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Abstract

In this paper we study the family of two-state Totalistic Freezing Cellular
Automata (TFCA) defined over the triangular and square grids with von
Neumann neighborhoods. We say that a Cellular Automaton is Freezing
and Totalistic if the active cells remain unchanged, and the new value of an
inactive cell depends only of the sum of its active neighbors.

We classify all the Cellular Automata in the class of TFCA, grouping them
in five different classes: the Trivial rules, Turing Universal rules, Algebraic
rules, Topological rules and Fractal Growing rules. At the same time, we
study in this family the Stability problem, consisting in decide whether an
inactive cell becomes active, given an initial configuration. We exploit the
properties of the automata in each group to show that:

• For Algebraic and Topological Rules the Stability problem is in NC.

• For Turing Universal rules the Stability problem is P-Complete.
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1. Introduction

Consider a one or two dimensional cellular automaton (CA) on a finite
torus. This consists of a regular toroidal grid of cells, each in one of a finite
number of states, such as active and inactive or 1 and 0. For each cell, a set
of cells called its neighborhood is defined relative to the specified cell. Each
cell changes synchronously by the action of a local function depending of
the states of its neighborhood. We call configuration to a coloration of the
grid, and the CA change the configuration in each iteration.

An important problem in complexity of CA consists in prediction of the
future state of a cell, given an initial configuration. This decision problem is
called Prediction [1]. The complexity question how fast we could determine
the solution of Prediction, and in particular if we may answer faster than
simulating of the automaton.

That leads us to consider in the context of the Computational Complex-
ity Theory, the classes, P of polynomial problems (i.e., problems solved by
a polynomial algorithm) an NC of problems that can be solved in poly log-
arithmic time in a PRAM. Clearly NC ⊆ P although the equality is a very
hard open problem. Usually, the simple simulation of an automaton leads to
a polynomial-time solution of the Prediction problem.

We classify CA according whether its associated Predictionproblem. Our
goal is to show that an automaton belongs to NC if it is P-Complete, i.e.,
every problem in the class P can be reduced to it. So, unless P = NC,
our goal is to classify a CA in two groups, those in NC (where we say that
Prediction is easy to decide) and those they are P-Complete (where the
problem is hard)

To our knowledge, the first study related with the computational com-
plexity of Cellular Automata was done by E. Banks. In his PhD thesis
he studied the possibility for simple Cellular Automata in two dimensional
grids, to simulate logical gates. If such simulation is possible, the automa-
ton is capable of universal Turing computation [2]. Directly in the context
of prediction problems C. Moore et al [1] studied the Majority Automata
(next state of a site will be the most represented in the neighborhood). They
proved that for a given T ≥ 0, Predictionis P-Complete in three and more
dimensions. The complexity remains open in two dimensions.

Recently, in [3], is study a particular family of CA, the freezing CA (FCA).
This are CA where the state of a cell can only change to another bigger state,
e.g. if the states are active and inactive the active cell remains active forever.

2



It is direct that, every initial configuration converges in at most N steps to a
fixed point (where N the size of the torus), thus if we could decide Prediction
for a sufficiently large time, then we could compute if a cell change or remains
stable (always in the same state). We call this problem Stability. In [3]
it is shown that the stability problem is in NC, for every one-dimensional
freezing cellular automata.

In order to find a FCA with higher complexity, the result of [3] shows
that it is necessary to study FCA in more than one dimensions. In this
context, we should mention that D. Griffeath and C. Moore studied the
Life without Death Automaton (i.e. the game of life such that active sites
remains unchanged), showing that the Stability problem for this rule is P-
Complete [4]. We remark that the Life without Death is a two-dimensional
cellular automaton with Moore neighborhood.

On other hand, in [5], it was studied the freezing majority cellular au-
tomaton, also known as bootstrap percolation model, in arbitrary undirected
graph. In this case, a inactive cell becomes active if and only if the active
cells are the most represented in its neighborhood. It was proved that Sta-
bility is P-Complete over graphs such that its maximum degree (number of
neighbors) ≥ 5. Otherwise (graphs with maximum degree ≤ 4), the problem
is in NC. This clearly includes the two dimensional case, with von Neuman
neighborhood.

In this work we study the two simplest ways to tessellate the bi-dimensional
grid: tessellation with triangles (where each cell has three neighbors) and
with squares (where each cell has four neighbors, i.e. the two dimensional
CA with von Neumann neighborhood). In each one of this grids we study the
family of freezing totalistic cellular automata (FTCA). The name totalistic
means that the new value of a cell only depends of the sum of its neighbors.
We show that this family of CAs exhibit a broad and rich range of behaviors.

More precisely, we classify FTCAs in four groups:

• Simple rules: Rules that exhibit very simple dynamics, which reach
fixed points in a constant number of steps.

• Topological rules: Rules where the stability of a cell depends on some
topological property given by the initial configuration.

• Algebraic rule: Rules where the dynamics can be accelerated, exploiting
some algebraic properties given by the rule.
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• Turing Universal rules: Rules capable of simulating Boolean Circuits
and capable to simulate Turing Computation.

• Fractal growing rules: Rules that produce patterns with which grow
forming fractal shapes.

The paper is structured as follows: first in Section 2 definitions and no-
tations are introduced. In Section 3, the FTCA for the triangular grid are
studied. In Section 4, we study the FTCA on the square grid. Finally, in
Section 5 we give some conclusions.

2. Preliminaries

Consider the plane tessellated by triangles, as depicted in Figure 1a, or
tessellated by squares, as depicted in Figure 1b. We call such tessellations
the triangular grid and squared grid, respectively. In each case, a triangle or
square is called a cell. In the triangular grid each cell (triangle) has three
adjacent cells, and in the square grid each cell (square) has four adjacent
cells. A cell that is adjacent to a cell u is called a neighbor of u. The set
of neighbors of u is denoted by N(u). In the triangular and squared grid,
this definition of neighbors is called the von Neumann Neighborhood, and it
is denoted N(0, 0).

u

p

qr

n

(a) Triangular grid, with its neighbors
p, q and r of a cell u.

u

p

q

r

s

n

(b) Square grid. Neighbors p, q, r and
s of a cell u.

Figure 1: Triangular (a) and square (b) grids with the von Neumann neighborhood of a
cell u.
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Each cell in a grid has two possible states, which are denoted 0 and 1.
We say that a site in state 1 is active and a site in state 0 is inactive. A
configuration of a grid (triangular or squared) is a function that assigns a
state to every cell. In a squared grid, a finite configuration x of dimension
n× n is a function that assigns values in {0, 1} to squared shaped area of n2

cells. Analogously, in a triangular grid, a finite configuration x of dimension
n × n is a function that assigns values in {0, 1} to a rhomboid shaped area
of 2n2 cells. The value of the cell u in the configuration x is denoted xu (See
figure 1). We remark that a finite configuration x of dimension n×n has 2n2

cells in a triangular grid and has n2 cells in a square grid. In both cases the
number of covered cells is O(n2).

Given a finite configuration x of dimension n×n, the periodic configura-
tion c = c(x) is an infinite configuration over the grid, obtained by repetitions
of x in all directions. The configuration c(x) is a spatially periodic, and will
be interpreted as a torus, where each cell in the boundary of x has a neighbor
placed in the opposite boundary of x.

We call C is the set of all possibles configurations over a (triangular or
squared) grid. A cellular automaton (CA) with set of states {0, 1} is a func-
tion F : C → C, defined by a local function f : {0, 1}N (′,′) → {0, 1} as
F (c)u = f(cN(u)). Computing F is equivalent to compute in synchronously
in each site of the grid, the application of the local function f cell by cell.
A cellular automaton is called freezing [3] (FCA) if the local rule f satisfies
that the active cells always remain active. A cellular automaton is called
totalistic [6] (TCA) if the local rule f satisfies f(cN(u)) = f(cu,

∑
v∈N(u) cv),

i.e. it depends only in the sum of the states in the neighborhood of a cell.
We call FTCA the family of two-state freezing totalistic cellular automata,

over the square and triangular grids, with von Neumann neighborhood. In
this family, the active cells remain active, because the rule is freezing, and
the inactive cells become active depending only in the sum of their neighbors.
Notice that this sum of the states of the neighbors of a site is at most the
size of the neighborhood, that we call |N(0, 0)|, and equals 3 in the case of
the triangular grid, and 4 in the case of the squared grid.

Let F be a FTCA. We can identify F with a set IF ⊆ {1, . . . , |N(0, 0)|}
such that, for every configuration c and site u:

f(cN(u)) =

{
1 if (cu = 1) ∨ (

∑
v∈N(u) cv ∈ IF ),

0 otherwise.

