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INTRODUCTION

During the last decade, the availability of data in the clinical microbiology (CM) laboratory has substantially increased with technological advances such as Matrix-assisted laser desorption ionization -time of flight (MALDI-TOF) mass spectrometry (MS), the rise of whole genome sequencing (WGS) and the access to microbiota data by next-generation sequencing. The optimal analysis and interpretation of this increasingly complex and large data, called 'big data', often outdoes human abilities and requires the use of tools such as machine learning (ML). Unlike expert systems which are based on the programming of a set of rules, ML algorithms are able to define their own rules directly from the data (Figure 1). For example, to differentiate bacteria in the direct Gram stain, an expert system will require humans to program rules (e.g. if the shapes are round, they are cocci), whereas a ML algorithm will find itself a set of rules by analysing a large number of microscopic images labelled with Gram results. However, those rules may have no biological meaning nor may they be accounted for. The ability of the machine to learn, i.e. to define more accurate rules, is driven by the volume and quality of data provided, that is why ML systems are sometimes called dataintensive systems.

ML systems have been sprouting in many fields of medicine and the first FDA approval for an autonomous artificial intelligence system took place in 2018 with a ML system used to detect diabetic retinopathy in retinal fundus photographs.(1) Despite many studies describing the technical performance of ML systems, few are reporting the adoption of such tools in real-life settings, [START_REF] Beam | Translating Artificial Intelligence Into Clinical Care[END_REF][START_REF] Topol | High-performance medicine: the convergence of human and artificial intelligence[END_REF] confirming the existing gap between the development of innovations in medicine and their adoption in the routine clinical practice. [START_REF] Bates | Ten Commandments for Effective Clinical Decision Support: Making the Practice of Evidence-based Medicine a Reality[END_REF][START_REF] Morris | The answer is 17 years, what is the question: understanding time lags in translational research[END_REF] In infectious diseases, a recent review reported 60 ML decision support systems among which only three were tested in clinical practice. [START_REF] Peiffer-Smadja | Machine learning for clinical decision support in infectious diseases: a narrative review of current applications[END_REF] Moreover, innovations in healthcare have often been implemented without evidence supporting pre-intervention analysis and before an in-depth analysis of the need and requirements, often resulting in a limited uptake in clinical practice. [START_REF] Rawson | A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately?[END_REF][START_REF] Liberati | What hinders the uptake of computerized decision support systems in hospitals? A qualitative study and framework for implementation[END_REF] Particularly, clinical microbiologists' needs and expectations from ML systems, and how they can be integrated into the routine practices have not been assessed so far.

The CM laboratory, at the interface of clinical practice and diagnostics, is of special interest for the development of ML tools. This narrative review describes the characteristics, objectives and assessment of ML systems designed to assist clinical microbiologists in the diagnosis of infections, the identification and quantification of micro-organisms and the analysis of antimicrobial susceptibility.

MATERIAL AND METHODS

Search strategy

References for this review were identified through searches of MEDLINE/PubMed, EMBASE, Google Scholar, biorXiv, arXiv, ACM Digital Library and IEEE Xplore Digital Library for articles by use of a combination keywords referring to ML ("artificial intelligence", "artificial learning", "machine learning", "machine intelligence", "supervised learning", "unsupervised learning", "deep learning", "bayesian learning", "statistical learning", "neural network", "probabilistic networks", "knowledge representation") AND clinical microbiology keywords ("microbiology", "bacteriology", "parasitology", "virology", "mycology", "clinic*") AND diagnostics keyword ("diagno*") (Supplementary material). We have included articles resulting from these searches up to November 2019 and added relevant references found in recent reviews. [START_REF] Peiffer-Smadja | Machine learning for clinical decision support in infectious diseases: a narrative review of current applications[END_REF][START_REF] Macesic | Machine learning: novel bioinformatics approaches for combating antimicrobial resistance[END_REF][START_REF] Su | Genome-Based Prediction of Bacterial Antibiotic Resistance[END_REF][START_REF] Zazzi | Computer-Aided Optimization of Combined Anti-Retroviral Therapy for HIV: New Drugs, New Drug Targets and Drug Resistance[END_REF][START_REF] Qu | Application of Machine Learning in Microbiology[END_REF][START_REF] Putignani | Potential of multiomics technology in precision medicine[END_REF][START_REF] Tice | Machine Learning in Microbiology: Finding the Signal in the Noise[END_REF] 

