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Image quality assessment is an important field in computer vision, since it has a great impact on related tasks. To meet these needs, a plethora of metrics has been developed. In this paper, we propose an efficient method that estimates the quality of 2D images without access to the pristine image. This metric is modeled based on the relevant patches selected by saliency information and a convolution neural network. To exploit the saliency information, only the more perceptually relevant patches that impact subjective judgment more, are considered. To this end, we first compute the saliency map of the distorted image. Then, a scanpath predictor that aims to mimic the visual behavior is employed as patch selector. Finally, a CNN model is used to predict the quality score through the extracted patches. To the best of our knowledge this is the first study to associate a scanpath prediction method and CNN to assess the quality of 2D images. Four CNN models were compared (AlexNet, VGG16, VGG19 and ResNet50) and the performance of the best CNN was compared to the state-of-the-art on four datasets. Experimental results demonstrated the efficiency of the proposed approach and its generalization capacity.

Introduction

The rapid development of digital technologies allows easier access to multimedia contents (image, video and 3D) with different applications (streaming, video surveillance, VOD and computer vision) through different supports (TV, computer, Smartphone, PAD, etc.). However, the latter are often subject to artifacts (blocking, blur, ringing, etc.), since the general acquisition pipeline is often composed of several treatments (acquisition, processing, compression, transmission, etc.) that can potentially impact the user's perception.

To meet this critical need, significant efforts have been made e-mail: aladine.chetouani@univ-orleans.fr (Aladine Chetouani) to develop efficient perceptual quality metrics for different kinds of contents: 2D (images) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF], Stereoscopic [START_REF] Fezza | Using distortion and asymmetry determination for blind stereoscopic image quality assessment strategy[END_REF], Videos [START_REF] Seshadrinathan | Study of subjective and objective quality assessment of video[END_REF][START_REF] Wang | Videoset: A large-scale compressed video quality dataset based on jnd measurement[END_REF] and 3D meshes [START_REF] Chetouani | Three-dimensional mesh quality metric with reference based on a support vector regression model[END_REF]. Generally, Image Quality Metrics (IQMs) are classified according to the availability of the pristine image: Full Reference (FR) metrics predict the quality (or the fidelity) by comparing the pristine image and its degraded version. No Reference (NR) metrics assess the quality based only on the distorted image and hence are more appropriate for pratical applications. The third approach, often called Reduced Reference (RR), is an alternative solution under the assumption that only some side information of the reference image is available. Some of the existing handcrafted-based metrics are listed and compared in [START_REF] Pedersen | Full-reference image quality metrics: Classification and evaluation[END_REF]. Recently, automatic feature extraction by CNNs was employed in the literature which significantly improved the performance of the existing metrics and is considered as the state-of-the-art. Some of these methods are presented in Section 2.

To evaluate the performance of these metrics, a plethora of publicly available datasets is used. Such datasets are often composed of pristine images and their degraded versions. Different types of degradation are usually considered (Blur, JPEG, JPEG2000, etc.) and a subjective score, the so-called Mean Opinion Score (MOS), is associated to each degraded image.

In this study, we propose to assess the quality of 2D images without reference by exploiting the saliency information and using a CNN model. The idea developed here is that the perceived quality of an image is more highly impacted by the salient regions than by the other regions. Hence, we incorporated this specificity into the model design to predict the image quality by first selecting salient patches using a scanpath predictor. The latter aims to mimic the humain visual behavior when analyzing an image by predicting a set of fixation points that correspond to the most attractive regions (see Fig. 2). Then, a patch is extracted from each predicted fixation point and used as input to a CNN model. The global quality of the image is finally obtained by averaging the predicted patch scores. To validate the results, several CNN models were evaluated. In this paper, we extended our previous work [START_REF] Chetouani | A blind image quality metric using a selection of relevant patches based on convolutional neural network[END_REF] by analyzing the impact on the performance of the number of fixation points. We also employed and compared different pre-trained models (AlexNet, VGG16, VGG19 and ResNet50). We finally verified the impact of considering the saliency information when selecting perceptual patches.

