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Abstract 

Several mechanisms allow for cargo internalization into cells within membrane-bound 

endocytic carriers. How these internalization processes couple to specific pathways of 

intracellular distribution remains poorly explored. Here, we review uptake reactions that are 

independent of the conventional clathrin machinery. We discuss how these link to retrograde 

trafficking route from endosomes to the Golgi apparatus, and exemplify biological situation in 

which the polarized secretion capacity of the Golgi apparatus allows for retrograde cargoes to 

be delivered to specialized areas of the plasma membrane, such as the leading edge of 

migratory cells or the immunological synapse of immune cells. We also address the evidence 

that allows to position apico-basal polarity of epithelial cells in this context. The underlying 

theme is thereby the functional coupling between specific types of endocytosis to intracellular 

retrograde trafficking for protein cargoes that need to be localized in a highly polarized and 

dynamic manner to plasmalemmal subdomains. 
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Introduction 

The plasma membrane delimitates eukaryotic cells from their environment. Due to its 

capacity to internalize cargoes from the extracellular space or the cell surface, endocytosis 

controls a multitude of cellular functions, ranging from nutrient uptake and signaling to cell 

migration and neurotransmission [1]. 

The plasma membrane also protects cells from extracellular insults. Yet, pathogens (e.g. 

viruses) and pathogenic agents (e.g. protein toxins) have found ways to breach this barrier to 

gain access to the intracellular space to exert their harmful action, and/or to replicate. 

In this review, we will first summarize endocytic mechanisms with an emphasis on those — 

often still poorly characterized — that do not depend on the conventional clathrin machinery. 

We will then discuss how these relate to the polarized distribution of molecules within cells. 

We will notably focus on retrograde trafficking from endosomes to the Golgi apparatus, 

which allows cargo proteins that follow this pathway to have access to the polarized secretion 

capacity of the Golgi for targeted delivery to specialized areas of the plasma membrane, such 

as the leading edge in migratory cells, or the immunological synapse in lymphocytes or 

specialized antigen presenting cells. 

 

Endocytic mechanisms — focus on non-clathrin uptake processes 

Clathrin-dependent endocytosis remains the best characterized endocytosis pathway [1]. The 

clathrin triskelion is recruited to the plasma membrane via adaptor proteins, which directly 

bind consensus signals found in the cytosolic tails of cargo proteins. Based on its self-

assembly properties and the recruitment of curvature inducers such as epsins and BAR-

domain proteins, the clathrin coat drives the formation of clathrin-coated pits from which 

clathrin-coated vesicles detach in a process that depends of the pinchase dynamin [2].  

Several endocytic processes continue to operate efficiently even when the clathrin pathway is 

blocked [3-5]. Since their discovery in the early 1980s, it has been a conundrum to know how 

cargo proteins are recruited and membranes bent in the absence of the clathrin coat. In the 

following, we discuss particularly well explored examples for which elements of response to 

these key questions have been proposed. Due to length limitations of the current review, we 

unfortunately cannot be fully exhaustive. 

 

FEME 

A first model for clathrin-independent endocytosis, termed fast endophilin-mediated 

endocytosis (FEME), relies on the membrane curvature-active BAR-domain protein family 



 3

member endophilin [6] (Figure 1, (a)). FEME occurs preferentially in the leading edge of 

migrating cells, is triggered by ligands, and used by a number of receptors, including 

heterotrimeric G-protein, growth factor, and IL-2 receptor. Recently, it was described that the 

small GTPase Cdc42 brings 2 BAR-domain proteins to the plasma membrane, FBP17 and 

CIP4, which then recruit the phosphatase SHIP2 and lamellipodin to drive the local 

production of PIP2 and thereby, the enrichment of endophilin [7]. 

 

CLIC/GEEC 

Another model for clathrin-independent endocytosis involves short sometimes crescent-

shaped tubular clathrin-independent carriers (CLICs) [8] that then mature into 

glycosylphosphatidylinositol (GPI)-anchored protein-enriched early endocytic compartments 

(GEEC) [5] (Figure 1, (b)). This CLIC/GEEC process has initially been described for the 

ganglioside-binding B-subunit of cholera toxin, GPI-anchored proteins (such as CD59 and 

Thy-1), the transmembrane protein CD44, and a major fraction of internalized fluid phase. 