Study selection

Prospective and retrospective articles in English that reported original research on ML for microbiological diagnostics were included. We included development reports, implementation studies, clinical trials or qualitative studies of ML systems that could potentially be used in routine by a CM laboratory. We excluded studies that described expert systems (defined by the use of manually programmed rules), ML systems used for research purpose with no relevance in the clinical laboratory, systems for treatment optimisation (e.g. guiding antibiotic selection) and systems using data not accessible to clinical microbiologists (e.g. biochemical markers).

Analysis of the selected articles

Each article was classified according to its overarching objective into (i) micro-organisms detection, identification and quantification, (ii) evaluation of antimicrobial susceptibility (iii) diagnosis, disease classification and clinical outcomes. We then detailed the precise outcome of the ML system (e.g. prediction of capreomycin resistance in Mycobacterium species) and the data sources used by the system (e.g. WGS, MALDI-TOF MS, etc.). We analysed whether the studies described the performance (e.g. sensitivity and specificity) of the diagnostic system, the implementation and adoption of the system in routine clinical microbiology practice or the impact of the system on the microbiology laboratory processes or on patients' clinical outcomes.

Definitions of learning methods

The different ML systems described in the reviewed articles were classified into supervised learning, unsupervised learning and reinforcement learning (Figure 1).( 15) Supervised learning refers to algorithms using labelled data, i.e. data in which the outcome of interest is defined, as a training dataset. For example, to train an algorithm for predicting carbapenem resistance, a dataset in which bacteria are already defined as carbapenem resistant or susceptible has to be used. In unsupervised learning, data are used without any predefined outcome of interest and algorithms are left to their own to find patterns and to extract hidden structure from data without any expert labelling. Reinforcement learning involves algorithms discovering actions that yield the greatest rewards through trial and error.( 16)

RESULTS

Characteristics of ML systems for clinical microbiology

Among the 141 articles identified and assessed for eligibility, 38 were excluded: 18 with ML system adapted for clinicians, 12 with outcomes not relevant to clinical practice and 8 using data not accessible to clinical microbiologists.

In total, 103 articles with 97 unique ML systems for clinical microbiology were included in the review. Sixty-four articles were found in MEDLINE/PubMed, 14 in IEEE Xplore Digital Library, 14 in free repository of electronic preprints such as arXiv (n = 7) or bioRxiv (n = 7), eight in Google Scholar and three in ACM Digital Library. The general characteristics of the ML systems are summarized in Table 1 and detailed in the supplementary material.

Overall, 82 (85%) ML systems targeted bacterial infections, 11 (11%) parasitic infections, nine (9%) viral infections and three (3%) fungal infections (some ML systems targeted more than one type of micro-organisms). More precisely, 40 (41%) ML systems focused on microorganisms detection, identification and quantification, 36 (37%) evaluated antimicrobial susceptibility, 21 (22%) targeted diagnosis, disease classification and prediction of clinical outcomes (Table 2).

To achieve these aims, the ML systems used very diverse sources of data: 21 (22%) used WGS of micro-organisms, 19 (20%) microbiota data obtained by shotgun metagenomic sequencing, 19 (20%) analysed microscopic images, 17 (18%) spectroscopy data, eight (8%) targeted gene sequencing, six (6%) volatile organic compounds (the components of odour), four (4%) bacterial colonies photographs, four (4%) transcriptome data, three (3%) protein structure and three (3%) clinical data (Figure 2).