Our paper is organized as follows: In Section 2, we review part of the current state-of-the-art by focusing on the NR-IQA approach. In Section 3, we describe our method and the models employed. In Section 4, we first compare the performances of the pre-trained CNN models considered and show the relevance of the proposed saliency-based patch selection step. We then present the results obtained in terms of correlation with the subjective judgments and compare it with the state-of-the-art. The last section is dedicated to the conclusion.

Related Work

Blind Image Quality

NR-IQMs predict the quality of images without information from the pristine image. Two main approaches have been proposed in the literature: degradation-dependent and multidegradation. Degradation-dependent metrics assume that the type of degradation contained in the image is known and thus the characteristics of the degradation type are often exploited. Among the existing metrics, some are dedicated to assessing the perceptual impact of the blocking effect [START_REF] Wang | No-reference perceptual quality assessment of jpeg compressed images[END_REF] (generally based on a boundary analysis), blur [START_REF] Chetouani | A new free reference image quality index based on perceptual blur estimation[END_REF] (often based on an edge analysis) and the ringing effect [START_REF] Sheikh | No-reference quality assessment using natural scene statistics: Jpeg[END_REF] (often based on Natural Scene Statistics: NSS). It is worth noting that most of these metrics are devoted to the former degradation types and only a few are dedicated to the ringing effect. Moreover, such metrics can be employed only for a specific degradation type, thus limiting their application scenarios.

To overcome this limitation, attention has therefore focused in the literature on multi-degradation-based metrics. The latter can estimate the quality of any distorted image (blocking, blur, ringing, noise, etc.). For this kind of metrics, features are usually extracted and then mapped to the score using machine learning. One of the first methods proposed combined degradation-dependent metrics using an Artificial Neural Network (ANN) [START_REF] Chetouani | A free reference image quality measure using neural networks[END_REF]. In [START_REF] Moorthy | A modular framework for constructing blind universal quality indices[END_REF], a Support Vector Machine (SVM) was used. Other interesting NSS-based metrics have been proposed. For instance, in [START_REF] Moorthy | Blind image quality assessment: From natural scene statistics to perceptual quality[END_REF], NSS features are extracted in the Wavelet domain as well as in the DCT domain in [START_REF] Saad | Dct statistics model-based blind image quality assessment[END_REF].

