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ABSTRACT (295/300 words) 

Background 

Machine learning (ML) allows the analysis of complex and large data sets and has the 

potential to improve healthcare. The clinical microbiology laboratory, at the interface of 

clinical practice and diagnostics, is of special interest for the development of ML systems. 

Objectives 

This narrative review aims to explore the current use of ML In clinical microbiology. 

Sources 

References for this review were identified through searches of MEDLINE/PubMed, EMBASE, 

Google Scholar, biorXiv, arXiV, ACM Digital Library and IEEE Xplore Digital Library up to 

November 2019. 

Content 

We found 97 ML systems aiming to assist clinical microbiologists. Overall, 82 (85%) ML 

systems targeted bacterial infections, 11 (11%) parasitic infections, nine (9%) viral infections 

and three (3%) fungal infections. Forty (41%) ML systems focused on micro-organisms 

detection, identification and quantification, 36 (37%) evaluated antimicrobial susceptibility 

and 21 (22%) targeted the diagnosis, disease classification and prediction of clinical 

outcomes. The ML systems used very diverse data sources: 21 (22%) used genomic data of 

micro-organisms, 19 (20%) microbiota data obtained by metagenomic sequencing, 19 (20%) 

analysed microscopic images, 17 (18%) spectroscopy data, 8 (8%) targeted gene 

sequencing, 6 (6%) volatile organic compounds, 4 (4%) bacterial colonies photographs, 4 

(4%) transcriptome data, 3 (3%) protein structure and 3 (3%) clinical data. Most systems 

used high-income countries data (n=71, 73%) but a significant number used low- and middle-

income countries data (n=36, 37%). Performance measures were reported for the 97 ML 

systems but no article described the use in clinical practice nor reported impact on processes 

or clinical outcomes. 

Implications 



In clinical microbiology, ML has been used with various data sources and diverse practical 

applications. The evaluation and implementation processes represent the main gap of 

existing ML systems, requiring a focus on their interpretability and potential integration into 

real-world settings. 

  



 

MANUSCRIPT (3970) 

INTRODUCTION 

During the last decade, the availability of data in the clinical microbiology (CM) laboratory has 

substantially increased with technological advances such as Matrix-assisted laser desorption 

ionization - time of flight (MALDI-TOF) mass spectrometry (MS), the rise of whole genome 

sequencing (WGS) and the access to microbiota data by next-generation sequencing. The 

optimal analysis and interpretation of this increasingly complex and large data, called ‘big 

data’, often outdoes human abilities and requires the use of tools such as machine learning 

(ML). Unlike expert systems which are based on the programming of a set of rules, ML 

algorithms are able to define their own rules directly from the data (Figure 1). For example, to 

differentiate bacteria in the direct Gram stain, an expert system will require humans to 

program rules (e.g. if the shapes are round, they are cocci), whereas a ML algorithm will find 

itself a set of rules by analysing a large number of microscopic images labelled with Gram 

results. However, those rules may have no biological meaning nor may they be accounted 

for. The ability of the machine to learn, i.e. to define more accurate rules, is driven by the 

volume and quality of data provided, that is why ML systems are sometimes called data-

intensive systems.  

ML systems have been sprouting in many fields of medicine and the first FDA 

approval for an autonomous artificial intelligence system took place in 2018 with a ML 

system used to detect diabetic retinopathy in retinal fundus photographs.(1) Despite many 

studies describing the technical performance of ML systems, few are reporting the adoption 

of such tools in real-life settings,(2,3) confirming the existing gap between the development 

of innovations in medicine and their adoption in the routine clinical practice.(4,5) In infectious 

diseases, a recent review reported 60 ML decision support systems among which only three 

were tested in clinical practice.(6) Moreover, innovations in healthcare have often been 

implemented without evidence supporting pre-intervention analysis and before an in-depth 

analysis of the need and requirements, often resulting in a limited uptake in clinical 



practice.(7,8) Particularly, clinical microbiologists’ needs and expectations from ML systems, 

and how they can be integrated into the routine practices have not been assessed so far.  