CLIC/GEEC endocytosis is regulated by the small GTPases Arf1 and CDC42 [9,10], the 

GTPase activating factor GRAF1 [11], the actin nucleation factor ARP2/3 [12], and the BAR 

domain protein IRSp53 [13]. CLIC/GEEC endocytosis is dynamin-independent for the 

endogenous cargoes that have been analyzed [5], and not strictly dynamin-dependent for 

exogenous cargoes such as cholera [8] and Shiga toxins (Ref. [14], see below). 

 

GL-Lect 

How membrane bending might be operated in at least some processes of CLIC/GEEC 

endocytosis has been addressed at the examples of Shiga and cholera toxins, and the cellular 

CD44 and α5β1 integrin, which all are found in CLICs (Refs. [8,15] and unpublished). The 

glycosphingolipid (GSL)-binding homo-pentameric B-subunits of Shiga and cholera toxin 

(termed STxB and CTxB, respectively) induce tubular endocytic pits on cells and model 

membranes as a first step of their internalization [16]. This relies on curvature active 

properties of the B-subunit-GSL complexes [17] and the capacity to undergo membrane-

mediated clustering [18]. The scission process is not strictly dynamin-dependent [8,14], and 

involves other scission modalities [14,19]. 

The capacity to drive narrow membrane bending in interaction with GSLs leading to the 

formation of tubular endocytic pits and CLICs has also been observed for cellular lectins of 

the galectin family [20] (Figure 1, (c)). In the specific case of galectin-3 (Gal3), the lectin 

binds as a monomer to carbohydrates on cargo proteins such as CD44 or α5β1 integrin. Gal3 
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then oligomerizes and thereby gains to capacity to also interact with GSLs to drive membrane 

bending and the biogenesis of tubular endocytic pits from which CLICs detach for the cellular 

uptake of the cargoes. A similar sequence of events has recently also been described for 

galectin-8 and GSL-dependent cellular endocytosis of CD166 [21]. This mechanism has been 

termed glycolipid-lectin (GL-Lect) hypothesis [4].  

All these clathrin-independent processes — i.e. FEME, CLIC/GEEC, and GL-Lect — have in 

common that they are particularly sensitive to interference with the activity of the actin 

cytoskeleton, and the organization of the membrane into raft-type nanodomains. It also 

appears noteworthy that some cargoes and trafficking factors are overlapping between these 

endocytic modalities. We tentatively favor a view according to which clathrin-independent 

endocytic processes are driven by elements of molecular machinery that are recruited in an 

interchangeable way according to physiological needs [22]. 

Another emerging theme from these studies is that different forms of endocytic uptake couple 

to different intracellular distribution schemes, sometimes for the same receptor in the same 

cells. The molecular mechanisms (ligand concentrations, post-translational modifications, 

conformational changes…) underlying this complexity often still remain to be elucidated. In 

the following sections, we will address specifically one aspect of this riddle: a possible link 

between clathrin-independent endocytosis, retrograde trafficking, and cell polarity. 

 

Clathrin-independent endocytosis and cell polarity 

Several lines of evidence indicate that clathrin-independent endocytosis is linked to cell 

polarity. Well established cargoes of non-clathrin uptake processes are localized and 

internalized in a polarized manner: The leading edge of migratory cells for i) CD44 leading to 

extracellular matrix interaction and persistent cell migration, ii) the GPI-anchored protein 

Thy-1 for cell-cell interaction, and iii) β1 integrin for cell adhesion [15]; the apical membrane 

of epithelial MDCK cells for Thy-1 [23]; the basolateral membrane in hepatic epithelial cells 

for the GPI-anchored protein CD59 for its transcytosis to the apical side [24] (Figure 2, (g)). 

