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Czech Republic
cNational Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute),

Moscow, 115409 Russia
dP. N. Lebedev Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia

Abstract

Electromagnetic waves, in addition to the energy and momentum, can also carry
an orbital angular momentum (OAM). Transfer of these quantities from laser to
particles may find various applications. There are similarities between the pro-
cess of OAM transfer from laser to electrons and a direct electron acceleration in
a relativistic electromagnetic wave packet. In this paper, by using a numerical
integration of electron’s equation of motion, we present a general analysis of the
energy and momentum transfer from a laser wave packet carrying orbital angu-
lar momentum to electrons. The theoretical model demonstrates that relation
between the transfer of the axial and orbital angular momenta from laser to
electrons depends strongly on the laser waveform and polarization.

Keywords: electromagnetic waves, orbital angular momentum, direct laser
acceleration

1. Introduction

Electromagnetic waves carrying an orbital angular momentum (OAM) were
introduced by Allen et al. [1] and rapidly found various applications in optics for
compact information storage and nanoscale imaging and manipulation [2]. Such
waves have a form of radially limited beams described by Laguerre–Gaussian
functions, which are eigenmodes of the paraxial optics equation in the cylindri-
cal coordinates. Such laser beams can also find applications in the domain of
relativistic intensities, where laser field more efficiently interacts with collective
plasma excitations or with individual electrons. Recent publications show that
interaction of such relativistic electromagnetic beams in plasma may excite large
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amplitude plasma waves, transfer to electrons a part of their orbital momentum,
and create quasistatic magnetic fields [3, 4, 5, 6, 7, 8, 9].

These processes have many features in common with the direct acceleration
of electrons in relativistic laser wave packets [10, 11, 12]. According to the
Lawson–Woodward theorem [13, 14], a charged particle cannot gain energy and
momentum while interacting with a plane electromagnetic wave. A transfer,
however, becomes possible if the wave packet has a finite duration, finite radial
extent or presents a spatio-temporal coupling. A particle is then displaced
under the action of the ponderomotive force, the phase relation is detuned,
which opens a possibility for an energy and momentum transfer. This effect,
however, is weak in a small amplitude wave, where the particle motion is non-
relativistic and displacement is of a second order on the wave amplitude. Much
more efficient particle acceleration is expected in the relativistic regime, where
particle attains a relativistic velocity and could enter in phase resonance with
the electromagnetic wave.

In this paper, we extend the problem of single particle interaction with an
electromagnetic wave to the case of wave packets carrying an orbital angu-
lar momentum and show how such properties of the wave packet as the mode
structure, polarization and chirp may significantly affect the efficiency of mo-
mentum transfer. We integrate the equation of motion of an electron initially
at rest with distributed initial positions, and evaluate the average momentum
and energy gain. It is found that by changing the wave polarization and by
introducing a angular-temporal coupling in the laser pulse, one can significantly
enhance the orbital momentum transfer compared to the axial momentum and
energy transfer. This process is manifested itself by generation of a strong axial
magnetic field at a kilotesla level, which can be obtained with available high
power short-pulse lasers.

Compared to the full kinetic particle-in-cell (PIC) simulations, a single par-
ticle approach is simpler and it allows to explore a broader range of laser pulse
parameters, but it cannot account for the self-consistent fields in plasma arising
from electron motion and charge separation between electrons and ions. By
contrast, it allows to trace the origin of the orbital angular momentum transfer,
which is due to the spatial and phase gradients of the applied field. Collective
effects contribution is proportional to the plasma density and it can be evaluat-
ed in the complementary PIC simulations, which are out of scope of this paper.
However, the presented results are qualitatively valid for a low-density plasma,
where the laser field is not considerably perturbed.

2. Equations for the waves and the particles

Electron motion in the laser field is described by dynamic equations for the
electron momentum p and the coordinate r:

dtp = −eE− ev ×B, dtr = v, (1)

where v = p/meγ is the electron velocity and γ = (1 + p2/m2
ec

2)1/2 is the
relativistic factor, e is the unitary charge, me is the electron mass and c is
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the light velocity. The particle orbital moment lz = rpθ is defined in polar
coordinates with respect to the laser propagation axis z. In what follows we
use the relativistic units where time is normalized by the laser frequency ω,
length by the wave number k = ω/c and electric field by the Compton field
meωc/e. The wave amplitude is assumed to be relativistic but not too high
(. 1020 W/cm2) so that the radiation friction could be neglected.

We consider a laser beam with transverse electric field represented in the
paraxial approximation as a linear combination of the Laguerre-Gaussian modes:

Elas =
∑
p,l

Ep,l
w0

wb
Fp,l

(
r2

w2
b

)
cos(lθ + ϕp,l), (2)

where Ep,l is the mode amplitude, r and θ are polar coordinates in x, y plane
and function Fp,l describes the beam shape in the transverse plane:

Fp,l(X) =

√
p!

(|l|+ p)!
X |l|/2L|l|p (X) e−X/2.