Notice that IF ⊆ {0, 1, 2, 3} in the triangular grid and If ⊆ {0, 1, 2, 3, 4}
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in the squared grid. We will name the FTCAs according to the elements
contained in IF , as the concatenation of the elements of IF in increasing
order (except when IF = ∅, that we call φ). For example, let Maj be
the freezing majority vote CA, where an inactive cell becomes active if the
majority of its neighbors is active. Note that IMaj = {2, 3} in the triangular
grid and IMaj = {2, 3, 4} in the square grid. We call then Maj the rule 23
in the first case and 234 in the later.

We deduce that there are 2|N(0,0)| different FTCA, each one of them rep-
resented by the corresponding set IF . Notice that the number of different
FTCA is 16 in the triangular grid and and 32 different in the squared grid.
We will focus our analysis in the FTCAs where the inactive state is a qui-
escent state, which means that the inactive sites where the sum of their
neighborhoods is 0 remain inactive. Therefore, we will consider 8 different
FTCA in the triangular grid, and 16 in the squared grid.

Recall that in an FTCA the active cells remain always active. We will be
interested in the inactive cells that always remain inactive.

Definition 2.1. Given a configuration c ∈ {0, 1}Z2 , we say that a site v
is stable if and only if cv = 0 and it remains inactive after any iterated
application of the rule, i.e., F t(c)v = 0 for all t ≥ 0.

From the previous definition, we consider the problem Stability, which
consists in deciding if a cell on a periodic configuration c is stable. More
formally, if F is a cellular automaton, then:

Stability
Input: A finite configuration x of dimensions n×n and a site u ∈ [n]×[n]
such that xu = 0.
Question: Is u stable for configuration c = c(x)?

In other words, the answer of Stability is no if there exists T > 0 such
that F T (c(x))u = 1. Our goal is to understand the difficulty of Stability
in terms of its computational complexity, for every FTCA defined over a
triangular or squared grid. We consider two classes of complexity of problems:
P and NC.

The class P is the class of problems that can be solved by a deterministic
Turing machine in time nO(1), where n is the size of the input. Let F be a
freezing cellular automaton (FCA) and x be a finite configuration of dimen-
sions n×n cells. Notice that the dynamics of F over c(x) reach a fixed point
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(a configuration c′ such that F (c′) = c′) in O(n2) steps. Indeed, after each
application of F before reaching the fixed point, at least one inactive site
become active in each copy of x. The application of one step of any FCA
can be simulated in polynomial time, simply computing the local function of
every cell. Therefore, for every FCA (and then for every FTCA) F problem
Stability(F ) is in P.

The class NC is a subclass of P, consisting of all problems solvable by
a fast-parallel algorithm. A fast-parallel algorithm is one that runs in a
parallel random access machine (PRAM) in poly-logarithmic time (i.e. in
time (log n)O(1)) using nO(1) processors. It is direct that NC ⊆ P, and it is
a wide-believed conjecture that the inclusion is proper [7]. Indeed, NC = P
would imply that for any problem solvable in polynomial time, there is a
parallel algorithm solving that problem exponentially faster. Back in our
context, the fact that for some FTCA the problem Stability belongs to
NC will imply that one can solve the problem significantly faster than simply
simulating the steps of the automaton.

The problems in P that are the most likely to not belong to NC are the
P-Complete problems. A problem p is P-Complete if it is contained in P
and every other problem in P can be reduced to p via a function computable
in logarithmic-space. For further details we refer to the book of [7].

2.1. Some graph terminology
For a set of cells S ⊆ Z2, we call G[S] = (S,E) the graph defined with

vertex set S, where two vertices are adjacent if the corresponding sites are
neighbors for the von Neumann neighborhood.

For a graph G = (V,E), a sequence of vertices P = v1, . . . , vk is called a
v1, vk- path if {vi, vi+1} is an edge of G, for each i ∈ [k − 1]. Two u, v-paths
P1, P2 are called disjoint if P1 ∩ P2 = {u, v}. A u, v-path where u and v are
adjacent is called a cycle.

Definition 2.2. A graph G is called k-connected if for every pair of vertices
u, v ∈ V (G), G contains k disjoint u, v-paths. A 1-connected graph is simply
called connected, a 2-connected graph is called bi-connected and a 3-connected
graph is called tri-connected

A maximal set of vertices of a graph G that induces a k-connected sub-
graph is called a k-connected component of G.
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2.2. Parallel subroutines
In this subsection, we will give some NC algoirhtms that we will use as

subroutines of our fast-parallel algorithm solving Stability.

2.2.1. Prefix-sum
First, we will study a general way to compute in NC called prefix sum

algorithm [8]. Given a associative binary operation ∗ defined on a group G,
and an array A = (a1, . . . , an) of n elements of G, the prefix sum of A is
the vector B of dimension n such that Bi = a1 ∗ · · · ∗ ai. Computing the
prefix sum of a vector is very useful. For example, it can be used to compute
the parity of a Boolean array, the presence of a nonzero coordinate in on an
array, etc.

Proposition 2.1 ([8]). There is an algorithm that computes the prefix-sum
of an array of n elements in time O(log n) with O(n) processors.

2.2.2. Connected components
The following propositions state that the connected, bi-connected and tri-

connected components of an input graph G can be computed by fast-parallel
algorithms.

Proposition 2.2 ([8]). There is an algorithm that computes the connected
components of a graph with n vertices in time O(log2 n) with O(n2) proces-
sors.

Proposition 2.3 ([9]). There is an algorithm that computes the bi-connected
components of a graph with n vertices in time O(log2 n) with O(n3/ log n)
processors.

Proposition 2.4 ([9]). There is an algorithm that computes the tri-connected
components of a graph in time O(log2 n) with O(n4) processors.

2.2.3. Vertex level algorithm
Given a rooted tree we are interested in to compute the level level(v) of

each vertex v, which is the distance (number of edges) between v and the
root r. The following proposition shows that there is a fast-parallel algorithm
that computes the level of every vertex of the graph.

Proposition 2.5 ([8]). There is an algorithm that computes, on an input
rooted tree (T, r) the level(v) of every vertex v ∈ V (T ) in time O(log n) and
using O(n) processors, where n is the size of T .

8



2.2.4. All pairs shortest paths
Given a graph G of size n. Name v1, . . . , vn the set of vertices of G. A

matrix B is called an All Pairs Shortest Paths matrix if Bi,j corresponds
to the length of a shortest path from vertex vi to vertex vj. The following
proposition states that there is a fast-parallel algorithms computing an All
Pairs Shortest Path matrix of an input graph G.

Proposition 2.6 ([8]). There is an algorithm that computes all Pairs Short-
est Paths matrix of a graph with n vertices in time O(log2 n) with O(n3 log n)
processors.

3. Triangular Grid

We will start our study over the regular grid where each cell has three
neighbors, as Figure 1a. In this topology, the sixteen FTCA are reduced
to eight non-equivalent, considering the inactive state as a quiescent state.
According to our classifications, the eight FTCAs in the triangular grid are
grouped as follows:

• Simple rules: φ, 123 and 3.

• Topological rules: 2 and 23.

• Algebraic rule: 12.

• Fractal growing rules: 1 and 13.

Is easy to check that Simple rules are in NC. For rule φ, we note that
every configuration is a fixed point (then Stability for this rule is trivial).
For rule 123, no site is stable unless the configuration consists in every cell
inactive. We can check in time O(log n) and O(n2) processors whether a
configuration contains an active cell using a prefix-sum algorithm (sum the
states of all cells, and then decide if the result is different than 0). Finally,
for rule 3 we notice that all dynamics reach a fixed point after one step.
Therefore, we check if the initial neighborhood of site u makes it active in
the first step (this can be decided in O(log n) time in a sequential machine).

We continue our study with the Topological FTCA.
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3.1. Topological Rules
We say that rules 2 and 23 are topological because, as we will see, we can

characterize the stable sites according to some topological properties of the
initial configurations.

As we mentioned before, rule 23 is a particular case of the freezing major-
ity vote CA (that we called Maj). In [5] the authors show that Stability
for Maj is in NC over any graph with degree at most 4. This result is based
on a characterization of the set of stable cells, that can be verified by a fast-
parallel algorithm. Thus we can apply this result to solve Stability for rule
23, considering the triangular grid as a graph of degree 3. Then we have the
next theorem:

Theorem 3.1 ([5]). There is a fast-parallel algorithm that solves Stability
for 23 in time O(log2 n) and O(n4) processors. Then Stability for 23 is
in NC.

(a) Initial random configuration. (b) Time 9 (fixed point).

Figure 2: Example of fixed point for the rule 23. The cells in state 0 in the fixed point are
stable cells.

For sake of completeness, we give the main ideas used to prove Theo-
rem 3.1. The main idea is a characterization of the set of stable sites.

