Eq. (A12)

reduces to

∇‖γ = 4η
us

h
. (A15)

Combining equations (A2), (A4), and (A15), we eventually
obtain the relation

us = − ε

4η
∇‖�. (A16)

Because the surface concentration reads � = hc, we have the
relation ε ≡ hβ for the surface tension dependency with bulk
and surface concentration. Finally, we indeed obtain the rela-
tionship chosen in our bi-dimensional model Eq. (4) providing
A = hβ/(4η).
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