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Abstract

We present the open-source image processing software package PySAP (Python Sparse data Analysis Package) developed
for the COmpressed Sensing for Magnetic resonance Imaging and Cosmology (COSMIC) project. This package provides
a set of flexible tools that can be applied to a variety of compressed sensing and image reconstruction problems in various
research domains. In particular, PySAP offers fast wavelet transforms and a range of integrated optimisation algorithms.
In this paper we present the features available in PySAP and provide practical demonstrations on astrophysical and
magnetic resonance imaging data.
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1. Introduction

The ability to obtain high quality data in a short amount
of time or indeed to recover high resolution images from
undersampled blurred and noisy data can significantly im-
prove the results of experiments potentially leading to new
and exciting scientific discoveries. While the benefits of
the mathematical methods that make this possible are rel-
atively well known, robust and easy-to-use software tools
that implement these techniques are extremely rare. The
Compressed Sensing for Magnetic Resonance Imaging and
Cosmology (COSMIC) project (http://cosmic.cosmostat.
org/) was funded by the Fundamental Research Division
(DRF) at the French Alternative Energies and Atomic En-
ergy Commission (CEA) to provide precisely these tools.

COSMIC is a collaboration between two CEA groups
with signal processing expertise: NeuroSpin, specialists in
Magnetic Resonance Imaging (MRI), and CosmoStat, spe-
cialists in astrophysical image analysis. There is signifi-
cant overlap in these fields, especially for astrophysical ra-
dio imaging that, like MRI, collects data in Fourier space.
The primary output of this collaboration has been the de-
velopment of the Python Sparse data Analysis Package
(PySAP).

PySAP is an open-source software package written in
Python that provides highly optimised sparse image trans-
forms and a library of modular optimisation tools for solv-
ing linear inverse problems. While PySAP has been de-
signed with specific applications to the MRI and astro-
physics domains in mind, the versatility of the software
and the universality of the mathematical techniques mean

that it can also be applied to a variety of other imaging
domains such as microscopy, tomography and echography.

Compared to existing inverse problem solving pack-
ages, such as SPAMS (Mairal et al., 2009b,a, 2010; Je-
natton et al., 2010) and SigPy (Ong and Lustig, 2019),
PySAP offers efficient implementations of specialised mul-
tiscale transforms. In particular, PySAP provides undeci-
mated wavelet transforms, which are well suited to astro-
physical images, and 3D wavelet transforms, which are of
particular interest for MR image processing (see Sec. 2.1).
PySAP also includes several detailed applications of these
tools to data to facilitate user understanding (see Sec. 3).

This paper is organised as follows. Section 2 provides a
detailed description of the structure and features of PySAP
with particular focus on the image transforms and optimi-
sation tools. Section 3 demonstrates practical applications
of PySAP on MRI and astrophysical data. Finally, conclu-
sions and plans for the future development of the package
are presented.

2. PySAP Features

In essence, the base PySAP package serves as a front-
end that comprises several specialised modules. PySAP
provides a simplified framework in which to combine these
modules as well as managing file IO, visualisation and ex-
ception handling.

The core modules that provide the PySAP features are:

• Sparse2D: Sparse Image Transforms

• ModOpt: Modular Optimisation Tools
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Figure 1: Illustration of the structure of the PySAP package. The
SPARSE2D and ModOpt core libraries are represented in orange and
red, respectively. The various plug-in applications appear in blue.

• Plug-ins

Fig. 1 illustrates the core structure of the PySAP package.
Each of these modules is described in detail in the following
subsections.

2.1. Sparse Image Transforms

The most essential tools for implementing compressed
sensing or sparsity in signal processing problems are effi-
cient dictionaries well suited to the data at hand. In prac-
tice, these dictionaries correspond to a series of data trans-
forms ranging from wavelets to curvelets that can convert
the data into a domain where the majority of the infor-
mation is concentrated in very few non-zero coefficients, a
concept called sparsity or compressibility.