The CM laboratory, at the interface of clinical practice and diagnostics, is of special interest 

for the development of ML tools. This narrative review describes the characteristics, 

objectives and assessment of ML systems designed to assist clinical microbiologists in the 

diagnosis of infections, the identification and quantification of micro-organisms and the 

analysis of antimicrobial susceptibility. 

 

MATERIAL AND METHODS 

Search strategy 

References for this review were identified through searches of MEDLINE/PubMed, EMBASE, 

Google Scholar, biorXiv, arXiv, ACM Digital Library and IEEE Xplore Digital Library for 

articles by use of a combination keywords referring to ML ("artificial intelligence", "artificial 

learning", "machine learning", "machine intelligence", “supervised learning”, “unsupervised 

learning”, "deep learning", “bayesian learning”, “statistical learning”, "neural network", 

"probabilistic networks", "knowledge representation") AND clinical microbiology keywords 

("microbiology", “bacteriology”, “parasitology”, “virology”, “mycology”, “clinic*”) AND 

diagnostics keyword (“diagno*”) (Supplementary material). We have included articles 

resulting from these searches up to November 2019 and added relevant references found in 

recent reviews.(6,9–14) 

 

Study selection 

Prospective and retrospective articles in English that reported original research on ML for 

microbiological diagnostics were included. We included development reports, implementation 

studies, clinical trials or qualitative studies of ML systems that could potentially be used in 

routine by a CM laboratory. We excluded studies that described expert systems (defined by 

the use of manually programmed rules), ML systems used for research purpose with no 

relevance in the clinical laboratory, systems for treatment optimisation (e.g. guiding antibiotic 



selection) and systems using data not accessible to clinical microbiologists (e.g. biochemical 

markers). 

Analysis of the selected articles 

Each article was classified according to its overarching objective into (i) micro-organisms 

detection, identification and quantification, (ii) evaluation of antimicrobial susceptibility (iii) 

diagnosis, disease classification and clinical outcomes. We then detailed the precise 

outcome of the ML system (e.g. prediction of capreomycin resistance in Mycobacterium 

species) and the data sources used by the system (e.g. WGS, MALDI-TOF MS, etc.). We 

analysed whether the studies described the performance (e.g. sensitivity and specificity) of 

the diagnostic system, the implementation and adoption of the system in routine clinical 

microbiology practice or the impact of the system on the microbiology laboratory processes 

or on patients’ clinical outcomes. 

 

Definitions of learning methods 

The different ML systems described in the reviewed articles were classified into supervised 

learning, unsupervised learning and reinforcement learning (Figure 1).(15) Supervised 

learning refers to algorithms using labelled data, i.e. data in which the outcome of interest is 

defined, as a training dataset. For example, to train an algorithm for predicting carbapenem 

resistance, a dataset in which bacteria are already defined as carbapenem resistant or 

susceptible has to be used. In unsupervised learning, data are used without any predefined 

outcome of interest and algorithms are left to their own to find patterns and to extract hidden 

structure from data without any expert labelling. Reinforcement learning involves algorithms 

discovering actions that yield the greatest rewards through trial and error.(16) 

 

RESULTS 

 

Characteristics of ML systems for clinical microbiology 



Among the 141 articles identified and assessed for eligibility, 38 were excluded: 18 with ML 

system adapted for clinicians, 12 with outcomes not relevant to clinical practice and 8 using 

data not accessible to clinical microbiologists. 

In total, 103 articles with 97 unique ML systems for clinical microbiology were included in the 

review. Sixty-four articles were found in MEDLINE/PubMed, 14 in IEEE Xplore Digital 

Library, 14 in free repository of electronic preprints such as arXiv (n = 7) or bioRxiv (n = 7), 

eight in Google Scholar and three in ACM Digital Library. The general characteristics of the 

ML systems are summarized in Table 1 and detailed in the supplementary material.  