The vast majority of ML systems used supervised learning (n=96, 99%) whereas 6 (6%) used unsupervised learning, all but one in association with supervised learning. No ML system used reinforcement learning. Overall, 34 different ML techniques were used with 40 (41%) systems using more than one ML technique (median 3, IQR 2-4). The most frequent ML techniques were Artificial Neural Network (n=46, 47%) including 15 Convolutional Neural Networks, Support Vector Machine (n=34, 35%), Random Forest (n=28, 29%), and Logistic Regression (n=11, 11%) (Table 1).

Most articles were published using high-income countries (HIC) data (n=71, 73%) but a significant number of ML systems were developed with low-and middle-income countries (LMIC) data (n=36, 37%). Only one ML system was reported to be used in clinical practice in the UK. [START_REF] Burton | Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections[END_REF] This system aimed to screen urine samples in order to decide which ones should be discarded because of a low probability of positivity. The authors analysed 212,554 urine reports including clinical data and described a potential relative workload reduction of 41%. However, the authors did not give any detail on the implementation of the system and its actual impact. The 96 other ML systems only reported performance measures such as sensitivity and specificity.

Micro-organisms detection, identification and quantification

Forty algorithms (41%) aimed to detect, identify or quantify micro-organisms (Table 2).

Among them, 15 ML systems analysed data from cultured bacteria including photographs,(18-20) Fourier-transform infrared spectroscopy [START_REF] Lasch | FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria[END_REF][START_REF] Bosch | Fourier Transform Infrared Spectroscopy for Rapid Identification of Nonfermenting Gram-Negative Bacteria Isolated from Sputum Samples from Cystic Fibrosis Patients[END_REF] or volatile organic compounds [START_REF] Petrounias | A Software Engineering Framework for Biomedical Diagnostic Systems[END_REF][START_REF] Fend | Prospects for Clinical Application of Electronic-Nose Technology to Early Detection of Mycobacterium tuberculosis in Culture and Sputum[END_REF] of bacterial colonies. Eight ML systems were developed to identify the bacteria by direct analysis of clinical samples, with volatile organic compounds for diabetic foot infection [START_REF] Yusuf | In-vitro diagnosis of single and poly microbial species targeted for diabetic foot infection using e-nose technology[END_REF] or tuberculosis [START_REF] Fend | Prospects for Clinical Application of Electronic-Nose Technology to Early Detection of Mycobacterium tuberculosis in Culture and Sputum[END_REF], 16S ribosomal DNA PCR on respiratory samples for LRTI, [START_REF] Senescau | Innovative DendrisChips® Technology for a Syndromic Approach of In Vitro Diagnosis: Application to the Respiratory Infectious Diseases[END_REF] or fluorescent microscopic images for tuberculosis.( 27) However, among these 23 systems the bacteria that could be identified were limited to a small number of species (median 3, IQR 7-15). Some ML systems aimed to reduce the time between sampling and microbiological diagnosis. Researchers recently reported the use of Raman optical spectroscopy of a single bacterial colony in suspension coupled with ML to identify a micro-organism among 30 bacterial and yeast species. [START_REF] Ho | Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning[END_REF] This system could also be used to differentiate