Here L
|l|
p (X) is a generalized Laguerre polynomial of degrees p and l. The set

of functions Fp,l(X) is orthogonal and normalized. The beam width wb(z) =

w0

√
1 + z2/z2R and wave phase

ϕp,l = kz − ωt+
kzr2

2zRw2
b

− (2p+ |l|+ 1) arctan
z

zR

account for the wave front curvature and Gouy phase. Here we consider the
interaction within the Rayleigh length, |z| . zR = kw2

0, so the major dependence
on the axial coordinate z enters in a combination, z−ct. The radial wave number
p ≥ 0 is an integer that numerates radial modes. The integer l could be positive
or negative, and it numerates the orbital angular momentum (OAM). Other field
components, both transverse and longitudinal, are obtained from the Maxwell
equations within the paraxial approximation. Several examples of different field
polarizations are considered below.

An electric field of a linearly polarized (LP) electromagnetic wave is defined
as a special case of Eq. (2):

Ex = By = a(z) f(r) g(τ) cos(lθ + ϕp,l), (3)

where a(z) = a0w0/wb(z), a0 is the dimensionless wave amplitude in the focal
point, τ = t− z/c− Ctlasθ/2π and f(r) = Fp,l(r

2/w2
b ) is the radial mode func-

tion. The time envelope function g(τ) describes temporal shape of the wave
packet with a parameter C characterizing an angular-temporal coupling. Other
polarizations are defined in a standard way as a linear combination of Ex and
Ey. Optical beams with C 6= 0 were introduced by Pariente and Quéré [15] and
called “light springs”. They are discussed in detail in Sec. 3.3. In calculations,
we consider a sine-like envelope: g(τ) = sin(πτ/tlas) defined in the interval
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0 < t < tlas. In that case, laser pulse carries energy Wlas = (π/4)a20(kw0)2ωtlas
and orbital momentum Llas = (π/4)la20(kw0)2ωtlas in the relativistic units. The
energy unit for the whole laser beam is m2

ec
5ε0/e

2ω = ncmec
5/ω3, where ε0 is

the vacuum dielectric permittivity and nc = meω
2ε0/e

2 is the critical density.
The orbital momentum unit is m2

ec
5ε0/e

2ω2. As a reference, these units corre-
spond for laser wavelength of 1µm, to an energy unit of 0.367µJ and an orbital
momentum unit of 1.94× 10−22 J·s = 1.84× 1012~. Thus, quantum effects have
no importance.

A pulse of a circular polarization (CP) is defined in polar coordinates as
follows

Er = Bθ = 2−1/2a(z) f(r) g(τ) cos[(l + s)θ + ϕp,l], (4)

Eθ = −Br = −2−1/2s a(z) f(r) g(τ) sin[(l + s)θ + ϕp,l].

It carries, in addition to the orbital momentum, a spin momentum with s = ±1
defining the sense of field rotation. Thus the total orbital momentum is sum of
the orbital and spin momentum, Llas = (π/4)(l + s)a20(kw0)2ωtlas.

Following the paper [8], we also consider a special case of electric field vector
rotating with the polar angle:

Er = Bθ = a(z) f(r) g(τ) cosα cos(lθ + ϕp,l), (5)

Eθ = −Br = −a(z) f(r) g(τ) sinα cos(lθ + ϕp,l),

where α is an angle of the electric field vector with respect to the radius. The
case α = 0 corresponds to the radial polarization (RP) and α = π/2 to the
azimuthal polarization. (Below, we use generic abbreviation RP for cases with
arbitrary angle α.) This wave packet is not an exact solution of the paraxial
equation, it can be considered as a linear combination of two circularly polarized
modes of an opposite sense of rotation, with orbital moments l±1 shifted in time
by a phase 2α and having the radial structure corresponding to the p, l mode
[16]. It carries the same energy and orbital momentum as a linearly polarized
pulse.

As we are interested in tightly focused pulses, it is important to account for
the axial components of electric and magnetic field, which are calculated from
the condition of zero divergence in the first paraxial approximation:

∂zEz = −∂xEx − ∂yEy, ∂zBz = −∂xBx − ∂yBy. (6)

Explicit expressions for the axial components of electric and magnetic fields are
given in Appendix A.

3. Numerical calculations of the particle dynamics

Electron dynamics in the wave packets described above is evaluated by solv-
ing numerically equations of motion (1) assuming that electrons are initially
at rest and homogeneously distributed in the laser focal plane z = 0. Typi-
cally several hundred thousand test particles have been considered for a given
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set of parameters. We calculate the components of momentum pr, pθ and pz,
the orbital moment with respect to the laser beam axis, lz = rpθ, and energy
ε = (1 + p2r + p2θ + p2z)

1/2 − 1. At the end of laser pulse these parameters are
averaged over the initial azimuthal angle θ0 for a given initial radius r0. For
example, the average energy reads:

ε̄(r0) =
1

2π

∫ 2π

0

dθ0 ε(θ0).

Then, a total energy and momentum transferred to a particle are evaluated by
integrating over the initial radius r0. For example, the total energy is calculated
as follows:

Ee = 2π

∫ rmax

0

dr0 r0 ε̄(r0).

