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Mesh-free error integration in arbitrary dimensions:

a numerical study of discrepancy functions

Philippe G. LeFloch∗ and Jean-Marc Mercier†

Abstract

We are interested in mesh-free formulas based on the Monte-Carlo methodology for the approxima-
tion of multi-dimensional integrals, and we investigate their accuracy when the functions belong to a
reproducing-kernel space. A kernel typically captures regularity and qualitative properties of functions
“beyond” the standard Sobolev regularity class. We are interested in the issue whether quantitative
error bounds can be a priori guaranteed in applications (including mathematical finance, scientific com-
puting, and machine learning). Our main contribution is a numerical study of the error discrepancy
function based on a comparison between several numerical strategies, when one varies the choice of
the kernel, the number of approximation points, and the dimension of the problem. We consider two
strategies in order to localize to a bounded set the standard kernels defined in the whole Euclidian space
(exponential, multiquadric, Gaussian, truncated), namely, on one hand the class of periodic kernels de-
fined via a discrete Fourier transform on a lattice and, on the other hand, a class of transport-based
kernels. Relying on the Poisson formula on a lattice together with heuristic arguments, we study the
derivation of theoretical bounds for the discrepancy function of periodic kernels. Then, for four kernels
of particular interest we perform extensive numerical experiments and generate the optimal distributions
of points and the discrepancy error functions. Our numerical results validate our theoretical observa-
tions and, importantly, provide us with quantitative estimates for the error made with a kernel-based
strategy as opposed to a purely random strategy.
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1 Introduction

An error approximation formula. We are motivated here by applications to partial differential equations
arising continuum physics, including the development of mesh-free methods in fluid dynamics and material
sciences [2, 6, 7, 12, 13, 17, 18, 24]. Specifically, we are interested in approximating multi-dimensional
integrals via Monte-Carlo formula and deriving error estimates, in which the dependency with respect to
the dimension of the problem and other important parameters is specified in a quantitative manner. By
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revisiting this problem of multivariate integration, our purpose is to clarify the derivation and validity of
such estimates whose importance has been highlighted in recent years in artificial intelligence, for mesh-free
computations of partial differential equations, and mathematical finance. The existing literature emphasizes
the role of Sobolev-type spaces, while we would like here to stress the importance of kernel-based Hilbert
spaces. In many applications, one is interested in preserving certain a priori structure that are available
a priori and the choice of a kernel is dictated by properties (symmetry, scaling, regularity, decay, etc.)
that should be incorporated in the approximation algorithms. Therefore, it is desirable to have a flexible
framework that encompasses a wide class of kernels, as we consider in the present paper.

More specifically, within a given Hilbert (or Banach) space we seek to optimize the choice of the inter-
polation points in an integral approximation formula and establish a sharp error estimate within the chosen
class of regularity and decay. Two parameters are of primary interest, namely, the dimension D ≥ 1 of the
problem and the number of interpolation points N ≥ 1, and it is essential to have quantitative estimates
with a specified dependency in N,D that can be determined from the kernels of interest. In the present
paper, we contribute to this general objective and provide a systematic study and comparison of several
classes of kernels, which we refer to as periodic kernels and transported kernels. Our periodic framework
for periodic kernels is motivated by work by Cohn and Elkies [3] who studied the problem of sphere pack-
ing. Our result depends upon a “kernel density” function which arises as a key factor in a quantitative
bound. We build here on many earlier works on the subject, including contributions in approximation
theory [1, 4, 5, 15, 19, 20, 22, 23].

The discrepancy function associated with a kernel. To any kernel K : Ω × Ω → R defined on
a bounded and open subset Ω ⊂ RD and satisfying a positivity condition (see Section 2.1), we associate a
Banach space Hs,pK (Ω) of real-valued functions defined on Ω with regularity exponent s > 0 and integrability
exponent p ∈ [1,+∞). (More generally, the Lebesgue measure could be replaced by a probability measure.)
Then, an “abstract” error integration estimate reads, for any N ≥ 1 and any function ϕ ∈ Hs,pK (Ω),

sup
‖ϕ‖Hs,p

K
(Ω)=1

inf
x1,...,xN∈Ω

∣∣∣ 1

|Ω|

∫
Ω

ϕ(x) dx− 1

N

∑
1≤n≤N

ϕ(xn)
∣∣∣ ≤ Es,pK (N,D), (1.1)

in which the discrepancy function Es,pK (N,D) is independent of ϕ. Hence, (1.1) provides us —in the class
of functions under consideration— a factorization of the error in two contributions: ‖ϕ‖Hs,pK (Ω) measures
the regularity of the function while the discrepancy function is related to the best distribution of N points
in Ω. The challenge is to control Es,pK (N,D), which can be expressed in several forms:

1. In the physical space Ω, the function Es,pK (N,D) can be formulated with a pseudo-distance associated
with the kernel.

2. In suitable spectral variables determined from an operator naturally associated with the kernel, the
function Es,pK (N,D) takes a rather explicit form involving the eigenfunctions and eigenvectors of this
operator.

However, both formulations are difficult to work with directly —except in dimension D = 1. So, we
introduce below a third standpoint which is more efficient in order to control and its dependency with
respect to D and N , that is, we introduce the class of “lattice-based” kernels (in a tensorial form), as we
call them. In this context, we can express the function Es,pK (N,D) via:

3. a Poisson formula in dual discrete Fourier variables associated with a lattice (see next section).

Interestingly, for this latter class of kernels, quantitative estimates can be established that involve the the
notion of a “lattice density” function, as we explain it in this paper, and shed some light on the problem of
the curse of dimensionality. A priori and quantitative error bounds are obtained at any order of accuracy
at the expense of possibly increasing the regularity of the functions under consideration. Importantly for
the applications, the error function is controlled quantitatively in a given functional framework.

Evaluation of the discrepancy function. We focus attention on a selected list of kernels which
we construct by a nonlinear transformation of four translation-invariant kernels, that is, of the form
K(x, y) = ϕ(x − y). We choose kernels that are commonly used in the applications, namely the ex-
ponential1, multiquadric, Gaussian, and truncated kernels. Their Fourier transform ϕ̂ defined on RD is
known explicitly and is listed in Table 1.1.

1which is sometimes also refered to as the Matérn kernel
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exponential (E) multiquadric (M) Gaussian (G) truncated (T)

χ exp (−|x|1) (1 + |x|2)−(D+1)/2 exp(−|x|2/2) sup(1− |x|, 0)D

χ̂ (1 + |ξ|2)−(D+1)/2 exp(−|ξ|) exp(−|ξ|2/2) (see [23])

Table 1.1: Four kernels and their Fourier transforms on RD

These kernels are defined in RD and we proceed by “localizing” them to a bounded domain Ω, taken to
be the unit cube [0, 1]D for simplicity in the presentation. We propose two methods for such a localization
of a kernel K defined on RD × RD:

• The periodic version Kper of K defined from a discrete Fourier transform.

• The transported version Ktran of K defined via a nonlinear transport map.

This provides us with eight kernels (listed in Table 1.2) and our main purpose is to investigate the discrep-
ancy function associated with each of them.

In principle, we could use numerically any one of the three expressions of the error function which
we derive below and attempt to minimize it over the set of Y . In most cases, this requires a computation
which, in general, cannot be done explicitly and a numerical integration of this function would be very costly,
especially in large dimensions. We discuss this below. In particular, due to the (non-convex) form of the
kernel, minimizing the error function in the physical space is computationally challenging. By introducing a
periodic version based on the discrete Fourier transform, we arrive at an expression that is computationally
tractable. We are able to make comparisons between these kernels and investigate the rate of convergence
while comparing with the case when the points are randomly chosen. Our numerical results confirm and
support our theoretical discussion.

Applications and perspectives. The material in this paper should be useful for analyzing mesh-
free methods for computing solutions to partial differential equations and deriving quantitative bounds
for algorithms used in pattern recognition and artificial intelligence. The estimate discussed here provides
us with a key building block in order to establish an error analysis of the transported mesh-free method
presented in the companion paper [11]. The method therein can be regarded as a generalization of the
Lagrangian mesh-free method use in computational fluid dynamics, but also allows to include Navier-
Stokes-type diffusive terms.

Most of the literature on error integration estimates is focused on functions with Sobolev regularity
while we are interested here in functions with regularity adapted to specific applications. For instance,
the standard choice of radially-symmetric kernels leads to functional spaces that are variants of Sobolev
spaces and, in particular, are invariant by translations. Allowing more general kernels allows one to describe
local (direction-dependent) properties of functions. For instance, a kernel we discuss below is adapted to
measure the regularity of functions of the form ϕ =

∑
0<n1<...<nk≤D ϕn1,...,nk(xn1

, . . . , xnk), relevant in
mathematical finance. The strategy in [9, 11] is now applied in industrial applications [16] and its accuracy
can be explained in the light of the present study. This is relevant when considering the valuations of
complex financial products (including the so-called American exercising) written on a large number of
underlyings, and aiming at computing rapidly complex risk measures; see [9].

Outline of this paper. In Section 2, we present some basic material on reproducing kernel spaces.
In Section 3, we discuss our methodology for constructing the two classes of kernels of main interest. In
Section 4, the kernels studied in the present paper are presented and some their properties discussed. In
Section 5, we derive several expressions of the discrepancy function, depending whether physical, spectral,
or Fourier variables are used and, next, in Section 6 we derive estimates on the discrepancy error. In
Section 7, we present and discuss our numerical results for each of the kernels of interest.
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exponential (E) multiquadric (M) Gaussian (G) truncated (T)

Tra exp(−|erf−1(x)|1)
(
1 + |erf−1(x)|2

)−(D+1)/2
exp(−|erf−1(x)|2/2) sup

(
1− |erf−1(x)|, 0

)D
Per

∑
exp(−|x+ α|1)

∑
(1 + |x+ α|2)−(D+1)/2

∑
exp(−|x+ α|2/2)

∑
sup(1− |x+ α|, 0)D

Table 1.2: Transported (Tra) and periodic (Per) kernels on [−1, 1]D (sum over α ∈ ZD)

2 Functional framework based on a reproducing kernel

2.1 Discrete setup

The class of admissible kernels. Since we are primarily interested in kernels defined on a bounded set,
in the present section we restrict attention to this class —although we will allow ourselves to manipulate
kernels defined on the whole Euclidian space and treated as “seed data” in order to generate the kernels
of actual interest. A reproducing kernel provides a convenient way to generate a broad class of Hilbert
spaces (or, more generally, Banach space); cf. [4, 22]. A bounded and continuous function K : Ω× Ω→ R
on a bounded open set Ω ⊂ RD is called an admissible kernel if it satisfies (1) the symmetry property:
K(x, y) = K(y, x) for all x, y ∈ Ω, and (2) the positivity property: for any collection of N distinct points
Y = (y1, . . . , yN ) in Ω, the symmetric matrix K(Y, Y ) =

(
K(ym, yn)

)
1≤n,m≤N is positive definite in the

sense that aTK(Y, Y )a > 0 for all a ∈ RN \ {0}. It is said to be uniformly positive if there exists a uniform
constant c > 0 such that for any collection of distinct points Y one has aTK(Y, Y )a ≥ c |a|2 for all a ∈ RN .

Clearly, any admissible kernel also satisfies

K(x, x) ≥ 0, K(x, y)2 ≤ K(x, x)K(y, y), x, y ∈ Ω. (2.1)

This implies that 2K(x, y) ≤ K(x, x) +K(y, y) and, therefore, the non-negative function

D(x, y) := K(x, x) +K(y, y)− 2K(x, y) ≥ 0, x, y ∈ Ω, (2.2)

can be interpreted as a “pseudo-distance” in view of the properties D(x, x) = 0 and D(x, y) = D(y, x).
(The triangle inequality need not hold.) Many examples of admissible kernels will be presented in the next
two sections.