The apico-basal polarization of the colorectal cancer cell line Caco-2 is an important feature 

for the proper binding of the plant toxin ricin, a non-clathrin cargo, to the basolateral 

membrane [25]. In MDCK cells, clathrin-independent endocytosis of ricin occurs equally 

efficiently at both, the apical and basolateral surfaces [26]. Upon cAMP stimulation, however, 

binding and uptake now preferentially operate at the apical membrane, indicating that both 

processes are subjected to regulation.   
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Key regulators of the non-clathrin uptake machinery are also localized in a polarized manner. 

Once activated, FEME asymmetrically operates at the leading edge of migrating cells, while 

clathrin-coated pits exhibit a nonpolarized distribution [6]. FEME component Endo-A2 

mediates endothelial cell migration to ensure sprout angiogenesis by regulating the clathrin-

independent endocytosis of ligand-activated VEGFR2 at the leading edge [27]. Endo-A2 

silencing strongly alters the front-rear asymmetry, notably by repositioning the Golgi behind 

the nucleus, away from the leading-edge, suggesting a major function for FEME during 

persistent cell migration [27]. 

Similarly, CLIC structures were shown to be preferentially distributed at the leading edge of 

migrating mouse embryonic fibroblast, where the CLIC/GEEC regulator CDC42 is located 

[15]. Interestingly, CDC42 is an essential contributor in the initiation and maintenance of cell 

polarity, by acting as an epithelial polarity determinant that notably regulates the proper apical 

localization of podocalyxin and E-cadherin [28,29], and polarized cell migration in the 

context of wound-healing [30]. The CLIC/GEEC regulator GRAF1 is also implicated in cell 

polarity, regulating the orientation of cell spreading in migrating cells, and apico-basal 

polarity during lumen formation [31].  

Lipid-rafts play critical roles in cell polarity, especially in migrating cells where they 

preferentially localize at the leading edge [32], such as during chemoattractant-induced 

neutrophil polarization to recruit calcium-dependent calpain 2 [33]. GSLs also exhibit a 

polarized distribution. In migrating mouse embryonic fibroblasts, the polarized localization of 

the GM1 ganglioside at the leading edge [34] is maintained through Rho/mDia-mediated 

microtubule stabilization, and further regulated by integrin-activated FAK [35]. In contrast, 

GM1 is enriched at the uropod at the rear of migrating T lymphocytes, together with CD44 

and β1 integrin, while the leading-edge is enriched in GM3 [36]. This differential ganglioside 

distribution is key for T-cell polarization, and is further regulated by cholesterol and the actin 

cytoskeleton [35,36]. The GD3 ganglioside shares a similar leading-edge localization in 

melanoma cells where it controls the polarized recruitment of the lipid raft-associated 

neogenin, which is essential for cell migration and invasion [37]. 

Interestingly, GSLs are also crucial in the establishment and the maintenance of apico-basal 

polarization. In C. elegans, GSLs act as determinants to initiate apical domain identity [38]. In 

mice, their loss alters the identity of apical brush border membrane, and GSL-depleted 

animals fail to take nutrients up from the intestinal lumen, which is likely due to deficiency in 

clathrin-independent endocytosis [39]. 
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As suggested by the GL-Lect hypothesis, GSLs function together with galectins for the 

clathrin-independent construction of endocytic pits [4]. The latter also appear to be important 

for cell polarization. In kidney, Gal8 binds in a carbohydrate-dependent manner to 

podocalyxin (gp135) for its post-Golgi delivery to the apical surface such as to specify lumen 

identity [40] (Figure 2 (c)). In kidney tubules, Gal9 preferentially binds sialylated 

glycoproteins for apical delivery [41]. Similarly, Gal3 enables the polarized transport of key 

apical markers, i.e. the DPPIV and LPH enzymes [42], and Gal4 was found in post-Golgi 

flotillin-containing membrane fractions that are responsible of apical delivery [43] (Figure 2, 

(e)). Of note, Gal3 [20], Gal4 [43], and Gal9 [44] all interact with GSLs in the 

establishment/maintenance of cell polarity, which highlights the possibility that the GL-Lect 

process plays a specific role in this context (Figure 2 (d-e)). 

In the following section, we discuss evidence that links clathrin-independent endocytosis to 

retrograde transport in the context of cell polarity. 