Proposition 3.2 ([5]). Let Maj be the freezing majority vote CA defined
over a graph G of degree at most 4. Let c be a configuration of G, and let
G[0] be the subgraph of G induced by the vertices (cells) which are inactive
according to c.

An inactive vertex u is stable if and only if,

(i) u belongs to a cycle in G[0], or

10



(ii) u belongs to a path P in G[0] where both endpoints of P are contained
in cycles in G[0].

Moreover, there is a fast-parallel algorithm that checks conditions (i) and (ii)
in time O(log2 n) using O(42) processors.

Therefore, the proof of Theorem 3.1 consists in (1) notice that a finite
configuration on the triangular grid, seen as a torus, is a graph of degree 3
(then in particular is a graph of degree at most 4); (2) use the algorithm
given in Proposition 3.2 to check whether the given site u is stable.

We will use the previous result to solve the stability problem for rule 2.

Theorem 3.3. Stability is in NC for the freezing CA 2.

Proof. When we compare rule 2 and rule 23, we noticed that they exhibit
quite similar dynamics. Indeed, a cell u which is stable for rule 23 is also
stable for rule 2. Therefore, to solve Stability for 2 on input configuration
x and cell u, we can first solve Stability for 23 on those inputs using the
algorithm given by Theorem 3.1. When the answer of Stability for 23 is
Accept, we know that Stability for 2 will have the same answer. In the
following, we focus in the case where the answer of Stability for 23 is
Reject, i.e. u is not stable on configuration x in the dynamics of rule 23.

Suppose that u is stable for rule 2, but is not stable for rule 23. Let t be
the first time-step where u becomes active in the dynamics of rule 23. Note
that, since u is stable for rule 2, necessary in step t− 1 the three neighbors
of u are active. Moreover, at least two of them simultaneously became active
in time t− 1.

Let now G be the graph representing the cells of the triangular grid cov-
ered by configuration x. Let G[0] be the subgraph of G induced by the
initially inactive cells, and let G[0, u] be the connected component of G[0]
containing cell u. We claim that G[0, u], in the dynamics of rule 23, every
vertex (cell) in G[0, u]must become active before u, i.e. in a time-step strictly
smaller than t.

Claim 1: Every vertex of G[0, u] is active after t applications of rule 23.

Indeed, suppose that there exists a vertex (cell) w in G[0, u] that becomes
active in a time-step greater than t. Call P a shortest path in G[0, u] that
connects u and w, and let u∗ be the neighbor of u contained in P . Note that
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except the endpoints, all the vertices (cells) in P have at least two neighbors
in P , which are inactive. Moreover, both endpoints of P are inactive at time
t. Therefore, all the vertices in P will be inactive in time t. This contradicts
the fact that the three neighbors of u become active before u.

Claim 2: G[0, u] is a tree.

Indeed, G[0, v] is connected, since it is defined as a connected component
of G[0] containing u. On the other hand, suppose that G[0, u] contains a
cycle C. From Proposition 3.2, we know that all the cells in C are stable,
which contradicts Claim 1.

Call Tu the tree G[0, u] rooted on u. Let d be the depth of Tu, i.e. longest
path between u and a leaf of Tu.

Claim 3: Every vertex of G[0, u], except u, is active after d applications
of rule 2.

Notice that necessarily a leaf of Tu has two active neighbors (because they
are outside G[0, u]) and one inactive neighbor (its parent in Tu). Therefore,
in one application of rule 2, all the leafs will become active. We will reason
by induction on d. Suppose that d = 1. Then all vertices w of Tu except u
are leafs, so the claim is true. Suppose now that the claim is true for all trees
of depth smaller or equal than d, but Tu is a tree of depth d+ 1. We notice
in one step the leafs are the only vertices of Tu that become active (every
other vertex has two inactive neighbors). Then, after one step, the inactive
sites of Tu induce a tree T ′u of depth d. By induction hypothesis, all the cells
in T ′u, except u, become active after d applications of rule 2. We deduce the
claim.

Let u1, u2, u3 be the three neighbors of u. For i ∈ {1, 2, 3}, call Tui the
subtree of Tu rooted at ui, obtained taking all the descendants of ui in Tu.
Call di the depth of Tui . Without loss of generality, d1 ≥ d2 ≥ d3.

Claim 4: u is stable for the dynamics of rule 2 but not for the dynamics
of rule 23, if and only if d1 = d2 ≥ d3.

Recall that u is stable for the dynamics of rule 2 but not for the dynamics
of rule 23 if and only if u has three active neighbors at time-step t, and at
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least two of them become active at time t − 1. The claim follows from the
application of Claim 3 to trees Tu1 , Tu2 and Tu3 .

We deduce the following fast-parallel algorithm solving Stability for
2: Let x be the input configuration and u the cell that we want to decide
stability. First, use the fast-parallel algorithm given by Theorem 3.1 to decide
if u is stable for the dynamics of rule 23 on configuration x. If the answer
is affirmative, then we decide that (x, u) is a Accept-instance of Stability
for 2. If the answer is negative, the algorithm looks for cycles in G[0, u]. If
there is a cycle, then the algorithm Rejects, because Claim 2 implies that u
cannot be stable for rule 2. If G[0, u] is a tree, then the algorithm computes
in parallel the depth dv of the subtrees Tv, for each v ∈ N(u). Finally, the
algorithm accepts if the conditions of Claim 4 are satisfied, and otherwise
rejects.

The steps of the algorithm are represented in Algorithm 1.

Algorithm 1 Solving Stability 2
Input: x a finite configuration of dimensions n× n and u a cell.
1: if the answer of Stability for rule 23 is Accept on input (x, u) then
2: return Accept
3: else
4: Compute G[0, u]
5: Compute C the set of cycles of G[0, u]
6: if C 6= ∅ then
7: return Reject
8: else
9: for all v ∈ N(u) do in parallel
10: Compute dv the depth of Tv
11: end for
12: if ∃a, b, c ∈ (N(u)) : da = db ≥ dc then
13: return Accept
14: else
15: return Reject
16: end if
17: end if
18: end if

Let N = n2 the size of the input. Algorithm 1 runs in time O(log2N) us-
ing O(N3/ logN) processors. Indeed, the condition of line 1 can be checked
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in time O(log2N) using O(N2) processors according the algorithm of Theo-
rem 3.1. Step 4 can be done in time O(log2N) using O(N2) processors using
a connected components algorithm given in [8]. Step 5 an be done in time
O(log2N) using O(N3/ logN) processors using a bi-connected components
algorithm given in [8]. Step 10 can be solved in time O(logN) using O(N)
processors using a vertex level algorithm given in [8]. Finally, Step 12 can be
done in O(logN) time in a sequential machine.

3.2. Algebraic Rule
We now continue with the study of rule 12. We say that this rule is

algebraic because, as we will see, we can speed-up the dynamics using some
algebraic properties of this rule. This speed-up we will provide an algorithm
that decides the stability of a cell much faster than the simple simulation of
the automaton. In other words, we will show that Stability for rule 12 is
in NC.

Let x be a finite configuration on the triangular grid, u a cell. Let v be
a neighbor of u. We define a semi-plane Sv as a partition of the triangular
grid in two parts, cut by the edge of the triangle that share cell u and v, as
shown in Figure 3.

u
v

Figure 3: Triangular grid divided in semi-planes according to u and v. The hatch pattern
represent the semi-plane Sv Gray cells are at the same distance from u.

We say that two cells v1, v2 are at distance d if a shortest path connecting
v1 and v2 is of length d. In the following, we call Dd the set of cells at distance
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d from u. We can be more explicit and use the property above to give a way
to speed-up the dynamics of rule 12.

Lemma 3.4. Let d ≥ 2 be the distance from u to the nearest active cell.
Then the distance to the nearest cell to u in F (c) is d− 1

Proof. Let w be an active cell at distance d of u in configuration x, and call P
a shortest u,w-path. Call w1 the neighbor of w contained in P , and let w2 be
the neighbor of w1 in P different than w (this cells exists since d ≥ 2). Note
that w2 might be equal to u. Since P is a shortest path, w2 is at distance
d−2 from u. Then all the neighbors of w2 are inactive, so w2 it is necessarily
inactive in F (c). Moreover, w1 has more than one active neighbor, and less
than three active neighbors, so w1 is active in F (c). Then the distance from
u to the nearest active cell in F (c) is d− 1.

Lemma 3.5. Let d ≥ 2 be the distance from u to the nearest active cell,
and let v ∈ N(u). Then v is active after d − 1 applications of rule 12 (i.e.
F d−1(c)v = 1) if and only there exists an active cell in Sv ∩Dd

Proof. We reason by induction on d. In the base case, d = 2, suppose that
Sv does not contain an active site at distance 2. Then every neighbor of v is
inactive in the initial configuration, so v is inactive after one application of
rule 12 (i.e. F (c)v = 0). Conversely, if F (c)v = 0, then every neighbor of v
is initially inactive, in particular all the sites in Sv at distance 2 from u.