between MRSA and MSSA. However, its use with biological liquids rather than with a prepared suspension of bacteria has yet to be evaluated. Andini et al. described an internal transcribed spacer high resolution melt assay that can differentiate between 89 bacterial species. [START_REF] Andini | Microbial Typing by Machine Learned DNA Melt Signatures[END_REF] Using ML, they identified the bacterial species in 59 culture-positive monobacterial blood culture samples with 90% accuracy within 3 hours. A recent article described using the same ML system for antimicrobial susceptibility testing (detecting aminoglycosides resistance in Escherichia coli and Staphylococcus aureus). [START_REF] Athamanolap | Machine Learning-Assisted Digital PCR and Melt Enables Broad Bacteria Identification and Pheno-Molecular Antimicrobial Susceptibility Test[END_REF] For parasitic diseases, the systems used microscopic images of blood smears to detect Plasmodium species [START_REF] Li | Octopi: Open configurable high-throughput imaging platform for infectious disease diagnosis in the field[END_REF][START_REF] Gopakumar | Automatic Detection of Malaria Infected RBCs from a Focus Stack of Bright Field Microscope Slide Images[END_REF][START_REF] Delahunt | Fully-automated patient-level malaria assessment on field-prepared thin blood film microscopy images, including Supplementary Information[END_REF][START_REF] Rahman | Improving Malaria Parasite Detection from Red Blood Cell using Deep Convolutional Neural Networks[END_REF][START_REF] Kunwar | Malaria Detection Using Image Processing and Machine Learning[END_REF][START_REF] Das | Machine learning approach for automated screening of malaria parasite using light microscopic images[END_REF][START_REF] Ross | Automated image processing method for the diagnosis and classification of malaria on thin blood smears[END_REF], mostly Plasmodium falciparum, and microscopic images of stools to identify intestinal helminths. [START_REF] Viet | Parasite Worm Egg Automatic Detection in Microscopy Stool Image Based on Faster R-CNN[END_REF][START_REF] Yang | Automatic identification of human helminth eggs on microscopic fecal specimens using digital image processing and an artificial neural network[END_REF] Although the reported performances were correct (reported sensitivity between 85% and 99% and specificity between 95% and 99%) for these articles, the exclusion of smears that are difficult to interpret and the use of manually cropped images currently limit the use of ML systems in this field. One article described the use of quantitative phase spectroscopy to detect P. falciparum but used one single strain. [START_REF] Park | Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells[END_REF] Only two ML systems focused on mycology, both using very limited datasets to identify Candida species on culture. [START_REF] Turra | Hyperspectral image acquisition and analysis of cultured bacteria for the discrimination of urinary tract infections[END_REF][START_REF] Zieliński | Deep learning approach to description and classification of fungi microscopic images[END_REF] In virology, ML systems have been used to identify HPV genotypes [START_REF] Tanchotsrinon | A high performance prediction of HPV genotypes by Chaos game representation and singular value decomposition[END_REF], develop a mobile platform for mumps, measles and HSV diagnosis [START_REF] Berg | Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays[END_REF] and identify viral pathogens in lower respiratory tract infections (LRTI).( 45 