Finite dimensional framework. Given any finite collection of points Y = (y1, . . . , yN ) chosen in Ω,
we introduce the (finite dimensional) vector space HYK(Ω) consisting of all linear combinations of the basis
functions x 7→ K(x, yn). In other words, we set

HYK(Ω) :=
{ ∑

1≤m≤N

amK(·, ym) / a = (a1, . . . , aN ) ∈ RN
}
. (2.3)

Since K is continuous, HYK(Ω) ⊂ C(Ω) embeds into the space C(Ω) of all continuous functions on Ω. To any
two functions ϕ =

∑
1≤m≤N amK(·, ym) and ψ =

∑
1≤n≤N bnK(·, yn), we associate the bilinear expression

〈ϕ,ψ〉HYK(Ω) := aTK(Y, Y )b =
∑

1≤m≤N

∑
1≤n≤N

ambnK(ym, yn) (2.4)

(with a = (am), etc.), which endows the space HYK(Ω) with a Hilbertian structure with norm ‖ϕ‖2HYK(Ω)
:=

aTK(Y, Y )a. Now, the so-called reproducing kernel property (immediate from (2.4))

〈K(·, ym),K(·, yn)〉HYK(Ω) = K(ym, yn), (2.5)

allows one to relate the coefficients of the decomposition of a function ϕ =
∑

1≤m≤N amK(·, ym) to its
scalar product with the basis functions, namely

〈ϕ,K(·, yn)〉HYK(Ω) =
∑

1≤m≤N

am〈K(·, ym),K(·, yn)〉HYK(Ω) =
∑

1≤m≤N

amK(ym, yn) = aTK(Y, yn). (2.6)
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Discrete spectral decomposition. Since K(Y, Y ) is a symmetric and positive definite matrix, it
admits real and positive eigenvalues, denoted by λnY > 0, together with a basis of right-eigenvectors ζnY ∈ RD
(with n = 1, 2, . . . , N) chosen to be unitary, and satisfying

K(Y, Y )ζnY = λnY ζ
n
Y , n = 1, 2, . . . , N. (2.7)

This decomposition is useful in order to define, for any s ≥ 0 and p ≥ 1, the finite dimensional Banach
space HY,s,pK (Ω) of all functions of the form

∑
1≤m≤N amK(·, ym) with finite norm

‖ϕ‖p
HY,s,pK (Ω)

:=
∑

1≤n≤N

(λnY )−sp〈ϕ, ζnY 〉
p

HYK(Ω)
. (2.8)

Projection operator. Consider a function f ∈ C(Ω) and introduce the vector f(Y ) =
(
f(y1), . . . , f(yN )

)
consisting of the values of this function at the given points. We define its projection PY (f) into the discrete
space HYK(Ω) by setting

PY (f) := aTK(·, Y ), a := K(Y, Y )−1f(Y ). (2.9a)

Clearly, this defines a projection since PY ◦ PY (f) = PY (f) and, in fact, PY (ϕ) = ϕ for any function
ϕ = aTK(·, Y ) belonging to the space HYK(Ω) (where we used that K is symmetric). Moreover, the norm
of this projection reads

‖PY (f)‖2HYK(Ω) = f(Y )TK(Y, Y )−1f(Y ). (2.9b)

The partition of unity. A basis is naturally associated with the discrete space HYK(Ω), that is,
N functions θnY : Ω → R taking the values 0 or 1 at the points of the set Y . Precisely, writing θY :=
(θ1
Y , . . . , θ

N
Y ), we define

θY := K(Y, Y )−1K(Y, ·). (2.10a)

It follows that
(
θY (ym)

)
1≤n,m≤N = K(Y, Y )−1K(Y, Y ) = Id (the identity matrix), and using the Kronecker

symbol, we have θnY (ym) = δnm, while the scalar product of any two basis functions is〈
θmY , θ

n
Y

〉
HYK(Ω)

= K−1(ym, yn). (2.10b)

This partition of unity is useful in expressing the projection of a function f ∈ C(Ω), namely PY (f) =∑
1≤n≤N f(yn)θnY .

2.2 Continuous setup

Functional spaces. Given an admissible kernel K : Ω×Ω→ R, we now introduce the infinite dimensional
space H̃K(Ω) consisting of all finite linear combinations of the functions K(x, ·) parametrized by x ∈ Ω,

that is, H̃K(Ω) := Span
{
K(·, x) / x ∈ Ω

}
, which we endow with the scalar product and norm defined in

the finite dimensional setup; see (2.1) (where now Y and N are no longer fixed). By construction, the

reproducing kernel property (2.5) also holds in H̃K(Ω), i.e.

〈K(·, x),K(·, y)〉H̃K(Ω) = K(x, y), x, y ∈ Ω. (2.11a)

From the Cauchy-Schwarz inequality, it follows that for any ϕ ∈ H̃K(Ω) and x ∈ Ω

|ϕ(x)| = |〈K(·, x), ϕ〉H̃K(Ω)| ≤ ‖K(·, x)‖H̃K(Ω) ‖ϕ‖H̃K(Ω) =
√
K(x, x) ‖ϕ‖H̃K(Ω). (2.11b)

Since the kernel is continuous and bounded, the “point evaluation” ϕ 7→ ϕ(x) is thus a linear and bounded

functional on H̃K(Ω) (for any x ∈ Ω).
We have defined a pre-Hilbert space, that is, a vector space endowed with a scalar product and, in order

to obtain a complete metric space, the completion of the pre-Hilbert space H̃K(Ω) is considered by taking
all linear combinations based on countably many points Y = (y1, y2, . . .) in Ω. The corresponding space is
denoted by HK(Ω) and is the reproducing Hilbert space generated from the kernel K.

Clearly, both properties (2.11) remain true in HK(Ω). Observe also that

|ϕ(x)− ϕ(y)| = |〈K(·, x)−K(·, y), ϕ〉HK(Ω)|
. ‖K(·, x)−K(·, y)‖HK(Ω)‖ϕ‖HK(Ω) = D(x, y)‖ϕ‖HK(Ω), x, y ∈ Ω.

(2.12)
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Since K and thus D are continuous in Ω, we have the embedding HK(Ω) ⊂ C(Ω), that is, all of the functions
are continuous, at least.

Mercer decomposition. We now consider the linear operator TK : L2(Ω) → L2(Ω) defined by
TK(a) :=

∫
Ω
K(·, x)a(x) dx (for a ∈ L2(Ω)) on the Hilbert space L2(Ω) endowed with its standard inner

product. We have
‖TK(a)‖L2(Ω) ≤ |Ω|1/2‖K‖L2(Ω×Ω)‖a‖L2(Ω),

so this operator is continuous and self-adjoint. It is easily checked to be compact: if a sequence ap ⇀ a
weakly in the L2 norm then TK(ap)→ TK(a) strongly in the L2 norm. The classical spectral decomposition
applies and the operator TK admits an (at most countable) non-increasing sequence of eigenvalues λi > 0
and a corresponding set of eigenfunctions ζi such that TK(ζi) = λiζi and the family

{
ζ1, ζ2, . . .

}
forms

an orthonormal basis of L2(Ω) for the L2 inner product. Furthermore, since the kernel is continuous and
bounded, the eigenfunctions ζi are continuous, at least.

We then introduce the kernel

L(x, y) =
∑

j=1,2,...

λj ζj(x)ζj(y), x, y ∈ Ω, (2.13)

in which the sum converges in the L2 sense. This kernel is admissible since, for any collection of points
Y = (y1, . . . , yN ) in RN , the bilinear form LY (x, x′) =

∑
1≤n,m≤N L(yn, ym)xnx

′
m (with x, x′ ∈ RN ),

satisfies

LY (x, x) =
∑

j=1,2,...

λj
∑

1≤n,m≤N

ζj(y
n)ζj(y

m)xnxm =
∑

j=1,2,...

λj

∣∣∣ ∑
1≤n≤N

ζj(y
n)xn

∣∣∣2 ≥ 0.

In fact, one can check that L coincides with the given kernel K and (2.13) represents its spectral decom-

position. The family of functions
{
λ

1/2
i ζi

}
i≥1

is an orthonormal basis of the space HK(Ω), as follows from

the defining relation TKζi = λiζi, namely2

< λ
1/2
i ζi, λ

1/2
j ζj >HK(Ω)= λ

1/2
i λ

1/2
j

1

λi
< TKζi, ζj >HK(Ω)=

λ
1/2
j

λ
1/2
i

〈ζi, ζj〉L2(Ω) = δij . (2.14)

This series representation of the elements in HK(Ω) is referred to as the Mercer representation (which may
be non-unique). In short, Mercer theorem states that any admissible kernel K : Ω× Ω→ R can be viewed
as a positive, self-adjoint and compact operator on L2(Ω).

Banach spaces. Based on the Mercer representation, we can define the Lp-based spaces at any order
of differentiability. Namely, for any s ≥ 0 and p ∈ [1,+∞) we consider the Banach space

Hs,pK (Ω) :=
{
ϕ ∈ Lp(Ω) /

∑
i=1,2,...

λ
−ps/2
i

∣∣〈ϕ, ζi〉L2(Ω)

∣∣p < +∞
}

(2.15)

endowed with the norm
(
‖ϕ‖Hs,pK (Ω)

)p
:=
∑
i=1,2,... λ

−ps/2
i

∣∣〈ϕ, ζi〉L2(Ω)

∣∣p. When p is chosen to be 2, the

space HsK(Ω) := Hs,2K (Ω) is a Hilbert space endowed with the inner product

〈f, g〉HsK(Ω) =
∑

i=1,2,...

(λi)
−s〈f, ζi〉L2(Ω)〈g, ζi〉L2(Ω). (2.16)

In particular, HK(Ω) = H1
K(Ω) = H1,2

K (Ω) and we recover the Hilbert space defined earlier.

3 Methodology for defining classes of kernels

3.1 Translation-invariant and radially-symmetric kernels on RD

Translation invariant kernels. Our first task now is to provide some preliminary material and a classi-
fication involving the notions of translation-invariant kernel, periodic kernel, tensorial kernel, and radially-
symmetric kernel. In the present section we allow ourselves to introduce kernels defined on the whole of RD,

2δij being the Kronecker symbol
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although Section 2 was restricted to kernels defined on a bounded set; namely, we will use kernel defined
on RD only for defining the kernels of interest defined on a bounded set.

We begin with the class of the form K(x, y) = χ(x− y) (the examples in Table 1.1 being of this type),
which we refer to as translation-invariant kernels

K(x, y) = χ(x− y), x, y ∈ RD. (3.1a)

This family is parametrized by a generating function χ : RD → R, which (after normalization) must satisfy
(as we check below)

χ(0) = 1, χ(−x) = χ(x), x ∈ RD,
χ̂(ξ) ≥ 0 ξ ∈ RD.

(3.1b)

Positivity property. Under the assumption (3.1b), let us consider a collection Y = (y1, . . . , yN ) in
RD and the associated bilinear form K(Y, Y )(ξ, ξ) =

∑
1≤n,m≤N K(yn, ym)ξnξm for ξ ∈ RN . We obtain

the positivity property∑
1≤n,m≤N

〈
χ̂, e−i<y

n−ym,·>〉
D′,D ξnξm =

〈
χ̂,
∣∣∑
n

ξne
−i<yn,·>∣∣2〉

D′,D ≥ 0,

in which 〈·, ·〉D′,D is the duality braket for distributions. We thus find∫∫
RD×RD

K(x, y)ϕ(x)ϕ(y) dxdy =

∫∫
RD×RD

χ(x− y)ϕ(x)ϕ(y) dxdy

=

∫
RD

(χ ? ϕ)(x)ϕ(x) dx =

∫
RD

̂(χ ? ϕ)(ξ)ϕ̂(ξ) dξ =

∫
RD
|ϕ̂|2χ̂ dξ ≥ 0,

or equivalently
∫∫

RD×RD K(x, y)ϕ(x)ϕ(y) dxdy ≥ 0.
Radially-symmetric kernels. Among translation-invariant kernels, the class of radially-symmetric

kernels is an important subclass and corresponds to the case where the function χ that only depends on
the modulus of its argument only, that is,

K(x, y) = χ(|x− y|), x, y ∈ RD, (3.2)

where the generating function χ : R→ R is now regarded as a function of a real variable.

3.2 Localization via scaling: the transported kernels

The translation-invariant fail to be sufficiently localized (say in the sense that K fails to be L1(RD×RD).),
and we now explain how a transportation map can be applied in order to “localize” a kernel to a bounded
set. Many proofs will be postponed to the Appendix, including the one of the following result.