Suppose now that the statement of the lemma is true on configurations
where the distance is d, and let c be a configuration where the distance from
u to nearest active cell is d + 1. Let c′ be the configuration obtained after
one application on c of rule 12 (i.e. c′ = F (c)).

Claim 1: F d−1(c′)v = 1 if and only if in c′ there exists an active cell in Sv∩Dd.

From Lemma 3.4, the distance from u to the nearest active cell in c′ is d.
The claim follows from the induction hypothesis.

Claim 2: Suppose that F d−1(c′)v = 0. Then in c, all the cells in Sv ∩Dd+1

are inactive.

Notice that, from Claim 1, the fact that F d−1(c′)v = 0 implies that in
c′ all the cells in Dv ∩ Sv must be inactive. Suppose, by contradiction, that
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there is a cell w in Sv ∩Dd+1 that is active in c. Let w′ be a neighbor of w
contained in Sv ∩Dd, and let w′′ be a neighbor of w′ not contained in Dd+1

(then w′ belongs to Dd ∪ Dd−1). Note that w′ has an active neighbor in c,
but must be inactive in c′. The only option is that all the neighbors of w′
are active in c, in particular w′′ is active in c. This contradicts the fact the
nearest active cell is at distance d+ 1 in c.

Claim 3: Suppose that F d−1(c′)v = 1. Then there is a cell in Sv ∩Dd+1 that
is active in c.

From Claim 1, the fact that F d−1(c′)v = 0 implies that there is a cell
w ∈ Sv∩Dd that is active in c′. Suppose by contradiction that all the cells in
Sv ∩Dd+1 are inactive in c. Since w is active in c′, necessarily w has at least
one neighbor w′ that is active in c. Since w′ is not contained in Sv ∩ Dd+1

(because we are supposing that all those cells are inactive in c), we deduce
that w′ belongs to Dd ∪ Dd−1. This contradicts the fact the nearest active
cell is at distance d+ 1 in c.

We deduce that F d−1(c′)v = 1 if and only if there is a cell in Sv ∩ Dd+1

that is active in c. Since c′ = F (c), we obtain that F d(c)v = 1 if and only if
there is a cell in Sv ∩Dd+1 that is active in c.

Theorem 3.6. Stability is in NC for the freezing CA 12.

Proof. In our algorithm solving Stability for 12, we first compute the dis-
tance d to the nearest active cell from u (if every cell is inactive, our algorithm
trivially accepts). Then, for each v ∈ N(u), the algorithm computes the set
of cells Sv ∩Dd, and checks if that set contains an active cell. If it does, we
mark v as active, and otherwise we mark v as inactive. Finally, the algo-
rithm rejects if the three neighbors of u are active, and accepts otherwise.
The steps of this algorithm are described in Algorithm 2

From Lemma 3.5, we know that v becomes active at time d − 1 if and
only if Sv ∩Dd contains an active cell in the initial configuration. Since the
nearest active cell from u is at distance d, necessarily after d−1 steps at least
one of the three neighbors of u will become active. If the three neighbors of
u satisfy the condition of Lemma 3.5, then the three of them will become
active in time d− 1, so u will remain inactive forever. Otherwise, u will have
more than one and less than three active neighbors at time-step d− 1, so it
will become active at time d.
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Algorithm 2 Solving Stability 12
Input: x a finite configuration of dimensions n× n and u a cell.
1: if For all cell w, xw = 0 then
2: return accept
3: else
4: Compute a matrix M = (mij) of dimensions 2n2 × 2n2 such that

mij is the distance from cell i to cell j.
5: Compute the distance d to the nearest active cell from u.
6: for all v ∈ N(u) do in parallel
7: Compute the set of cells Sv ∩Dd

8: if there exists w ∈ Sv ∩Dd such that xw = 1 then
9: Mark v as active
10: else
11: Mark v as inactive
12: end if
13: end for
14: if there exists v in N(u) that is marked inactive then
15: return Reject
16: else
17: return Accept
18: end if
19: end if

Let N = n2 the size of the input. This algorithm runs in time O(logN)
using O(N) processors. Indeed, the verifications on lines 1-3 and 8-10 can be
done in time O(logN) using O(N) processors using a prefix-sum algorithm.
Finally, step 7 can be done in timeO(logN) usingO(N) processors, assigning
one processor per cell and solving three inequations of kind ax+ by < c.

4. Square Grid

We now continue our study, considering the square grid. As we said in the
preliminaries section, we can define 32 different FTCAs over this topology.
Again, considering the inactive state as a quiescent state, the set of non-
equivalent FTCAs is reduced to 16. According to our classifications, this list
of FTCAs is grouped as follows:
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• Simple rules: φ, 1234 and 4.

• Topological rules: 234, 3 and 34.

• Algebraic rules: 12, 123, and 124.

• Turing Universal rules: 2, 24.

• Fractal growing rules: 1, 13, 14 and 134.

In complete analogy to the triangular topology, we verify that the Sta-
bility problem in Simple rules is NC. We will directly continue then with
the Topological Rules.

4.1. Topological Rules
We study this rules characterizing their fixed points and building a faster

algorithms for to find them. This characterization is based the structure of
the set of stable cells, called stable sets. Naturally, the structure of stable-sets
depends on the rule.

4.1.1. Rules 34 and 3.
First, notice that the rule 34 corresponds to freezing version of the ma-

jority automaton (Maj) over the squared grid. We remark that a finite con-
figuration over the squared grid, seen as a torus, is a regular graph of degree
4. Therefore, we can use the Algorithm given in Proposition 3.2 to check
whether a given site is stable for rule 34. We deduce the following theorem
(also given in [5])

Theorem 4.1 ([5]). Stability is in NC for rule 34.

Likewise, in analogy of the behavior of rule 2 with respect to rule 23 in
the triangular grid, we can use the algorithm solving Stability for the rule
34 to solve Stability for the rule 3. Let (x, u) be an instance of problem
Stability. Clearly, if u is stable for rule 34 we have that u is stable for rule
3. Suppose now that u is not stable for rule 34 but it is stable for rule 3. Let
G[0, u] be connected component of G[0] containing u. Using the exact same
proof used for rule 2 on the triangular grid, we can deduce that G[0, u] is a
tree, and we call Tu this tree rooted in u. Moreover, let u1, u2, u3, u4 be the
four neighbors of u, and let Tui be the subtree of Tu obtained taking all the
descendants of ui, i ∈ {1, 2, 3, 4}. Call di the depth of Tui , which without loss
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of generality we assume that d1 ≥ d2 ≥ d3 ≥ d4. We have that u is stable for
rule 3 but not for rule 34 if and only if d1 = d2 ≥ d3 ≥ d4. We deduce that,
with very slight modifications, Algorithm 1 solves Stability for rule 3. We
deduce the following theorem.

Theorem 4.2. Stability is in NC for rule 3.

4.1.2. Rule 234.
Notice that rule 234 is the freezing version of the non-strict majority

automaton, the CA where the cells take the state of the majority of its
neighbors, and in tie case they decide to become active. In the following, we
will show that the stability problem for this rule is also inNC, characterizing
the set of stable sets. This time, the topological conditions of the stable sets
will be the property of being tri-connected.

Theorem 4.3. Stability is in NC for the freezing CA 234.

Lemma 4.4. Let x ∈ {0, 1}[n]×[n] be a finite configuration and u ∈ [n]× [n] a
site. Then, u is stable for c = c(x) if and only if there exist a set S ⊆ [n]× [n]
such that:

• u ∈ S,

• cu = 0 for every u ∈ S, and

• G[S] is a graph of minimum degree 3.

Proof. Suppose that u is stable and let S be the subset of [n]× [n] containing
all the sites that are stable for c. We claim that S satisfy the desired prop-
erties. Indeed, since S contains all the sites stable for c, then u is contained
in S. On the other hand, since the automaton is freezing, all the sites in S
must be inactive on the configuration c. Finally, if G[S] contains a vertex v
of degree less than 3, it means that necessarily the corresponding site v has
two non-stable neighbors that become 1 in the fixed point reached from c,
contradicting the fact that v is stable.

On the other direction suppose that S contains a site that is not stable
and let t > 0 be the minimum step such that a site v in S changes to state 1,
i.e., v ∈ S and t are such F t−1(c)w = 0 for every w ∈ S, and F t(c)v = 1. This
implies that v has at least two active neighbors in the configuration F t−1(c).
This contradicts the fact that v has three neighbors in S. We conclude that
all the sites contained in S are stable, in particular u.
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Figure 4: Construction of the finite configurationD(x) obtained from a finite configuration
x of dimension n× n = 2× 2. Note that D(x) is of dimensions 7× 7.