Sparse2D is a C++ package, which forms part of iSAP
(Interactive Sparse Astronomical data Analysis Packages),
that provides a wide range of robust and efficient sparse
transforms for 1D, 2D and 3D signals. In particular, the
package includes a collection of undecimated wavelet trans-
forms (UWT) that provide shift invariant properties for
image reconstruction, such as the starlet transform (Starck
et al., 2007) or the 7/9 UWT. These transforms are well
documentated in Starck et al. (2015). Sparse2D also in-
cludes 2D1D and curvlets transforms, enabling the sparse
decomposition of various types of data. A full list of the
available transforms is provided in Appendix A. These
software tools have been extensively tested on astrophysi-
cal data producing high quality results on a range of differ-
ent topics (Bobin et al., 2014; Leonard et al., 2014; Ngolè
Mboula et al., 2015; Lanusse et al., 2016). The fact that
this package relies on a set of fixed multiscale dictionaries

means that the transforms are very computationally effi-
cient and are therefore ideally suited to on-line MR image
reconstruction (El Gueddari et al., 2019a).

PySAP provides Python bindings for the Sparse2D C++
libraries, thus enabling fast and efficient implementation
of the sparse transforms inside of a Python environment.
This allows these tools to be more easily integrated into op-
timisation problems without any loss of performance (see
section 2.2). Additionally, through the PySAP interface,
Sparse2D transforms can be applied to MRI data sepa-
rately on the real and imaginary parts.

In addition to Sparse2D, PySAP also includes all of the
transforms provided in PyWavelets (Lee et al., 2019).

2.2. Modular Optimisation Tools

Linear inverse problems, such as compressed sensing,
are ill-posed because they are under-determined, i.e. the
number of measurements is far below the number of image
pixels. To cope with this issue and make the inverse prob-
lem well posed, one usually resorts to regularisation. The
image solution is then obtained as the minimiser of an op-
timisation problem. One of the main features of PySAP is
a series of modular optimisation tools designed for solving
linear inverse problems that comprise a subpackage called
ModOpt.

This package is particularly well suited for solving lin-
ear inverse imaging problems of the following form

y = Hx + n (1)

where y is the observed image obtained from the detector
in question, H is a degradation matrix that could consti-
tute blurring, sub-sampling, distortion, etc., x is the true
image that one aims to recover and n is noise.

ModOpt provides robust and extremely flexible imple-
mentations of cutting-edge optimisation algorithms such
as Foward-Backward, FISTA (Beck and Teboulle, 2009),
Generalized Forward-Backward (Raguet et al., 2011), Condat-
Vu (Condat, 2013; Vũ, 2013) and POGM′ (Kim and Fessler,
2017). For instance, these algorithms have been compared
for MR image reconstruction in (Ramzi et al., 2019). The
flexibility of these implementations is provided via means
of Python class composition. All of the proximity and lin-
ear operators as well as the gradient utilised by a given
algorithm can be provided as class instances that inherit
a parent structure to ensure smooth cohesion. The modu-
larity of this approach means that any potential bug can
be easily identified and fixed, thus ensuring a well main-
tained and robust framework. Additionally, this structure
facilitates the future implementation of virtually any op-
timisation algorithm.

Predefined proximity operators are provided for imple-
menting sparse, low-rank and structurally sparse regular-
isation (i.e., `1, nuclear and mixed norms, respectively)
as well as a positivity constraint, which is commonly re-
quired in image analysis problems. Tools are included that

2



allow the automatic setting of the regularisation parame-
ters using the noise properties of the observed data. New
proximity operator instances can easily be generated using
the parent class. A list of the proximity operators cur-
rently available in ModOpt is provided in Table 1. This
structure includes a method that automatically calculates
a given operator’s contribution to the overall cost of the
optimisation problem at hand.

The linear operator parent class enables the use of any
of the sparse image transforms described in section 2.1, in
fact this framework is flexible enough to allow the imple-
mentation of virtually any custom transform. The struc-
ture of the this class also requires the definition of the
adjoint process for a given transformation.