Proposition 3.1. Let Kseed : RD×RD → R be a bounded admissible kernel and µ be a sufficiently regular,
probability measure such that supp(µ) is a convex set (with, therefore, µ ≥ 0 and µ(RD) = 1). Then the
kernel

K loc(x, x′) := Kseed(x, x′)µ(x)µ(x′), x, x′ ∈ RD, (3.3a)

is admissible and belongs to L1(RD × RD). Moreover, let Ω ⊂ RD be any open and convex subset with
normalized volume |Ω| = 1, and consider a transportation map for the measure µ, that is, a one-to-one
map S : Ω→ supp(µ) such that S = ∇h for some convex function h : Ω→ R and S#µ = dy (the Lebesgue
measure). Then,

Ktran(y, y′) := Kseed(S(y), S(y′)), y, y′ ∈ Ω (3.3b)

defines an admissible kernel, referred to as the transported kernel associated with Kseed and µ. Further-
more, for any ϕ ∈ L1

µ(RD) (the set of functions that are integrable for the measure µ) and any choice of
points xn = S(yn) one has∫

RD
ϕ(x) dµ(x)− 1

N

∑
1≤n≤N

ϕ(xn) =

∫
Ω

(ϕ ◦ S)(y) dy − 1

N

∑
1≤n≤N

(ϕ ◦ S)(yn). (3.3c)
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In the statement above, the transportation maps satisfies
∫
RD ϕdµ =

∫
Ω

(ϕ ◦ S)dy for any continuous
function ϕ ∈ L1

µ(RD). Provided S is sufficiently regular, one has S#µ = |det∇S| ◦ S−1dy, where |det∇S|
is the Jacobian of S. The convexity of supp(µ) ensures that S is one-to-one and continuous from Ω onto the
support set supp(µ). Furthermore, thanks to the localization argument above, deriving an error estimate
associated with the left-hand side of (3.3c) reduces to (1.1), and the role of the measure µ is eliminated.
Within the framework of kernel spaces, the relation between the µ-weighted norm on RD and the un-
weighted norm on the bounded set Ω is as follows (with obvious notation):

‖ϕ‖Hs,p
Kseed,µ

(RD) = ‖ϕ‖H
Kloc,s,p (RD) = ‖ϕ ◦ S‖HKtran,s,p (Ω).

3.3 Localization via periodization: the periodic kernels

A discrete lattice. Motivated by Cohn and Elkies’s work [3] on the sphere packing problem, we propose
to embed the support of a general kernel in a periodic lattice. By periodicity, we can always extend to RD
the kernel defined to an elementary cell. Importantly, the terms arising in the spectral decomposition can
be controlled almost explicitly, thanks to a Poisson decomposition formula associated with the lattice.

A family of D vectors l1, l2, . . . , lD ∈ RD being given, we consider their convex hull C ⊂ RD which
serves as the fundamental cell of our discrete lattice and whose volume is denoted by |C|. By suitably

translating C, we thus generate the periodic lattice L :=
{∑

1≤d≤D αdld
/
α = (α1, . . . , αD) ∈ ZD

}
, and

we denote its dual by L∗ :=
{
α∗ ∈ RD

/
< α,α∗ >∈ Z for all α ∈ L

}
. We denote by l∗1, . . . , l

∗
D the vectors

generating the elementary cell C∗ ⊂ RD of the dual lattice. Next, we introduce the discrete Hilbert space
l2(L∗) consisting of all functions defined on the dual lattice, endowed with the inner product

〈f, g〉l2(L∗) :=
1

|C|
∑
α∗∈L∗

f(α∗)g(α∗), f, g : L∗ → R. (3.4)

Poisson formula. Consider the Fourier transform of a real-valued function ϕ : RD → R defined on RD
and let us restrict it to the dual lattice, that is, consider the discrete values

ϕ̂(α∗) :=

∫
RD

ϕ(x) e−2iπ<x,α∗> dx. (3.5)

Then, the so-called Poisson formula reads∑
α∈L

ϕ(α+ x) =
1

|C|
∑
α∗∈L∗

e2iπ<x,α∗>ϕ̂(α∗), x ∈ RD. (3.6)

Provided the function ϕ is supported on the cell C, the sum in the left-hand side contains a single term
and, therefore,

ϕ(x) =
1

|C|
∑
α∗∈L∗

e2iπ<x,α∗>ϕ̂(α∗), x ∈ C, provided supp(ϕ) ⊂ C (3.7a)

or, with our notation,

ϕ(x) =
〈
e2iπ<x,·>, ϕ̂

〉
l2(L∗)

, x ∈ C, provided supp(ϕ) ⊂ C. (3.7b)

Hence, a function defined on the cell C can be recovered (via an discrete inverse Fourier transform) from
the values of its Fourier transform on the dual lattice L∗.

More generally, let us derive an identity that will be useful to us later on. Consider now a collection
(y1, . . . , yN ) of points in RD and, in view of (3.7), let us write∑
1≤n,m≤N

∑
α∈L

ϕ(α+ yn − ym) =
1

|C|
∑

1≤n,m≤N

∑
α∗∈L∗

e2iπ<yn−ym,α∗>ϕ̂(α∗) =
1

|C|
∑
α∗∈L∗

∣∣∣ ∑
1≤n≤N

e2iπ<yn,α∗>
∣∣∣2ϕ̂(α∗).

We can arrange that, in the left-hand side, the sum over α ∈ L reduces to a single term obtain when α = 0.
We reach the following conclusion.
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Lemma 3.2. For any function ϕ supported on the elementary cell C of a lattice L, that is, supp(ϕ) ⊂ C
and for any finite collection (y1, . . . , yN ) satisfying the “localization property” yn − ym ∈ C for all n,m =
1, 2, . . . , N , the following identity holds:∑

1≤n,m≤N

ϕ(yn − ym) =
1

|C|
∑
α∗∈L∗

∣∣∣ ∑
1≤n≤N

e2iπ<yn,α∗>
∣∣∣2ϕ̂(α∗). (3.8)

Periodic kernels. The interest of the following class of kernels lies in the fact that their spectral
decomposition can be determined almost explicitly, in terms of exponential functions defined on the dual
lattice. Namely, Lemma 3.2 allows us to pass from the continuous physical variables on C to the discrete
Fourier variables on L∗. The role of the function ρ introduced below is going to be played by (the restriction
to the lattice of) the Fouier transform of an arbitrary kernel. Indeed, our definition below provides a way
to transform a “seed” kernel Kseed defined on RD to a periodic kernel Kper defined on the lattice cell C.
(See the proof in the appendix.)

Proposition 3.3 (Periodic kernels associated with a generating function). Consider a discrete lattice
L ⊂ RD generated from an elementary cell C, and let ρ : L∗ → (0,+∞) be a positive, integrable, and even
function, that is,

ρ1/2 ∈ `2(L∗), ρ(−α∗) = ρ(α∗) ≥ 0 ( with α∗ ∈ L∗). (3.9a)

Then, the discrete Fourier transform of ρ extended to the whole of RD, that is,

Kper(x, y) :=
〈
e2iπ<x−y,·>, ρ

〉
`2(L∗)

, x, y ∈ RD (3.9b)

defines an admissible kernel on RD which is periodic with period C and its associated Hilbert space is

HKper(C) =
{
ϕ ∈ C(RD)

/
C–periodic / ϕ̂ ρ−1/2 ∈ `2(L∗)

}
(3.9c)

endowed with the norm 〈f, g〉HKper (C) = 〈f̂ρ−1/2, ĝρ−1/2〉`2(L∗).

More generally, provided ρs ∈ `p(L∗) for some p ∈ [1,+∞) and s ≥ 0, we can also introduce the Banach
space

Hs,pKper(C) =
{
ϕ ∈ C(RD)

/
C–periodic

/
ϕ̂ρ−s/p ∈ `p

′
(L∗)

}
. (3.10)

3.4 Further generating techniques

The tensor technique. A broad class of examples on RD can be obtained by tensor decomposition from
an admissible kernel in one dimension, say Kseed : R× R→ R, namely

K(x, y) =
∏

1≤d≤D

Kseed(xd, yd), x, y ∈ RD. (3.11a)

This applies, particularly, to a translation-invariant kernel, in which case we choose any even function
χseed : R→ R and set

K(x, y) =
∏

1≤d≤D

χseed(xd − yd), x, y ∈ RD. (3.11b)

An example: the tensorial truncated kernel. The kernel KT (x, y) =
(
1− |x− y|

)+
has the form

above and can also be expressed as a convolution, namely

KT (x, y) = χ(x− y) = (λ ∗ λ)(x− y), λ(x) = 1[−1/2,1/2](x), x ∈ R. (3.12a)

Here, we have χ̂(ξ) = λ̂2(ξ) and λ̂(ξ) = sin(2πξ)
2πξ . More generally, in dimension D we consider

K(x, y) =
∏

1≤d≤D

Kseed(xd, yd) =
∏

1≤d≤D

(
1− |xd − yd|

)+
, (3.12b)

written also as a convolution K(x, y) = (λ ∗ λ)(x − y) with λ(x) = 1[0,1]D (x). Again, we have K(x, y) =

χ(x− y) with χ̂(ξ) = λ̂2(ξ), and now λ̂(ξ) =
∏

1≤d≤D
sin(2πξd)

2πξd
.
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The normalization technique. The transformations below can also serve as building blocks in order
to adapt existing examples to a particular application. If K is an admissible kernel on RD we can consider

Knorm(x, y) =
K(x, y)

K(x, x)1/2K(y, y)1/2
, x, y ∈ RD. (3.13)

Clearly, we have Knorm(x, x) = 1 and the required admissibility conditions are easily checked. The coeffi-
cients an and anorm

n of the corresponding decomposition (2.3) of a function in KK(RD) and KKnorm(RD),
respectively, are related by anorm

n = anK(yn, yn)1/2, so that the two spaces are quite similar from the
application standpoint. We thus regard (3.13) as a normalization procedure.

Taking sums and products. If K1,K2 are admissible kernels in RD, then it is also easily checked
that, a, b > 0 being some given constants,

K3(x, y) = aK1(x, y) + bK2(x, y), K4(x, y) = K1(x, y)K2(x, y), (3.14)

With the notation used in Section 2 the matrices K3(Y, Y ) and K4(Y, Y ) are symmetric positive definite,
as follows easily from a standard linear algebra argument.

Zonal kernels. If a function φ is such that (x, x′) 7→ φ(xx′) is a one-dimensional kernel, then the
following formula

Kzonal(x, y) = φ(< x, y >), x, y ∈ RD (3.15)

(where < x, y > stands for the Euclidian inner product) defines an admissible kernel. This class is often
used by the artificial intelligence community.

Convolution kernels. Another class of translation-invariant kernels can be generated by choosing a
function

λ ∈  L2(RD),

∫
RD

λ(x)λ(−x) dx 6= 0,

∫
RD

(λ̂)2 dξ = 1 (3.16a)

and then defining our generating function χ by the convolution formula

K(x, y) := χ(x− y) = (λ ? λ)(x− y), (λ ? λ)(y) =

∫
RD λ(x)λ(y − x) dx∫
RD λ(x)λ(−x) dx

, y ∈ RD. (3.16b)

Indeed, it is clear that χ(0) = 1 and χ̂ = (λ̂)2 ≥ 0, so that the Fourier transform of χ is a probability
measure. This class of kernels is used in machine learning, for instance in combination of multi-layer neural
networks.

4 Designing kernels on a bounded domain

4.1 Standard kernels taken as seed data

We focus our attention to the standard examples listed in Table 1.1, that are radially-symmetric, translation-
invariant kernels K(x, y) = χ(x− y).

Exponential kernel KE. The choice χ̂E(ξ) = (1 + |ξ|2)−m (with m > D/2) leads to the standard
Sobolev space HKE (RD) = Wm,2(RD), and is a standard choice in the numerical analysis literature.

Multiquadric kernel KM . The choice χ̂M (ξ) = e−|ξ| is only Lipschitz continuous at the origin and
is relevant for representing sufficiently smooth functions with polynomial decay, hence provides (slightly)
more information than the Gaussian one (below).

Gaussian kernel KG. The choice χ̂G(ξ) = e−|ξ|
2

provides an exponential decay in both the Fourier
and the physical spaces. Both functions χ̂G ≥ 0 and χG ≥ 0 are globally positive. The Gaussian kernel
is adapted to the description of smooth and fast decaying functions which have“almost” compact support
in physical and Fourier variables. Hence, the function space HKG(RD) is “small” and, in term, provides
limited “information” on the functions.

Truncated kernel KT . A more interesting and also quite standard choice is obtained by truncation in
the physical space, namely, χT (x) = (1− |x|1)l+ (with l ≥ D/2) where the notation a+ := sup(a, 0) stands
for the positive part. This kernel is only Lipschitz continuous in the physical space.
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Figure 4.1: Plots of periodic kernels in two dimensions: exponential, multiquadric, Gaussian, and truncated,
respectively.