For a finite configuration x ∈ {0, 1}[n]×[n], let D(x)∈{0, 1}{−n2−n,...,n2+2n}2

be the finite configuration of dimensions m×m, where m = 2n2 + 3n, con-
structed with repetitions of configuration x in a rectangular shape, as is
depicted in Figure 4, and inactive sites elsewhere. We also call D(c) the
periodic configuration c(D(x)).

Lemma 4.5. Let x ∈ {0, 1}[n]2 be a finite configuration, and let u be a site
in [n] × [n] such that xu = 0. Then u is stable for c = c(x) if and only if it
is stable for D(c).

Proof. Suppose first that u is stable for c, i.e. in the fixed point c′ reached
from c, c′u = 0. Call c′′ the fixed point reached from D(c). Note that D(c) ≤ c
(where ≤ represent the inequalities coordinate by coordinate). Since the 234
automata is monotonic, we have that c′′ ≤ c′, so c′′u = 0. Then u is stable for
D(c).

Conversely, suppose that u ∈ [n]× [n] is not stable for c, and let S be the
set of all sites at distance at most n2 from u. We know that in each step on
the dynamics of c, at least one site in the periodic configuration changes its
state, then in at most n2 steps the site u will be activated. In other words,
the state of u depends only on the states of the sites at distance at most n2

from u. Note that for every v ∈ S, cv = D(c)v. Therefore, u is not stable in
D(c).

Note that the perimeter of width n of D(x) contain only inactive sites.
We call this perimeter the border of D(x), and D(x) − B the interior of
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D(x). Note that B is tri-connected and forms a set of sites stable for D(c)
thanks to Lemma 4.4. We call Z the set of sites w in [m] × [m] such that
D(x)w = 0.

Lemma 4.6. Let u be a site in [n]×[n] stable for D(c). Then, there exist three
disjoint paths on G[Z] connecting u with sites of the border B. Moreover,
the paths contain only sites that are stable for B(c).

Proof. Suppose that u is stable. From Lemma 4.4 this implies that u has
three stable neighbors. Let 0 ≤ i, j ≤ n be such that u = (i, j). We divide
the interior of D(c) in four quadrants:

• The first quadrant contain all the sites in D(x) with coordinates at the
north-east of u, i.e., all the sites v = (k, l) such that k ≥ i and l ≥ j.

• The second quadrant contain all the sites in D(x) with coordinates at
the north-west of u, i.e., all the sites v = (k, l) such that k ≤ i and
l ≥ j.

• The third quadrant contain all the sites in D(x) with coordinates at
the south-west of u, i.e., all the sites v = (k, l) such that k ≤ i and
l ≤ j.

• The fourth quadrant contain all the sites in D(x) with coordinates at
the south-east of u, i.e., all the sites v = (k, l) such that k ≥ i and
l ≤ j.

We will construct three disjoint paths in G[Z] connecting u with the bor-
der, each one passing through a different quadrant. The idea is to first choose
three quadrants, and then extend three paths starting from u iteratively pick-
ing different stable sites in the chosen quadrants, until the paths reach the
border.

Suppose without loss of generality that we choose the first, second and
third quadrants, and let u1, u2 and u3 be three stable neighbors of u, named
according to Figure 5.

Starting from u, u1, we extend the path P1 through the endpoint different
than u, picking iteratively a stable site at the east, or at the north if the site
in the north is not stable. Such sites will always exist since by construction
the current endpoint of the path will be a stable site, and stable sites must
have three stable neighbors (so either one neighbor at east or one neighbor
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Figure 5: Four possible cases for u1, u2 and u3. Note that one of these four cases must
exist, since u has at least three stable neighbors. From u1 we will extend a path through
the first quadrant, from u2 a path through the second quadrant, and from u3 a path
through the third quadrant.

at north). The iterative process finishes when P1 reaches the border. Note
that necessarily P1 is contained in the first quadrant. Analogously, we de-
fine paths P2 and P3, starting from u2 and u3, respectively, and extending
the corresponding paths picking neighbors at the north-west or south-west,
respectively. We obtain that P2 and P3 belong to the second and third quad-
rants, and are disjoint from P1 and from each other.

This argument is analogous for any choice of three quadrants. We con-
clude there exist three disjoint paths of stable sites from u to the border
B.

Lemma 4.7. Let u, v be two sites in [n] × [n] stable for D(c). Then, there
exist three disjoint u, v-paths in G[Z] consisting only of sites that are stable
for D(c).

Proof. Let u, v be stable vertices. Without loss of generality, we can suppose
that u = (i, j), v = (k, l) with i ≤ k and j ≤ l (otherwise we can rotate x to
obtain this property). In this case u and v divide the interior of D(x) into
nine regions (see Figure 6). Let Pu,2, Pu,3, Pu,4 be three disjoint paths that
connect u with the border through the second, third and fourth quadrants of
u. These paths exist according to the proof of Lemma 4.6. Similarly, define
Pv,1, Pv,2, Pv,3 three disjoint paths that connect v to the border through the
first, second and third quadrants of v.

Observe fist that Pu,3 touch regions that are disjoint from the ones touched
by Pv,1, Pv,2 and Pv,3. The same is true for Pv,1 with respect to Pu,2, Pu,3, Pu,4.
The first observation implies that paths Pu,3 and Pv,1 reach the border with-
out intersecting any other path. Let w1 and w2 be respectively the intersec-
tions of Pu,3 and Pv,1 with the border. Let now Pw1,w2 be any path in GB
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Figure 6: Vertices u and v divides the interior of D(x) into four regions each one. Together
they split the space into nine regions. According to Lemma 4.6, we can choose three disjoint
paths connecting u and v, in such a way that each of the nine regions intersect at most
one path. We use the border of D(x) to connect the paths that do do not intersect in the
interior of D(x).

connecting w1 and w2. We call P1,3 the path induced by Pu,3 ∪ Pw1,w2 ∪ Pv,1.
Observe now that Pu,2 and Pv,4 must be disjoint, as well as Pu,4 and Pv,2.

This observation implies that Pu,2 either intersects Pv,2 or it do not intersect
any other path, and the same is true for Pu,4 and Pv,4. If Pu,2 does not
intersect Pv,2, then we define a path P2,2 in a similar way than P1,3, i.e.,
we connect the endpoints of Pu,2 and Pv,2 through a path in the border (we
can choose this path disjoint from P1,3 since the border is tri-connected).
Suppose now that Pu,2 intersects Pv,2. Let w the first site where Pu,2 and
Pv,2 intersect, let Pu,w be the u,w-path contained in Pu,2, and let Pw,v be the
w, v-path contained in Pv,2. We call in this case P2,2 the path Pu,w ∪ Pw,v.
Note that also in this case P2,2 is disjoint from P1,3. Finally, we define P4,4

in a similar way using paths Pu,4 and Pv,4. We conclude that P1,3, P2,2, and
P4,4 are three disjoint paths of stable sites connecting u and v in G[Z].

We are now ready to show our characterization of stable set of vertices.

Lemma 4.8. Let x ∈ {0, 1}[n]×[n] be a finite configuration, and let u be a site
in [n]× [n]. Then, u is stable for c = c(x) if and only if u is contained in a
tri-connected component of G[Z].
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Proof. From Lemma 4.5, we know that u is stable for c if and only if it is
stable D(c). Let S be the set of sites stable for D(c). We claim that S is a
tri-connected component of G[Z]. From Lemma 4.7, we know that for every
pair of sites in S there exist three disjoint paths in G[S] connecting them,
so the set S must be contained in some tri-connected component T of G[Z].
Since G[T ] is a graph of degree at least three, and the sites in T are contained
in Z, then Lemma 4.4 implies that T must form a stable set of vertices, then
T equals S.

On the other direction, Lemma 4.4 implies that any tri-connected com-
ponent of G[Z] must form a stable set of vertices for D(c), so u is stable for
c.

We are now ready to study the complexity of Stability for this rule.

Proof of Theorem 4.3 . Let (x, u) be an input of Stability, i.e. x is a finite
configuration of dimensions n× n, and u is a site in [n]× [n]. Our algorithm
for Stability first computes from x the finite configuration D(x). Then, the
algorithm uses the algorithm of Proposition 2.4 to compute the tri-connected
components of G[Z], where Z is the set of sites w such that D(x)w = 0. Fi-
nally, the algorithm answers no if u belongs to some tri-connected component
of G[Z], and answer yes otherwise.