In the last decade, deep learning-based methods have demonstrated their superiority in several domains (fine-grained image recognition [START_REF] Yu | Hierarchical deep click feature prediction for fine-grained image recognition[END_REF], biometrics [START_REF] Fourati | Anti-spoofing in face recognitionbased biometric authentication using Image Quality Assessment[END_REF], image captioning [START_REF] Yu | Multimodal transformer with multi-view visual representation for image captioning[END_REF], etc). Due to their success in such areas, deep learning models were also employed to assess the quality of multimedia content and thus deep learning-based NR-IQA methods were proposed. In [START_REF] Kang | Convolutional neural networks for no-reference image quality assessment[END_REF], the authors used their own CNN model to estimate the quality of 2D images. The idea is simple and provided promising results. The image is first decomposed into patches of size 32x32. After a local normalization, these patches are used as inputs to a CNN model. The overall quality score is finally given by averaging the predicted patch scores. In [START_REF] Kang | Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks[END_REF], a multi-task CNN model was proposed as an extension of the latter method. The goal is to simultaneously predict the quality and the degradation type. For both of the previous methods, patches of a given image have the same target: the subjective score of the whole image (i.e. MOS). The authors assumed that all patches of a given image have the same perceptual impact, which is not totally in accordance with the Human Visual System (HVS). In order to overcome this assumption, some studies integrated perceptual characteristics. In [START_REF] Li | No-reference image quality assessment using prewitt magnitude based on convolutional neural networks[END_REF], the authors introduced a weighting strategy based on edge information. In [START_REF] Jia | Saliency-based deep convolutional neural network for no-reference image quality assessment[END_REF], the authors used saliency information as the patch selector. The saliency map is first computed using the degraded image. The latter and its corresponding saliency map are split into small patches and a set of them is then selected according to their saliency importance and used as inputs to a CNN model. In [START_REF] Abouelaziz | Convolutional neural network for blind mesh visual quality assessment using 3d visual saliency[END_REF], a similar approach was applied on 3D meshes. Other interesting methods that do not directly integrate HVS characteristics have been proposed in the literature. In [START_REF] Li | No-reference image quality assessment with shearlet transform and deep neural networks[END_REF], the authors considered the problem of quality assessment as a classification task and they proposed to extract simple features from the image using a Shearlet transform. In [START_REF] Hou | Blind image quality assessment via deep learning[END_REF], the authors proposed a noreference IQM where a discriminative deep model is trained to classify Natural Scene Statistics (NSS) features into five classes (excellent, good, fair, poor, and bad). In [START_REF] Talebi | Nima: Neural image assessment[END_REF], the authors developed a model that predicts the perceptual distributions of the subjective scores. In [START_REF] Zeng | A probabilistic quality repre-sentation approach to deep blind image quality prediction[END_REF], several pre-trained models were used to learn a probabilistic quality representation. In [START_REF] Kim | Deep convolutional neural models for picture-quality prediction: Challenges and solutions to data-driven image quality assessment[END_REF], the authors discussed the use of deep learning for blind image quality assessment by stating the problem of data and how to obtain "large-scale perceptually-quality databases", since patches are often used instead of the whole image.

Saliency Extraction

Visual attention plays an important role in the image analysis domain and is exploited in several applications (image retrieval [START_REF] Hussain | Robust pre-processing technique based on saliency detection for content based image retrieval systems[END_REF], indoor localization [START_REF] Elloumi | Improving a vision indoor localization system by a saliency-guided detection[END_REF] and so on). It drives our visual understanding by focusing on regions, so-called salient regions, that represent the more perceptually attractive zones in the image. These regions can be driven either by environmental characteristics (color, intensity, orientation, etc.) or by human observers' deliberate intentions according to some prior information. The former approach is called "bottom-up", while the latter is called "top-down". As the quality evaluation of images is often driven by environmental characteristics without prior information (which is the case in this study), we thus focused here on bottom-up methods for 2D images.

One of the first bottom-up models was developed by Itti et al. [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF] based on the combination of low-level feature maps: intensity, color and orientation. In [START_REF] Le Meur | A coherent computational approach to model bottom-up visual attention[END_REF], a more complex method based on some HVS characteristics was presented. The saliency map is achieved by applying perceptual-based processing: Perceptual color space transformation, Contrast Sensitivity Function filtering [START_REF] Watson | Visual detection of spatial contrast patterns: Evaluation of five simple models[END_REF], Cortex decomposition [START_REF] Watson | The cortex transform: Rapid computation of simulated neural images[END_REF], Masking effect and Center surround filtering. In [START_REF] Hou | Saliency detection: A spectral residual approach[END_REF], the saliency is computed in the Fourier domain. The residual spectrum of the image is first calculated and subtracted from its filtered version. The saliency map is then obtained by the inverse Fourier transform. One of the most promising handcrafted methods is the Graph-Based Visual Saliency (GBVS) method [START_REF] Harel | Graph-based visual saliency[END_REF]. It consists of extracting features, from which activation maps are built. The saliency map is then achieved by combining the normalized-activation maps through graph-based theory.