 

Retrograde trafficking and cell polarity 

The Golgi apparatus faces the leading edge in migrating cells [34], and the apical membrane 

in epithelial cells [45]. The Golgi is thereby strategically positioned in a way such that it 

facilitates polarized secretion to these specialized areas of the plasma membrane. Retrograde 

transport from the plasma membrane to the Golgi apparatus allows in some cases for cell 

surface proteins to be subjected again to this polarized secretion program such as to keep 

them dynamically localized to corresponding plasmalemmal subdomains [46,47]. In the 

following, we will discuss links between clathrin-independent endocytosis, retrograde 

transport, and cell polarity. 

A possible link between clathrin-independent endocytosis and retrograde trafficking has been 

noticed for protein toxins, i.e. bacterial Shiga and cholera toxins, and the plant toxin ricin 

[48], and viruses or viral products, i.e. AAV [49], human papillomavirus [50], and HIV [51]. 

The transferrin receptor was amongst the first cellular proteins for which it was shown that 

they undergo retrograde transport [52]. Only a small fraction of transferrin receptor is 

transported to the Golgi, however, which is mirrored by a small fraction that binds to Gal3 

[53] and that enters cells by clathrin-independent endocytosis [21]. Whether these fractions 

correspond to each other remains to be established. 
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Apico-basal polarity  

In association with MIG-14/Wntless (WIs), Wnt morphogen undergoes retrograde transport to 

the Golgi apparatus [54], which is regulated by the polarity determinants Cdc42, the Cdc42-

associated PAR-3/PAR-6/aPKC complex, as well as the Cdc42-dependent actin assembly F-

BAR domain proteins TOCA-1 and TOCA-2 [55]. Different endocytic processes seem to be 

operating here: Clathrin for uptake at the basolateral membrane of MDCK cells [56]; clathrin-

independent for the canonical Wnt3a; clathrin-dependent for the non-canonical basolateral 

Wnt5 [57]; non-clathrin and Gal3-dependent for the apical secretion/localization of Wnt11 

[4,56], putatively via the GL-Lect mechanism [4] (Figure 2, (f)). 

In Drosophila, the retromer complex strongly contributes to apical polarity by regulating the 

retrograde transport/recycling of the apical membrane determinant Crumbs [58] (Figure 2, 

(a)). In MDCK cells, Crumbs together with Scribbles stabilizes the epithelial junction protein 

E-cadherin. Upon Scribble (SCRIB) silencing, internalized E-cadherin accumulates in a 

retromer-dependent manner in the Golgi [59] (Figure 2, (b)). This interaction is likely 

conserved in C. elegans, contributing to Wnt signaling during polarized neuronal migration 

[60]. 

 

Front-rear polarity  

The retrograde pathway plays an essential role in the polarized localization of β1 integrin to 

the leading edge of migrating cells [47]. Interfering with retrograde transport leads to the 

redistribution of β1 integrin and the inhibition of persistent cell migration, while imposing 

high front-rear polarization stimulates retrograde transport of β1 integrin [47] (Figure 3, (a)). 

Both clathrin-dependent and independent uptake processes have previously been documented 

for β1 integrin [61-63], the latter involving the GL-Lect mechanism based on Gal3 and GSLs 

[20,63]. The relationship between these entry modes and retrograde transport has not yet been 

assessed. 

The matrix metalloproteinase MT1-MMP undergoes retrograde transport prior to be secreted 

back to the plasma membrane [64] (Figure 3, (b)). The clathrin-independent cargo protein 

CD147 [65] stimulates MT1-MMP expression within lipid-raft enriched invadopodia [66], 

suggesting that this may occur as the result of polarized secretion from the Golgi to this 

specialized area of the plasma membrane, following prior retrograde transport. 
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Immunological and neuronal synapse  

Upon T cell receptor (TCR) activation, T-lymphocytes build a highly polarized structure: the 

immunological synapse (Figure 4). The adaptor molecule LAT, a key organizer of 

signalosome formation, undergoes retrograde transport to the Golgi to be secreted in a 

polarized manner to the immune synapse [46] (Figure 4, (a)). LAT and T-cell signaling 

components such as the TCR are associated with lipid rafts [67], and it was recently reported 

that the TCR is internalized in a clathrin-independent manner [68] (Figure 4, (b)). These 

findings again reinforce the hypothesis of a tight relationship between clathrin-independent 

endocytosis and retrograde transport-dependent polarized secretion as a common theme to 

several biological processes involving specialized areas of the plasma membrane. 