Algorithm 3 Solving Stability 234
Input: x a finite configuration of dimensions n × n and u ∈ [n] × [n] such

that xu = 0.
1: Compute the finite configuration D(x) of dimensions m ×m with m =

2n2 + 3n
2: Compute the set Z = {w ∈ [m]× [m] : D(x)w = 0}.
3: Compute the graph G[Z].
4: Compute the set T of tri-connected components of G[Z].
5: for all T ∈ T do in parallel
6: if u ∈ T then
7: return Accept
8: end if
9: end for
10: return Reject

The correctness of Algorithm 3 is given by lemma 4.8. Indeed, the al-
gorithm answers Reject on input (x, u) only when u does not belong to a
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tri-connected component of G[Z]. From lemma 4.8, it means that u is not
stable, so there exists t > 0 such that F t(c(x))u = 1.

Let N = n2 the size of the input. Step 1 can be done in O(logN) time
with m2 = O(N2) processors: one processor for each site of B(x) computes
from x the value of the corresponding site in B(x). Step 2 can be done
in time in O(logN) with O(N2) processors, representing Z as a vector in
{0, 1}m2 , each coordinate is computed by a processor. Step 3 can be done
in time O(logN) and O(N2) processors: we give one processor to each site
in Z, which fill the corresponding four coordinates of the adjacency matrix
of G[Z]. Step 4 can be done in time O(log2N) with O((N2)4) processors
using the algorithm of Proposition 2.4. Finally, steps 5 to 10 can be done
in time O(logN) with O(N2) processors: the algorithm checks in parallel if
u is contained in each tri-connected components. All together the algorithm
runs in time O(log2N) with O(N8) processors.

4.2. Algebraic Rules
We will now study the family of FTCA where the cells become active with

one or two neighbors. We consider there the rules 12, 123, 124. Of course,
rule 1234 will fit in our analysis, but we already know that this rule is trivial.
As we already mentioned, these rules are algebraic in the sense that, in
order answer the Stability problem, we will accelerate the dynamics using
algebraic properties of these rules.

In the following, we assume that the cells are placed in the Cartesian co-
ordinate system, where each cell is placed in a coordinate in N×N. Moreover,
without loss of generality, our decision cell is u = (0, 0) and the configuration
c has at least one active cell. Let τ > 1 be the distance from u to the first
active cell. Like for rule 12 in the triangular grid, we called Dτ the set of
cells at distance τ from u. Due to its shape in the squared grid, the set
Dτ is called in this context the diamond at distance τ from u. Note that
Dτ = {(i, j) ∈ N2 : |i − j| ≤ τ}. We also call dI(τ) the diagonal at distance
τ of u in the first quadrant, defined as follows:

dI(τ) := {(i, j) ∈ N2 : |i− j| = τ and i, j > 0}.

Then, we place ourselves in the case where all the cells in Dτ−1 are inactive.
Let c′ be the configuration obtained after one step, i.e. c′ = F (c), where

F is one of the rules in {12, 123, 124}. Notice that all the cells in Dτ−1
will remain inactive in c′. Moreover, the states of cells in dI(τ − 1) can be
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computed as follows (see figure 7a):

∀(i, j) ∈ dI(τ − 1), c′i,j = ci+1,j ∨ ci,j+1.

Where ∨ is the OR operator (i.e. c′i,j = 1 if ci+1,j = 1 or ci,j+1 = 1). If we
inductively apply this formula, we deduce:

F τ−2(c)1,1 =
∨

(i,j)∈dI(τ)

ci,j.

Note that if the cell (1, 1) is inactive at time τ − 1, then necessarily all the
cells in dI(τ) are inactive at time 0. Moreover, by we can apply the same
ideas to every cell (i, j) ∈ ⋃1≤k≤τ dI(k) such that i, j ≥ 1, obtaining:

F τ−1−i(c)i,1 =
∨

(k, j) ∈ D(τ)
k ≥ i

ck,j and F τ−1−j(c)1,j =
∨

(i, k) ∈ D(τ)
k ≥ j

ci,k. (1)

Analogously, we can define dII(τ) (resp. dIII(τ), dIV (τ)) the diagonals at
distance τ of u in the second (resp. third, fourth) quadrant, and deduce
similar formulas in the other three quadrants. Concretely we can compute
the states the states of cells (±i,±1), i = 1, ..., τ − 1 in time τ − i and the
states of cells (±1,±j), j = 1, ..., τ−1 in time τ−j. This cells are represented
as the hatch patterns in Figure 7b. This way of computing cells we call it
OR technique.
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(a) Computation of dI(τ−1) after one
application of rule F .

(b) Cells (±i,±1) and (±1,±j),
where i, j, ..., τ − 1, represented with
a hatch pattern.

Figure 7: Computation in a diamond of size τ , where only the cells at distance τ from
(0, 0) can be initially active.

We define the following sets of cells.

• The north-east triangle is set of cells in the first quadrant between
the cells in the hatch pattern (including them) and the gray zone, i.e.
is the set Dτ,I = {(i, j) ∈ N2 : |i − j| ≤ τ and i, j ≥ 1}. Analogously
we define north-west, south-west and south-east triangles, and denote
them Dτ,II , Dτ,III and Dτ,IV , respectively.

• The north corridor is the set of cells in the positive x-axis contained
in the diamond , i.e. is the set {(0, i) ∈ N2 : 1 ≤ i ≤ τ}. Analogously
we define west, south and east corridors.

Consider now a smaller diamond at distance 2 of u = (0, 0) depicted in
Figure 8. As we explained, we can compute the states of cells b, d, f and h in
time τ − 1 using the OR technique. The use of this information in order to
solve Stability, will depend on the which rule we are considering. In the
following, we will show how to use this information to solve stability for rule
123, then for rule 12 and finally for rule 124.
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Figure 8: Notation for the cells in the small diamond. Cells p, q, r and s correspond to the
neighbors of cell u.

4.2.1. Solving Stability for rule 123

Rule 123 is the simplest of the Algebraic rules. Its simplicity, follows
mainly from the following claim. Remember that τ is the distance from u to
the nearest active cell.

Claim 1: Either u becomes active at time τ or u is stable.

We know that at least one of the cells in {b, d, f, h} will be active at time
τ − 2. Indeed the states of those cells depend only on the logical disjunction
of the sites in the border of the diamond Dτ , and we are assuming that there
is at least one active site in Dτ \Dτ−1. Therefore, in time τ − 1, necessary at
least one neighbor w ∈ N(u) will become active, since it will have more than
one active neighbor, and less than four (because u is inactive at time τ − 1).
Suppose now that u does not become active in time τ . Since u has one active
neighbor in time τ −1, the only possibility is that the four neighbors of u are
active τ − 1. Since the rule is freezing, u will remain stable in inactive state.

At this point, we know how to compute the states of b, d, f and h in time
τ−2, and we know that the only possibility for u to become active is on time
τ . Therefore, in order to decide Stability for rule 123 we need to compute
the states of cells p, q, r and s in time τ − 1. In the following, we show how
to compute the state of site p in time τ − 1. The arguments for computing
cells q, r and s will be deduced by analogy (considering the same arguments
in another quadrant).

Call xt(i,j) the state of cell (i, j) in time t, with the convention of x0(i,j) is
the input state of (i, j). First, note that, for all i ∈ {0, . . . , τ − 2}, the state
of (0, i) in time 1 will be inactive. Moreover, the state of cell (0, τ−1) will be
active if and only if at least one of its three neighbors (−1, τ−1), (1, τ−1) or
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(0, τ) is active at time 0. Then, we deduce the following formula for x1(0,τ−1):

x1(0,τ−1) = x0(−1,τ−1) ∨ x0(0,τ) ∨ x0(1,τ−1)
For the same reasons, we notice that at time j > 0 the nearest neighbor from
u is in the border of Dτ−j. Therefore,

xj(0,τ−j) = xj−1(−1,τ−j) ∨ x
j−1
(0,τ) ∨ x

j−1
(1,τ−j)

In particular
xτ−1p = xτ−1(0,1) = xτ−2(−1,1) ∨ xτ−2(0,1) ∨ xτ−2(1,1).

Remember that we know how to compute xτ−2(−1,1) and xj−1(1,1) according to
Equation 1. We deduce that we can compute ,xτ−1p as follows:

xτ−1p =
τ∨
k=1

x0(−k,τ−k) ∨ x0(0,τ) ∨
τ∨
k=1

x0(k,τ−k) (2)

In words, the state of p at time τ − 1 can be computed as the OR of all
the cells to the north of the u contained in Dτ \Dτ−1. Analogously we can
compute xτ−1q , xτ−1r and xτ−1s .

4.2.2. Solving stability for rule 12

For rule 12 the computation of a, c, e and g is not so simple as the previous
case. First of all, there is one case when cell u remain active, though we can
also assume Claim 1 for this rule.