A standard gradient implementation of the form

∇F (x) = HT (Hx− y) (2)

is included, where F (x) is a convex function of the form
F (x) = 1

2‖Hx − y‖22. The parent class structure ensures
that the gradient required for a given inverse problem can
be easily implemented. As with the proximity operators,
the gradient’s contribution to the total cost is built into
the class structure.

A cost function class is also provided that automati-
cally sums up the contributions from the proximity and
gradient operators. This class has a built-in framework to
test for convergence up to a given tolerance.

Finally, a reweighting class is provided to counteract
the bias introduced into a given solution owing to the use
of soft-thresholding in sparse regularisation. At present,
the method of Candès et al. (2008) is included.

The combination of these tools enables the user to very
quickly prototype robust codes for tackling a variety of
inverse imaging problems.

2.3. Plug-ins

PySAP also provides application specific plug-ins. In
this module algorithms and operators from ModOpt can
be combined with Sparse2D transforms to develop tools for
a given application. The objective being to produce user-
friendly functions, designed to solve well defined problems,
that can be applied directly to data.

At present, this module contains plug-ins that demon-
strate the applicability of PySAP to astrophysical and
MRI data (pysap-astro and pysap-mri, respectively).
For example, the MRI plug-in pysap-mri (El Gueddari
et al., 2020) adds the ability to deal with non-Cartesian
data using non-uniform or non-equispaced FFT tools, while
the astrophysics plug-in provides easy-to-use tools for de-
noising or deconvolving survey images. A specific plug-in,
called pysap-data hosts the data sets used in the examples
provided, while another one, called pysap-tutorial, con-
tains materials for hands-on sessions. In the near future,
two supplementary plug-ins will be released for other imag-
ing techniques such as electron tomography (pysap-comset)
(Lin et al., 2020), and electron microscopy (pysap-emicro).

The plug-in framework has been designed to promote
collaboration by providing a template for creating new
plug-ins for virtually any imaging domain.

3. Practical Applications

3.1. Astrophysical Images

One straightforward application of PySAP on astro-
physical data is to the problem of galaxy image deconvo-
lution. Astrophysical images obtained with optical tele-
scopes are subject to a blurring caused by internal factors,
such as imperfections in the optical system, and external
factors, such as the atmosphere for ground based instru-
ments. The sum of these aberrations is commonly referred
to as the Point Spread Function (PSF).

Removing the effects of the PSF from noisy obser-
vations amounts to solving a non-trivial inverse problem
that requires the use of regularisation owing to the ill-
conditioned nature of the degradation matrix, which cor-
responds to convolution with the PSF in this case. This
problem can be solved using sparse regularisation following
the same prescription described in Farrens et al. (2017) us-
ing PySAP. A deconvolution example is provided in PySAP
that demonstrates this process in a few lines of code. This
example takes a COSMOS (Koekemoer et al., 2007; Scov-
ille et al., 2007b,a) galaxy image that has been processed
to remove noise (see Farrens et al., 2017) as the true im-
age that one aims to recover. An observation is then
simulated by convolving this image with an anisotropic
PSF and adding white Gaussian noise. This example per-
forms deconvolution using the Condat-Vũ algorithm. An
isotropic undecimated wavelet transform from Sparse2D
is used for the linear operator, and a positivity constraint
and soft-thresholding of the sparse coefficients are used as
the proximity operators. The results of this example are
shown in Figure 2.

Another application is simply removing noise from ob-
servations. This is a particularly challenging problem when
the object in question contains important high-frequency
spatial features that need to be preserved. Figure 3 presents
the results of denoising an image of the galaxy NGC2997
using PySAP. For this example white Gaussian noise is
added to the clean image and then the same isotropic un-
decimated wavelet transform from Sparse2D is used to de-
compose the noisy image, which is in turn thresholded by
weights learned from the noisy image itself.

Note that the data used for the examples presented
in this paper are provided in PySAP (in the pysap-data

plug-in). Therefore, all of the example outputs can be
reproduced exactly by users.