Evaluation of antimicrobial susceptibility

Inferring the phenotypic antibiotic susceptibility pattern of microorganisms from genomic data has been a challenge enthusiastically taken up by several groups. [START_REF] Ruppé | Establishing Genotypeto-Phenotype Relationships in Bacteria Causing Hospital-Acquired Pneumonia: A Prelude to the Application of Clinical Metagenomics[END_REF] In the early times, predicting the phenotype from the genotype seemed highly feasible for pathogens where acquired resistance was mediated by the acquisition of well-known antibiotic resistance genes. Indeed for such pathogens as S. aureus,(50) E. coli and Klebsiella pneumoniae, [START_REF] Stoesser | Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data[END_REF] a presence/absence rule-based algorithm yielded excellent performances (91-100%) for inferring the phenotype. However, for species such as Pseudomonas aeruginosa where the antibiotic susceptibility pattern was highly connected to the up or down regulation of the expression of genes, performances were not as good.( 52) ML emerged as a potential solution when the knowledge about the precise mutational events associated with antibiotic resistance is not complete enough to be used in genotype-to-phenotype studies. A recent study showed that for P. aeruginosa, ML combined with gene expression (RNAseq) and the presence or absence of resistance genes yielded >90% predictive values for predicting resistance to meropenem and tobramycin. Still, poor performances were observed for ceftazidime (81% for predicting resistance and 83% for predicting susceptibility).(53) Similar approaches were described for C. difficile,(54) E. coli, [START_REF] Moradigaravand | Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. Darling AE[END_REF] or Elizabethkingia species. [START_REF] Naidenov | Pan-Genomic and Polymorphic Driven Prediction of Antibiotic Resistance in Elizabethkingia[END_REF] Besides genomic data, a number of ML systems analysed MALDI-TOF MS data to extend its potential for diagnostics, e.g. to discriminate between MRSA, MSSA and heterogeneous vancomycin-intermediate S. aureus. [START_REF] Wang | Rapid Detection of Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Based on Matrix-Assisted Laser Desorption Ionization Time-of-Flight: Using a Machine Learning Approach and Unbiased Validation[END_REF][START_REF] Mather | Rapid Detection of Vancomycin-Intermediate Staphylococcus aureus by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry[END_REF][START_REF] Asakura | Rapid and easy detection of low-level resistance to vancomycin in methicillin-resistant Staphylococcus aureus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[END_REF] In a recent study, Bhattacharyya et al. One team used ML systems directly to infer the minimal inhibitory concentration (MIC) of nontyphoidal Salmonella species or K. pneumoniae with WGS data using decision treebased supervised learning. [START_REF] Nguyen | Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae[END_REF][START_REF] Nguyen | Using Machine Learning To Predict Antimicrobial MICs and Associated Genomic Features for Nontyphoidal Salmonella[END_REF] The MICs predicted by the models correlated with the presence of known resistance genes and the overall accuracy of the system was between 92 and 95% within a two-fold dilution. However, in a similar article predicting ciprofloxacin MIC in E. coli, the accuracy was only 65% within a two-fold dilution.(65) Mycobacterium tuberculosis antibiotic susceptibility testing was the aim of seven ML systems, using WGS [START_REF] Chen | Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction[END_REF][START_REF] Kavvas | Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance[END_REF] or protein structure data extrapolated from genomic data.( 68 Another team used ANN to identify amino-acid substitutions in the viral protease that predicted HIV resistance to lopinavir (a protease inhibitor). [START_REF] Wang | Enhanced prediction of lopinavir resistance from genotype by use of artificial neural networks[END_REF] The authors confirmed their findings in a validation dataset including thousands of HIV-positive clinical samples. This use of ML could help to find unexpected mutations associated to the evolution of viral sequences and thereby pave the way for new diagnostic markers.

Diagnosis, disease classification and clinical outcomes

Twenty-one ML systems used microbiological data to diagnose and classify infectious or non-infectious diseases and predict clinical outcomes. Microbiota data (obtained by targeted gene sequencing or shotgun metagenomic sequencing) has been coupled with ML to predict periodontitis,(73) dental caries [START_REF] Wang | Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification[END_REF] or bacterial vaginosis.(75) However, the pathogenicity of the microorganisms found with this method is still debated. [START_REF] Thoendel | A Novel Prosthetic Joint Infection Pathogen, Mycoplasma salivarium, Identified by Metagenomic Shotgun Sequencing[END_REF] In a recent proof of concept study, Langelier et al. combined microbiological and host transcriptome data in tracheal aspirates to differentiate patients with proven LRTI (LRTIs, n=26) and patients with noninfectious acute respiratory failure (n=18) with a 100% sensitivity and 87% specificity. [START_REF] Langelier | Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults[END_REF] Among the 21 ML systems, 10 used microbiota data to diagnose non-infectious diseases such as irritable bowel syndrome, [START_REF] Tap | Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome[END_REF][START_REF] Hollister | Leveraging Human Microbiome Features to Diagnose and Stratify Children with Irritable Bowel Syndrome[END_REF] 83) For viral respiratory infections, a ML system provided a 84-gene expression pattern that could discriminate between children with mild Respiratory Syncytial Virus (RSV) infection from those with severe RSV disease. [START_REF] Jong | Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants[END_REF] The identified signature was independently validated in other cohorts and could serve to develop prognostic tests for the management of RSV disease.