4.2 Periodic kernels of interest

Objective. We now present, in their rescaled form, the four periodic kernels already listed in Table 1.2
(and associated with each of the examples in Table 1.1). Periodic kernels are translation-invariant, i.e.
Kper(x, y) = χper(x − y) and we plot the corresponding functions χper in Figure 4.1. Moreover, we also
plot the level set of the Fourier transform of χ̂ in Figure 4.2 for the two-dimensional case. For the sake of
simplicity in the notation, since the lattice and the dual lattice coincide we simply write α (instead of α∗)
for a general element of the lattice or dual lattice.

Periodic tensorial exponential kernel Kper
E . Consider the one-dimensional exponential kernel given

by
KE(x, y) = exp(−|x− y|) = χE(|x− y|), x, y ∈ R, (4.1a)

with χ̂E(ξ) = 2
1+4π2ξ2 . We make this kernel tensorial and periodic using the localization method in Sec-

tion 3.3 (see also (6.8) below), that is, for x, y ∈ [0, 1]D

Kper
E (x, y) = χper

E (x− y) =
∑
α∈ZD

e2iπ<x−y,α>∏D
d=1(1 + 4π2α2

d/τ
2
D)

=

D∏
d=1

∑
αd∈Z

e2iπ(xd−yd)αd

1 + 4π2α2
d/τ

2
D

. (4.1b)
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Figure 4.3: Periodic exponential kernel in dimension D = 1, 4, 64.

Here, we have also introduced a parameter 0 < τD → 0 as D → +∞. Observe that the Fourier transform
of τDe

−τD|x| is 2
1+4π2α2

d/τ
2
D

. Thus, thanks to the Poisson formula (3.6), our kernel coincides with

Kper
E (x, y) =

∑
α∈ZD

τD exp(−τD|x− y + α|1) = τD
∑
α∈ZD

D∏
d=1

exp(−τD|xd − yd + αd|)

=

D∏
d=1

2τD
eτD − 1

(
exp(τD|xd − yd|) + exp

(
τD(1− |xd − yd|)

)
.

(4.1c)

We plot the corresponding function χper
E in Figure 4.3 for several dimensions. The Banach space associated

to this kernel (defined in (3.10)) reads

Hs,p
Kper
E

([0, 1]D) =
{
ϕ is periodic on [0, 1]D

/∥∥∥( D∏
d=1

(1 + 4π2α2
d/τ

2
D)
)s/p

ϕ̂
∥∥∥
`p′ (ZD)

< +∞
}
. (4.1d)

In particular, the space H1,1
Kper
E

([0, 1]D) has been found to be relevant in mathematical finance.

Periodic Gaussian kernel. The Gaussian kernel is translation-invariant, radial, and smooth, and
reads

KG(x, y) = exp(−|x− y|2) =

D∏
d=1

exp(−|xd − yd|2) = χG(x− y), (4.2)

with χ̂G(ξ) = 2−D/2 exp(−|ξ|2/4). We define its periodic version as

Kper
G (x, y) :=

1

τD

∑
α∈ZD

D∏
d=1

exp(−|xd − yd + α|2

4τ2
) =

D∏
d=1

ϑ3(iπ|xd − yd|, τD), (4.3)

where ϑ3(z; τD) =
∑
n∈Z

(
exp(−π2τ)

)n2

cos(2πnz) is nothing but the third Jacobi-theta function. Here,
τD is a numerical parameter. The diagonal term enjoys the following decay Kper

G (x, x) = ϑ3(0; τD)D '
(1 + 2e−π

2τD )D, and we thus choose τD = ln(2D)
π2 to ensure Kper

G (x, x) ≤ e. Let us denote (with some abuse
of notation) Kper

G (x, y) = χper
G (x−y) =

∏
d χ

per
G (xd−yd). We plot the function χper

G in Figure 4.4 for several
dimensions.

Periodic multiquadric kernel. The one-dimensional multiquadric kernel is translation-invariant,
radially-symmetric, and smooth, and reads

KM (x, y) =
1

1 + |x− y|2
= χM (|x− y|), x, y ∈ R, (4.4a)

with χ̂M (ξ) = exp(−|ξ|), so this kernel is nothing but the Fourier transform of the exponential kernel.
above. We define its periodic version by setting, for all x, y ∈ [0, 1]D,

Kper
M (x, y) :=

∑
α∈ZD

D∏
d=1

e2iπ<x−y,α>−τD|α|1 =

D∏
d=1

∑
αd∈Z

e2iπ(xd−yd)αd−τD|αd|, (4.4b)
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Figure 4.4: Periodic Gaussian kernel in dimension D = 1, 4, 64
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Figure 4.5: Periodic multiquadric kernel in dimension D = 1, 4, 64.

where τD is a parameter. Observe that the inverse Fourier transform of τD exp(−τD|x|) is 1
1+α2

d/τ
2
D

. Thanks

to the Poisson formula, the kernel Kper
M coincides with (for x, y ∈ [0, 1]D)

Kper
M (x, y) =

D∏
d=1

∑
αd∈Z

1

1 + (xd − yd + αd)2/τ2
D

=

D∏
d=1

sinh(2πτD)

cosh(2πτD)− cos(2π(xd − yd))
. (4.4c)

The diagonal contribution enjoys the following asymptotics

Kper
M (x, x) =

D∏
d=1

∑
αd∈Z

1

1 + α2
d/τ

2
D

=
( sinh(2πτD)

cosh(2πτD)− 1

)D
= coth(πτD/2)D.

Hence we choose τD = 2 coth−1(1+1/D)
π = 2

π (ln(2 + 1/D) − ln(1/(D + 1))) to ensure that Kper
M (x, x) ≤ e

uniformly for any dimension. Finally, we write Kper
M (x, y) = χper

M (x − y) =
∏
d χ

per
M (xd − yd) (with some

abuse of notation), and we plot the function χper
M in Figure 4.5 for several dimensions.

Periodic truncated kernel. The truncated kernel is translation-invariant and Lipschitz continuous
only, and reads

KT (x, y) = sup(1− |x− y|, 0) = χ(x− y), ϕ̂(ξ) =
sin2(πξ/2)

(πξ/2)2
. (4.5a)

We emphasize that its tensor product

D∏
d=1

sup(1− 2|xd − yd|, 0) =

D∏
d=1

χ(xd − yd), ϕ̂(ξ) =

D∏
d=1

sin2(πξd/2)

(πξd/2)2
(4.5b)
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Figure 4.6: Periodic truncated kernels in dimension D = 1, 4, 64

typically arises when designing a finite difference scheme on a Cartesian grid (say of the type znd = n/N).
Using again the Poisson formula (3.6) we define its periodic version as

Kper
T (x, y) :=

∑
α∈ZD

D∏
d=1

τD sup(1− τD|xd − yd + αd|, 0) =
∑

α∗∈ZD

D∏
d=1

τD
sin2(παd/τD)

(πα∗d/τD)2
e2iπ(xd−yd)α∗d , (4.5c)

where 1 ≤ τD ≤ 2 is a parameter, chosen so that the sum is finite, thus

Kper
T (x, y) =

D∏
d=1

∑
αd∈{−1,0,1}

τD sup(1− τD|xd − yd + αd|, 0). (4.5d)

The diagonal term is Kper
T (x, x) = τDD , and we thus choose τD = 1+1/D in order to ensure that Kper

T (x, x) ≤
e. Writing Kper

T (x, y) = χper
T (x− y) =

∏
d χ

per
T (xd − yd), we plot χper

T in Figure 4.6 for several dimensions.

4.3 Transported kernels of interest

Objective. An admissible kernel K defined on an open set Ω is said to be a compactly supported if it
extends to a continuous function on the closure Ω and this extension vanishes on the boundary ∂Ω. For
our numerical experiments, we design four compactly supported kernels defined on the unit cube [0, 1]D,
determined from the four examples in Table 1.1. Figure 4.7 displays K(x, 1/2) for the two-dimensional
case.

Transported tensorial exponential kernel. In view of the standard expression of the exponential
kernel, we introduce the following transported version defined on the unit cube [0, 1]D

Ktran
E (x, y) =

1

βD
exp

(
− τD

∣∣∣erf−1(2x− 1)− erf−1(2y − 1)
∣∣∣
1

)
, (4.6a)

where erf−1(x) =
(

erf−1(x1), . . . , erf−1(xD)
)

and |x|1 =
∑
d |xd| and we the erf function reads erf(x) =

(2/
√
π)
∫ x

0
e−y

2

dy. By Proposition 3.1, this kernel corresponds to the transport of the localized kernel

K loc
E (x, y) =

1

βD
exp

(
− τD|x− y|1

)
exp

(
− |x|2 − |y|2

)
, (4.6b)

obtained from the map S(x) = erf−1(2x− 1). Here, we choose

τD =

√
π

D
, βD =

(
eτ

2
D/4(1− erf(τD/2)

)D
with, independently of the dimension D,

Ktran
E (x, x) =

1

βD
' (1 +

τD√
π

)D ≤ e,
∫∫

[0,1]D×[0,1]D
Ktran
E (x, y) dxdy = 1.
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Figure 4.7: Transported kernels in two dimensions: exponential, multiquadric, Gaussian, and truncated,
respectively.
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Transported multiquadric kernel. In view of the expression of multiquadric kernel, we consider the
following localized version on the unit cube [0, 1]D

Ktran
M (x, y) =

βD

(1 + τ2
D|erf−1(2x− 1)− erf−1(2y − 1))|2)(D+1)/2

, (4.7a)

corresponding to the following transported kernel

K loc
M (x, y) =

βD exp(−|x|2 − |y|2)

(1 + τ2
D|x− y|2)D

, x, y ∈ RD, (4.7b)

where we choose

τD =

√
2

D
, βD =

( 1√
π exp(1/τ2

D)(1− erf(1/τD))(1/τD)

)D
'
(

1 +
τ2
D

2

)D
,

as τD → 0, determined so that

Ktran
M (x, x) = βD ≤ e,

∫
[0,1]D

∫
[0,1]D

Ktran(x, y)dxdx ' βD(√
π exp(τ2

D/2)(1− erf(1/τD)(1/τD)
)D = 1.

Transported Gaussian kernel. In view the expression of the Gaussian kernel, we introduce the
following localized version on the unit cube [0, 1]D

KG(x, y) = φ(x− y) = βD exp
(
− τ2

D

D∑
d=1

(
erf−1(2xd − 1)− erf−1(2yd − 1)

)2)
, x, y ∈ [0, 1]D, (4.8a)

where we choose τD =
√

2
D and βD = (1 + τ2

D)D/2, determined so that

Ktran
G (x, x) = βD ≤ e,

∫
[0,1]D

∫
[0,1]D

Ktran
G (x, y)dxdx ' βD

(1 + τ2
D)D/2

= 1.

Transported truncated kernel. In view of the expression of the truncated kernel, we consider the
following localized version on the unit cube [0, 1]D

Ktran
T (x, y) =

βD

(1 + τD|erf−1(2xd − 1)− erf−1(2yd − 1))|2)D
, x, y ∈ [0, 1]D, (4.9a)

corresponding to the following transported kernel

K loc
T (x, y) = βD

exp(−|x|2 − |y|2)

(1 + τD|x− y|)D
, x, y ∈ RD. (4.9b)

4.4 Further constructions

A compactly supported, tensor product kernel. The example given now is not translation-invariant
and is supported on the unit interval Ω = [0, 1]:

Kseed(x, y) := y(1− x)1y≤x + x(1− y)1x≤y, x, y,∈ R. (4.10a)

Observe that Kseed(0, y) = Kseed(1, y) = 0, and that the Fourier technique above does not apply. For future
reference we compute

∂yK
seed(x, y) = (1− x)1y<x − x1y>x, ∂2

yK
seed(x, y) = −δx∫

[0,1]

Kseed(x, y)dy =
1

2
x(1− x),

∫∫
[0,1]2

Kseed(x, y)dxdy =
1

12
,

(4.10b)
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together with the following integration by part formula:∫
[0,1]

∂2K
seed(·, x)∂2K

seed(·, y)dz =

∫
[0,1]

∂2(Kseed(·, x)∂2K
seed(·, y))dz +Kseed(x, y) = Kseed(x, y).