Overall, 82 (85%) ML systems targeted bacterial infections, 11 (11%) parasitic infections, 

nine (9%) viral infections and three (3%) fungal infections (some ML systems targeted more 

than one type of micro-organisms). More precisely, 40 (41%) ML systems focused on micro-

organisms detection, identification and quantification, 36 (37%) evaluated antimicrobial 

susceptibility, 21 (22%) targeted diagnosis, disease classification and prediction of clinical 

outcomes (Table 2). 

To achieve these aims, the ML systems used very diverse sources of data: 21 (22%) used 

WGS of micro-organisms, 19 (20%) microbiota data obtained by shotgun metagenomic 

sequencing, 19 (20%) analysed microscopic images, 17 (18%) spectroscopy data, eight (8%) 

targeted gene sequencing, six (6%) volatile organic compounds (the components of odour), 

four (4%) bacterial colonies photographs, four (4%) transcriptome data, three (3%) protein 

structure and three (3%) clinical data (Figure 2).  

The vast majority of ML systems used supervised learning (n=96, 99%) whereas 6 (6%) 

used unsupervised learning, all but one in association with supervised learning. No ML 

system used reinforcement learning. Overall, 34 different ML techniques were used with 40 

(41%) systems using more than one ML technique (median 3, IQR 2-4). The most frequent 

ML techniques were Artificial Neural Network (n=46, 47%) including 15 Convolutional Neural 

Networks, Support Vector Machine (n=34, 35%), Random Forest (n=28, 29%), and Logistic 

Regression (n=11, 11%) (Table 1). 



Most articles were published using high-income countries (HIC) data (n=71, 73%) but a 

significant number of ML systems were developed with low- and middle-income countries 

(LMIC) data (n=36, 37%). 

Only one ML system was reported to be used in clinical practice in the UK.(17) This system 

aimed to screen urine samples in order to decide which ones should be discarded because 

of a low probability of positivity. The authors analysed 212,554 urine reports including clinical 

data and described a potential relative workload reduction of 41%. However, the authors did 

not give any detail on the implementation of the system and its actual impact. The 96 other 

ML systems only reported performance measures such as sensitivity and specificity. 

 

Micro-organisms detection, identification and quantification 

Forty algorithms (41%) aimed to detect, identify or quantify micro-organisms (Table 2). 

Among them, 15 ML systems analysed data from cultured bacteria including 

photographs,(18–20) Fourier-transform infrared spectroscopy(21,22) or volatile organic 

compounds(23,24) of bacterial colonies. Eight ML systems were developed to identify the 

bacteria by direct analysis of clinical samples, with volatile organic compounds for diabetic 

foot infection(25) or tuberculosis(24), 16S ribosomal DNA PCR on respiratory samples for 

LRTI,(26) or fluorescent microscopic images for tuberculosis.(27) However, among these 23 

systems the bacteria that could be identified were limited to a small number of species 

(median 3, IQR 7-15). 

 

Some ML systems aimed to reduce the time between sampling and microbiological 

diagnosis. Researchers recently reported the use of Raman optical spectroscopy of a single 

bacterial colony in suspension coupled with ML to identify a micro-organism among 30 

bacterial and yeast species.(28) This system could also be used to differentiate between 

MRSA and MSSA. However, its use with biological liquids rather than with a prepared 

suspension of bacteria has yet to be evaluated. Andini et al. described an internal transcribed 

spacer high resolution melt assay that can differentiate between 89 bacterial species.(29) 



Using ML, they identified the bacterial species in 59 culture-positive monobacterial blood 

culture samples with 90% accuracy within 3 hours. A recent article described using the same 

ML system for antimicrobial susceptibility testing (detecting aminoglycosides resistance in 

Escherichia coli and Staphylococcus aureus).(30) 

For parasitic diseases, the systems used microscopic images of blood smears to 

detect Plasmodium species(31–37), mostly Plasmodium falciparum, and microscopic images 

of stools to identify intestinal helminths.(38,39) Although the reported performances were 

correct (reported sensitivity between 85% and 99% and specificity between 95% and 99%)  

for these articles, the exclusion of smears that are difficult to interpret and the use of 

manually cropped images currently limit the use of ML systems in this field. One article 

described the use of quantitative phase spectroscopy to detect P. falciparum but used one 

single strain.(40) Only two ML systems focused on mycology, both using very limited 

datasets to identify Candida species on culture.(41,42)  

