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The dimension reduction for the non-stationary time periodic Navier-Stokes equations in thin structures leads to a non-local in time Reynolds type equation on the graph with Kirchhoff type junction conditions in the vertices. The existence and uniqueness of a solution to this problem is proved. 1 Introduction. Main definitions The Newtonian flows in tube structures were considered in [6], [2], [7], [8], [9], [10], [11],

[3]. These domains are finite connected unions of thin cylinders (in the two-dimensional case respectively thin rectangles). Such tube structure is represented by its graph: if the diameter of cross-sections of cylinders tends to zero then the tubes degenerate and "tend" to the edges of the graph. In the case of stationary Navier-Stokes equations set in a thin structure we can derive for the pressure a second order ordinary differential equations at the edges of the graph and some Kirchoff-type junction conditions at the nodes (see

 [START_REF] Panasenko | Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure[END_REF], [START_REF] Blanc | Asymptotic analysis and partial asymptotic decomposition of the domain for Stokes equation in tube structure[END_REF], [START_REF] Panasenko | Multi-scale Modeling for Structures and Composites[END_REF], [START_REF] Panasenko | Flows in a tube structure: equation on the graph[END_REF]). In the non-stationary case for the initial-boundary value problem for the Navier-Stokes equations the equation on the graph becomes non-stationary and non-local in time (see [START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure[END_REF]). It is explained by a non-local in time relations between the pressure slope and the flow rate in an infinite cylinder in this case (see [START_REF] Beirao | On time periodic solutions of the Navier-Stokes equations in an unbounded cylindrical domains. Leray's problem for periodic flows[END_REF], [START_REF] Galdi | The relation between flow rate and and axial pressure gradient for time periodic Poiseuille flow in a pipe[END_REF] for the time-periodic flow). In the present paper we introduce the periodic in time onedimensional model on the graph for a pipe-wise network. This model was derived from the non-stationary time periodic Navier-Stokes equation in a tube structure when the time derivative has large coefficient (fast periodic oscillations) [START_REF] Juodagalvyté | Time periodic Navier-Stokes equations in a thin tube structure[END_REF]. Below we study the existence and uniqueness of a solution of the time-periodic problem on the graph.

Let us remind the definition of the graph of a tube structure. Consider N different points in R n , n = 2, 3,: O 1 , O 2 , . . . , O N , let e 1 , e 2 , . . . , e M be M closed segments called edges such that every segment connects two points of the list: e j = O i j O k j , where i j , k j ∈ {1, . . . , N }, i j = k j . Each point O i of the list is an end point of some edge.

A point O i is called node if it is the common end of at least two edges and O i is called vertex if it is the end of the only one edge. Any two edges e j and e i can intersect only at the common node. Assume that there exists at least one vertex.

The graph is a connected union of all edges: B = Let T be a positive number. The notation V per (0, T ) means that elements of this space are T -periodic functions, i.e., u( •, t) = u( •, t + T ) ∀t ∈ R. Consider two spaces of periodic functions: L 2 per (0, T ) and H 1 per (0, T ). The spaces L 2 per (0, T ) and H 1 per (0, T ) are supplied with the inner product of L 2 (0, T ) and H 1 (0, T ), respectively.

Let τ (e) ⊂ R n-1 be a bounded domain with Lipschitz boundary ∂τ (e) , associated to some edge e. Denote by L (e) the operator relating the pressure slope S and the time-periodic flux H in an infinite cylindrical pipe with section τ (e) . Namely, consider the following periodic in time heat equation in the domain τ (e) : for given function

S ∈ L 2 per (0, T ) find V ∈ L 2 per (0, T ; H 1 0 (τ (e)
)) with

∂V ∂t ∈ L 2 per (0, T ; L 2 (τ (e)
)) such that ∂V ∂t (y (e) , t) -ν∆ y (e) V (y (e) , t) = S(t), y (e) ∈ τ (e) , t > 0,

V (y (e) , t)| ∂τ (e) = 0.

(

) 1 
Denote

L (e) S(t) = τ (e)
V (y (e) , t)dy (e) .

Obviously, L (e) is bounded linear operator acting from L 2 per (0, T ) to H 1 per (0, T ). It is also proved in [START_REF] Beirao | On time periodic solutions of the Navier-Stokes equations in an unbounded cylindrical domains. Leray's problem for periodic flows[END_REF], [START_REF] Galdi | The relation between flow rate and and axial pressure gradient for time periodic Poiseuille flow in a pipe[END_REF] that L (e) has the bounded inverse (L (e) ) -1 : L 2 per (0, T ) -→ H 1 per (0, T ).