3.2. MRI

MRI is probably one of the most successful applications
of compressed sensing. The ability to reconstruct high-
fidelity MR images from massively undersampled data in
a short amount of time is of paramount importance. This
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Table 1: List of proximity operators currently available in ModOpt. The k-support norm generalises the group-LASSO `2,1 norm (Yuan and
Lin, 2006) for imposing structured sparsity with overlapping groups, typically in the context of calibrationless MR image reconstruction. A
particular case of Ordered Weighted L1 norm (OWL) that implements structured sparsity is OSCAR regularisation (Bondell and Reich, 2008;
El Gueddari et al., 2019b).

Proximity Operator Application
Positivity Image analysis
`1 Minimisation Sparse regularisation
`∗ Minimisation Low-rank regularisation
`2 Minimisation Ridge regularisation
α`1 + β`2 Minimisation (α, β ≥ 0) Elastic-net regularisation
Ordered weighted `1 norm (Zeng and Figueiredo, 2014) `∞-based Structured sparsity regularisation
k-support norm (Argyriou et al., 2012) `2-based Structured sparsity regularisation

Figure 2: Example of galaxy image deconvolution using PySAP. Top left: True galaxy image, Top right: observed galaxy image, Bottom left:
deconvolved galaxy image, Bottom right: deconvolution residual.
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Figure 3: Example of galaxy image denoising using PySAP. Top left: True galaxy image, Top right: observed galaxy image, Bottom left:
denoised galaxy image, Bottom right: denoising residual.
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is achievable as the data collected in the Fourier domain
(called k-space in MRI) may be acquired using variable
density sampling (VDS) along a small number of trajecto-
ries (or shots), either Cartesian or not (e.g. radial Jackson
et al. (1992), spiral Meyer et al. (1992) or more custom
like Sparkling Lazarus et al. (2017, 2019)). The images
can then be reconstructed using state-of-the-art optimisa-
tion algorithms. The idea is to take advantage of these
time-saving strategies, not only to increase spatial resolu-
tion in anatomical imaging, but also to reduce sensitivity
to motion. Importantly, PySAP is able to deal with both
single and multi-channel 2D and 3D k-space data using
GPU versions of NFFT operators. 3D VDS may be partic-
ularly relevant to improve the spatio-temporal resolution
in functional MRI.

Take, for example, the problem of compressed sensing
parallel imaging reconstruction. For this example let L
be the number of coils used to acquire the NMR signal,
n the image dimension and N = n × n be the number
of pixels of a 2D complex-valued image x ∈ CN to be
reconstructed and M the number of samples collected per
channel during acquisition. We denote by y` ∈ CM the
complex-valued data recorded by the `th channel, S` ∈
CN×N the corresponding diagonal sensitivity matrix. This
matrix S` reflects how well the `th receiver coil captures
part of the object x. Let F be the Fourier transform and
Ω ⊂ {1, . . . , N} the sampling pattern in the k-space, with
|Ω| = M � N . The CS-PI acquisition model thus reads:

y` = FΩS` x + n`, ∀` = 1 : L, (3)

where n` is additive zero-mean Gaussian noise of variance
σ2
` , which can be characterised by a separate scan (with-

out RF pulse) considering the same bandwidth as the
prospective CS acquisition. In the case of Cartesian under-
sampling, FΩ = ΩF where Ω is a binary sampling mask
with M non-zero entries and F is the fast Fourier trans-
form (FFT). In the case of non-Cartesian undersampling,
FΩ is the Non-equispaced Fourier transform (NFFT). In
the case where one assumes the sensitivity matrices (S`)

L
`=1

are known in advance, this problem can easily be solved
using sparse regularisation following the same prescription
described in Chaari et al. (2011); Guerquin-Kern et al.
(2011) using PySAP in just a few lines of code. In the
context of VDS, one may extract low frequency informa-
tion from k-space data (y`)

L
`=1 to estimate the sensitivity

maps (S`)
L
`=1 prior to reconstruction: this is called self-

calibrated MR image reconstruction and has been imple-
mented in El Gueddari et al. (2018).