The value of upper limit rmax = 3w0 is sufficiently large so almost all parti-
cles that may interact with laser pulse are accounted for. The total energy
and momentum transferred to plasma of density ne and length zp is calculated
straightforwardly as We = Eekzpne/nc and Le = Lzkzpne/nc.

3.1. Linearly polarized laser beam

As a reference case, we consider a linearly polarized laser beam with the
following set of parameters: a0 = 1, kw0 = 15π, ωtlas = 24π, p = 0, l = 1 and
C = 0. The total laser pulse energy in this case is: Wlas = Llas = 1.3×105, which
corresponds to energy of 48 mJ and orbital angular momentum of 2.5×10−17 J·s
for a 1µm light. Figure 1 shows an example of radial dependence of electron
angle-averaged radial (a), axial and orbital (b) momentum.

It follows from Eqs. (1) that in the first order paraxial approximation the
dephasing factor R = ε/c− pz satisfies an equation

dtR = eEz(1− vz/c).

The right hand side is zero in a plane wave and therefore, R = 0 for a particle
initially at rest [13, 14]. This law does not applies to a focused laser beam where
the axial electric field is non-zero. However, we observe that for the considered
set of parameters, there is a minor deviation from the wavefront planarity and
the dephasing factor is conserved with a good precision if C = 0. This is not
anymore true for laser pulses with spatio-temporal coupling, C 6= 0, as it is
demonstrated in Sec. 3.3.

Radial component p̄r ∼ 0.1 is the dominant part of electron momentum. It is
produced by the radial component of the ponderomotive force, which dominates
the interaction as it is of the first order of 1/kw0. This can be seen in Fig. 1,
where the two maxima of radial momentum are shifted to the left and to the
right from the position of the laser intensity maximum. Positive values of p̄r for
kr > 40 are due to electron acceleration outwards. Positive values of p̄r near
the axis, kr . 40, are related to electrons accelerated inwards and inverted their
momentum while passing near the laser axis.
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Figure 1: Radial dependence of the averaged characteristics of an electron acquired in the
interaction with a linearly polarized laser pulse with the following parameters: a0 = 1, kw0 =
15π, ωtlas = 24π, p = 0, l = 1 and C = 0. a) Radial momentum (solid line) and laser pulse
intensity (dashed line, in arbitrary units). b) Axial momentum (black) and orbital momentum
(red).

The value of dephasing parameter in this case is rather small, R . 10−5.
Consequently, the electron energy and axial momentum are equal each other,
ε̄ ≈ p̄z ∼ 0.005, and more than one order of magnitude smaller than p̄r = 0.1.
Conservation of R ≈ 0 provides a relation between the transverse and axial
moments, pz ≈ p2r/2, which explains the observed smallness of energy gain.
Consequently, the axial and azimuthal moments appear at the second order
on the paraxial parameter. They take non-zero values only due to the radial
displacement of the particle and its acceleration in the axial electric field.

Figure 1 exhibits a good correlation between the axial and orbital momenta.
They show very similar radial dependence and are equal to each other within
20− 30% (in dimensionless units). This is not evident beforehand, as they are
controlled by different components of electric and magnetic field. Nevertheless,
this is an indication that they are of the same nature – a partial resonance be-
tween the particle and the laser electric field. A similarity between the processes
of axial and azimuthal acceleration is further demonstrated by the scaling of the
total momentum transfer with the laser amplitude in Fig. 2.

The total radial momentum Pr scales approximately as square of laser am-
plitude in the non-relativistic limit, a0 < 1, while the growth slows down at
higher amplitudes. This behavior is compatible with dependence of the pon-
deromotive potential on laser amplitude, which for a linearly polarized field is√

1 + a20/2− 1. It is verified in the simulations (not shown in the figure), that
the radial momentum scales linearly with laser pulse duration and inversely pro-
portional to the beam width for a given amplitude. Laser orbital momentum
does not have notable effect on the radial momentum transfer to electrons. In-
deed, azimuthal dependence disappears when the square of laser field in Eq. (3)
is averaged over the laser period. That fact indicates also that in addition to
the laser ponderomotive force, the direct interaction with the laser electric field
contributes to the axial and azimuthal electron acceleration as it was already
discussed in Refs. [11, 12].

Dependence of the axial and orbital momenta on laser amplitude is much
stronger, it scales approximately as laser amplitude in a power of three in the
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Figure 2: Dependence of the total momentum gained by an electron in the interaction with
a linearly polarized (LP) laser pulse on an amplitude a0 for the following parameters: kw0 =
15π, ωtlas = 24π, p = 0 and C = 0. Black, blue and green lines show the radial Pr and axial
Pz momentum for l = 0, 1 and 2, respectively. Red lines show the orbital momentum for l = 1
(solid line) and l = 2 (dashed line). The data for this figure are presented in Appendix B in
Tab. B.2.

considered parameter range: Pz and Lz are approximately equal to each other,
and their values depend weakly on the orbital number l for the same other
parameters. Obviously, Lz = 0 for l = 0, but transfer of OAM from laser beams
with l = 1 and l = 2 differs by less than 30 − 50%, while transfer of axial
momentum Pz remains almost unchanged.