Theorem 1. Let H ∈ H 1 per (0, T ) be given. There exists a unique couple (V, S) satisfying in the sense of distributions (1) and the flux condition

τ (e)
V (y (e) , t)dy (e) = H(t).

Moreover, V ∈ L 2 per (0, T ; H 1 0 (τ (e) )), ∂V ∂t ∈ L 2 per (0, T ; L 2 (τ (e)
)), S ∈ L 2 per (0, T ), and the following estimates

V L 2 (0,T ;H 1 0 (τ (e) )) + ∂V ∂t L 2 (0,T ;L 2 (τ (e) )) + S L 2 (0,T ) ≤ c H H 1 (0,T ) , (2) 
C -1 e Q L 2 (0,T ) ≤ L (e) Q H 1 (0,T ) ≤ C e Q L 2 (0,T ) , ∀Q ∈ L 2 per (0, T ), (3) 
hold.

Here C e is a positive constant depending on τ (e) and T .

Introduce the notation: U (e) (y (e) )dy (e) > 0 and U is the solution (unique) to the problem -ν∆ y (e) U (e) (y (e) ) = 1, y (e) ∈ τ (e) , U (e) (y (e) )| ∂τ (e) = 0.

< • >= 1 T T 0 • dt.
Proof. Integrating (1) by t over the interval [0, T ] and using the time periodicity of the solution, we get

-ν∆ y (e) < V > (y (e) ) =< S >, y (e) ∈ τ (e) , < V > (y (e) )| ∂τ (e) = 0,
and, hence < V >=< S > U (e) . Then

< L (e) S >= τ (e) < V > (y (e) )dy (e) =< S > τ (e)
U (e) (y (e) )dy (e) = κ (e) < S > .

Corollary 1. < L (e) S >= 0 if and only if < S >= 0.

Corollary 2. For any constant C there holds the equality:

L (e) (C) = κ (e) C.
Proof. It is straightforward to check that

L (e) (1) = τ (e)
U (e) (y (e) )dy (e) = κ (e) , and by linearity of the operator L (e) we get the assertion of the corollary.

2 Formulation of the time periodic problem for macroscopic pressure on the graph Let us introduce functions Ψ l ∈ H 1 per (0, T ), l = 1, ..., N, and F (e i ) ∈ H 1 per (0, T ; L 2 (B)), i = 1, ..., M . Consider the following problem: find a function p ∈ L 2 per (0, T ; H 2 (B))

satisfying the following equations on the edges and junction conditions at the nodes and vertices:

- ∂ ∂x (e) n L (e) ∂p ∂x (e) n (x (e) n , t) = F (e) (x (e) n , t), x (e) 
n ∈ (0, |e|), ∀e = e j , j = 1, ..., M,

- e:O l ∈e L (e) ∂p ∂x (e) n (0, t) = Ψ l (t), l = 1, ..., N 1 , -L (e) ∂p (e) ∂x (e) n (0, t) = Ψ l (t), l = N 1 + 1, ..., N. (4) 
Here equation ( 4 

Existence and uniqueness of the solution

Let us prove that problem (4) admits a unique solution vanishing at the vertex O N , if the following compatibility condition

M i=1 |e i | 0 F (e i ) dx (e i ) n + N l=1 Ψ l (t) = 0, (5) 
holds for almost all t ∈ [0, T ].

Differentiating relations (4) with respect to time t, multiplying by ψ ∈ L 2 per (0, T ; H 1 (B)) and integrating by parts in B × (0, T ), we obtain the following variational formulation: to find a function p ∈ L 2 per (0, T ; H 1 (B)) satisfying the integral identity

α T (p, ψ) = β T (ψ), ∀ψ ∈ L 2 per (0, T ; H 1 (B)), (6) 
where

α T (p, ψ) = M i=1 T 0 |e i | 0 ∂(L (e i ) p) t ∂x (e i ) n ∂ψ ∂x (e i ) n
dx (e i ) n dt and

β T (ψ) = M i=1 T 0 |e i | 0 (F (e i ) ) t ψdx (e i ) n dt + N l=1 T 0 (Ψ l ) t (t)ψ(O l , t)dt.
Here g t = ∂g ∂t . Let us study this auxiliary problem.