In virology, ML systems have been used to identify HPV genotypes(43), develop a 

mobile platform for mumps, measles and HSV diagnosis(44) and identify viral pathogens in 

lower respiratory tract infections (LRTI).(45) Besides, ML could help to identify new viral 

agents. While conventional bioinformatic methods (based on sequence homology) only 

permit to discover new variants of already known viruses,(46,47) a recent work used ML to 

analyse codon usage bias to identify new putative viral sequences.(48) 

 

Evaluation of antimicrobial susceptibility 

Inferring the phenotypic antibiotic susceptibility pattern of microorganisms from genomic data 

has been a challenge enthusiastically taken up by several groups.(49) In the early times, 

predicting the phenotype from the genotype seemed highly feasible for pathogens where 

acquired resistance was mediated by the acquisition of well-known antibiotic resistance 

genes. Indeed for such pathogens as S. aureus,(50) E. coli and Klebsiella pneumoniae,(51) 

a presence/absence rule-based algorithm yielded excellent performances (91-100%) for 

inferring the phenotype. However, for species such as Pseudomonas aeruginosa where the 



antibiotic susceptibility pattern was highly connected to the up or down regulation of the 

expression of genes, performances were not as good.(52) ML emerged as a potential 

solution when the knowledge about the precise mutational events associated with antibiotic 

resistance is not complete enough to be used in genotype-to-phenotype studies. A recent 

study showed that for P. aeruginosa, ML combined with gene expression (RNAseq) and the 

presence or absence of resistance genes yielded >90% predictive values for predicting 

resistance to meropenem and tobramycin. Still, poor performances were observed for 

ceftazidime (81% for predicting resistance and 83% for predicting susceptibility).(53) Similar 

approaches were described for C. difficile,(54) E. coli,(55) or Elizabethkingia species.(56) 

Besides genomic data, a number of ML systems analysed MALDI-TOF MS data to extend its 

potential for diagnostics, e.g. to discriminate between MRSA, MSSA and heterogeneous 

vancomycin-intermediate S.  aureus.(57–59) In a recent study, Bhattacharyya et al. 

combined genotypic and phenotypic data to rapidly identify the susceptibility profile of 

bacterial pathogens.(60) From RNAseq data, they identified gene expression patterns 

differing between susceptible and resistant strains exposed to antibiotics and used these 

genes to engineer a quantitative fluorescent hybridization which could work on crude 

bacterial lysates. The method gave good performances (94-99% correct predictions) in E. 

coli, K. pneumoniae and Acinetobacter baumannii. The authors provided a proof-of-concept 

of the test directly from positive blood cultures with a turn-around-time of <4h. Other ML 

systems used WGS to combine the identification and antibiotic susceptibility testing of micro-

organisms: Drouin et al. reported a ML system that can identify 12 species and susceptibility 

to 56 antibiotics,(61) Kim et al. 9 species and 29 antibiotics.(62) 

One team used ML systems directly to infer the minimal inhibitory concentration (MIC) of 

nontyphoidal Salmonella species or K. pneumoniae with WGS data using decision tree-

based supervised learning.(63,64) The MICs predicted by the models correlated with the 

presence of known resistance genes and the overall accuracy of the system was between 92 

and 95% within a two-fold dilution. However, in a similar article predicting ciprofloxacin MIC 

in E. coli, the accuracy was only 65% within a two-fold dilution.(65) Mycobacterium 



tuberculosis antibiotic susceptibility testing was the aim of seven ML systems, using 

WGS(66,67) or protein structure data extrapolated from genomic data.(68,69) Gumbo et al. 

conducted a supervised classification and regression tree analysis with clinical outcome data 

from 58 patients to determine the optimal pyrazinamide MIC for Mycobacterium tuberculosis 

susceptibility breakpoint.(70)  

Viral genomes evolve under complex patterns of genetic changes to shape the landscape of 

their fitness and resistance to their environment. Advances in metagenomic sequencing 

technologies producing multiple time-point WGS, in conjunction with ML technologies, 

provided a better understanding of viral evolution and viral interactions with their host and/or 

environment. For example, Shim et al.(71) used artificial neural networks (ANN) with time-

sampled whole-genome echovirus sequences to observe substitutions arising under 

disinfectant pressure. Their results supported the role of the viral structure protein VP1 in 

adapting to the disinfectant. 