Recently, several CNN-based saliency models have been proposed in the literature. In [START_REF] Li | Visual saliency based on multiscale deep features[END_REF], a saliency model based on a multi-scale CNN was presented. The image is first decomposed into non-overlap regions and three bounding boxes (the considered region, its immediate neighboring regions and the whole image) are selected for each region. Multi-scale features are then extracted for each bounding box using three CNN models. These features are finally concatenated and fed to Fully Connected (FC) layers in order to predict the saliency of the image. In [START_REF] Li | Deep contrast learning for salient object detection[END_REF], the authors proposed an end-to-end saliency model based on two main steps. This method consists of extracting visual contrast from a multi-scale CNN. A segmentation-wise step is then applied to estimate the saliency over some sub-regions. The saliency map of the image is finally achieved using a convolutional layer with a kernel of size 1x1. In [START_REF] Wang | Detect globally, refine locally: A novel approach to saliency detection[END_REF], the authors proposed a saliency model based on a multi-layer analysis. Saliency maps are first extracted from different layers of a CNN model (low to high layers). These maps are then combined to estimate the saliency of the image. Other interesting methods have been published in the literature and are listed in [39].

Proposed Method

The flowchart of the proposed method is presented in Fig. 1. For a given distorted image, we first extract specific RGB patches of size 32x32 using a scanpath predictor. Each patch is then normalized and used as input to a CNN model. The overall quality of the image is finally given by averaging the predicted patch scores. Each of these steps is described in this section.

Selection of Relevant Patches

As mentioned above, the saliency was used here to extract patches that have a high impact on our subjective judgment [START_REF] Liu | Quality assessment for real out-of-focus blurred images[END_REF][START_REF] Zhou | Saliency-based image quality assessment metric[END_REF][START_REF] Tong | Full Reference Image Quality Assessment Based on Saliency Map Analysis[END_REF]. In this study, a saliency map was computed and used as input to a scanpath predictor [START_REF] Meur | Saccadic model of eye movements for free-viewing condition[END_REF]. The latter aims to mimic the behavior of HVS by predicting the visual path of observers when they analyze an image. The visual path, often called scanpath, is determined through the weights of the saliency map and biases (saccade amplitude and saccade orientation biases). Fig. 2 shows an image (Fig. 2.a), the corresponding saliency map (Fig. 2.b) and the predicted scanpath (Fig. 2.d) where the blue points represent the more attractive regions, also called fixation points. Here, the Graph-Based Visual Saliency (GBVS) method [START_REF] Harel | Graph-based visual saliency[END_REF], one of the state-of-the-art methods that accurately predict saliency, was used to compute the saliency map. In [START_REF] Zhang | Visual saliency in image quality assessment[END_REF], the authors studied the performance gain of 20 state-of-the-art saliency models and they showed that GBVS is among the most profitable ones for image quality with a performance gain up to 2%. Nevertheless, other recent saliency models can be used, especially those based on deep learning [39].

For each fixation point, a patch was extracted and normalized. In [START_REF] Kang | Convolutional neural networks for no-reference image quality assessment[END_REF][START_REF] Bosse | Deep neural networks for no-reference and full-reference image quality assessment[END_REF], the authors analyzed the impact of the patch size and they concluded that a size of 32x32x3 constituted a good trade-off between performance and computation time. The same size was thus employed in this work. It is worth noting that images are often resized to fit the input of the used model. Due to the lack of large databases dedicated to image quality assessment, the image was not resized here but rather decomposed into carefully selected patches. The original quality of the image was thus not modified, since the patches were extracted as they were.

Pre-trained CNN Models

Once relevant patches had been extracted, a CNN model was employed to estimate the quality without reference. Several architectures have been proposed in the literature. Some authors used their own models (from scratch) [START_REF] Jia | Saliency-based deep convolutional neural network for no-reference image quality assessment[END_REF], while others used pre-trained models. Here, four pre-trained models were compared: AlexNet, VGG16, VGG19 and ResNet50. These models are widely used in the literature and each of them has its specificities. • VGG16 and VGG19 [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF]: Proposed in 2014, VGG models were developed by the Oxford Visual Geometry Group. To increase the ability of the model to discriminate between objects, the authors integrated more nonlinearities by using convolutional layers with 3x3 filters instead of 7x7 filters. Several versions were proposed with 11 (VGG11), 13 (VGG13), 16 (VGG16) and 19 (VGG19) layers. Here, VGG16 and VGG19 were employed and compared.

