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Abstract 

Currently, vehicle-related particulate matter is the main determinant air pollution in the urban 

environment. This study was designed to investigate the level of fine (PM2.5) and coarse particle (PM10) 

concentration of roadside vehicles in Addis Ababa, the capital city of Ethiopia using artificial neural 

network model. To train, test and validate the model, the traffic volume, weather data and particulate 

matter concentrations were collected from 15 different sites in the city. The experimental results 

showed that the city average 24-hr PM2.5 concentration is 13%-144% and 58%-241% higher than air 

quality index (AQI) and world health organization (WHO) standards, respectively. The PM10 results 

also exceeded the AQI (54%-65%) and WHO (8%-395%) standards. The model runs using the 

Levenberg-Marquardt (Trainlm) and the Scaled Conjugate Gradient (Trainscg) and comparison were 

performed, to identify the minimum fractional error between the observed and the predicted value. The 

two models were determined using the correlation coefficient and other statistical parameters. The 

Trainscg model, the average concentration of PM2.5 and PM10 exhaust emission correlation coefficient 

were predicted to be (R2 = 0.775) and (R2 = 0.92), respectively. The Trainlm model has also well 

predicted the exhaust emission of PM2.5 (R2 = 0.943) and PM10 (R2 = 0.959). The overall results showed 

that a better correlation coefficient obtained in the Trainlm model, could be considered as optional 

methods to predict transport-related particulate matter concentration emission using traffic volume and 

weather data for Ethiopia cities and other countries that have similar geographical and development 

settings.  
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Introduction  

 Transport-related particulate matters (PM) emission can be directly emitted from vehicle exhaust or 

non-exhaust particles arise from vehicles-related sources. Transport vehicles are the main cause of high 

PM emission concentration in the urban zones (Gu et al., 2019; Pant and Harrison, 2013). The particle 

emitted from the vehicle tailpipe (exhaust emission) is influenced by fuel property, oil consumption, 

fuel introduction mechanism, combustion process, engine size, road gradient, driving condition, and 

mileage of the vehicles (Watson et al., 1988). Non-exhaust particulate matter also originated from the 

wear of tyre and road surface, corrosion, and the re-suspension of road dust particles (Garg et al., 2000; 

Penkała et al., 2018). The growth in traffic volume in cities has led to more traffic jams, rising 

vehicular accidents, and air pollution (Ngo et al., 2019; Xue et al., 2013). In this sector, the non-exhaust 

emission contributes around 90% of PM10 and 85% of PM2.5 emission to the urban background 

(Timmers and Achten, 2016).  

For estimating health adverse effects and monitoring purpose, PM has been well documented 

and often categorized into PM2.5 and PM10 (Pope and Dockery, 1992; Fan et al., 2009). The 

classification of PM is based on aerodynamic diameter, which represents a particle that has less than 

2.5 µm (fine particles) and 10 µm (coarse particles) (US EPA, 2016). These particles derived in many 

sizes, shapes and can be formed hundreds of different chemicals. Furthermore, this challenging the 

selection step of appropriate monitoring equipment for a researcher in this field of study (Amaral et al., 

2015). Although a number of studies exist on PM, the detail health risk due to non-exhaust emissions 

are not yet perfectly understood (Padoan and Amato, 2018; Stafoggia and Faustini, 2018). In most 

exhaust PM emissions cases, PM2.5 are often considered which comprise a collection of polycyclic 

aromatic hydrocarbons that affect cardiovascular and breathing system that leads to premature death 

(Habeebullah, 2013). PM10 emission contraction from transport-related mostly categorized under non-

exhaust portions, but a little portion of the emission encloses to PM2.5. The formation and concentration 

level of non-exhaust PM10 emission are differ based on sources, however they commonly pretend from 

heavy metals such as zinc, iron, copper, and lead (Pant and Harrison, 2013). Numerous epidemiological 
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studies also concluded that exposure to high concentrations of PM2.5 and PM10 can lead to several 

health impacts ranging from coughing to premature death (Pope and Dockery, 1992; Fan et al., 2009). 

Besides, these particles seriously affect the surrounding environment as well as the globe (Park et al., 

2018; Mukherjee and Agrawal, 2018). A recent global study showed that, PM2.5 accounts about 4.2 

million deaths and the fifth risk factor among all worldwide death factors, including smoking, diet, and 

high blood pressure (Hamanaka and Mutlu, 2018). Besides, many research papers specify that air 

pollution aggravate the rate of cardiovascular disease and stroke of human health (Fan et al., 2009). 