Another team used ANN to identify amino-acid substitutions in the viral protease that 

predicted HIV resistance to lopinavir (a protease inhibitor).(72) The authors confirmed their 

findings in a validation dataset including thousands of HIV-positive clinical samples. This use 

of ML could help to find unexpected mutations associated to the evolution of viral sequences 

and thereby pave the way for new diagnostic markers.  

 

Diagnosis, disease classification and clinical outcomes 

Twenty-one ML systems used microbiological data to diagnose and classify infectious or 

non-infectious diseases and predict clinical outcomes. Microbiota data (obtained by targeted 

gene sequencing or shotgun metagenomic sequencing) has been coupled with ML to predict 

periodontitis,(73) dental caries(74) or bacterial vaginosis.(75) However, the pathogenicity of 

the microorganisms found with this method is still debated.(76) In a recent proof of concept 

study, Langelier et al. combined microbiological and host transcriptome data in tracheal 

aspirates to differentiate patients with proven LRTI (LRTIs, n=26) and patients with non-

infectious acute respiratory failure (n=18) with a 100% sensitivity and 87% specificity.(45) 



Among the 21 ML systems, 10 used microbiota data to diagnose non-infectious diseases 

such as irritable bowel syndrome,(77,78) inflammatory bowel disease,(79) colorectal 

cancer(80) or insomnia.(81) 

Regarding clinical outcomes, Njage et al. used ML with data from WGS of shiga toxin-

producing E. coli to predict the severity of the disease(82) and Staley et al. analysed the 

modification of gut microbiota to predict the recurrence of C. difficile infection following 

encapsulated faecal microbiota transplantation.(83) For viral respiratory infections, a ML 

system provided a 84-gene expression pattern that could discriminate between children with 

mild Respiratory Syncytial Virus (RSV) infection from those with severe RSV disease.(84) 

The identified signature was independently validated in other cohorts and could serve to 

develop prognostic tests for the management of RSV disease. 

ML can also pave the way for the analysis of new and complex data that is not used yet for 

diagnosis in clinical practice. For example, three articles used ML to analyse the odour 

(volatile organic compounds) of various clinical samples in order to diagnose urinary tract 

infections,(85) acute chronic obstructive pulmonary disease exacerbations,(86) or active 

tuberculosis.(87)  

 

DISCUSSION 

ML for current and future data 

We found ML systems analysing different sources of data including data currently used in 

clinical practice such as microscopic images of Gram stain or blood smears and data that is 

not yet used in routine such as microbiota data. ML systems using current data mainly aimed 

to develop the automation of repetitive tasks in the CM laboratory and to allow clinical 

microbiologists to take action at the end of the process for the validation of the results. By 

contrast, the development of ML systems analysing complex, high-dimensional and sparse 

data pave the way for leveraging new data that could become prominent in the CM 

laboratory. Microbiota data is currently not used in routine practice but we identified a 

number of ML systems that aimed at diagnosing diseases,(88) predicting clinical 



outcomes(83) or identifying pathogens.(45) By providing the tools that will facilitate the 

analysis of microbiota, WGS or transcriptome data in the CM laboratory, ML could modify the 

way laboratories are commonly separated in hospitals. Classical borders are blurred with ML 

systems that use human transcriptomics data to predict the severity of infection(84,89) or ML 

applications that use microbiota data to diagnose inflammatory bowel diseases or colorectal 

cancer.(79,80,90)  

The choice of the outcome is a critical point influencing the clinical relevance of a ML system. 