ML can also pave the way for the analysis of new and complex data that is not used yet for diagnosis in clinical practice. For example, three articles used ML to analyse the odour (volatile organic compounds) of various clinical samples in order to diagnose urinary tract infections,(85) acute chronic obstructive pulmonary disease exacerbations, [START_REF] Van Geffen | Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose: a pilot study[END_REF] or active tuberculosis.(87)

DISCUSSION

ML for current and future data

We found ML systems analysing different sources of data including data currently used in clinical practice such as microscopic images of Gram stain or blood smears and data that is not yet used in routine such as microbiota data. ML systems using current data mainly aimed to develop the automation of repetitive tasks in the CM laboratory and to allow clinical microbiologists to take action at the end of the process for the validation of the results. By contrast, the development of ML systems analysing complex, high-dimensional and sparse data pave the way for leveraging new data that could become prominent in the CM laboratory. Microbiota data is currently not used in routine practice but we identified a number of ML systems that aimed at diagnosing diseases, [START_REF] Zhu | Metagenomic unmapped reads provide important insights into human microbiota and disease associations[END_REF] predicting clinical outcomes [START_REF] Staley | Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation[END_REF] or identifying pathogens.( 45) By providing the tools that will facilitate the analysis of microbiota, WGS or transcriptome data in the CM laboratory, ML could modify the way laboratories are commonly separated in hospitals. Classical borders are blurred with ML systems that use human transcriptomics data to predict the severity of infection [START_REF] Jong | Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants[END_REF][START_REF] Davenport | Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study[END_REF] or ML applications that use microbiota data to diagnose inflammatory bowel diseases or colorectal cancer. [START_REF] Eck | Interpretation of microbiota-based diagnostics by explaining individual classifier decisions[END_REF][START_REF] Shah | Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer[END_REF][START_REF] Forbes | A comparative study of the gut microbiota in immune-mediated inflammatory diseasesdoes a common dysbiosis exist?[END_REF] The choice of the outcome is a critical point influencing the clinical relevance of a ML system.

We identified ML systems with outcomes such as the classification of haemolysis on bacterial cultures [START_REF] Savardi | Automatic hemolysis identification on aligned duallighting images of cultured blood agar plates[END_REF] or the identification of Leuconostoc, Fructobacillus and Lactococcus. [START_REF] De Bruyne | Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning[END_REF] While such systems can be technically worthwhile, they do not necessarily meet a clinical need. Regarding parasitology, most ML systems addressed easy tasks (e.g. the detection of intestinal helminths on microscopic images) but left difficult tasks aside (e.g. detection of amoeba). Moreover, the systems still required the most time-consuming step in the diagnosis which is the technical manipulation of the stools (fresh state, concentrations, preparations, colorations). In bacteriology, most ML systems targeted either bacteria identification or antibiotic susceptibility testing for a limited number of species (median 3, IQR 7-15) but optimal tools should be able to perform different tasks on a broad scope of species using the same data as has been done in some recent articles. [START_REF] Drouin | Interpretable genotype-to-phenotype classifiers with performance guarantees[END_REF][START_REF] Kim | VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning[END_REF] 

Performance and interpretability of ML systems

All the ML systems reported a measure of performance such as sensitivity or specificity but few systems compared their performance with other methods. Ideally, ML systems performances and costs should be compared to reference methods used in routine. In some cases, ML systems yielded slightly lower performances than those obtained with an expert system. [START_REF] Moradigaravand | Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. Darling AE[END_REF] Consequently, a comparison between ML systems and rule-based algorithms may sometimes be relevant. AI is best suited to augmenting human intelligence, bringing bigdata into focus in order to support human decision-making. Therefore, developers should aim to study the interaction between clinicians and algorithms and to report comparisons between humans alone and humans using ML systems. Indeed, the reporting of humanversus-algorithm comparison is not very relevant as ML systems and humans will not be competing on similar tasks but will perform different tasks.