Indeed, remember that we know that at least one of cells in {b, d, f, h}
will be active at time τ − 2. Suppose that u remains inactive at time τ .
There are two three possibilities: (1) none of the neighbors of u will become
active at time τ − 1, (2) three neighbors of u become active at time τ − 1;
and (3) the four neighbors of u become active at time τ − 1. See figure 9.
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(c) Sum equal to 0.

Figure 9: Possibles cases of rule 12 at time τ such that u remain inactive.
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Note that the in cases when the sum in its neighborhood is 3 or 4 (Figure
9a and 9b respectively), we directly obtain that u is stable, because the rule
is freezing.

The case when the sum in its neighborhood is 0 is slightly more compli-
cated. As we said, we know that at least one of {b, d, f, h} becomes active at
time τ − 2. Suppose, without loss of generality, that b satisfy this condition.
On the other hand, we are assuming that p and q remain inactive at time
τ − 1. Since this cells have one active neighbor at time τ − 2, the sole possi-
bility is that cells h, a, c and d are active at time τ − 1. Applying the same
arguments to cells r and s, we deduce that all cells a, b, c, d, e, f, g and h will
be active at time τ − 2 (as depicted in Figure 9c). Since the rule is freezing,
we deduce that cells p, q, r and s are stable, obtaining that also u is stable.

From Equation 1, we know how to compute the states of cells b, d, f and
h in time τ−2. To decide the stability of u, we need to compute the states of
p, q, r and s in time τ−1. In this case, however, the dynamics in the corridors
is more complicated. In the following, we will show how to compute the east
corridor (in order to compute q), depicted in Figure 10. We will study only
this case, since the other three corridors are analogous.
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· · ·· · ·
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1,1
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3,0

xτ−4
3, 1
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x1
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τ 1,0x2
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xtτ t 1, 1

xtτ t 1,1

xtt τ,0xt+1
t τ 1,0xτ−1

1,0

Figure 10: Computation of east corridor. Recall that xt(i,j) is the state of cell (i, j) in
time-step t. The gray cells were previously computed using the OR technique. Dashed
lines connect cells which potentially change states at the same time.

Remember that, using Equation 1 we can compute the values of xτ−1−i(i,1)

and xτ−1−i(−i,1) , for every i ∈ {1, . . . , τ − 2}. Notice first that, if xτ−1−i(i,1) 6= xτ−1−i(−i,1) ,
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then necessarily xτ−i(i,0) = 1. Indeed, we know that xτ−i−1(i−1,0) = 0 (otherwise we
contradict the definition of τ). Then, xτ−1−i(i,1) 6= xτ−1−i(−i,1) implies that in time
τ − 1 − i the cell (i, 0) will have more than one and less than three active
neighbors, so it will become active in time τ − i.

Let i∗ be the minimum value of i ∈ {1, . . . , τ} such that xτ−1−i(i,1) 6= xτ−1−i(−i,1) .
If no such i exists, then fix i∗ = τ . Call I∗ the set {1, . . . , i∗ − 1}. In other
words, we know that xτ−1−i(i,1) = xτ−1−i(−i,1) for every i ∈ I∗. Moreover, we also
know that xτ−i

∗

(i∗,0) = 1.
We now identify two situations, concerning the values of xτ−1−i(i,1) , for i ∈ I∗.

If xτ−1−i(i,1) = xτ−1−i(−i,1) = 0 then, the value of xτ−i(i,0) will equal the value of x
τ−1−i
(i+1,0).

Indeed, in time τ−1−i, the cell (i, 0) will have three inactive neighbors
( (−i, 1), (i, 1), (i − 1, 0)). Then it will take the same state than cell
(i+ 1, 0) at time τ − i− 1.

If xτ−1−i(i,1) = xτ−1−i(−i,1) = 1 then, the value of xτ−i(i,0) will be the opposite than
value of xτ−1−i(i+1,0). Indeed, in time τ − 1− i, the cell (i, 0) will have two
active neighbors ( (−i, 1), (i, 1)) and one inactive neighbor ((i− 1, 0)).
Then cell (i, 0) is active at time τ − i if and only if cell (i + 1, 0) is
inactive at time τ − 1− i.

We imagine that a signal drive along the corridor. The signal starts at (i∗, 0)
with value xτ−i

∗

(i∗,1). The movement of the signal satisfies that, each time it
encounters an i ∈ I∗ such that xτ−1−i(i,1) = xτ−1−i(−i,1) = 1, the state switches to
the opposite value. Let z = |{i ∈ I∗ : xτ−1−i(i,1) = xτ−1−i(−i,1) = 1}| (i.e. z is the
number of switches). From the two situations explained above, we deduce
the following lemma.

Lemma 4.9. xτ−1(1,0) equals x
τ−i∗
(i∗,1) if z is even, and xτ−1(1,0) is different than x

τ−i∗
(i∗,1)

when z is odd.

Therefore, to solve Stability for rule 12, we compute compute the values
of xτ−1p , xτ−1q , xτ−1r , xτ−1s according to Lemma 4.9.

4.2.3. Solving Stability for rule 124

The analysis for the rule 124 is more complicated than the one we did for
rule 12 and 123. In fact, one great difference is that Claim 1 is no longer
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true for this rule. In other words, u might not be stable but change after
time-step τ .

For this rule, the cases when the cell u remain inactive are the cases
when u has zero or three active neighbors. The possibles cases when the cell
u remain inactive at time τ are given in Figure 11.
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Figure 11: Possibles cases of rule 124 at time τ such that u remain inactive.

The case when u has four inactive neighbors at time τ − 1 is exactly the
same that we explained for rule 12 (see Figure 11a ). Suppose that u has
three active neighbors, and without loss of generality assume that p, q, r are
active and s is inactive. Then there are two possibilities, either s has three
active neighbors (h, g, f), in which case u and s remain inactive (see Figure
11b) The difference with the rule 12 is that we can not decide immediately if
the cell u remains inactive when the sum at time τ is 3. Indeed, in the case
depicted in Figure 11b, it is possible that s becomes active in a time-step
later than τ − 1.

Thus we need study only the case when the sum at time τ − 1 of the
states of neighbors of s is 0 or equivalently xτ−2f = xτ−2g = xτ−2h = 0. Note
that, by the OR technique, the fact that xτ−2f = xτ−2g = xτ−2h = 0 means that
all the cells in the left side border of Dτ are initially inactive, as shown in
Figure 12.
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(b) Diagram with the times when a cell
can be activated.

Figure 12: Schedule for to compute xτu if xτ−2
f = xτ−2

g = xτ−2
h = 0.

Knowing that xτ−2f = xτ−2g = xτ−2h = 0, we can compute their states at
time-step τ − 1, considering the OR-techinique in the diamond Dτ+1. Using
this information, we can compute the state of s in time τ , i.e. compute xτs .

Remember that we are in the case where xτ−1p = xτ−1q = xτ−1r = 1 and
xτ−1s = 0. If the cell s becomes activate at time τ , then u will have four
active neighbors at time τ , and it will become active. Now we suppose that
s also remain inactive at time τ . Again, we have two possible cases:
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Figure 13: Possible cases of rule 124 at time τ + 1 such that u remain at state 0.

In the case in Figure 13a (i.e., when s remains inactive at time τ because
f, g and h were active at time τ − 1) the cell u is stable.

For the case shown in Figure 13b (i.e. s remains inactive at time τ because
e f, g and h were inactive at time τ−1) we must repeat the previous analysis.
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Indeed, we know that xτ−1f = xτ−1g = xτ−1h = 0. The OR technique implies
that every cell in the left border on the diamond Dτ+1 (see Figure 12) have
to be initially inactive too. In this case, however we study the next diamond
Dτ+1, shifting it one cell to the left, as the Figure 14.
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Figure 14: Schedule for to compute xτs if xτ−1
f = xτ−1

g = xτ−1
h = 0.

This new diamond is centered in the cell s and (considering only the sides
at the north-west and south-west), consists in the sites at distance τ+1 from
s. Again, using the OR technique, we can compute the states of cells f , g
and h at time τ , and then the sate of cell s at time τ + 1.

Again, if the cell s becomes active at time τ + 1, then the problem is
solved, because u becomes active at time τ + 2. Further, suppose that s is
not active at time τ+1. Notice that this means that g, h and f must have the
same state at time τ . Remember that p and r are active at time τ − 1, then
cells h and f have at least one active neighbor at time τ−1. If h, f and g are
active at time τ , then s will be stable, as well as u. If h, f and g are inactive
at time τ , it means that h and f have three active neighbors at time τ − 1,
including cells (−2, 1) and (−2,−1). Since these cells are also neighbors of
g, and g remains inactive at time τ , necessarily cell (−3, 0) must be active at
time τ − 1. This means that f, g and h have three active neighbors, so they
are stable. Implying also that s and u are stable.
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We deduce that either u becomes active at time τ, τ + 1 or τ + 2, or u is
stable.