In C. elegans, glutamate receptor is localized in a polarized manner towards the dendrites, and 

retrograde trafficking is required to ensure efficient post-synaptic activity [69]. Both clathrin-

dependent and independent endocytosis have been implicated in glutamate receptor turnover 

[70]. Which of these internalization modes couples to the retrograde route has yet to be 

addressed. 

 

Concepts and perspectives 

In this review, we have pointed to a possible link between the clathrin-independent 

construction of endocytic sites at the plasma membrane and specific types of intracellular 

distribution, notably via the retrograde route. Further work is required to further establish this 

concept, and to identify molecular mechanisms that can explain how such coupling might be 

operated. 

We have also addressed the role of retrograde trafficking in the establishment and 

maintenance of cell polarity, by enabling the polarized secretion of reinternalized cargoes to 

specialized areas of the plasma membrane within different cellular contexts, such as the 

leading edge of migratory cells, and the immunological synapse of activated T cells. We 

expect that this concept will apply more widely in the realm of cell polarity, including apico-

basal polarity of epithelial cells. 

Further investigation of all these aspects is likely to benefit domains of molecular cell biology 

research that are still relatively poorly explored, such as the role of carbohydrates and raft 

lipids in the dynamic compartmentalization of biological functions. 
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Figures Legends 

 

Figure 1 Clathrin-independent endocytic processes 

 

Schematic representation of the leading edge of a migratory cell where processes of clathrin-

independent endocytosis mainly operate, while the clathrin pathway remains unpolarized. (a)- 

FEME, fast endophilin-mediated endocytosis. FEME relies on the BAR-domain protein 

family member endophilin and other BAR domain proteins. This endocytic process is used by 

cargo proteins such as IL-2R, β-adrenergic receptor (β-AR), and growth factors. (b)- 

CLIC/GEEC endocytosis. Clathrin-independent carriers (CLICs) are short tubular often 

crescent-shaped endocytic carriers that mature into glycophosphatidylinositol (GPI)-anchored 

protein-enriched early endocytic compartments (GEECs). CLIC/GEEC endocytosis is 

regulated by the GTPase activating factor GRAF1 and the small GTPase CDC42, amongst 

others, for the cellular uptake of cargoes like the hyaluronic acid receptor CD44, the GPI-

anchored proteins CD59 and Thy-1, and the bacterial cholera toxin. (c)- GL-Lect hypothesis. 

Molecular hypothesis according to which sugar-binding proteins of pathogenic (e.g. the GSL-

binding B-subunits of Shiga and cholera toxin, STxB and CTxB, respectively, or the GSL-

binding VP1 capsid protein of SV40) or cellular origin (e.g. galectins) reorganize glycolipids 

to which they bind in a way such as to drive the biogenesis of tubular endocytic pits from 

which CLICs are generated for the cellular uptake of pathogens (e.g. SV40 virus), pathogenic 

products (e.g. Shiga and cholera toxins), or cellular proteins (e.g. CD44, integrins, CD59) that 

are recruited by the galectins. 

 

 

 

Figure 2 Retrograde trafficking in the polarized epithelium 

  

Apico-basal polarity determinants: Note the polarized orientation of the Golgi facing the 

apical membrane. (a)- The transmembrane protein Crumbs (Crbs) is an apico-basolateral 

polarity determinant that together with the Cdc42-Par6-aPKC protein complex controls the 

establishment and maintenance of apical domain identity. In Drosophila, Crumbs uses the 

retromer-dependent retrograde route for its apical transport/recycling, which is crucial for 

apical integrity. (b)- Both the apical Crumbs and the lateral Scribble (SCRIB) scaffold protein 

are needed to stabilize the junction protein E-cadherin (E-cad) at the sub-apical membrane. 