(4.10c)
Hence, the space HKseed(0, 1) is the homogeneous Sobolev space Ḣ1

0 ([0, 1]) of functions that vanish at the
boundary, defined by density from the set of smooth functions supported on (0, 1) in the `2(0, 1)-norm. The
eigenvalues and eigenfunctions of the spectral decomposition is given by solving

∫
[0,1]

Kseed(·, x)ζi(x)dx =

λiζi or, equivalently, ∂2
xζi = − 1

λi
ζi. We find ζi(x) = sin(iπx), λi = 1

(iπ)2 for i = 1, 2, . . .

A multi-dimensional version. Using the kernel Kseed in (4.10a), in general dimensions we consider
Ω = [0, 1]D and the following kernel

K(x, y) =
∏

1≤d≤D

Kseed(xd, yd),=
∏

1≤d≤D

(
yd(1− xd)1yd≤xd + xd(1− yd)1xd≤yd

)
. (4.11a)

In view of∫
Ω

(∂1 . . . ∂D)K(·, x)(∂1 . . . ∂D)K(·, y)dz =
∏

1≤d≤D

(∫
[0,1]

∂dK
seed(xd, ·)∂dKseed(yd, ·)dz

)
= K(x, y),

(4.11b)

the space generated by this kernel corresponds to the norm
∫

(0,1)D

(
|ϕ(x)|2 + |∂1 . . . ∂Dϕ(x)|2

)
dx. Similarly

to the one-dimensional case, we compute

∂dK(x, y) = (∂Kseed)(xd, yd)
∏
e 6=d

Kseed(xe, ye),
∏

1≤d≤D

∂2
dK(x, y) = (−1)Dδx∫

[0,1]D
K(x, y)dy =

∏
1≤d≤D

1

2
xd(1− xd),

∫∫
[0,1]D×[0,1]D

K(x, y)dxdy =
1

12D
.

(4.11c)

The eigenvalues and eigenfunctions of the the spectral decomposition are now

ζα(x) =
∏

1≤d≤D

sin(αdπxd), λα =
1∏

1≤d≤D(αdπ)2
, α = (α1, . . . , αD) ∈ ND. (4.11d)

5 Three formulation of the discrepancy function

5.1 Formulation in physical variables

We now factor out the integration error into (1) a factor depending upon the regularity of the function ϕ
under consideration, measured in the HK-norm, which is is independent of the choice of the interpolation
points, and (2) a factor depending solely upon the kernel K and the mesh points, which is independent
of the choice of the function. Three equivalent formulations of the second term are now derived in the
physical, spectral, or discrete Fourier variables. Although these formulations are in principle equivalent,
they shed a very different light on the problem of interest. We begin with an expression in the physical
variables, which we will not use directly for the derivation of actual estimates, as it appears to be difficult
to work with.

Proposition 5.1 (Factorization in physical variables). Consider an admissible kernel K = K(x, y) defined
on an open set Ω ⊂ RD. Then, for any function ϕ in the Hilbert Space HK(Ω), one has∣∣∣ ∫

Ω

ϕ(x)dx− 1

N

∑
1≤n≤N

ϕ(yn)
∣∣∣ ≤ EK(Y,N,D) ‖ϕ‖HK(Ω) (5.1)

for any set Y = (y1, . . . , yN ) of points in Ω, with the error function

EK(Y,N,D)2 :=
1

N2

N∑
n,m=1

∫∫
Ω×Ω

(
K(x, y) +K(yn, ym)−K(yn, y)−K(x, ym)

)
dxdy (5.2a)
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or, equivalently,

EK(Y,N,D) = ‖eK(Y )‖HK(Ω), eK(Y ) :=

∫
Ω

(
K(·, x)− 1

N

∑
1≤n≤N

K(·, yn)
)
dx. (5.2b)

Remark 5.2. We observe that the integrand in (5.2a) is non-negative and can be also written in terms of
the pseudo-distance D (see (2.2)), that is,

EK(Y,N,D)2 = − 1

2N2

N∑
n,m=1

∫∫
Ω×Ω

(
D(x, y) + D(yn, ym)−D(yn, y)−D(x, ym)

)
dxdy. (5.3)

Recall that (2.12) shows that D(x, y) measures the “distance” between K(·, x) and K(·, y), and (5.3) provides
an equivalent representation of the error.

5.2 Formulation in spectral variables

Proposition 5.3 (Minimizing the error function in spectral variables). Consider an admissible kernel
K : Ω× Ω→ R together with its Mercer representation (λi, ζi)i≥1. Then the error function3

Es,pK (N,D) := inf
y1,...,yN∈Ω

(∑
i≥1

λ
sp′/2
i

(∫
Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)p′)

(5.4)

(for s ≥ 0 and p′ begin the dual exponent to p ∈ [1,=∞)) satisfies

Es,pK (N,D) ≤
(∑
i>N

λ
sp′/2
i

(∫
Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)p′)

, (5.5a)

where y1, . . . , yN solve the system of equations∫
Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n) = 0. (5.5b)

Whenever the eigenvalues and functions are known explicitly, the spectral decomposition associated
with the kernel can be used in combination with the following formula for the error function. Observe that
we can now deal with the spaces Hs,pK (Ω) with general integrability and differentiability exponents, and

recall that EK(Y,N,D) = E1,2
K (Y,N,D).

Proposition 5.4 (Factorization in spectral variables). Consider an admissible kernel K = K(x, y) defined
on an open set Ω ⊂ RD. Then, for any function ϕ in the corresponding Banach space Hs,pK (Ω) associated
with exponents s > 0 and p ∈ [1,+∞). Then, for any set Y = (y1, . . . , yN ) of points in Ω and any function
ϕ ∈ Hs,pK (Ω), one has ∣∣∣ ∫

Ω

ϕ(x)dx− 1

N

∑
1≤n≤N

ϕ(yn)
∣∣∣ ≤ Es,pK (Y,N,D) ‖ϕ‖Hs,pK (Ω), (5.6)

where the error function (with 1/p+ 1/p′ = 1)

Es,pK (Y,N,D) :=
(∑
i≥1

λ
sp′/2
i

(∫
Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)p′)1/p′

= ‖eK(Y )‖Hs,p′K (Ω)
(5.7)

is expressed in terms of the eigenfunctions and eigenvectors ζi, λi of the Mercer representation of the kernel
K.

3This expression is equivalent to the one given in the introduction.
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5.3 Formulation in discrete Fourier variables

Assuming now more structure on the kernel and, specifically, assuming that it is based on a discrete lattice,
we express the error function in a third form based on the Poisson formula.

Proposition 5.5 (Factorization in discrete Fourier variables). Consider a kernel based on a discrete lattice
L with elementary cell C, say Kper(x, y) := 1

|C|
〈
e2iπ<x−y,·>, ρ

〉
`2(L∗)

, determined from a generating function

ρ defined on the dual lattice L∗. Then, for any set Y = (y1, . . . , yN ) of points in C and any L–periodic
function ϕ ∈ Hs,pKper(Ω) (for some s > 0 and p ∈ [1,+∞) with 1/p+ 1/p′ = 1), one has (5.6) with

Es,pKper(Y,N,D) =
( ∑
α∗∈L∗

ρs
∣∣∣ ∫

C

e2iπ<x,α∗> dx− 1

N

∑
n

e2iπ<yn,α∗>
∣∣∣p′)1/p′

. (5.8)

6 Controlling the discrepancy function

6.1 Physical variables

We seek for a set of points minimizing the error function and, first in the physical variables, we obtain the
following result whose proof is given in the appendix.

Proposition 6.1 (Minimizing the error function in physical variables). Let K : Ω×Ω→ R be an admissible
kernel defined on some open set Ω, and consider the error function (5.1). Provided the kernel is convex
with respect to each variable, the functional Y = (y1, . . . , yN ) 7→ (EK(Y,N,D))2 is a positive (non-strictly)
convex with positive infimum

EK(N,D) := inf
Y=(y1,...,yN )

EK(Y,N,D) > 0.

Moreover, if Y be a minimizer, then the gradient of the functional vanishes at Y , namely∫
Ω

∇K(x, yn)dx =
1

N

N∑
m=1

(∇K)(yn, ym), n = 1, 2, . . . , N. (6.1)

Furthermore, for all functions HYK(Ω) (as defined in (2.3)), the following integration formula holds (without
error term): ∫

Ω

ϕ(x)dx =
1

N

∑
1≤n≤N

ϕ(yn), ϕ ∈ HYK(Ω). (6.2)

Here, ∇K(x, y) stands here for any of ∇xK(x, y) or ∇yK(x, y), since the kernel K is symmetric in its
two arguments. The following comments are in order:

• The functional is be totally symmetric with respect to its arguments so, clearly, a minimizer is never
unique. Yet, suppose that our kernel K(x, y) is concave, then the following semi-discrete algorithm

d

dt
yn =

∫
Ω

∇K(x, yn)dx− 1

N

N∑
m,n=1

(∇K)(yn, ym), n = 1, 2, . . . , N (6.3)

converges toward a minimum of the functional EK . Observe also that the dynamical system under
consideration involves two terms: ∇K(yn, ym) tends to push points away from each other, while the
integral term tends to attract the points toward the mass-center of Ω. These two competitive effects
leads to a non-trivial distribution of the points.

• With the partition of unity defined in (2.10b), any minimizer must satisfy
∫

Ω
δn(x)dx = 1

N , for
n = 1, 2, . . . , N.

Best discrepancy sequences in one dimension. We are now in a position to analyze an example
in dimension D = 1, where we have fully explicit expressions.
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Proposition 6.2 (The case of dimension D = 1). For the kernel (4.10), the equally-spaced sequence

yn =
2n− 1

2N
, n = 1, 2, . . . , N (6.4)

is the unique solution (up to re-ordering) that minimizes the error function Y 7→ EK(Y ) introduced in (5.1)
and, with this sequence, the following estimate holds:∣∣∣ ∫

[0,1]

ϕ(x)dx− 1

N

∑
1≤n≤N

ϕ(yn)
∣∣∣ ≤ 1√

6N
‖ϕ‖H1,2

K ([0,1]), ϕ ∈ H1,2
K ([0, 1]).

6.2 Spectral variables

For clarity in the presentation, let us repeat here our previous observation. Since the following results will
be of a direct application in the numerical section, we include the remaining proofs in the main text.

Proposition 6.3 (Minimizing the error function in spectral variables). Consider an admissible kernel
K : Ω×Ω→ R and denote by (λi, ζi)i≥1 its Mercer representation. Then for the error function (5.7) after
minimization

Es,pK (N,D) := inf
y1,...,yN∈Ω

Es,pK (Y,N,D) (6.5)

one has

Es,pK (N,D) ≤
(∑
i>N

λ
sp′/2
i

(∫
Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)p′)1/p′

, (6.6a)

where (y1, . . . , yN ) ∈ RN×D is given by the following system of equations∫
Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n) = 0. (6.6b)

Proof. The expression KN (x, y) =
∑

1≤n≤N λnζn(x)ζn(y) defines an admissible kernel, for which we have an

orthogonal decomposition of the formHK(Ω) = HKN (Ω)⊕H⊥KN (Ω). It suffices to consider the minimization
problem

EKN (N,D) = inf
y1,...,yN∈Ω

( ∑
1≤i≤N

λi

(∫
Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)2)1/2

and ∑
1≤i≤N

λi

(∫
Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)

(∇ζi)(yn) = 0, n = 1, . . . , N.

Best discrepancy sequences in one dimension. We can now revisit the example in dimension
D = 1 treated in Proposition 6.2.

Proposition 6.4 (The case of dimension D = 1.). For the kernel (4.10) and the equally-spaced sequence

yn =
2n− 1

2N
, n = 1, 2, . . . , N, (6.7)

the error function Y 7→ Es,pK (Y,N, 1) introduced in (5.7) can be bounded by, for s > 1 − 1/p and some
constant Cs,p > 0:∣∣∣ ∫

[0,1]

ϕ(x)dx− 1

N

∑
1≤n≤N

ϕ(yn)
∣∣∣ ≤ Cs,p

Ns
‖ϕ‖Hs,pK ([0,1]), ϕ ∈ Hs,pK ([0, 1]).

Proof. The general case follows using the spectral formulation (5.7), where ζi(x) = sin(iπx) and λi = 1
(iπ)2 .