• Initially trained on the ImageNet dataset, the above-cited models were modified and fine-tuned to adapt their learnable parameters to our context as described by Fig. 3. We thus modified their input layers and their FC layers were replaced by 2 FC layers of size 128, followed by a ReLu activation function. The last layer is a logistic regression layer with one output (predicted MOS) and the Mean Square Error (MSE) was used as loss function.

During the learning step, the model was saved after each epoch and the training set was shuffled. The model that provided the best results was finally retained. To train the four models considered, the following parameters were used:

• Learning rate: 0.01

• Momentum: 0.9

• Optimization method: Stochastic Gradient Descent (SGD)

• Test interval (i.e. the number of iterations between two performance evaluations using the validation set): 500

• Batch size: 16

• Toolbox: Matlab

• Number of epochs: 25

Experimental Results

Datasets

Our experiments were carried-out on four publicly available datasets:

• LIVE -Phase 2 (LIVE2-P2) [START_REF] Sheikh | Live image quality assessment database release 2[END_REF]: The LIVE-P2 dataset is one of the first open source datasets and is still commonly used to evaluate existing metrics. It contains 29 pristine images from which 982 degraded images were derived. Five different degradation types were considered: JPEG2000, JPEG, White Noise, Gaussian Blur and Fast Fading. The DMOS (Differential Mean Opinion Score) was used to annotate the degraded images (0 indicates the best quality, while 100 indicates the worst quality).

• TID 2008 (TID08) [START_REF] Ponomarenko | Tid2008-a database for evaluation of full-reference visual quality assessment metrics[END_REF]: Composed of 17 degradation types, the TID08 dataset consists of 1700 degraded images obtained from 25 pristine images (i.e. 100 degraded images per degradation) and their corresponding MOS (Mean Opinion Score). The latter varies between 0 and 9 where 0 denotes the worst quality and 9 the best quality.

• TID 2013 (TID13) [START_REF] Ponomarenko | Image database tid2013: Peculiarities, results and perspectives[END_REF]: The TID13 dataset is an extended version of the previous one. More degradation types were considered (24 instead of 17) with more degraded images per degradation type (125 instead of 100). A total of 3000 degraded images and their corresponding MOS are provided.

• CSIQ [START_REF] Larson | Most apparent distortion: full-reference image quality assessment and the role of strategy[END_REF]: This dataset is composed of 866 degraded images achieved from 30 pristine images and 6 degradation types (JPEG2000, JPEG, White Noise, Contrast, Gaussian Blur and Pink Gaussian Noise). The normalized DMOS are given for each degraded image. This value varies between 0 and 1, where 0 corresponds to the best quality and 1 the worst quality.

In this work, LIVE-P2 was first used to compare the performance of the pre-trained models as well as to compare the performance of the considered models across the number of fixation points. The best configuration was then retained and compared to the state-of-the-art on all datasets (LIVE-P2, TID08, TID13 and CSIQ).

Evaluation Criteria

Two measures commonly used and recommended by VQEG [START_REF] Vqeg | Final report from the video quality experts group on the validation of objective models of video quality assessment[END_REF] were adopted to evaluate the capacity of our method to predict the perceptual quality: 1) Pearson Correlation Coefficient (PCC) which measures the accuracy prediction between the subjective values and the predicted ones, 2) Spearman Rank-Order Coefficient Correlation (SROCC) which measures the monotonicity between the subjective values and the predicted ones using the rank. PCC and SROCC ranges are [0,1] and the best performance corresponds to the highest value.