Several example applications to MR data are provided
in the PySAP package. A first example is shown in Fig-
ure 4. It shows the reconstruction of an MR image from
retrospectively undersampled k-space data. The original
Cartesian data were collected in vivo on a healthy vol-
unteer at 7 Tesla (Magnetom Siemens scanner, Erlangen,
Germany) using a 32-channel (Nova Medical Inc., Wash-
ington, MA, USA) coil (L = 32) and a 2D T2*-weighted

GRE sequence (see details in (Lazarus et al., 2019)). To
illustrate CS reconstruction algorithms, we actually used
the reference image obtained as the square root of the sum
of squares of 32 channels (see Fig. 4 top-left), which we ret-
rospectively undersample. In that context, we emulated a
single receiver coil to get rid of the estimation of sensitivity
maps. Note however that specific algorithms are provided
to extract these sensitivity matrices and perform image re-
construction in the dedicated plug-in for MRI as described
in (El Gueddari et al., 2018, 2019b).

For educational purposes, we first used a Cartesian
mask that implements variable density sampling along the
phase encoding (vertical) direction. We kept only Nc = 98
phase encoding lines out of n = 512, leading to an under-
sampling factor R = N/M equal to the acceleration factor
in time AF = n/Nc = 5.22. The FISTA algorithm Beck
and Teboulle (2009) was used for optimization purposes
with sparsity promoted with the decimated symmlet 8
transform. The image reconstructed in Figure 4 using this
strategy outperforms the zero-filled inverse FFT by almost
0.1 in terms of structural similarity (SSIM) score (0.91 vs
0.82).

A second example is depicted in Figure 5, where retro-
spective radial undersampling was applied with only Nc =
64 shots out of n = 512 leading to a downsampling fac-
tor of R = AF = 8. The sparsity was promoted us-
ing an anisotropic undecimated wavelet transform from
Sparse2D. The image reconstructed using this strategy
outperforms the zero-filled inverse NFFT by 0.25 in terms
of SSIM score (0.92 vs 0.67).

Note that as in these examples we only performed ret-
rospective undermsampling, R = AF, however, in prospec-
tive acceleration, one may gain in image quality using over-
sampling over each shot which leads to R < AF. Some
codes spinets can be found in the PySAP documentation
gallery:
https://cea-cosmic.github.io/pysap/auto_gallery/

gallery.

3.3. Gadgetron

Gadgetron natively supports Python packages and there-
fore PySAP can easily be installed on any MRI scanner
where the Gadgetron framework is in place.

4. Conclusions

In this paper we have presented the image processing
package PySAP, its principal features and example appli-
cations to MR and astrophysical images. In particular,
examples demonstrate how PySAP can be applied to im-
age processing problems such as denoising, deconvolution
and compressed sensing employing state-of-the-art recon-
struction algorithms and wavelet transforms. In each case
the plug-in framework provides easy-to-use tools for solv-
ing these problems for specific applications.

The flexibility and modularity of this package permit a
wide range of possible future developments. In particular,
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Figure 4: Cartesian MRI decimated wavelet-based reconstruction. Top left: Cartesian reference, Top right: K-space mask, Bottom left:
Zero-filled reconstruction (SSIM = 0.82), Bottom right: Decimated wavelet based reconstruction (SSIM = 0.91).
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Figure 5: Non-cartesian MRI undecimated wavelet-based reconstruction. Top left: Cartesian reference, Top right: K-space mask, Bottom
left: Zero-filled reconstruction (SSIM = 0.67), Bottom right: Undecimated wavelet based reconstruction (SSIM = 0.92).
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we aim to continue to add new and cutting-edge optimisa-
tion algorithms, reweighting methods, etc. We addition-
ally aim to add further features for handling 4D data and
optimising the computation time by exploring GPU imple-
mentations. Another important aspect to which we plan to
dedicate effort is to integrating machine and deep learning
techniques into the existing architecture.