Interpretability of ML systems is a major challenge as clinical microbiologists and other healthcare professionals are less prone to adopt ML systems whose intrinsic mechanisms they do not understand (the so-called 'black box'). Microbiologists must know why errors by ML systems might occur and what they should check before validating the results. For some ML systems, presenting the results in an interpretable way is relatively easy, for example by highlighting the part of the image that allows a diagnosis,(93) but for others, a special effort is needed to find appropriate visualization tools.( 94 tuberculosis and 11 bacteria species and presented the resulting classifiers as a hierarchical arrangement of rules. [START_REF] Drouin | Interpretable genotype-to-phenotype classifiers with performance guarantees[END_REF] Using the example of meropenem resistance in K. pneumoniae, they showed that their models confirmed existing knowledge such as the importance of blaKPC-2 but also identified new targets to understand resistance such as the febB gene, which encodes a periplasmic protein essential for virulence. A number of other tools for genotype-phenotype prediction presented the most relevant genes in their models, thereby easing the interpretation by a clinical microbiologist. [START_REF] Nguyen | Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae[END_REF][START_REF] Kavvas | Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance[END_REF][START_REF] Davis | Antimicrobial Resistance Prediction in PATRIC and RAST[END_REF] 

Evaluation and implementation

From the clinical perspective, the evaluation of ML systems is still incomplete with 96 (99%) systems that presented performance data but only one tool that reported the use of the system in practice. This gap is a major challenge in the field of AI in healthcare and the pathway between development and routine use is long and fraught with obstacles, as emphasized by the non-adoption, abandonment, scale-up, spread and sustainability (NASS) framework for digital technologies. [START_REF] Greenhalgh | How to improve success of technology projects in health and social care[END_REF] Besides, there is a lack of literature regarding the specificities of the implementation of the ML systems and the way forward to their adoption in routine work. In a recent review, we listed the challenges which are to be met to use ML systems in clinical practice. [START_REF] Peiffer-Smadja | Machine learning for clinical decision support in infectious diseases: a narrative review of current applications[END_REF] Among the systems that we identified, no article described their use in clinical practice nor reported clinical outcomes or impact on processes. Research on ML systems in real-world settings should aim to collect information on consequences both at the clinician and patientlevels and implementation outcomes such as appropriateness or fidelity may be key intermediate outcomes to study the success of strategies aiming to bring ML systems to the clinical practice.(97) Clinical microbiologists who are at the interface between physicians and diagnostics tools are crucial to bridge the gap between demand and supply of innovative systems. [START_REF] Fox-Lewis | Utilization of a clinical microbiology service at a Cambodian paediatric hospital and its impact on appropriate antimicrobial prescribing[END_REF] In Figure 3, we summarized the different steps between the technical development of ML systems and their adoption in clinical practice. particularly relevant in countries with lack of skilled laboratory staff to analyse easily obtained data (e.g. blood smears). However, much work is needed to ensure that these new technologies can be adopted in a sustainable way and the specificities of LMICs should be considered early in the development of the ML system.

Potential for diagnostics in LMICs

As ML systems are constrained by available data, high-quality open access databases are paramount to the evolution of ML systems. CuratedMetagenomicData(101) for microbiota analysis or PATRIC for WGS(102) were particularly important for a number of ML systems in CM. [START_REF] Kavvas | Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance[END_REF][START_REF] Chowdhury | Capreomycin resistance prediction in two species of Mycobacterium using a stacked ensemble method[END_REF][START_REF] Zhu | Metagenomic unmapped reads provide important insights into human microbiota and disease associations[END_REF]103) Healthcare and clinical data repositories are increasingly important with the development of ML and a special effort should be made to integrate data from patients in LMICs. Indeed, the diversity of settings and populations included in training and validation datasets is essential to the development of unbiased and high-quality ML systems. ML systems are only as good as the data that they are provided with and a number of authors have described the risk of reproducing human bias and worsening inequalities with the use of ML.(104,105) The provision of public access to ML models(61,62) will be helpful and can be used to foster collaborations and to strengthen the education of clinical microbiologists about ML worldwide.

CONCLUSION

We found 97 ML systems in CM that used various sources of data with diverse practical applications. The existence of open-access databases of microbiota and WGS data is a strong asset for the development of ML systems and should be further encouraged. Despite systematic reporting of performance measures, the comparison of ML outputs with currently used reference methods was lacking. No article described the use of a ML system in clinical practice nor reported impact on processes or clinical outcomes. Future studies should aim to improve the interpretability of their ML systems and discuss their potential integration and implementation in real-world settings. 