The predicted scores were mapped to the subjective ratings using the following non-linear logistic function:

Q = β 1 ( 1 2 - 1 e -β 2 (Q p -β 3 ) ) + β 4 * Q p + β 5 ( 1 
)
where Q p and Q are the predicted score and the mapped score, respectively. 

Experimental Setting

In this section, we compare the performance of each model and discuss the impact of the number of fixation points (i.e. number of extracted patches). We varied the number of fixation points from 10 to 100 and then computed the PCC value for each configuration. For a fair comparison, the same fixation points were used for each model. In the following, a model M with FP number of fixation points is labeled as M(FP). Fig. 4 presents the correlations obtained for each model. As expected, the correlations globally increased with the number of fixation points, since the number of samples of the training set increased. However, the performance of each model varied greatly. AlexNet showed a poorer performance for few fixation points (PCC=0.59), while the other models (VGG16, VGG19 and ResNet50) achieved high correlations even for a small number of fixation points (PCC= 0.94). The highest PCC value of each model was 0.950, 0.977, 0.974 and 0.974 for AlexNet(90), VGG16(100), VGG19(100) and ResNet50 [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF], respectively. According to these results, VGG16(100) was retained as the best model, since it is less deep than VGG19 and the modified VGG16 version employed here has fewer learnable parameters than ResNet50. The versions of VGG16 and ResNet50 used here have respectively around 14 M and 23 M of learnable parameters.

In Fig 5, we compare the PCC distribution of the four CNN models across 10 random splittings. It is observed that VGG16 obtained the best distribution with the highest mean PCC (0.983) and the smallest standard deviation (0.0024). VGG19 and ResNet50 have very similar distributions with a slight advantage for VGG19 (PCC=0.976 & STD=0.007 for VGG19 and PCC=0.965 & STD=0.0066 for ResNet50).

According to the above tests, the configuration retained was composed of: 

• Model: VGG16 • Input size: 32x32x3 • Number of

Performance on Individual Databases

In order to evaluate the performance of our method, the LIVE-P2 and CSIQ datasets were decomposed into trainingvalidation (60% for the training and 20% for the validation) and test sets (20%) randomly without overlap. This procedure was repeated 10 times and the mean correlations are reported. The results obtained were compared to the state-of-the-art including handcrafted-based FR and NR metrics (PSNR, SSIM [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF], FSIM [START_REF] Zhang | Fsim: A feature similarity index for image quality assessment[END_REF], DIIVINE [START_REF] Moorthy | Blind image quality assessment: From natural scene statistics to perceptual quality[END_REF], BLIINDS-2 [START_REF] Saad | Dct statistics model-based blind image quality assessment[END_REF], BRISQUE [START_REF] Mittal | No-reference image quality assessment in the spatial domain[END_REF] and CORNIA [START_REF] Ye | Unsupervised Feature Learning Framework for No-reference Image Quality Assessment[END_REF]) as well as CNN-based FR and NR metrics (DeepIQA [START_REF] Kim | Deep learning of human visual sensitivity in image quality assessment framework[END_REF], IQA-CNN [START_REF] Kang | Convolutional neural networks for no-reference image quality assessment[END_REF], IQA-CNN+/IQA-CNN++ [START_REF] Kang | Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks[END_REF], SOM [START_REF] Zhang | Som: Semantic obviousness metric for image quality assessment[END_REF], CNN-Prewitt [START_REF] Li | No-reference image quality assessment using prewitt magnitude based on convolutional neural networks[END_REF], BIECON [START_REF] Kim | Fully deep blind image quality predictor[END_REF], DIQA [START_REF] Kim | Deep cnn-based blind image quality predictor[END_REF] , DIQa-FR & DIQa-NR [START_REF] Bosse | Deep neural networks for no-reference and full-reference image quality assessment[END_REF] and Image-wise CNN [START_REF] Kim | Deep convolutional neural models for picture-quality prediction: Challenges and solutions to data-driven image quality assessment[END_REF]). The total number of patches extracted during the training and the test steps were about 60K and 20K, respectively. Table 2 presents the results obtained on the LIVE-P2 and CSIQ datasets. The best results are marked in bold and CNN-based methods are in italics. Our method outperformed all the compared ones including the CNN-based methods. DeepIQA obtained very similar results (PCC=0.981) to those of the proposed method on LIVE-P2. However, the latter needs the pristine image (FR-IQA). We can also notice that CNN-based methods outperformed all the handcrafted metrics for both approaches (FR-IQA and NR-IQA), which confirms the superiority of such methods. Moreover, CNN-based methods that integrate supplementary steps (CNN-Prewitt) or additional information (SOM) gave better results, compared to the initial ones (IQA-CNN and IQA-CNN++). More specifically, our method outperformed the saliency-based method (Sal-DCNN) that selects patches by simply thresholding the saliency map. The latter result highlighted the relevance of focusing only on the relevant regions of the image, instead of using all the patches. It is worth noting that the performances on LIVE-P2 were globally higher than those obtained on CSIQ.