In the non-relativistic case, the axial and azimuthal momenta transfer to
electron can be considered as a higher order process with respect to the radial
acceleration, which itself is of a second order in the laser field amplitude. So,
the efficiency of momentum transfer from laser to electrons is relatively small.
For example, in a plasma of a density 1% of the critical density and a length
of hundred wavelength, the efficiency of the axial momentum transfer in the
considered example is 0.37% and 0.48% for the OAM transfer. The efficiency
can be increased by increasing pulse duration and plasma length or tighter laser
beam focusing. Moreover, by varying laser polarization and angular-temporal
coupling it is possible to find configurations where orbital momentum transfer
could be significantly increased.

3.2. Circularly and radially polarized laser beams

Circularly polarized (CP) laser beams are carrying spin in addition to orbital
momentum, so even Gaussian beams with l = 0 may transfer some orbital
momentum to electrons. But the nature of momentum transfer is different
in this case of l = 0: as the most intense electric field is on the laser axis
and the axial and orbital momenta are shifted closer to the axis. The total
axial momentum transferred to electrons with a beam of circular polarization
and l = 0 is approximately equal to the momentum transferred by a linearly
polarized beam with l = 0, but in addition, an orbital momentum is transferred
with a circularly polarized beam, Lz ≈ 64.7. Results of several simulations
of electron acceleration with a circularly polarized laser beam are presented in
Tab. B.3 in Appendix B.
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Figure 3: Radial dependence of the total axial (a) and orbital (b) momentum gained by
electron in a circularly polarized (CP) laser beam with the following parameters: a0 = 1,
kw0 = 15π, ωtlas = 24π, p = 0 and C = 0. Black lines show the case l = 0, blue lines l = 1,
green lines l = −1 and red lines l = 2. Dashed lines show the laser intensity distribution for
l = 0 (a, black) and for l = 1 and 2 (b, blue and red lines, respectively).

A circularly polarized beam with l = 0 transfers a smaller orbital momentum
(Lz ≈ 64.7) than a linearly polarized beam with l = 1 (Lz ≈ 125), although they
carry the same amount of orbital momentum. This is explained by the fact that
laser beams in these two cases have different radial intensity distributions and
hence couple to electrons at different distances from the axis. Figure 3 shows
radial distribution of momenta for circularly polarized laser beams with orbital
momentum varying from l = −1 to 2. Radial distributions of the axial and
orbital momenta are rather different for l = 0: the former one has a maximum
where the radial intensity gradient is the strongest (panel a), while the latter one
has two maxima – near the axis and at the beam edge (panel b). A situation
is rather different for OAM laser beams with l = ±1 and l = 2. The axial
momentum has two maxima with a minimum between them coinciding with the
laser intensity maximum. The orbital momentum for l = 1 has one maximum
approximately coinciding with the intensity maximum, while for there are two
maxima with a minimum coinciding with the intensity maximum. In contrast,
by adding a negative orbital momentum l = −1 to a circularly polarized laser
beam with s = 1 one may strongly suppress the OAM transfer and change its
sign. In this case Pz = 103 and Lz = −87.3.

This analysis complements the results of numerical PIC simulations of elec-
tron acceleration with circularly polarized beams carrying OAM reported in
Ref. [7], where the authors also observed increase of orbital momentum transfer
with increasing orbital number.

Thus, by combining a circular polarization and orbital angular momentum
one may vary the ratio of orbital to axial momentum transfer by a factor of 3. A
particular case is a circularly polarized beam with s = 1 and l = −1. According
to the laser orbital momentum definition, the beam does not carry the total
orbital momentum and the electric field does not depend on the azimuthal
angle. Nevertheless, the electric field rotates in time in each point of the beam
and electrons are gaining a net negative orbital momentum, as shown in Fig. 3.
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Figure 4: a) Radial dependence of the axial (blue) and orbital (red) momenta of electrons
at the end of the laser pulse with a radially polarized (RP) electric field with α = 0. b)
Dependence of the average axial (dashed blue) and orbital (red line) final momentum gained
by electron on the angle α. Both panels correspond to a radially polarized (RP) laser beam
with the following parameters: a0 = 1, kw0 = 15π, ωtlas = 24π, p = 0, l = 1 and C = 0.
Angle α = 0 corresponds to the radially-oriented electric field, and α = π/2 to the azimuthal
orientation.

Laser beams of radial polarization (RP) with α ≈ 0 were considered in
Ref. [8]. By using 3D PIC simulations, it was shown that tightly focused laser
beam may transfer a significant amount of orbital momentum to electrons and
produce a strong axial magnetic field lasting long after the pulse. We consider
laser beams of radial and/or azimuthal polarization as given by Eq. (5) with
the same energy, width and duration as in the previous cases of linearly and
circularly polarized beams. Figure 4a shows a radial distribution of the axial
and orbital momenta in a radially polarized (RP) beam (α = 0) with all other
parameters the same as in the reference case presented in Sec. 3.1. Compared
to the case of linear polarization (LP) shown in Fig. 1b, the electron orbital
momentum near the axis increases, thus resulting in overall increase of Lz by
20% while the electron axial momentum decreases by 20%.