When silenced, SCRIB induces an accumulation of E-cad within retromer positive structures 

before reaching the Golgi compartment, suggesting that in certain circumstances the 

retrograde machinery is involved in the polarized secretion of E-cad. (c)- Apically located 

glycocalyx/gp135 is another key protein in the epithelium. In kidney epithelial cells, galectin-

8 (Gal8) binds gp135 in a carbohydrate-dependent manner for post-Golgi delivery to the 

apical surface to regulate lumen formation. Whether Gal8 traffics from the apical membrane 

back to the Golgi for a new round of apical secretion of gp135 is an intriguing possibility. 

Polarized secretion: (d)- Extracellular galectin-9 (Gal9) contributes to apico-basolateral 

polarity. Gal9 binds to the GSL Forssman antigen (FGL) and undergoes cycles of retrograde 

transport and polarized apical secretion. (e)- Similarly to Gal9, other galectins including Gal3 

and Gal4 are required for the maintenance of epithelial polarity by controlling the flotillin-

dependent polarized secretion of apical proteins such as DPPIV and LPH. In contrast to Gal9, 

it has not yet been analyzed whether these galectins also undergo retrograde trafficking. (f)- 

Wnt11 is specifically secreted to the apical surface in a process that involves Gal3. As part of 

its functional cycle, the Wnt receptor wntless (Wls) undergoes retrograde transport to bind 
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newly synthetized Wnt in the Golgi for subsequent polarized secretion. Whether Gal3 also 

contributes to the retrograde transport of Wls still needs to be investigated. (g)- The GPI-

anchored protein CD59 is first transported to the basolateral membrane before being 

transcytosed to the apical side in a clathrin-independent but dynamin and flotillin-dependent 

manner. A link between this transcytotic route and the retrograde pathway presents an 

interesting possibility.  

 

 

 

Figure 3 Retrograde trafficking in migratory cells 

 

During migration (directionality indicated by thick black arrow), the cell exhibits two distinct 

domains: the retracting rear, and the migration front, also known as leading edge. Here again, 

the Golgi apparatus is localized in a polarized manner such that it directly faces the leading 

edge. (a)- The non-ligand-bound integrin α5β1 uses the retrograde route to the Golgi prior to 

being re-secreted in a polarized manner to the leading edge. Of note, α5β1 integrin uses both 

clathrin-dependent and -independent endocytosis processes. The possible link between 

retrograde transport and the modality of endocytosis remains unexplored. (b)- The matrix 

metalloproteinase MT1-MMP also follows a similar retrograde transport and polarized 

secretion cycle. Of note, MT1-MMP expression is regulated by the clathrin-independent 

cargo CD147, and both are recruited to the same lipid raft nanodomains. Other 

metalloproteinases such as MMP9 are also found at the leading edge and are positively 

regulated by Gal3. Altogether, this may suggest a general scheme where adhesion molecules 

and metalloproteinases cooperate and share similar endocytic and intracellular delivery 

pathways, further regulated by galectins to facilitate efficient cell migration. 

 

 

 

Figure 4 Retrograde trafficking in immune cells 

 

T cell receptor (TCR) activation occurs in the presence of antigen presenting cells (APC). 

During this event, T lymphocytes build specialized membrane domains, termed 

immunological synapses (IS) to which the linker for activation of T-cell (LAT) localizes in a 

polarized and dynamic manner to organize the signalosome. Here again, the Golgi apparatus 

is localized in a polarized manner such that it directly faces the IS. (a)- LAT efficiently 

undergoes Rab6, retromer, and Synt16-dependent retrograde trafficking to the Golgi 

compartment for subsequent polarized secretion to the IS, a trafficking loop that is required 

for efficient T cell activation. (b)- LAT and other T cell components such as TCR as well as 

APC cargoes like CD166 have been reported to be internalized in a clathrin-independent 

manner. Whether similar to LAT the other cargoes also undergo retrograde transport for their 

dynamic localization to the IS remains to be studied directly. 

 

 

 

 

 