We introduce

ci :=

∫
[0,1]

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)

=

∫
[0,1]

sin(iπx)dx− 1

N

∑
1≤n≤N

sin(iπ
2n− 1

2N
) =

1− cos(iπ)

iπ
−

sin2( iπ2 )

N sin( iπ2N )
.
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Hence, c2i = 0, c2i+1 = 2
(2i+1)π −

1

N sin(
(2i+1)π

2N )
and, in view of (5.7),

Es,pK (Y,N, 1)p
′

=
∑
i≥0

1

((2i+ 1)π)sp′

( 2

(2i+ 1)π
− 1

N sin( (2i+1)π
2N )

)p′
=
∑
i≥0

λ
sp′/2
2i+1

(
2λ

1/2
2i+1 −

1

N sin( 1

2Nλ
1/2
2i+1

)

)p′

where 1/p + 1/(p′) = 1. In particular, E1,2
K (Y,N, 1) = 1√

6N
, as computed in Proposition 6.2. For general

s, p, we get the expansion
(

2λ
1/2
2i+1 − 1

N sin( 1

2Nλ
1/2
2i+1

)

)
' λ

−1/2
2i+1

N2 as
λ
−1/2
2i+1

2N < 1, that is iπ < N , and is bounded

elsewhere.)
The error term in (5.7) is bounded as follows:

Es,pK (Y,N, 1)p
′
≤
∑
πi≤N

C

N2p′
λ

(s−1)p′/2
2i−1 + C

∑
iπ≥N

λ
sp′/2
2i+1 ,

where the first term in the right hand-side is uniformly bounded by C
N2p′ provided (s − 1)p′ > 1, that

is, s > 1/p. The second term is bounded by the first term C
Nsp′

provided sp′ > 1. Thus we can control

Es,pK (Y,N, 1) by C/Ns in the range sp′ > 1 at least. Observe finally that we are led to the same estimate,
since

(Es,pK (N, 1))p
′
≤
∑
i>N

λ
sp′/2
i

(∫
[0,1]D

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)p′

.
1

Nsp′
.

6.3 Discrete Fourier variables: toward a sharp estimate

Our third formulation provides us with the most practical setup for the applications, when the spectral
decomposition may not be explicitly available.

Proposition 6.5. Let L a lattice with elementary cell C normalized such that |C| = 1, and consider L∗

its dual lattice. Let α∗ ∈ L∗ 7→ ρ(α∗) be any discrete function satisfying ρ ∈ `1(L∗), ρ ≥ 0, and ρ(0) = 1.
Then the kernel

Kper(x, y) =
∑
α∗∈L∗

ρ(α∗)e2iπ<x−y,α∗> (6.8)

is an admissible kernel with period C and in the Hilbert space HKper(C) one has

∣∣∣ ∫
Ω

ϕ(x)dx− 1

N

N∑
n=1

ϕ(yn)
∣∣∣ ≤ EKper(Y,N,D) ‖ϕ‖HK , (6.9)

where

EKper(Y,N,D)2 =
1

N2

N∑
n,m=1

Kper(yn, ym)− 1, (6.10)

where Y is any sequence of N points in C. Moreover, setting Ỹ := arg infY ∈CN EK(Y,N,D), one has

EK(N,D)2 ≤
∑
n>N

ρ(α∗n)

N2

∣∣∣ N∑
n=1

e2iπ<yn,α∗n>
∣∣∣2, (6.11)

where the ordering n 7→ αn is defined so that n 7→ ρ(α∗n) is a decreasing sequence along the points α ∈ L∗
while y1, . . . , yN are defined by solving the set of equations (when α∗n 6= 0)

N∑
m=1

e2iπ<ym,α∗n> = 0, 1 ≤ n ≤ N. (6.12)

We conjecture that the system (6.12) does admit a solution for any set {α∗n ∈ L∗}1≤n≤N . Numerically,
for this system for each of the periodic kernels of interest we computed (see below) a numerical approxi-
mation for a broad range of dimensions D and integers N . Moreover, the existence of such points can be
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established rigorously for several examples of kernels. Importantly, we tested numerically (see below) that
the following estimate is sharp:

EK(N,D) ' 1

N

∑
n>N

ρ(α∗n). (6.13)

In our examples, we will be able to compute the above sum, both numerically and analytically, and it
will be proven to provide us with a sharp estimate of the discrepancy error, altough we cannot establish
rigourously the validity of this estimate. In the context of Proposition 5.5, we will compute numerically∑

n>N

ρ(α∗n) =
∑
n≥0

ρ(α∗n)−
∑
n≤N

ρ(α∗n) = Kper(0, 0)−
∑
n≤N

ρ(α∗n). (6.14)

Another theoretical standpoint is obtained by the following “level-set argument”, namely by relying on
the approximation ∑

n>N

ρ(α∗n) '
∫
ξ/ ρ(ξ)<m−1(N)

ρ(ξ)dξ, (6.15)

where m−1 is the inverse of the function m(ε) = |{ρ(ξ) > ε}|, where ρ(ξ) is a smooth extension of ρ on the
whole space RD satisfying

∫
RD ρ(ξ) dξ = 1 with ρ(ξ) ≥ 0 and ρ(0) = 1. Unfortunately, this approximation

is very inaccurate in the examples we have considered.
In particular, if a transport map of the function is known, that is a one-to-one map y : RD → Ω such

that dy = ρ(ξ)dξ, then, denoting its inverse as ξ(y), the last integral reduces to measuring the following set∑
n>N

ρ(α∗n) '
∫
y:ρ(ξ(y))<m−1(N)

dy =
∣∣∣{y : ρ(ξ(y)) < m−1(N)}

∣∣∣. (6.16)

Let us make some further remarks:

• If one want to study a general kernel K(x, y) = χ(x − y) with x, y ∈ Ω, then one can compute an
upper-bound using 6.11 with the Fourier coefficients on the doubled lattice L2, generated by the cell
Ω2 := {x− y / x, y ∈ Ω}. This is done using the Poisson formula, i.e.

K(x, y) = χ(x− y) =

〈
e2iπ<x−y,·>, ρ

〉
l2(L∗2)

|Ω2|
, ρ(ξ) =

1

(2π)D/2

∫
Ω2

χ(ζ)e−2iπ<ξ,ζ> dζ. (6.17)

However, in practical terms, computing Fourier coefficients can be a quite difficult task.

• We can specify directly the Fourier coefficients χ(α∗) in the light of Proposition 5.5. This obviously
simplifies the problem of finding suitable parameters since they are automatically set by the two
conditions χ(0) = 1 and χ ∈ `1(L∗).

• It is clear from this result that the price to pay, when the dimension of the problem increases, is
increasing also the regularity of the kernel, and the space HK contains functions that are more
regular as the dimension increases.

• The lattice L certainly plays an important role in finding the best constant EK(N,D). If χ is
symmetric, the present discussion connects with the sphere packing problem. For instance, for D = 2,
the best lattice is the hexagonal one, for D = 3 the dodecahedral one (Kepler conjecture), while
D = 8, 24 was treated in [21]. Other cases remain opened.

Proof of Proposition 5.5. To derive (6.9), we recall from (5.2a) that

EK(Y,N,D)2 =

∫∫
C×C

K(x, y)dxdy +
1

N2

N∑
n,m=1

K(yn, ym)− 2

N

∑
n

∫
Ω

K(x, yn)dx.

We use the fact that K(x, y) = χ(x − y) is L-periodic and deduce that the right-hand side is a constant,
and does not depend on yn, therefore∫

C

K(x, y) dx = C0 =

∫∫
C×C

K(x, y) dxdy, y ∈ C,
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since |C| = 1. Consider (6.8) and the error function expressed in Fourier variable (5.8) with s = 1 and
p = 2, that is,

EK(Y,N,D)2 =
∑
α∗∈L∗

χ(α∗)
∣∣∣ ∫

C

e2iπ<x,α∗> dx− 1

N

N∑
n=1

e2iπ<yn,α∗>
∣∣∣2.

We have ∫
C

e2iπ<x,α∗n> dx = 1 if α∗n = 0, while it is 0 otherwise.

When α∗ 6= 0 we consider

EK(Y,N,D)2 =
∑

α∗∈L∗,α∗ 6=0

χ(α∗)

N2

∣∣∣ N∑
n=1

e2iπ<yn,α∗>
∣∣∣2. (6.18)

Using the ordering n 7→ αn associated with the function χ(α∗n we arrive at the system of equations
(6.12).

The existence of solutions to (6.12) can for instance be established for the canonical lattice C = [0, 1]D

and L = L∗ = ZD, and any set of points {α∗ : Ld ≤ α∗d < Rd}, with size N =
∏D
d=1(Rd − Ld). Without

loss of generality we assume that Ld = 0 and we set Ne =
∏e−1
d=1Rd for e = 1, . . . , D (with the convention

that N1 = 1). We define a one-to-one map from the set {1 ≤ n ≤ N} to {0 ≤ nd < Rd}d=1,...,D by using
the map in

n(n1, . . . , nD) =
∑
d≤D

Ndnd, α∗n =
(
n1, . . . , nD

)
, yn =

(nd(n)

Rd

)
d=1,...,D

.

We compute

N∑
n=1

e2iπ<yn,α∗m> =

N∑
n=1

e
2iπ

∑
d

nd(n)

Rd
nd(m)

=

R1−1∑
n1=L1

e2iπ
n1
R1
nm1 . . .

RD−1∑
nD=LD

e
2iπ

nnD
RD

nmD

=
( 1− e2iπnm1

1− e2iπ
nm1
R1

)
. . .
( 1− e2iπnmD

1− e2iπ
nm
D
RD

)
= 0.

Moreover, for computing the solutions to (6.12) for an arbitrary set {α∗n ∈ ZD} with size N , we

can consider the functional I(Y ) :=
∑N
n=1

∣∣∣∑N
m=1 e

2iπ<ym,α∗n>
∣∣∣2. It is regular and admits the derivatives

∂ykI(Y ) =
∑N
n=1 4iπα∗n

∑N
m=1 e

2iπ<ym−yk,α∗n>. Therefore, we can use a gradient-based method in order
to numerically compute the solutions, and we expect that any local minimum of the functional I(Y ) will
also be a global minimum.

7 A comparative study for a selection of kernels

7.1 Our strategy for the numerical study

The aim of this section is to numerically compute the optimal sequences Y and the discrepancy functions
sdefined by (with Ω = [0, 1]D)

Y = arg inf
Y ∈ΩN

EK(Y,N,D), EK(N,D) = EK(Y ,N,D). (7.1)

We treat two classes of interest:

• Transported kernel: we recall (see (5.2a)) that the following quantity provides the worst Monte-Carlo-
type integration error for any admissible kernel K = K loc localized to the set Ω:

EK(Y,N,D)2 =
1

N2

N∑
n,m=1

∫∫
Ω×Ω

(
K loc(x, y)+K loc(yn, ym)−K loc(yn, y)−K loc(x, ym)

)
dxdy. (7.2)
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• Periodic kernels: in the context of Proposition 5.5, the expression of the discrepancy function takes a
simpler form and in the limit N,D 7→ ∞ we can compare our results to the asymptotic expression

EK(Y,N,D)2 =
1

N2

N∑
n,m=1

Kper(yn, ym)− 1, EK(N,D) ≤
∑
n>N

ρ(α∗n). (7.3)

We recall that αn are chosen on the dual lattice so that n 7→ χ(α∗n) is decreasing. We choose here
the canonical lattice L = ZD for simplicity.

We start from the four examples in Table 1.1, that are defined in the whole space RD, and design the
eight kernels listed in Table 1.2. A normalization parameter, depending on the dimension was determined
explicitly for each case. In each case, we compute EK(Y,N,D) for the following two sequences:

• Y is a randomly chosen sequence.

• Y is a numerical sequence that approximates the optimal solution Y .

The numerical results for EK(Y,N,D) are displayed as tables forN = 16, 32, . . . , 512 andD = 1, 2, 4, . . . , 128.
and we can compare the error obtained for various values N,D and various kernels. The kernels in the
second line of Table 1.2 are periodic, so that we can compute the upper bounds given by the formula (6.11)
and we can compare it to the numerically computed results. As a general rule, the computation time grows
like C DN3 for some rather large constant C > 0. For instance, on a machine Intel I7 7700K, each result
in the tables presented below took between 10 secondes and up to two minutes for the tests in dimension
D = 128 and with N = 512. In order to ease the comparison between the various tests and kernels we
have considered, we are collecting our results in Tables 7.1, 7.2, and 7.3 when N = 512 and in dimensions
1, 16, 128. Remarkably, our asymptotic analysis provides an accurate prediction of the numerical error
(except for the truncated kernel in the largest dimension D = 512).