Lemma 4.10. Let F be rule 124. Given a finite configuration x, a cell u
and τ the distance from u to the nearest active cell. Then u becomes active
at time τ, τ + 1 or τ + 2, or u is stable.

Now we give an algorithm for to decide the Stability inn NC for the
rule 124. The algorithms for rules 12 and 123 can be deduced from this
algorithm.

Theorem 4.11. Stability is in NC for the freezing CA 12, 123 and 124.

Proof. Let (x, u) be an input of Stability, x is a finite configuration of
dimensions n×n and u is a site in [n]× [n]. The following parallel algorithm
is able to decide Stability using the fast computation of the first neighbors
of u by the OR technique. Let N2(u) be the set of cells at distance at most
2 from u. For t ≥ 0, we call xtN(u) the set of states at time t of all cells in
N(u).

Algorithm 4 Solving Stability 124
Input: x a finite configuration of dimensions n× n and u ∈ [n]× [n].
1: Compute τ the distance form u to the nearest active cell in x.
2: Compute xτ−2N2(u) using the OR technique and the corridors.
3: if xτu = 1 then
4: return Reject
5: end if
6: if xτu = 0 and xτ−2N2(u) is as 11b then
7: return Accept
8: end if
9: Compute s the neighbor of u such that xτ−1s = 0.
10: Compute xτ−1N2(s) using the OR technique and the corridors.
11: if xτ+1

u = 1 then
12: return Reject
13: end if
14: if xτ+1

u = 0 and xτ−1N2(u) is as 11b then
15: return Accept
16: end if
17: return Reject
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Let N = n2 the size of the input. Step 1 can be done in O(logN) time
with O(N) processors: one processor for each cell for to choose the actives
cells and to compute its distances with u, then in O(logN) compute the
nears cell to u. Steps 2 and 10 can be done in O(logN) time with O(N)
processors: the OR technique and the corridors can be computed with prefix
sum algorithm (see proposition 2.1) for the computation of consecutive ∨ and
parity of z in the corridors. The others steps can be computed in O(log n)
time in using a sequential algorithm.

4.3. Turing Universal Rules
For the rules 2 and 24 the problem Stability is P-Complete by reduc-

ing a restricted version of the Circuit Value Problem [10] to this problem.
Instances of circuit value problem are encoded into a configuration of the CA
2 and 24 using the idea in the proof of the P-completeness of Planar Circuit
Value Problem (PCV) [11]. Moreover, we use an aproach given in [12], were
the authors show that a two-dimensional automaton capable of simulating
wires, OR gates, AND gates and crossing gadgets is P-Complete.

In Figure 15 we will give the gadgets that simulate this structures for
rules 2 and 24. We remark that both rules have the same structures, because
the patterns with four active neighbors never appear in the gadgets.
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(f) XOR gate.

Figure 15: Gadgets for the implementation of logic circuits for the rules 2 and 24.

We represent the information flowing throgh wires, which are based,
roughly, on a line of active sites. Then, all the sites over (under) this line
will have one active neighbor. If a cell over the line becomes active, then in
the next step a neighbor of this cell will become active, so the information
flows over the wire.

These constructions of the gates are quite standard. Maybe with one
exception is the XOR gate. The crucial observation is that we manage to
simulate the XOR using the sincronisity of information. An XOR gate con-
sists roughly in two confluent wires. If a signal arrives from one of the two
wires, the signal simply passes. If two signals arrive at the same time, the
next cell in the wire will have more than two neighbors, so it will remain
active.

Using the XOR gate (Figure 15f), one can build a planar crossing gadget,
concluding the P-completeness constructions.

Theorem 4.12. Stability is P-complete for the freezing CA 2 and 24.

Remark: In our construction we use strongly neighborhoods composed
only of inactive cells, so these constructions can not be used for rules 02 and
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024, where zero is not a quiet state. So in these cases stability could have
less complexity.

5. Concluding Remarks

5.1. Summary of our results
In this paper we have studied the complexity of the Stability problem

for the Freezing Totalistic Cellular Automata (FTCA) on the triangular and
square grid with von Neumann neighborhood and two states. We find differ-
ent complexities for this FTCA, including a P-complete case on square grid.
For the rules where Stability is in NC we have considered two approaches:
a topological approach (theorems 3.3, 3.1, 4.1, 4.2, and 4.3) and an algebraic
approach (theorems 3.6 and 4.11).

Rule Stability Theorem
φ O(1) Trivial
3 NC Trivial
2 NC Thm 3.3
23 NC Thm 3.1
12 NC Thm 3.6
123 NC Trivial

Table 1: Summary of rules and their complexity of Stability on triangular grid.

Rule Stability Theorem Rule Stability Theorem
4 NC Trivial 234 NC Thm 4.3
3 NC Thm 4.2 12 NC Thm 4.11
34 NC Thm 4.1 124 NC Thm 4.11
2 P-Complete Thm 4.12 123 NC Thm 4.11
24 P-Complete Thm 4.12 1234 O(1) Trivial

Table 2: Summary of rules and their complexity of Stability on square grid.

5.2. About Fractal-Growin Rules
In this paper we have not included a study of fractal growing rules. In

fact, the complexity of Stability remains open for these rules, even for
fractal rules defined over a triangular grid.
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To have an intuition about the dynamical complexity of those rules, see
Figures 16 and 17, where starting with only the center active we obtain a
fractal behavior.

(a) Rule 1 (b) Rule 13 (c) Rule 14 (d) Rule 134

Figure 16: Examples of different rules with the similar fractal dynamics starting with a
single active cell on square grid.

(a) Rule 1 (b) Rule 13

Figure 17: Examples of different rules with the similar fractal dynamics starting with a
single active cell on triangular grid.

It interesting to remark that non-freezing version of rule 13 is the usual
XOR between the four neighbors, which is a linear cellular automaton. Using
a prefix-sum algorithm, we can compute any step of a linear cellular automa-
ton, so the non-freezing rule 13 is in NC. Although we might imagine that
adding freezing property simplifies the dynamics of a rule, the non-linearity
of rule 13increases enough the difficulty to prevent us to characterize its
complexity.

5.3. On P-Completeness on the triangular grid
It is important to point out that for triangular graph (despite rule 1 or

13 might be candidates), we do not exhibit a rule such that Stability is

39



P-complete. The reader might think that, like in the one-dimensional case,
every freezing rule defined in a triangular grid is NC. This is not the case.
Moreover, three states (that we call 0, 1, 2) suffice to define a P-complete
FTCA. The general freezing property means that states may only grow (so,
in this case state 2 is stable). In this context, for a triangular grid, consider
the following the local function.

f

(
xu,

∑
z∈N+u

xz

)
=


1, if xu = 0 ∧ (

∑
z∈N+u xz = 2 ∨∑z∈N xz = 12)

1, if xu = 10 ∧∑z∈N+u xz = 11

xu, otherwise

The proof of P-Completeness follows similar arguments than the ones we
used for rules 2 and 24 in the squared grid (Theorem 4.12), i.e. reducing
the Circuit Value Problem (CVP) to Stability on this rule. Instances of
CVP are encoded into a configuration of this FTCA using the idea in the
construction of the logical gates. In figures 15d and 18d we exhibit the
gadgets.

(a) Wire at time 0. (b) Wire at time 30. (c) AND gate. (d) XOR gate.

Figure 18: Gadgets for the implementation of logic circuits. The thick line marks the cell
that makes the calculation from signals. The color code is: : 1, : 10 and : 0

5.4. About non-quiescent rules
Finally, it is convenient to say a word about rules where cells become

active with zero active neighbors, i.e., rules where state 0 is not quiescent.
Clearly, after one step for those rules, every cell will have at least one active
neighbor. Then, their complexity is at most the complexity of the same rule,
not considering the case of zero active neighbors as an activating state. For
example, consider rule 034 in the squared grid. After one step of rule 034,
the dynamics are exactly the same that the one of rule 34. Therefore, rule
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034 is in NC. Although, there are some interesting cases. First, notice that
rule 01 is trivial (in the triangular or squared grids), because after only one
step the rule reaches a fixed point. This contrasts with rule 1, which is a
Fractal-Growin rule. Second, consider rule 02 or 024 in the squared grid. We
know that rule 2 and 24 are P-Complete. However, the reader can verify
that the gadgets used to reduce CVP to Stability do not work for rule 02
and 024. This fact opens the possibilty that rules 02 and 024 belong to NC.
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