We identified ML systems with outcomes such as the classification of haemolysis on 

bacterial cultures(91) or the identification of Leuconostoc, Fructobacillus and 

Lactococcus.(92) While such systems can be technically worthwhile, they do not necessarily 

meet a clinical need. Regarding parasitology, most ML systems addressed easy tasks (e.g. 

the detection of intestinal helminths on microscopic images) but left difficult tasks aside (e.g. 

detection of amoeba). Moreover, the systems still required the most time-consuming step in 

the diagnosis which is the technical manipulation of the stools (fresh state, concentrations, 

preparations, colorations). In bacteriology, most ML systems targeted either bacteria 

identification or antibiotic susceptibility testing for a limited number of species (median 3, IQR 

7-15) but optimal tools should be able to perform different tasks on a broad scope of species 

using the same data as has been done in some recent articles.(61,62) 

  

Performance and interpretability of ML systems 

All the ML systems reported a measure of performance such as sensitivity or specificity but 

few systems compared their performance with other methods. Ideally, ML systems 

performances and costs should be compared to reference methods used in routine. In some 

cases, ML systems yielded slightly lower performances than those obtained with an expert 

system.(55) Consequently, a comparison between ML systems and rule-based algorithms 

may sometimes be relevant. AI is best suited to augmenting human intelligence, bringing big-

data into focus in order to support human decision-making. Therefore, developers should aim 

to study the interaction between clinicians and algorithms and to report comparisons 



between humans alone and humans using ML systems. Indeed, the reporting of human-

versus-algorithm comparison is not very relevant as ML systems and humans will not be 

competing on similar tasks but will perform different tasks. 

Interpretability of ML systems is a major challenge as clinical microbiologists and other 

healthcare professionals are less prone to adopt ML systems whose intrinsic mechanisms 

they do not understand (the so-called ‘black box’). Microbiologists must know why errors by 

ML systems might occur and what they should check before validating the results. For some 

ML systems, presenting the results in an interpretable way is relatively easy, for example by 

highlighting the part of the image that allows a diagnosis,(93) but for others, a special effort is 

needed to find appropriate visualization tools.(94) In our review, few articles detailed the 

interpretability of the ML system. Eck et al. assigned relevance values to each feature used 

by the ML algorithm so that clinical microbiologists can understand which features the 

algorithms used to discriminate between healthy subjects and patients with inflammatory 

bowel disease.(79) Drouin et al. used ML systems for genotype to phenotype prediction in M. 

tuberculosis and 11 bacteria species and presented the resulting classifiers as a hierarchical 

arrangement of rules.(61) Using the example of meropenem resistance in K. pneumoniae, 

they showed that their models confirmed existing knowledge such as the importance of 

blaKPC-2 but also identified new targets to understand resistance such as the febB gene, 

which encodes a periplasmic protein essential for virulence. A number of other tools for 

genotype-phenotype prediction presented the most relevant genes in their models, thereby 

easing the interpretation by a clinical microbiologist.(63,67,95)  

 

Evaluation and implementation  

From the clinical perspective, the evaluation of ML systems is still incomplete with 96 (99%) 

systems that presented performance data but only one tool that reported the use of the 

system in practice. This gap is a major challenge in the field of AI in healthcare and the 

pathway between development and routine use is long and fraught with obstacles, as 

emphasized by the non-adoption, abandonment, scale-up, spread and sustainability (NASS) 



framework for digital technologies.(96) Besides, there is a lack of literature regarding the 

specificities of the implementation of the ML systems and the way forward to their adoption in 

routine work. In a recent review, we listed the challenges which are to be met to use ML 

systems in clinical practice.(6) 

Among the systems that we identified, no article described their use in clinical practice nor 

reported clinical outcomes or impact on processes. Research on ML systems in real-world 

settings should aim to collect information on consequences both at the clinician and patient-

levels and implementation outcomes such as appropriateness or fidelity may be key 

intermediate outcomes to study the success of strategies aiming to bring ML systems to the 

clinical practice.(97) Clinical microbiologists who are at the interface between physicians and 

diagnostics tools are crucial to bridge the gap between demand and supply of innovative 

systems.(98) In Figure 3, we summarized the different steps between the technical 

development of ML systems and their adoption in clinical practice. 