One of the most exciting uses of PySAP comes from the
Gadgedtron implementation. The universality of this sys-
tem and the growing community mean that PySAP can
readily be used at MRI scanners around the world, po-
tentially leading to some fascinating developments in the
biomedical imaging domain.

Finally, we intend to seek out new applications of this
software in a variety of different fields. In fact, work has
already begun on developing a PySAP plug-in for electron
tomography and electron microscopy.

Reproducible research. In the spirit of reproducible research
PySAP is made publicly available and fully open source.
Documentation and installation instructions are available
on the PySAP website (https://cea-cosmic.github.io/
pysap/). The authors kindly request that any academic
publications that make use of PySAP cite this paper.
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Appendix A. Sparse2D Transforms

Appendix A.1. 1D Transforms

1. Linear wavelet transform: a trous algorithm

2. B1spline wavelet transform: a trous algorithm

3. B3spline wavelet transform: a trous algorithm

4. Derivative of a b3spline: a trous algorithm

5. Undecimated Haar wavelet transform: a trous algo-
rithm

6. Morphological median transform

7. Undecimated (bi-) orthogonal wavelet transform

8. Non orthogonal undecimated transform

9. Modified positive B3spline wavelet transform: a trous
algorithm

10. Pyramidal b3spline wavelet transform

11. Pyramidal median transform

12. Morlet’s wavelet transform

13. Mexican hat wavelet transform

14. French hat wavelet transform

15. Gaussian Derivative wavelet transform

16. (bi-) orthogonal wavelet transform

17. (bi-) orthogonal transform via lifting sheme

18. Wavelet packets

19. Wavelet packets from lifting sheme

20. Wavelet packets using the a-trous algorithm)

21. Pyramidal linear wavelet transform

Appendix A.2. 2D and 2D1D Transforms

1. linear wavelet transform: a trous algorithm

2. bspline wavelet transform: a trous algorithm

3. wavelet transform in Fourier space

4. morphological median transform

5. morphological minmax transform

6. pyramidal linear wavelet transform

7. pyramidal bspline wavelet transform

8. pyramidal wavelet transform in Fourier space: algo
1 (diff. between two resolutions)

9. Meyer’s wavelets (compact support in Fourier space)

10. pyramidal median transform (PMT)

11. pyramidal laplacian

12. morphological pyramidal minmax transform

13. decomposition on scaling function

14. Mallat’s wavelet transform (7/9 filters)

15. Feauveau’s wavelet transform

16. Feauveau’s wavelet transform without undersampling

17. Line Column Wavelet Transform (1D+1D)

18. Haar’s wavelet transform

19. half-pyramidal transform

20. mixed Half-pyramidal WT and Median method (WT-
HPMT)

21. undecimated diadic wavelet transform (two bands
per scale)

22. mixed WT and PMT method (WT-PMT)
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23. undecimated Haar transform: a trous algorithm (one
band per scale)

24. undecimated (bi-) orthogonal transform (three bands
per scale)

25. non orthogonal undecimated transform (three bands
per scale)

26. Isotropic and compact support wavelet in Fourier
space

27. pyramidal wavelet transform in Fourier space: algo
2 (diff. between the square of two resolutions)

28. Fast Curvelet Transform

29. Wavelet transform via lifting scheme

30. 5/3 on line and 4/4 on column

31. 4/4 on line and 5/3 on column

Appendix A.3. 3D Transforms

1. (bi-) orthogonal transform

2. (bi-) orthogonal transform via lifting sheme

3. A trous wavelet transform

Appendix A.4. Curvelet Transforms

1. RectoPolar Ridgelet Transform using a standard bi-
orthogonal WT

2. RectoPolar Ridgelet Transform using a FFT based
Pyramidal WT

3. RectoPolar Ridgelet Transform using a Pyramidal
WT in direct space

4. Finite ridgelet transform

5. Slant Stack Radon transform + FFT based pyrami-
dal WT.

6. Slant Stack Radon transformand + bi-orthogonal WT

7. Slant Stack Radon transformand + pyramidal WT
in direct space

8. Slant Stack Radon transformand + Undecimated Star-
let WT
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