To further discover the relevance of the proposed patch selection step, we compare in Table 3 the performance of our model (VGG16(100)) with and without patch selection as well as a random selection. We can clearly see the contribution of the proposed saliency-based patch selection, since the performances on both datasets increased significantly when the saliency information was considered. A random selection of patches also allowed a slight improvement on LIVE-P2, but still lower than that provided by the saliency-based selection step. The performance gain using the proposed saliency-based patch selection was between 2.61% and 3.68% on LIVE-P2, while it was between 2.19% and 10.6% on CSIQ.

The saliency-based patch selection also decreased the computation time, since only some regions of the image are considered and thus the number of patches per image extracted considerably decreased. For instance, Table 4 shows the mean number of patches extracted per image for the LIVE-P2 and CSIQ databases. As can be seen, the proposed saliency-based patch selection extracted the same number of patches whatever Fig. 6 shows the loss values obtained in the training and validation sets across the number of epochs for one random splitting of the LIVE-P2 dataset. As can be seen, the loss values of the training set were always lower than those of the validation set. In addition, the loss values of both sets decreased until stabilizing with a slight (stable) gap between the two. 

Performance across Datasets

To show the generalization ability of our method, a crossdataset evaluation was carried out using the LIVE-P2 dataset as Table 5 presents the correlations obtained on the TID08. Our method outperformed all the compared NR-IQA methods. The performance gain relative to the deep-based NR-IQA is about 1.11%. FSIM (0.954) obtained the highest correlations. The correlations achieved on the TID13 dataset are presented in Table 6. Our method outperformed all the compared NR-IQM and was competitive to DeepIQA (FR-IQA). The performance gain relative to the deep-based NR-IQA compared is about 3.1%.

Table 7 shows the correlations obtained on the CSIQ dataset. The best performance was obtained by DeepIQA and FSIM, which are FR metrics. Compared to the NR metrics, our method achieved the highest PCC value and competitive SROCC value. It is worth noting that IQA-CNN++ uses all patches of the image, while only 100 of them are used by our pipeline. As can be seen, the scatter distributions were consistent, especially on the TID08 dataset for which the best performances were obtained. 

Conclusion

In this paper, we proposed a CNN-based method that aims to estimate the quality of 2D images without reference by selecting some relevant patches. The latter were selected using a scanpath predictor that exploits the saliency information. Four pre-trained models (AlexNet, VGG16, VGG19 and ResNet50) were fine-tuned and compared in terms of correlation with the subjective judgments. The impact of the proposed patch selection and the number of fixation points was also analyzed and discussed. As demonstrated by the experimental setting, VGG16(100) was the best configuration among the compared ones and was thus retained to evaluate our method on different databases (LIVE-P2, TID08, TID13 and CSIQ). The performance of our method was compared to the state-of-the-art. The experimental results demonstrated the effectiveness of the proposed method. Moreover, cross-dataset evaluation proved the robustness of our method and its capacity to predict the quality of unknown images.
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 1 Fig. 1. Flowchart of the proposed method

  ResNet50 [48]: In 2015, a Residual Neural Network (ResNet) model was proposed. This model stands out by its integration of a residual module. The idea developed by the authors is to reformulate the output (H(x)=F(x)) of each series of Conv-ReLu-Conv by adding the input x as information (H(x) = F(x)+x). Different versions are available: ResNet18 (18 layers), ResNet34 (34 layers), ResNet50 (50 layers), ResNet152 (152 layers) and so on. ResNet50 was used in this study.