Lemma 1. Suppose that the compatibility condition (5) is valid. Then for any given Ψ l ∈ H 1 per (0, T ), l = 1, ..., N, and F (e i ) ∈ H 1 per (0, T ; L 2 (B)), i = 1, ..., M , there exists a unique function p 0 ∈ L 2 per (0, T ; H 1 (B)) satisfying the integral identity (6), vanishing at the vertex O N and having mean value zero in time: p 0 (O N , t) = 0, p 0 = 0. Any solution p to problem (6) has the form: p(x, t) = p 0 (x, t) + φ(x) + ψ(t), where φ ∈

H 1 (B), ψ ∈ L 2 per (0, T ).
Proof. We will use the Lax-Milgram lemma argument and inequality (3). Consider the subspace H 1 0,N (B) of functions belonging to H 1 (B) and vanishing at the vertex O N , and the subspace L 2 per (0, T ; H 1 0,N (B)) of the space L 2 per (0, T ; H Let us check, using [START_REF] Bunoiu | Asymptotic analysis of a Bingham fluid in a thinT-like shaped structure[END_REF], that α T is a bilinear form continuous with respect to the norm of L per (0, T ; H 1 0,N (B)) and that β T is a bounded linear functional:

|α T (p, ψ)| ≤ M i=1 T 0 |e i | 0 ∂(L (e i ) p) t ∂x (e i ) n 2 dx (e i ) n dt M i=1 T 0 |e i | 0 ∂ψ ∂x (e i ) n 2 dx (e i ) n dt ≤ max 1≤j≤M C e j M i=1 T 0 |e i | 0 ∂p t ∂x (e i ) n 2 dx (e i ) n dt M i=1 T 0 |e i | 0 ∂ψ ∂x (e i ) n 2 dx (e i ) n dt.
The boundedness of β T follows from the Poincaré-Friedrichs inequality in the space H 1 0,N (B) and the inclusion of the space H 1 0,N (B) into C(B).

The coerciveness of α T is a consequence of the following estimates, which hold for any edge e and any time periodic solution (V (y (e) , t), S) of (1) :

T 0 (L (e) S) t Sdt = T 0 τ (e) (V (y (e) , t)) t Sdy (e) dt = T 0 τ (e) (V (y (e) , t)) t ) 2 + ν 2 ∂ ∂t ∇ y (e) V (y (e) , t) 2 dy (e) dt = T 0 τ (e) (V (y (e) , t)) t 2 dy (e) dt ≥ 1 |τ (e) | T 0 τ (e) ((V (y (e) , t)) t dy (e) 2 dt = 1 |τ (e) | T 0 (L (e) S) t 2 dt.
Note that L (e) S = 0. Thus, by the Poincaré inequality and (3),

1 |τ (e) | T 0 (L (e) S) t 2 dt ≥ 1 2|τ (e) | T 0 (L (e) S) t 2 dt + 1 T 2 |τ (e) | T 0 L (e) S 2 dt ≥ min( 1 2 , 1 T 2 ) C -2 e |τ (e) | T 0 |S(t)| 2 dt.
Finally, we get

α T (p, p) ≥ min( 1 2 , 1 T 2 ) min i=1,...,M C -2 e i max i=1,...,M |τ (e i ) | p, p T , (7) 
where

p, ψ T = M i=1 T 0 |e i | 0 ∂p ∂x (e i ) n ∂ψ ∂x (e i ) n
dx (e i ) n dt.

Thus, the existence and uniqueness of the solution p 0 of the projection of problem (6) onto the subspace L 2 per (0, T ; H 1 0,N (B)) follows form the Lax-Milgram lemma. Let us check that (6) still remains to hold for any test function from L 2 per (0, T ; H 1 (B)) (i.e., without assuming test functions to be zero at the vertex O N ). Indeed, if a test function ψ ∈ L 2 per (0, T ; H 1 (B)), then (6) holds for the function ψ(x, t) -ψ(O N , t). But, obviously, α T (p, ψ(O N , t)) = 0 and, due to the compatibility condition (5), β T (ψ(O N , t)) = 0. If a test function belongs to L 2 per (0, T ; H 1 (B)) (i.e., has nonzero mean value), we can take in (6) the function ψ(x (e) n , t)-< ψ > (x (e) n ). Due to periodicity in time, for any function η(x (e) n ) independent of t we have α T (p, η) = 0 and β T (η) = 0 (this follows by integrating by parts in the variable t). Thus, ( 6) is valid for every ψ ∈ L 2 per (0, T ; H 1 (B)). Consider two solutions p 1 and p 2 of problem [START_REF] Panasenko | Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure[END_REF]. Then the difference p 1 -p 2 can be presented in the form

p 1 (x, t)-p 2 (x, t) = P (x, t)+ p 1 -p 2 (x)+(p 1 (O N , t)-p 2 (O N , t)-p 1 (O N , t)-p 2 (O N , t) ),
where P is a solution to the homogeneous problem [START_REF] Panasenko | Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure[END_REF] vanishing at the vertex O N and having vanishing mean value in time. Such solution is unique, so P = 0. Therefore, any solution of problem ( 6) has a form p(x, t) = p 0 (x, t) + φ(x) + ϕ(t), where p 0 ∈ L 2 (0, T ;

H 1 0 (B)), φ ∈ H 1 (B), ϕ ∈ L 2 per (0, T ).
The proved lemma gives the existence of a solution to the variational formulation [START_REF] Panasenko | Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure[END_REF] of problem (4) differentiated with respect to t. Now we have to return to the original (before the differentiating in time) formulation of problem (4) and to prove the existence of its solution and its regularity with respect to x.