Dependence of the average axial and orbital momentum of the angle α be-
tween the electric field vector and radius-vector is shown in Fig. 4b. The total
axial momentum does not depend on the electric field orientation and it is 20%
smaller than in the case of linear polarization. By contrast, orbital momentum
varies significantly with angle α. The maximum orbital momentum transfer is
achieved for a near radial polarization, while it is reduced about 4 times in the
case of azimuthal polarization (α = π/2). A similar dependence of the OAM
transfer to electrons in a laser beam of radial, azimuthal and linear polarization
is observed in numerical PIC simulations in Ref. [16].

3.3. Laser beams with spatio-temporal coupling

Stretching of laser pulse allows to extend the time of interaction of laser
pulse with electrons while keeping the same local laser intensity and the same
total laser pulse energy. Laser pulses with angular-temporal coupling carrying
an orbital momentum, called “light springs”, were proposed in Ref. [15] as a
means for an increase of OAM transfer.

Figure 5 presents qualitatively intensity distribution of a laser pulse with
orbital momentum l = 1 with and without spatio-temporal coupling. In the
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Figure 5: Spatio-temporal distribution of the intensity of a laser pulse with l = 1 and C = 0
(left) and C = 2 (right). Note the difference in scale in these two panels.

case C = 0, while the phase of the electric field depends on the azimuthal angle
according to Eq. (3), the intensity distribution averaged over the laser period
is azimuthally symmetric. The surface of constant intensity has a doughnut
shape shown in the left panel in Fig. 5. By contrast, spatio-temporal coupling
introduces the azimuthal asymmetry: while the pulse duration for any given
azimuthal position remains the same, the pulse at larger angles arrives later in
time. Thus, the intensity distribution takes a shape of a spiral, as shown in the
right panel in Fig. 5.

It was demonstrated in Ref. [5] that the orbital momentum transfer indeed
increases by using linearly polarized laser beams with angular-temporal cou-
pling. The authors, however, considered the laser interaction with a plasma
and assumed a resonance between the frequency chirp and the electron plasma
frequency. Such a situation cannot be modeled in a single particle approach,
nevertheless, stretching of laser pulse allows to an electron may to stay a longer
time within laser field and to gain a larger azimuthal momentum. Our angular-
temporal coupling parameter C corresponds to splitting of the laser frequency
ω in two spectral components ω ± π/tlas and the laser orbital momentum l in
two components l ± C/2. It can be related to the spectral derivative of the
orbital momentum dl/dω introduced in Refs. [15, 5] by the following relation
dl/dω = Ctlas/2π.

We investigate the momentum transfer for chirped linearly, circularly and
radially polarized laser beams. Results presented in Tab. 1 show strong vari-
ation of the electron orbital momentum while the radial and axial moments
remain unchanged. For C = ±2, electrons are gaining more than ten times
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C Ee Pz Lz LP Lz CP Lz RP

2.5 79.7 53.8 -1260 -929 2000

2.0 79.7 48.2 -873 -605 1590

1.5 79.7 60.7 -152 207 1200

1.0 79.7 75.4 310 414 835

0.5 79.7 79.1 332 393 490

0 96.0 96.0 125 144 148

-0.5 79.7 79.1 -110 48.1 143

-1.0 79.7 72.8 -13.5 99.2 -539

-1.5 79.7 55.9 529 766 -898

-2.0 79.7 45.4 1260 1700 -1290

-2.5 79.7 51.6 1570 2150 -1700

Table 1: Energy, axial and orbital momentum transfer for the case of linear (LP), circular
(CP) and radial (RP) polarization for a0 = 1, kw0 = 15π, ωtlas = 24π, p = 0 and l = 1
for the chirp varying from C = −2.5 to C = 2.5. The energy and axial moments remain
approximately the same in all considered cases.

larger orbital momentum compared to a non-stretched pulse. This is in striking
difference from simple increasing of the laser pulse duration, which results in
linear increase of all three moments with approximately constant relation be-
tween them. Moreover, the strongest orbital momentum transfer is found for a
radially polarized beam. The effect is slightly less significant for a circular and
linear polarization with an opposite sign of OAM.

Figure 6: Radial dependence of the averaged axial (blue, multiplied by a factor of 20) and
orbital (red) moment of electron after the end of a stretched laser pulse for the following
parameters: a0 = 1, kw0 = 15π, ωtlas = 24π, p = 0, l = 1, C = 2. Linear (a) and circular (b)
polarization. Dashed line shows a radial profile of the laser pulse in arbitrary units.

Radial distribution of particle axial and orbital momenta in Fig. 6 shows a
correlation between them: electrons originating near the laser intensity maxi-
mum gain a largest in absolute value orbital momentum in the case of linear
and circular polarization. The axial momentum is much smaller, it is multiplied
by a factor of 20 in the figure for a better visibility. The magnitudes of axial
and orbital moments are the same for all polarizations. These profiles are rather
similar to the reference case with C = 0 shown in Fig. 1b, but with more than
20 times higher maxima for OAM.