Table 7.1: EK(Y,N,D) for each choice of periodic tensorial kernels when N = 512 in dimension D = 1

random numerical asymptotics

exponential 0.035 0.002 0.002
multiquadric 0.036 0.000 0.000

Gaussian 0.036 0.000 0.000
truncated 0.036 0.002 0.002

Table 7.2: EK(Y,N,D) for each choice of periodic tensorial kernels when N = 512 in dimension D = 16

random numerical asymptotics

exponential 0.054 0.034 0.034
multiquadric 0.055 0.021 0.021

Gaussian 0.055 0.018 0.018
truncated 0.056 0.036 0.038

Table 7.3: EK(Y,N,D) for each choice of periodic tensorial kernels when N = 512 in dimension D = 128

random numerical asymptotics

exponential 0.059 0.049 0.043
multiquadric 0.059 0.037 0.037

Gaussian 0.059 0.037 0.037
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truncated 0.058 0.042 0.057

7.2 Periodic kernels

Strategy for periodic kernels. For each of the four periodic kernels in Table 1.2, we present three tables:

(A) EK(Y,N,D) for a randomly chosen sequence Y .

(B) EK(Y,N,D) for a numerical sequence that approximates the optimal solution Y .

(C)
√

1
N

∑
n>N ρ(α∗n) which is our theoretical (but yet heuristic) asymptotic rate of convergence (6.13).

From a computational point of view, some remarks are in order:

• In item (A) above, the random sequences Y are computed using the standard Mersenne-Twister
mt19937. The error bound EK(Y,N,D) can be computed using the left-hand formula in (7.3).

• In item (B) above, in order to compute the optimal Y we have two strategies:

– We can either minimizing directly the left-hand side of (7.3). This optimization problem can be
solved easily by a gradient descent and is computationally tractable. However, depending upon
the choice of the kernel this method can show poor performances (i presence of almost vanishing
gradients.

– Or else, we can compute the first values α∗n for n = 0, . . . , N − 1 and then solve the equation
(6.12). We recall here that

∑N
m=1 e

2iπ<ym,α∗n> = 0 for 1 ≤ n ≤ N . We used this method and it
always gave ni principle good numerical results. However, to solve the relevant system we must
use an algorithm whose complexity is of order N3, that leads to extremely long execution times
as N becomes large.

– Once the sequence Y is computed, the error EK(Y,N,D) is obtained using the left-hand side of
(7.3).

• Finally, in item (C) above, we compute first the set of values χ(α∗n) for n = 1, . . . , N by using
a graph-search type algorithm. Observe that this step can be challenging in the case of a rather
oscillatory function χ such as the truncated kernel.

For each periodic kernel we provide below the asymptotic formula derived from our level-set arguments,
although it is not very accurate within the range of N,D under consideration. We plot in this section
the distribution of sequences of points approximating the best discrepancy sequences Y . These figures
corresponds to N = 256 and D = 2. Observe that none of these distributions is radially-symmetric, as the
corresponding periodic kernels are not.

Numerical results for the periodic tensorial exponential kernel. For the periodic kernel (4.1a)

the level-set method (6.15) applies and lead us to the bound EK(N,D) . log(N)D−1

N , which is probably far
from being optimal but coincides with the Koksma-Hlawka inequality for low-discrepancy sequences. Here,
the space H1,1

K ([0, 1]D) (see (4.1d)) is similar to the space of functions with bounded variation BV ([0, 1]D).
The three relevant tables are given here. Observe that the discrepancy error for the numerical points is
always much smaller than the discrepancy error for the random points, as was expected.

Note that the asymptotic convergence rate is quite close to the one obtained with the numerical sequence
in Table 7.5. There exist cases for which this convergence rate is smaller than the theoretical bound. This
might seem to be a contradiction, since the latter bound is supposed to be the minimum over all possible
sequences. However, several sources of (yet small) numerical error arise due to the search algorithm of
the decreasing sequence α∗n. In addition, a second (small) error arises from the estimate 6.14, which is
probably sharp but yet only an approximation of the theoretical bound.
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Figure 7.1: Random and numerical sequences for periodic kernels with N = 256
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Table 7.4: EK(Y,N,D) for periodic tensorial exponential with random points Y

D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 16 0.228 0.365 0.355 0.312 0.304 0.308 0.326 0.319
N= 32 0.307 0.222 0.216 0.199 0.210 0.228 0.231 0.234
N= 64 0.154 0.142 0.138 0.139 0.150 0.168 0.163 0.165
N= 128 0.117 0.088 0.087 0.097 0.111 0.116 0.114 0.115
N= 256 0.060 0.053 0.061 0.077 0.075 0.081 0.081 0.082
N= 512 0.035 0.038 0.050 0.049 0.054 0.057 0.057 0.059

Table 7.5: EK(Y,N,D) for periodic tensorial exponential with numerical points Y

D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 16 0.062 0.126 0.172 0.195 0.211 0.217 0.221 0.223
N= 32 0.031 0.075 0.114 0.131 0.143 0.149 0.151 0.153
N= 64 0.016 0.049 0.076 0.090 0.099 0.103 0.106 0.107
N= 128 0.008 0.030 0.051 0.063 0.069 0.073 0.074 0.077
N= 256 0.004 0.020 0.034 0.043 0.048 0.051 0.054 0.061
N= 512 0.002 0.012 0.022 0.030 0.034 0.037 0.042 0.049

Table 7.6: EK(N,D) for periodic tensorial exponential with the asymptotic formula

D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 16 0.069 0.143 0.202 0.245 0.288 0.308 0.318 0.323
N= 32 0.034 0.082 0.129 0.157 0.179 0.207 0.220 0.226
N= 64 0.017 0.046 0.078 0.102 0.116 0.129 0.147 0.156
N= 128 0.009 0.026 0.048 0.067 0.077 0.084 0.092 0.105
N= 256 0.004 0.014 0.029 0.042 0.052 0.056 0.060 0.066
N= 512 0.002 0.008 0.018 0.027 0.034 0.038 0.040 0.043

Numerical results for the periodic multiquadric kernel. For the periodic multiquadric kernel and

using the level-set argument in (6.15) we can derive the bound EK(N,D) . 2D

τDD

(
1− exp

(−N1/DD
2τD

))
. The

three tables are now presented and the same observations as above for the exponential kernel can be made.
Note again the existence of a small numerical error for the two-dimensional case, as the error discrepancy
for the optimized sequence is not decreasing, namely for D = 2 and N = 256, 512. Observe that the error
vanishes for the one-dimensional case provides N ≥ 64. This was expected since we are dealing with a
kernel generating a space consisting of periodic function, whose Fourier coefficient decreases at exponential
rate, as predicted by our theoretical convergence rate above. From a numerical point of view, it is expected
to be a finite dimensional space, having few basis functions in low dimensions.

Table 7.7: EK(Y,N,D) for periodic tensorial multiquadric with random points Y

D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 16 0.249 0.410 0.392 0.315 0.302 0.301 0.325 0.311
N= 32 0.349 0.245 0.230 0.196 0.201 0.227 0.226 0.234
N= 64 0.171 0.150 0.140 0.136 0.143 0.169 0.163 0.167
N= 128 0.130 0.090 0.086 0.093 0.108 0.117 0.115 0.114
N= 256 0.066 0.050 0.059 0.075 0.075 0.081 0.081 0.082
N= 512 0.036 0.036 0.049 0.048 0.055 0.057 0.057 0.059
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Table 7.8: EK(Y,N,D) for periodic tensorial multiquadric with numerical points Y

D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 16 0.002 0.078 0.172 0.204 0.261 0.277 0.313 0.306
N= 32 0.000 0.030 0.095 0.128 0.149 0.198 0.210 0.227
N= 64 0.000 0.005 0.045 0.081 0.103 0.106 0.140 0.157
N= 128 0.000 0.001 0.018 0.044 0.067 0.074 0.075 0.098
N= 256 0.000 0.002 0.007 0.024 0.042 0.051 0.052 0.053
N= 512 0.000 0.007 0.003 0.014 0.021 0.034 0.037 0.037

Table 7.9: EK(N,D) for periodic tensorial multiquadric with the asymptotic formula

D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 16 0.004 0.081 0.171 0.207 0.272 0.301 0.314 0.321
N= 32 0.000 0.027 0.092 0.134 0.148 0.194 0.213 0.223
N= 64 0.000 0.005 0.044 0.085 0.100 0.105 0.137 0.151
N= 128 0.000 0.001 0.017 0.043 0.067 0.073 0.075 0.097
N= 256 0.000 0.000 0.008 0.025 0.043 0.050 0.052 0.053
N= 512 0.000 0.000 0.003 0.014 0.021 0.034 0.036 0.037

Numerical results for the periodic Gaussian kernel. For the periodic kernel (4.3) we can use
our level-set arguments in (6.15) and we c an arribve at the bound EK(N,D) ≤ N1−1/D exp(−N2/D).
We now present the three tables of interest and again the results are quite similar to the exponential and
multiquadric cases.

Table 7.10: EK(Y,N,D) for periodic Gaussian with random points Y

D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 16 0.279 0.445 0.400 0.316 0.301 0.301 0.325 0.311
N= 32 0.415 0.267 0.235 0.196 0.200 0.227 0.226 0.234
N= 64 0.205 0.159 0.138 0.136 0.142 0.168 0.163 0.167
N= 128 0.152 0.090 0.085 0.092 0.107 0.117 0.115 0.114
N= 256 0.075 0.047 0.059 0.074 0.075 0.081 0.081 0.082
N= 512 0.036 0.034 0.046 0.048 0.055 0.057 0.057 0.059

Table 7.11: EK(Y,N,D) for periodic Gaussian with numerical points Y

D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 16 0 0.008 0.164 0.191 0.258 0.276 0.313 0.306
N= 32 0 0.000 0.051 0.123 0.145 0.197 0.209 0.227
N= 64 0 0.000 0.013 0.075 0.099 0.105 0.140 0.157
N= 128 0 0.000 0.003 0.033 0.064 0.072 0.075 0.098
N= 256 0 0.002 0.000 0.019 0.041 0.050 0.052 0.053
N= 512 0 0.008 0.000 0.008 0.018 0.033 0.036 0.037

Table 7.12: EK(N,D) for periodic Gaussian with the asymptotic formula

D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 16 0 0.018 0.145 0.198 0.270 0.300 0.314 0.321
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D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 32 0 0.000 0.052 0.126 0.145 0.193 0.213 0.223
N= 64 0 0.000 0.012 0.077 0.097 0.104 0.137 0.151
N= 128 0 0.000 0.002 0.032 0.065 0.072 0.074 0.097
N= 256 0 0.000 0.000 0.020 0.041 0.050 0.052 0.053
N= 512 0 0.000 0.000 0.008 0.018 0.033 0.036 0.037

Numerical results for the periodic truncated kernel. For the periodic kernel (4.3) we can use

our level-set method arguments and we arrive at the bound EK(N,D) ≤ log(N)D−1

N2 . We now present the
three relevant tables as above and the observations we made concerning these results are quite similar.

Table 7.13: EK(Y,N,D) for periodic tensorial truncated with random points Y

D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 16 0.279 0.398 0.354 0.327 0.315 0.317 0.324 0.328
N= 32 0.382 0.240 0.216 0.210 0.225 0.225 0.232 0.231
N= 64 0.189 0.148 0.142 0.149 0.159 0.163 0.163 0.163
N= 128 0.142 0.092 0.090 0.105 0.113 0.116 0.115 0.115
N= 256 0.071 0.051 0.063 0.081 0.079 0.082 0.082 0.082
N= 512 0.038 0.040 0.055 0.052 0.056 0.057 0.057 0.058

Table 7.14: EK(Y,N,D) for periodic tensorial truncated with numerical points Y

D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 16 0.062 0.100 0.176 0.209 0.233 0.276 0.303 0.315
N= 32 0.031 0.058 0.116 0.140 0.156 0.173 0.196 0.214
N= 64 0.016 0.035 0.079 0.096 0.107 0.119 0.125 0.139
N= 128 0.007 0.021 0.049 0.067 0.075 0.081 0.085 0.090
N= 256 0.004 0.013 0.030 0.046 0.052 0.056 0.058 0.061
N= 512 0.002 0.010 0.021 0.032 0.036 0.039 0.040 0.042

Table 7.15: EK(N,D) for periodic tensorial truncated with the asymptotic formula

D= 1 D= 2 D= 4 D= 8 D= 16 D= 32 D= 64 D= 128

N= 16 0.062 0.127 0.217 0.289 0.314 0.322 0.325 0.327
N= 32 0.031 0.077 0.133 0.188 0.218 0.227 0.230 0.231
N= 64 0.016 0.042 0.086 0.114 0.148 0.159 0.162 0.163
N= 128 0.007 0.023 0.054 0.073 0.096 0.110 0.114 0.115
N= 256 0.004 0.013 0.034 0.050 0.059 0.075 0.080 0.081
N= 512 0.002 0.007 0.022 0.034 0.038 0.049 0.055 0.057

7.3 Transported kernels

The numerical results we performed on transported kernel kerne are very similar to the one we just de-
scribed for periodic kernels. We content with pointing out here significant differences between periodic and
transported kernels:

• We did not numerically compute the theoretical convergence rates for the four transported kernels.
Indeed, we would need to compute the Fourier coefficients appearing in Proposition 5.5. This appears
to be too costly and computationally out of reach with the existing techniques.
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• On the other hand, we did compute the error function thanks to its expression (7.2), evaluated via a
direct Monte-Carlo method. This is still computationally expensive, and adds some additional white
noise to the final results.