*Including microbiota studies **We separated studies that describe the performance (e.g. ROC curves) of the diagnostic system (performance), studies that describe the implementation and adoption of the system in routine clinical microbiology practice (implementation) and studies that describe the impact of the system on the microbiology laboratory processes or on patients' clinical outcomes (impact). †One study reported the implementation of the system in routine practice but did not give any details on implementation or impact in the article [START_REF] Burton | Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections[END_REF] Others (LASSO, Genetic Algorithms, Elastic Net, Hierarchical Clustering, Linear Discriminant Analysis, L2-Regularization, etc.) 

  ) Besides, ML could help to identify new viral agents. While conventional bioinformatic methods (based on sequence homology) only permit to discover new variants of already known viruses,[START_REF] Chiu | Diagnosis of Fatal Human Case of St. Louis Encephalitis Virus Infection by Metagenomic Sequencing, California[END_REF][START_REF] Wang | A New Segmented Virus Associated with Human Febrile Illness in China[END_REF] a recent work used ML to analyse codon usage bias to identify new putative viral sequences.[START_REF] Bzhalava | Machine Learning for detection of viral sequences in human metagenomic datasets[END_REF] 

  combined genotypic and phenotypic data to rapidly identify the susceptibility profile of bacterial pathogens.[START_REF] Bhattacharyya | Simultaneous detection of genotype and phenotype enables rapid and accurate antibiotic susceptibility determination[END_REF] From RNAseq data, they identified gene expression patterns differing between susceptible and resistant strains exposed to antibiotics and used these genes to engineer a quantitative fluorescent hybridization which could work on crude bacterial lysates. The method gave good performances (94-99% correct predictions) in E. coli, K. pneumoniae and Acinetobacter baumannii. The authors provided a proof-of-concept of the test directly from positive blood cultures with a turn-around-time of <4h. Other ML systems used WGS to combine the identification and antibiotic susceptibility testing of microorganisms: Drouin et al. reported a ML system that can identify 12 species and susceptibility to 56 antibiotics,(61) Kim et al. 9 species and 29 antibiotics.[START_REF] Kim | VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning[END_REF] 

, 69 )

 69 Gumbo et al. conducted a supervised classification and regression tree analysis with clinical outcome data from 58 patients to determine the optimal pyrazinamide MIC for Mycobacterium tuberculosis susceptibility breakpoint.(70) Viral genomes evolve under complex patterns of genetic changes to shape the landscape of their fitness and resistance to their environment. Advances in metagenomic sequencing technologies producing multiple time-point WGS, in conjunction with ML technologies, provided a better understanding of viral evolution and viral interactions with their host and/or environment. For example, Shim et al.(71) used artificial neural networks (ANN) with timesampled whole-genome echovirus sequences to observe substitutions arising under disinfectant pressure. Their results supported the role of the viral structure protein VP1 in adapting to the disinfectant.

  inflammatory bowel disease,(79) colorectal cancer(80) or insomnia.(81) Regarding clinical outcomes, Njage et al. used ML with data from WGS of shiga toxinproducing E. coli to predict the severity of the disease(82) and Staley et al. analysed the modification of gut microbiota to predict the recurrence of C. difficile infection following encapsulated faecal microbiota transplantation.(

  ) In our review, few articles detailed the interpretability of the ML system. Eck et al. assigned relevance values to each feature used by the ML algorithm so that clinical microbiologists can understand which features the algorithms used to discriminate between healthy subjects and patients with inflammatory bowel disease.(79) Drouin et al. used ML systems for genotype to phenotype prediction in M.

  photographs of thick blood smear to diagnose malaria or of stool samples to detect helminths.(99) Li et al. reports a mobile platform combing multimodal microscopy and ML systems to diagnose malaria in the field.(31) Another team described the early development of a diagnosis platform powered by solar energy and using ML to analyse changes in pH during DNA amplification for infectious diseases diagnosis.(100) These systems are
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