This specific behavior can be understood by analyzing acceleration of elec-
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Figure 7: Dependence of the radial (a), axial (b) and orbital (c) electron moments after the
end of a stretched laser pulse on the initial azimuthal angle for the initial radius kr0 = 40 and
the following laser parameters: a0 = 1, kw0 = 15π, ωtlas = 24π, p = 0, l = 1, C = 2, linear
polarization.

trons at a particular distance from the axis. Figure 7 shows dependence of radial,
axial and orbital moments on the initial azimuthal position of the particle for
kr = 40, near the maximum of the amplitude. The average of these curves cor-
respond to the values shown in Fig. 6 for given kr. Fast angular oscillations of
the moments are due to the angular-temporal coupling of a stretched pulse. The
case C = ±2, shown in Fig. 5, corresponds to doubling the laser pulse duration
over one azimuthal rotation. As in our example laser pulse duration is 12 laser
periods, there are 24 oscillations over one rotation. (Note that in Fig. 7 only
a half of the period is shown, θ = 0 ÷ π.) As the radial position corresponds
to the maximum of laser pulse, the radial component of ponderomotive force is
weak at this position and the radial momentum is small. By contrast, caused by
the angular-temporal coupling, there are azimuthal and axial components of the
ponderomotive force, Fθ,z = −∇θ,z|E2|. For example, for a linearly polarized
beam (3) expression for this force reads

Fθ =
Ctlas
2πr

a2f2gg′, Fz = a2f2gg′.

These components attain a maximum near the laser intensity maximum in
agreement with the momentum profiles shown in Fig. 6. In combination with
strong azimuthal electron oscillations the azimuthal component of ponderomo-
tive force creates an asymmetric electron shift. For this initial radial position,
after averaging over the azimuthal angle, there are more particles that are gain-
ing a negative orbital momentum, which, however, is approximately 10% of the
maximum orbital momentum, as it can be seen by comparing Figs. 6a and 7c.
A similar behavior is observed with radially and circularly polarized beams with
a difference that the amplitude of oscillations does not depend on the azimuthal
angle (not shown in the figure).

Several representative orbits of particles gaining positive and negative or-
bital momenta over one period of fast angular oscillations are shown in Fig. 8.
Initial angles of the particle trajectories 1, 3 and 5 correspond to a zero final
orbital momentum in Fig. 7c. These particles are ejected toward the laser beam
axis. The particle 2 gains a positive orbital momentum and particle 4 gains a
negative OAM. However, the interval between azimuthal angles corresponding
to particles 1 and 3 is approximately one third of the period of fast angular os-
cillations in Fig. 7, while the interval between azimuthal angles corresponding
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Figure 8: Electron trajectories in the transverse plane x, y in the field of a chirped laser pulse
for the initial azimuthal angle θ0 = 1.14 (1, red) 1.18 (2, green), 1.25 (3, blue), 1.37 (4, purple)
and 1.42 (5, purple) for the initial radius kr0 = 40 and the following laser parameters: a0 = 1,
kw0 = 15π, ωtlas = 24π, p = 0, l = 1, C = 2, linear polarization, x-axis corresponds to the
direction of laser electric field. Particle moves from the top to the bottom.

to particles 3 and 5 is two-thirds of the period. Consequently, the average OAM
is negative. All considered particles are drifting perpendicularly to the laser
polarization, a small variation of the initial position affects the phase resonance
between the particle and the field and consequently to a rather different final
x-component of their momentum. There is no such fast nonlinear variation of
particle orbits in a laser pulse without angular-temporal coupling (C = 0). Cor-
respondingly, angular dependence of the orbital momentum is almost sinusoidal
and it averages to a much smaller value.

The effect of enhancement of the orbital momentum transfer in a stretched
laser pulse is present for all considered laser pulse amplitudes. The case C = ±2
gives an increase of orbital momentum transfer by a factor of more than twenty
without changing the axial momentum Pz and by slightly decreasing the radial
momentum Pr. It is therefore, a very efficient method of controlling the OAM
transfer from laser beam to electrons. Efficiency of axial and orbital momentum
transfer further increases in the domain of relativistic intensities: by increasing
laser amplitude five times from a0 = 1 to a0 = 5 the OAM transfer will be
increased by thousand times.

3.4. Energy distribution of accelerated electrons

A difference in the axial and orbital momenta transfer can be also understood
from analysis of the distribution function of accelerated particles shown in Fig. 9
for the case of a relativistic laser pulse a0 = 5 of a linear polarization with chirp
C = 2 and without chirp. The distributions can be partially interpolated with
simple exponential functions:

dN/dpz ≈ np exp(−pz/Ph), dN/dlz ≈ nl exp(−|lz|/Lh), (7)

with np ' nl and characteristic scales Ph and Lh, which are comparable to the
average momenta 〈pz〉 = Pz/πr

2
max and 〈lz〉 = Lz/πr

2
max.

In the case of non-stretched pulse, Ph = 0.8 and 〈pz〉 = 0.41. Laser beam
stretching only slightly increases the axial momentum with Ph = 1.3 and 〈pz〉 =
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Figure 9: Distribution of accelerated particles on axial (a, c) and orbital (b, d) momentum
for the following laser parameters: a0 = 5, kw0 = 15π, ωtlas = 24π, p = 0, l = 1, linear
polarization with chirps C = 0 (a, b) and C = 2 (c, d). Solid red lines – results of numerical
simulations with 40000 particles, thin blue lines – exponential interpolation with Th = 0.8
(a), Lh = 2.7 (b), Th = 1.3 (c) and Lh = 32 (d).