 

Potential for diagnostics in LMICs 

ML can trigger the development of innovative point of care diagnostic tools with the potential 

to be used in remote areas. Convolutional neural networks were used on smartphone 

photographs of thick blood smear to diagnose malaria or of stool samples to detect 

helminths.(99) Li et al. reports a mobile platform combing multimodal microscopy and ML 

systems to diagnose malaria in the field.(31) Another team described the early development 

of a diagnosis platform powered by solar energy and using ML to analyse changes in pH 

during DNA amplification for infectious diseases diagnosis.(100) These systems are 

particularly relevant in countries with lack of skilled laboratory staff to analyse easily obtained 

data (e.g. blood smears). However, much work is needed to ensure that these new 

technologies can be adopted in a sustainable way and the specificities of LMICs should be 

considered early in the development of the ML system.  

As ML systems are constrained by available data, high-quality open access databases are 

paramount to the evolution of ML systems. CuratedMetagenomicData(101) for microbiota 



analysis or PATRIC for WGS(102) were particularly important for a number of ML systems in 

CM.(67,69,88,103) Healthcare and clinical data repositories are increasingly important with 

the development of ML and a special effort should be made to integrate data from patients in 

LMICs. Indeed, the diversity of settings and populations included in training and validation 

datasets is essential to the development of unbiased and high-quality ML systems. ML 

systems are only as good as the data that they are provided with and a number of authors 

have described the risk of reproducing human bias and worsening inequalities with the use of 

ML.(104,105) The provision of public access to ML models(61,62) will be helpful and can be 

used to foster collaborations and to strengthen the education of clinical microbiologists about 

ML worldwide. 

 

CONCLUSION 

We found 97 ML systems in CM that used various sources of data with diverse practical 

applications. The existence of open-access databases of microbiota and WGS data is a 

strong asset for the development of ML systems and should be further encouraged. Despite 

systematic reporting of performance measures, the comparison of ML outputs with currently 

used reference methods was lacking. No article described the use of a ML system in clinical 

practice nor reported impact on processes or clinical outcomes. Future studies should aim to 

improve the interpretability of their ML systems and discuss their potential integration and 

implementation in real-world settings. 

  



FIGURE LEGENDS 

Figure 1: The three basic machine learning paradigms 

 

*Most supervised machine learning systems wrongly classify data that was not included in 

the training dataset. Some algorithms can use Bayesian approaches to add an “unknown” 

class but this presents technical difficulties. 

**Reinforcement learning involves the comparison of different policies that map a state (in 

the figure a polymicrobial clinical sample) to actions (in the figure, analyse or discard the 

sample). The comparison is done by studying the rewards (e.g. clinical outcomes) linked to 

one policy (e.g. discarding polymicrobial samples) as compared to another (e.g. analysing 

polymicrobial samples). Reinforcement learning is used when the best policy is not known.  

  



Figure 2: Sankey diagram mapping the sources of data used by the 97 ML systems to their 

outcomes 

 

 

  



Figure 3: The pathway towards implementation within routine clinical practice 

 

 

 

  



Table 1: General characteristics of machine learning systems for clinical microbiology 

 

ML systems n=97 (%) 

Microbiology specialty  

 Bacteriology* 69 (71) 

 Mycobacteriology 13 (13) 

 Parasitology 11 (11) 

 Virology 9 (9) 

 Mycology 3 (3) 

Types of learning  

 Supervised 96 (99) 

 Unsupervised 6 (6) 

 Reinforcement 0 

Machine learning techniques  

 Artificial Neural Network (including Convolutional Neural 

Network, Deep Neural Network, Spiking Neural 

Network, etc.) 