Fig. 3 .

 3 Fig. 3. Architecture of the CNN model used after modification of the FC layers, the input and the output sizes.

  FC layers: 2 of size 128 • Output layer: 1 regression layer • Number of fixation points: 100

Fig. 4 .

 4 Fig. 4. PCC of the pre-trained CNN models across the number of fixation points

Fig. 6 .

 6 Fig. 6. Loss in training and validation sets across the number of epochs for one random splitting of the LIVE-P2 dataset.

Fig. 7 ,

 7 Fig.7, 8 and 9 show the predicted MOS vs MOS of the TID08 and TID13 datasets as well the predicted DMOS vs DMOS of the CSIQ dataset. These plots give a visual idea of the correlation between the subjective scores and the predicted ones. The red curve corresponds to the logistic function and was obtained by interpolating the objective scores (see eq.1). As can be seen, the scatter distributions were consistent, especially on the TID08 dataset for which the best performances were obtained.

Fig. 7 .

 7 Fig. 7. Predicted MOS vs MOS of the TID08 dataset.

Fig. 8 .

 8 Fig. 8. Predicted MOS vs MOS of the TID13 dataset.

Fig. 9 .

 9 Fig. 9. Predicted DMOS vs DMOS of the CSIQ dataset.

Table 1 .

 1 Characteristics of the datasets used.

	Dataset	Number of degraded images Number of pristine images Degradation types considered
	LIVE-P2	779	29	5
	TID08	1700	25	17
	TID13	3000	25	24
	CSIQ	866	30	6

Table 2 .

 2 Performance comparison on LIVE-P2 and CSIQ datasets. Mean PCC and SROCC of each dataset across 10 random splittings.

	LIVE-P2	CSIQ
	PCC SROCC PCC SROCC

Table 3 .

 3 Impact of the patch selection step. PCC values obtained with and without the saliency-based patch selection as well as with a random patch selection.

	Database	All	saliency-based	Random
		patches patch selection patch selection
	LIVE-P2	0.951	0.983	0.960
	CSIQ	0.960	0.980	0.925
	the size of the image while improving the performances. The
	computation time was reduced by a factor of 3.5 and 2.56 on
	the LIVE-P2 and CSIQ databases respectively.	

Table 4 .

 4 Mean number of patches extracted per image on both datasets and their computation time.

	Database LeKang's method [1] saliency-based
			patch selection
	LIVE-P2	350 ( 55.1ms)	100 ( 15.8ms)
	CSIQ	256 ( 40.3ms)	100 ( 15.8ms)

Table 5 .

 5 Cross-dataset evaluation by training the model on LIVE-P2 and testing it on TID08.

	PCC SROCC

Table 6 .

 6 Cross-dataset evaluation by training the model on LIVE-P2 and testing it on TID13.

	PCC SROCC

Table 7 .

 7 Cross-dataset evaluation by training the model on LIVE-P2 and testing it on CSIQ.

			PCC SROCC
		PSNR	0.800	0.806
	FR-IQA	SSIM	0.861	0.876
		FSIM	0.961	0.962
		DeepIQA	0.964	0.960
		CORNIA	0.914	0.899
		BRISQUE	0.797	0.756
	NR-IQA	IQA-CNN	0.903	0.923
		IQA-CNN++ 0.928	0.936
		Sal-DCNN	0.929	0.934
		Our method	0.935	0.928