0.91. There is however, a significant difference in the orbital momentum. The
number of electrons with a positive orbital momentum is much larger but in
the case of non-stretched pulse Lh ' 2.7 and 〈lz〉 = 0.49 are comparable to
the corresponding axial quantities. However, in a stretched pulse, the electron
OAM is increased by a factor of more than ten: Lh ' 32 and 〈lz〉 = 22.9. This
is an evident effect of the azimuthal component of the laser ponderomotive force
facilitating the OAM transfer.

It is important to notice that in addition to a broad exponential distribution
of accelerated electrons, there is a group of fast electrons that carry a large axial
and orbital momentum. They are staying a long time within the pulse and are
accelerated directly by the laser field.

4. Discussion and conclusions

While the simple single particle model used in this paper allows to explore a
large range of laser pulse configurations, it ignores the collective plasma response
and, therefore, the results presented above apply to the conditions where such
collective effects can be neglected. This is the case of an underdense plasma
with density much smaller than the critical density, ne � nc. Two types of
collective effects can be considered: modification of the laser field and generation
of self-considered plasma fields. The energy and momentum transfer in these
conditions is small, so the depletion of laser pulse can be neglected and thus,

14



the laser field can be prescribed. Generation of internal plasma fields could be
an important effect if the laser field is sufficiently strong and plasma density
is sufficiently high. This effect has been demonstrated in full PIC simulations
of laser particle interaction and momentum transfer in Refs. [7, 8, 16]. Self-
consistent plasma fields confine the electrons expelled radially from the laser
pulse and facilitate the axial momentum transfer. However, their effect is less
significant for the orbital momentum transfer because the azimuthal plasma
fields are much weaker than the axial and radial field. Consequently, we assume
that the single particle model should be sufficiently accurate in laser interaction
with plasmas of density smaller than 1% of the critical density.

Transfer of kinetic momentum from electromagnetic wave to particles is a
fundamental process and it would be interesting to measure it experimentally.
It is however very inefficient for non-relativistic laser intensities, a0 ≤ 1. As a
figure of merit, for the reference case, 1µm laser wavelength and plasma with an
electron density ne ' 1019 cm−3, that is, 1% of the critical density, the electron
energy gain is ∼ 1.8 J/m and rate of OAM transfer is ∼ 1.7× 1015 J·s/m. That
means, that laser pulse will lose about 0.4% of its energy and momentum over a
distance of 0.1 mm. A tighter laser focusing, increase of laser intensity and use
of stretched laser pulses with angular-temporal coupling change significantly the
situation. An increase of laser amplitude by five times to a0 = 5 will increase
the momentum transfer, both axial and orbital, by more than hundred times.
By using pulse with C = 2 it is possible to boost the OAM transfer by twenty-
thirty times more, while keeping the energy and axial momentum unchanged
or even decreased. Thus, a significant part of laser OAM can be transferred to
electrons over a distance less than a hundred wavelengths.

OAM transfer could be used for an efficient generation of axial magnetic
fields in plasma. Electron motion is associated with electric currents and axial
and azimuthal electron propagation leads to generation an azimuthal and axial
magnetic fields. Using the values obtained in a single-particle approach for
estimation, in relativistic dimensionless units (magnetic field is normalized by
the Compton field meω/e), equations for the magnetic fields read:

dBz
dr

=
ne
nc

l̄z
rγ
,

d(rBθ)

dr
= −ne

nc

p̄zr

γ
.

Consequently, generated magnetic field has a helical structure, which can be
measured with imaging test particle propagation through the focal spot after
the end of laser pulse.

The structure of magnetic field depends on the radial distribution of elec-
tron momenta. In the case of a linearly polarized and non-stretched laser pulse,
according to Fig. 1b, axial and orbital moments are of the same order and are
localized in a ring of radius ∼ w0 and width ∆r ∼ w0. In this case, shown
Fig. 10a for a0 = 5 and ne/nc = 0.01, the axial magnetic field of a strength
Bz ∼ −(ne/ncγ)Lz/w

2
0 is localized essentially inside the ring of the current.

By contrast, the azimuthal magnetic field is significantly stronger and it is lo-
calized outside the current ring and its intensity decreases with radius, Bθ ∼
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Figure 10: Radial distribution of the estimated axial (red) and azimuthal (blue) magnetic
fields for the following laser parameters: a0 = 5, kw0 = 15π, ωtlas = 24π, p = 0, l = 1, linear
polarization with C = 0 (a) and C = 2 (b). Plasma density is 1% of the critical density, axial
field in panel a is multiplied by a factor of 30 for visibility.