46 (47) 

 Support Vector Machine 34 (35) 

 Random Forest 28 (29) 

 Logistic Regression 11 (11) 

 K-Nearest Neighbours 8 (8) 

 Decision, Regression or Classification Trees 8 (8) 

 (Extreme) Gradient Boosting 7 (7) 

 Naïve Bayes 7 (7) 

 Adaptive Boosting 6 (6) 



 

 

 

*Including microbiota studies 

**We separated studies that describe the performance (e.g. ROC curves) of the diagnostic system 

(performance), studies that describe the implementation and adoption of the system in routine clinical 

microbiology practice (implementation) and studies that describe the impact of the system on the 

microbiology laboratory processes or on patients’ clinical outcomes (impact).  

†One study reported the implementation of the system in routine practice but did not give any details 

on implementation or impact in the article(17) 

 

 

  

 Others (LASSO, Genetic Algorithms, Elastic Net, 

Hierarchical Clustering, Linear Discriminant Analysis, 

L2-Regularization, etc.) 

22 (23) 

Evaluation**  

 Performance 96 (99) 

 Implementation 1† (1) 

 Impact 0 

Geographical settings  

 High-income countries 71 (73) 

 Low- and middle-income countries 36 (37) 

Year published  

 2019 25 (26) 

 2018 25 (26) 

 2017 13 (13) 

 2016 and before 34 (35) 



Table 2: Input data and outcomes of the machine learning systems in clinical microbiology 



ML systems n=97 (%) 

Type of input data  

 Whole genome sequencing 21 (22) 

 Microbiota (16S RNA or DNA) 19 (20) 

  Gut 12 (12) 

  Lung 4 (4) 

  Others (skin, oral cavity, maternal milk, vaginal) 3 (3) 

 Microscopic images* 19 (20) 

 Spectroscopy 17 (18) 

  MALDI-TOF mass spectroscopy 7 (7) 

  Fourier-transform infrared spectroscopy 4 (4) 

  Others (Raman, quantitative phase, pyrolysis, etc.) 6 (6) 

 Targeted gene sequencing 8 (8) 

 Volatile organic compounds 6 (6) 

 Bacterial colonies photographs 4 (4) 

 Transcriptome 4 (4) 

 Clinical data 3 (3) 

 Protein structure 3 (3) 

 Biochemical tests 1 (1) 

Output of the machine learning systems  

 Micro-organisms detection, identification and quantification 40 (41) 

 Cultures of bacteria 15 (15) 

 Direct examination of bacteria 8 (8) 

 Mycobacterium tuberculosis 4 (4) 

 Plasmodium spp. 9 (9) 

 Helminths 3 (3) 

 Candida spp. 2 (2) 

 Viruses 4 (4) 



 

*One ML system analysed microscopic videos 

**Insomnia, irritable bowel syndrome, inflammatory bowel disease, colorectal cancer, 

cirrhosis, type-2 diabetes, connective tissue disease. 

 

  

 Evaluation of antimicrobial susceptibility 36 (37) 

 Enterobacterales 18 (19) 

 Non-fermenting Gram-negative Bacilli 6 (6) 

 Mycobacterium tuberculosis 7 (7) 

 Staphylococcus aureus 8 (8) 

 Viral resistance (HIV and echovirus) 2 (2) 

 Other Gram-positive cocci (Streptococcus spp., Enterococcus spp.) 2 (2) 

 Others (Clostridioides difficile and Neisseria gonorrhoea) 2 (2) 

 Diagnosis, disease classification and clinical outcomes 21 (22) 

 Diagnosis of non-infectious diseases** 8 (8) 

 Diagnosis of lower respiratory tract infections 4 (4) 

 Prediction of severity (Shiga-toxigenic Escherichia coli infection, 

Respiratory Syncytial Virus infection, irritable bowel syndrome, insomnia) 

4 (4) 

 Diagnosis and prediction of recurrence of Clostridioides difficile infection 2 (2) 

 Diagnosis of dental infections 2 (2) 

 Response to therapy (inflammatory bowel disease) 2 (2) 

 Diagnosis of urinary tract infections 2 (2) 

 Diagnosis of other infections (tuberculosis, Zika virus, bacterial vaginosis) 3 (3) 



 

SUPPLEMENTARY MATERIAL 

1. List of the machine learning systems included in the review with their main characteristics 
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