Thus, in this section, we restrict ourselves with presenting the plot in Figure 7.2 displaying the distribu-
tion of points that approximates the best discrepancy sequences Y . This corresponds to the choice N = 256
and the dimension D = 2. Some observations are in order:

• Among our four transportation-based kernels, three are radially-symmetric, that is, Gaussian, mul-
tiquadric, and truncated. Their best discrepancy sequences are expected to be radially-symmetric.
Indeed, our numerical tests confirm this property for the multiquadric and truncated kernels, which
enjoy similar properties.

• However the Gaussian kernel did not lead us to a radially-symmetric result. This is due to a numerical
challenge we can refer to as the “vanishing gradient problem” (a terminology used in the artificial
intelligence community), due to the fact that the functional we want to minimize is almost flat. This
problem did arise also with the multiquadric kernel, but we solved it by using the same trick discussed
already in Section 7.2.

• The exponential kernel is not radially-symmetric so that its best discrepancy sequence is not expected
to be so, and this is fully consistent with our results in Figure 7.2.
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Proof of Proposition 3.1. For any function ϕ ∈ L1
µ(RD) we have

∫∫
RD×RD ϕ(x)ϕ(y)dµ(x)dµ(y) =

( ∫
RD ϕdµ

)2

,

which is positive. Hence, being the product of two admissible kernels, we see that the kernel K loc is admissible.
The transported kernel Ktran is also admissible since for all relevant ψ∫∫

Ω×Ω

Ktran(y, y′)ψ(y)ψ(y′)dydy′ =

∫∫
RD×RD

K loc(x, x′)(ψ ◦ S−1)(x)(ψ ◦ S−1)(x′) dµ(x)dµ(x′) ≥ 0.

Proof of Proposition 3.3. Since ρ1/2 ∈ `2(L∗) it is clear that the expression

Kper(x, y) =
1

|C|
∑
α∗∈L∗

e2iπ<x−y,α∗>ρ(α∗)

is finite and, in fact, globally bounded on RD. It is symmetric since χ is even. The positivity condition follows from∑
n,m

anamK
per(yn, ym) =

∑
n,m

anam
〈
e2iπ<yn−ym,·>, ρ

〉
`2(L∗)

=
∑
α∗∈L∗

∣∣∣∑
n

e2iπ<yn,α∗>anρ(α∗)
∣∣∣2 ≥ 0.

Proof of Proposition 5.1. In view of (2.4) and the identity ϕ(x) = 〈ϕ,K(·, x)〉HK(Ω), we find

1

N

∑
1≤n≤N

ϕ(yn) =
1

N

∑
1≤n≤N

〈
ϕ,K(·, yn)

〉
HK(Ω)

=
〈
ϕ,

1

N

∑
1≤n≤N

K(·, yn)
〉
HK(Ω)

.

In agreement with the statement of the proposition, we write∫
Ω

ϕ(x)dx− 1

N

∑
1≤n≤N

ϕ(yn) =
〈
ϕ, eK(Y )

〉
HK(Ω)

, eK(Y ) =

∫
Ω

(
K(·, x)− 1

N

∑
1≤n≤N

K(·, yn)
)
dx,

and, by the Cauchy-Schwarz inequality, |EY (ϕ)| ≤ ‖ϕ‖HK(Ω)‖e‖HK(Ω). Hence, the integration error splits into two
contributions, as expected. By expanding the integrand using (2.4) we find the equivalent expression

‖eK(Y )‖2HK(Ω) =
∥∥∥∫

Ω

K(·, x)dx
∥∥∥2

HK(Ω)
+

1

N2

N∑
n,m=1

K(yn, ym)− 2

N

∑
1≤n≤N

∫
Ω

K(x, yn)dx

and, using (2.4),
∥∥ ∫

Ω
K(·, x)dx

∥∥2

HK(Ω)
=
∫

Ω×Ω
K(x, y)dxdy. Moreover, in view of K(x, y) = 1

2

(
K(x, x) +K(y, y)−

D(x, y)
)
, the derivation of (5.2a) is completed.

Proof of Proposition 5.3. The expression KN (x, x′) =
∑

1≤n≤N λnζn(x)ζn(x′) defines an admissible kernel, for

which we have the following orthogonal decomposition: HK(Ω) = HKN (Ω) ⊕ H⊥KN (Ω). Consider the minimiza-
tion problem

EKN = inf
y1,...,yN∈Ω

( ∑
1≤i≤N

λi
(∫

Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)2)

and ∑
1≤i≤N

λi
(∫

Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)

(∇ζi)(yn) = 0, n = 1, . . . , N.
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Proof of Proposition 5.4. We consider the Mercer representation and use the relations TKζi = λiζi and with eK =∑
i〈eK , ζi〉`2(Ω)ζi. We have

〈eK , ζi〉`2(Ω) =

∫
Ω

∫
Ω

(
K(y, x)dx− 1

N

∑
1≤n≤N

K(y, yn)dx
)
ζi(y)dy = λi

(∫
Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)

and, by Hölder inequality, we obtain〈
ϕ, eK

〉
HK(Ω)

=
∑

i=1,2,...

λ−1
i 〈ϕ, ζi〉`2λi

(∫
Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)

=
〈(
λ
−s/2
i 〈ϕ, ζi〉`2

)
i≥1

, λ
s/2
i

(∫
Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)
i≥0

〉
`p(N),`p

′
(N)

≤ ‖ϕ‖Hs,p
K

(Ω)

(∑
i

λ
sp′/2
i

(∫
Ω

ζi(x)dx− 1

N

∑
1≤n≤N

ζi(y
n)
)p′)1/p′

.

Proof of Proposition 5.5 . Provided supp(ϕ) ⊂ C, we have∫
C

ϕ(x) dx− 1

N

∑
n

ϕ(yn) =
〈 ∫

C

e2iπ<x,·> dx− 1

N

∑
n

e2iπ<yn,·>, ϕ̂
〉
`2(L∗)

:=
〈
ê, ϕ̂
〉
`2(L∗)

=
〈 ϕ̂

ρs/p
, ρs/pê

〉
`2(L∗)

,

where the error function ê is defined as the Fourier transform of e := 1C − 1
N

∑
1≤n≤N δyn , hence∣∣∣ ∫

C

ϕ(x) dx− 1

N

∑
n

ϕ(yn)
∣∣∣ ≤ ∥∥∥ρs/p( ∫

C

e2iπ<x,·> dx− 1

N

∑
n

e2iπ<yn,·>)∥∥∥
`p(L∗)

‖ϕ‖Hs,p
Kper (C).

Proof of Proposition 6.1. Let us set e := 1
N

∑
1≤n≤N

∫
Ω

(
K(·, x)dx − K(·, yn)

)
dx. We have denoted by eY :=∑

n eY (yn)δnY its projection on the approximation space HYK(Ω). It satisfies

EK(Y,N,D)2 = ‖e‖2HK(Ω) = ‖eY ‖2HY
K

(Ω) + ‖e− eY ‖2HK .

Thus EK(Y,N,D)2 ≥ ‖e − eY ‖2HK > 0, and, as we are going to check, a minimizer makes the term ‖eY ‖2HY
K

(Ω)
to

vanish.
In view of the definition (5.7) and the symmetry property ∂ynK(yn, ym) = ∂ynK(ym, yn), we obtain (n ∈

[1, 2, . . . , N ], d ∈ [1, . . . , D])

∂yn
d

(EK(Y,N,D))2 =
2

N2

∑
n

∂yn
d
K(yn, yk)− 2

N

∫
Ω

∂yn
d
K(x, yn)dx,

establishing (6.1). By computing second-order derivatives, we see that Hessian ∂yn
d
∂yne (EK(Y,N,D))2 reads as

follows (d, e ∈
{

1, . . . , D
}

):

2

N2

∑
m,n

∂yn
d
∂yneK(yn, ym)− 2

N

∫
Ω

∂yn
d
∂yneK(x, yn)dx. (.4)

Moreover, recalling (2.10b), we compute

eY =
∑
n

eY (yn)δnY =
〈 ∫

Ω

K(Y, Y )(x)dx, δY
〉
RN −

1

N

∑
n

K(·, yn) =
〈 ∫

Ω

δY (x)dx,KY

〉
RN −

1

N

∑
n

K(·, yn).

Hence, we arrive at

‖eY ‖2HK(Ω) =
〈∑

n

(∫
Ω

δn(x)dx− 1

N

)
δyn ,

〈 ∫
Ω

δY (x)dx,KY

〉
RN −

1

N

∑
n

K(·, yn)
〉
D′,D

=
∑
m,n

K(yn, ym)
(∫

Ω

δn(x)dx− 1

N

)(∫
Ω

δm(x)dx− 1

N

)
≥ C‖

(∫
Ω

δn(x)dx− 1

N

)
n
‖2RN .

In particular, the minimum vanishes when
∫

Ω
δn(x)dx = 1

N
, and this establishes (6.2). Hence, suppose that this

relation is true, then from (2.10b) we deduce

1N
N

=

∫
Ω

δY (x) dx = K(Y, Y )−1

∫
Ω

K(Y, Y )(x) dx,

implying K(Y, Y ) 1N
N

=
∫

Ω
K(Y, Y )(x) dx or, equivalently, K(Y, Y )m is a stochastic matrix, which is (6.2).
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Proof of Proposition 6.2. We begin with the case s = and p = 2, and consider an arbitrary (ordered) sequence of
points, say 0 < y1 < . . . < yN < 1. We rewrite our functional (5.2a) as

(EK(Y,N,D))2 =

∫
([0,1])2

K(x, y)dxdy − 1

N

∑
1≤n≤N

(yn − 1)yn +
1

N2

∑
n>m,n=1,...,N

ym(yn − 1)

+
1

N2

∑
n≤m,n=1,...,N

(ym − 1)yn

= 1/12− 1

N

∑
1≤n≤N

(yn − 1)yn +
1

N2

( ∑
1≤n≤N

yn
)2

− 1

N2

N∑
n,m=1

yn
(
1m>n + 1n≤m

)
or, equivalently,

(EK(Y,N,D))2 = 1/12− 1

N

∑
1≤n≤N

(yn)2 +
1

N2

( ∑
1≤n≤N

yn
)2

+
1

N2

∑
1≤n≤N

yn(2n−N − 1).

In view of Proposition 6.1, any minimizer satisfies the system of equations (n = 1, 2, . . . , N)

∂yn(EK(Y,N,D))2 = − 2

N
yn +

2

N2

∑
1≤n≤N

yn +
1

N2
(2n−N − 1) = 0,

which we put in the form 1
N

∑
1≤n≤N y

n − 1
2

+ 1
N

(n− 1/2) = yn. This is a linear algebraic system, which is readily

solved explicitly; this leads us to (6.4). We check immediately that 1
N

∑
1≤n≤N y

n = 1
2

and
∑

1≤n≤N (yn)2 = N
3
− 1

12N
,

and, finally, we evaluate the functional to be

(EK(Y,D,N))2 =
1

12
+
(1

3
− 1

12N2

)
− 1

4
− 2

N2

∑
1≤n≤N

(n− 1/2)2

N
+

2

N2

∑
1≤n≤N

n− 1/2

2
=

1

6N2
.
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