Theorem 3. Let the compatibility condition (5) holds. Then problem (4) admits a solution p ∈ L 2 (0, T ; H 1 0 (B)). The solution is unique up to an additive function ϕ from the space L 2 per (0, T ) depending only on the time variable t.

Proof. 1. Consider an arbitrary edge e i and take a test function having a compact support belonging to this edge. Then identity (6) reads as

T 0 |e i | 0 ∂(L (e i ) p) t ∂x (e i ) n ∂ψ ∂x (e i ) n dx (e i ) n dt = T 0 |e i | 0 (F (e i ) ) t ψdx (e i ) n dt.
This yields that for almost all t and for any smooth test function ψ depending on x only and having the support belonging to e i , holds the identity

|e i | 0 ∂(L (e i ) p) t ∂x (e i ) n ∂ψ ∂x (e i ) n dx (e i ) n dt = |e i | 0 (F (e i ) ) t ψdx (e i ) n dt.
which admits a unique (up to an additive function of t ) solution (see [START_REF] Panasenko | Flows in a tube structure: equation on the graph[END_REF]). So, the solution to problem (4) is a sum of the solution to problem (6) and of the solution to problem [START_REF] Panasenko | Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe[END_REF]. Thus, we proved the existence of solution to (4).

4. The uniqueness up to an additive function of time can be proved as follows.

Consider solutions p 1 and p 2 to problem [START_REF] Panasenko | Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe[END_REF]. Their difference p 1 -p 2 satisfies the homogeneous problem [START_REF] Panasenko | Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure[END_REF], and can be represented as the sum: (p 1 -p 2 )(x, t) = φ(x) + ψ(t), where φ ∈ H 1 (B), ψ ∈ L 2 per (0, T ), φ is a stationary solution to problem [START_REF] Panasenko | Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure[END_REF]. According to Corollary 2, φ is a solution to the homogeneous problem [START_REF] Panasenko | Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe[END_REF]. From [START_REF] Panasenko | Flows in a tube structure: equation on the graph[END_REF] it follows that φ = const, so φ + ψ is a function of L 2 per (0, T ).

Remark 1. Note that the condition ( 5) is a necessary and sufficient condition of existence of T -periodic in time solution of problem (4). Indeed, integrating the equation ( 4) 1 over B we obtain condition [START_REF] Juodagalvyté | Time periodic Navier-Stokes equations in a thin tube structure[END_REF].
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  j . Let x ∈ R n . Denote x = (x 1 , ..., x n-1 ). The union of all edges having the same end point in O l is called the bundle B (l) . Consider an edge e = O i O j . Let us introduce two local Cartesian coordinate systems in R n . The first one has the origin in O i and the axis O i x (e) n has the direction of the ray [O i O j ) while the second one has the origin in O j and the opposite direction. Denote the local variable in both cases as x (e) . Let us introduce an operator expressing the relation between the pressure slope and the time periodic flux in an infinite cylinder.

Theorem 2 .

 2 The following formula < L (e) S >= κ (e) < S >, is valid, where κ (e) = τ(e) 

  ) 1 holds on each edge e of B, condition (4) 2 holds at each node O l with the sum taken over all edges having O l as an end point (i.e. over all edges of B (l) ), condition (4) 3 is a Neumann type boundary condition which holds at each vertex O l . In conditions (4) 2 and (4) 3 the local coordinate system has the origin O l . This problem is a one-dimensional model for the macroscopic pressure defined on the graph B; the righthand sides stand for the sources. The pressure is supposed to be a continuous function on the graph because it belongs to H 1 (B), however at the nodes one can consider some given jumps of the pressure. This generalized setting can be reduced to (4) by a change of the unknown function and the right-hand sides.

0 L

 0 1 0,N (B)) with elements ψ having vanishing mean value in time < ψ >= 0 ( i.e., ψ satisfies relation T (e) ψ dt = 0, see Corollary 1).

This last identity corresponds to the definition of a weak derivative for functions from H 1 (e i ) and means that -(F (e i ) ) t is a weak derivative of ∂(L