−(ne/ncγ)Pz/r. However, in this case the azimuthal field dominates and the
axial field is about 30 times weaker. The use of a stretched laser beam, as
shown in Fig. 10b, does not affect the outside azimuthal magnetic field but it
strongly enhances the inside axial magnetic field, which becomes of the same
order as the azimuthal field. The axial magnetic field can be used for particle
guiding along the laser beam axis. In the example of magnetic field distribution
in a plasma shown in Fig. 10, the axial magnetic field strength is . 0.01 in
the dimensionless units or about 50 T in the case of C = 0, while it increases
about 50 times, that is, more than 1 kT, in the case of a stretched pulse C = 2.
This value is larger than magnetic fields produced with optical methods in vac-
uum [17] and comparable to the magnetic fields in plasma proposed by other
optical schemes [18].
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Appendix A. Expressions for the axial components of electric and
magnetic field of a focused laser pulse

Expressions for the axial components of a Laguerre–Gaussian laser beam are
calculated in the first paraxial approximation (terms on the order of 1/kw0 and
1/ωtlas) assuming divE = 0 and divB = 0. In the case of linear polarization
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(LP) (3) we have:

Ez = −a(z)

(
f ′(r) g(τ) cos θ +

C

2πr
f(r) g′(τ) sin θ

)
sin(lθ + ϕp,l)

+ a(z) f(r) g(τ)

(
l

r
sin θ − rz

zRw2
b

cos θ

)
cos(lθ + ϕp,l), (A.1)

Bz = −a(z)

(
f ′(r) g(τ) sin θ − C

2πr
f(r) g′(τ) cos θ

)
sin(lθ + ϕp,l)

− a(z) f(r) g(τ)

(
l

r
cos θ +

rz

zRw2
b

sin θ

)
cos(lθ + ϕp,l), (A.2)

where f ′ and g′ are derivatives of functions f and g over their respective argu-
ments.

Similarly, for a circularly polarized (CP) laser pulse (4), the axial field com-
ponents write:

Ez = −a(z)√
2

(
f ′(r)− s l

r
f(r)

)
g(τ) sin[(l + s)θ + ϕp,l]

+
a(z)√

2
f(r)

(
sC

2πr
g′(τ)− rz

zRw2
b

g(τ)

)
cos[(l + s)θ + ϕp,l], (A.3)

Bz =
a(z)√

2

(
s f ′(r)− l

r
f(r)

)
g(τ) cos[(l + s)θ + ϕp,l]

+
a(z)√

2
f(r)

(
C

2πr
g′(τ)− s rz

zRw2
b

g(τ)

)
sin[(l + s)θ + ϕp,l]. (A.4)

For a radially polarized (RP) laser pulse (5), the axial field components
write:

Ez = −a(z)

[(
f ′(r) +

1

r
f(r)

)
g(τ) cosα+

C

2πr
f(r) g′(τ) sinα

]
sin(lθ + ϕp,l)

+ a(z) f(r) g(τ)

(
l

r
sinα− rz

zRw2
b

cosα

)
cos(lθ + ϕp,l), (A.5)

Bz = −a(z)

[(
f ′(r) +

1

r
f(r)

)
g(τ) sinα− C

2πr
f(r) g′(τ) cosα

]
sin(lθ + ϕp,l)

− a(z) f(r) g(τ)

(
l

r
cosα+

rz

zRw2
b

sinα

)
cos(lθ + ϕp,l). (A.6)

Appendix B. Results of numerical simulations of momentum and en-
ergy transfer

Here we present for reference the results of numerical simulations of single
particle motion averaged over the azimuthal and radial initial positions.
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a0 l Pz Lz

0.1 0 0.245 0

0.3 0 3.16 0

1.0 0 154 0

3.0 0 8.04× 103 0

10.0 0 1.18× 105 0

0.1 1 0.144 0.424

0.3 1 2.08 3.98

1.0 1 96.0 125

3.0 1 5.41× 103 6.26× 103

10.0 1 1.12× 105 1.31× 105

0.1 2 0.157 0.625

0.3 2 1.48 6.19

1.0 2 62.8 161

3.0 2 4.04× 103 8.29× 103

10.0 2 1.16× 106 2.52× 105

Table B.2: Dependence of the axial and orbital momenta of electron on the laser amplitude
varying from a0 = 0.1 to a0 = 10 for a linearly polarized beam with the following parameters:
kw0 = 15π, ωtlas = 24π, p = 0 and C = 0. Electron energy is approximately equal to the
axial momentum.

C l Pz Lz Ee
0 -1 103 -87.3 103

0 0 143 64.7 143

0 1 79.7 144 79.7

0 2 62.8 203 62.8

-2.5 1 56.1 2150 79.1

-2.0 1 44.5 1700 83.5

-1.5 1 56.1 766 81.0

-1.0 1 73.5 99.2 80.4

-0.5 1 79.1 48.1 79.8

0.5 1 79.1 393 79.8

1.0 1 74.7 414 77.9

1.5 1 58.6 207 78.5

2.0 1 44.5 -605 79.8

2.5 1 52.4 -929 74.7

Table B.3: Dependence of the axial and orbital momenta of electron and its energy on the
laser orbital momentum l and stretching parameter C for a circularly polarized beam with
the following parameters: a0 = 1, kw0 = 15π, ωtlas = 24π and p = 0. Some data are shown
in Fig. 2.
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