In Ethiopia, air pollution research is still at its infant stage. It is generally assumed that the 

concentrations of air pollution in Ethiopia is low (Tefera et al., 2016). However, few studies done in 

different parts of the country indicates that air pollution is progressively becoming a health concern due 

to high concentrations of indoor, outdoor and other ambient air pollutant emissions (Tarekegn and 

Gulilat, 2018; Keil et al., 2010). Current national situational analysis and needs assessment report 

disclosed that health and environment linkage has a weak relationship. However, the report have been 

pinpointing air pollution as one of the important policy priorities in Ethiopia (Mitike et al., 2016).   

 Modern motor vehicles are equipped with different air pollution control technologies (Winkler 

et al., 2018). Despite the advances in car emissions control technologies, for both diesel and gasoline 

engines, vehicular pollution is quiet a vital concern in air pollution in the urban background. To test 

emission levels, there are numerous methods such as dynamometer test and real-world driving emission 

test.  Dynamometer test design to detect the emission concentration of an engine during vehicles under 

stationary position without considering real time traffic flow, a vehicle cumulative mileage, load, road 

condition, and engine capacity (Hung-Lung and Yao-Sheng, 2009). However, real-world driving 

emission test measurements have a more representative way to record the series of variability in driver 

behavior, communication with other road users and infrastructure. As Ropkins and his team stated that, 

this can be achieved an all-inclusive serious review of the techniques applied to monitor real-world 

vehicle exhaust emissions (Ropkins et al., 2009). Monitoring of particle concentrations through 

portable emissions measurement system (PEMS) is an essential activity because data gathering by itself 

is time-consuming and expensive related to the cost of the monitoring instruments and experimental 

campaign and reconnaissance of air quality standards also vital (Ngo et al., 2019). Thus, it is 

challenging for a researcher from a developing country like Ethiopia to contribute a research output in 

this area. However, various modeling methods can be used as an alternative option to estimate the 

status of vehicular pollution.  
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  Numerous previous studies indicated that artificial neural networking (ANN) is an influential 

and useful modelling tool that can recognize the complex relationships from input-output data (Cirak 

and Demirtas, 2014; Meiller, 1991; Cabaneros et al., 2019). Among the ANN, the multilayer 

perceptron neural networks model have more capable to predict than traditional multiple regression 

models (Cabaneros et al., 2019; Gardner and Dorling, 1999). Aydin and co-workers has compared 

Trainlm and Trainscg algorithm, which is a broadly used training algorithm for multilayer perceptron 

regression models of multilayer neural network, and they concluded that the Levenberg Marquardt 

algorithm has a better forecast correlation coefficient performance than scaled conjugate gradient 

algorithm (Aydin et al., 2018).   

In this study, since the relationship between PM (PM2.5 and PM10), concentrations with weather and 

traffic volume data are complex and non-linear, an artificial neural networks model is selected as a 

potential model that predicts hourly PM2.5 and PM10 concentrations. Experimental real-time PM 

pollutant concentration data were collected from 15 sites for 24 hr in Addis Ababa city, road traffic 

corridors using a portable emission monitor. Thereafter, traffic data and meteorological data were 

gathered from respective office and online access for the specific dates and areas. Since, Ethiopia 

doesn’t have any emission standard limits for vehicular exhaust pollutant, the output is only compared 

with the U.S. Environmental Protection Agency (EPA) Air Quality Index (AQI), and World Health 

Organization (WHO) standards. Moreover, the proposed ANN modelling predicts the output of the 

system as long as enough experimental data for training, validating and testing. 

 

1. Material and methods   

1.1. Study area  

 Addis Ababa is the political, economic, and industrial center of Ethiopia that covers 527 square 

kilometers of area. It is located at 9°01’29.89” North latitude, and 38°44’48.80” East longitude, and has 

10 sub-cities. It has approximately 6.5 million residents, and its altitude reaches around 2800 m above 

from sea level (Kume et al., 2010). Vehicle ownership demand in Ethiopia shows a vast increment with 

time. Among the total number of vehicles in the country, 62% are being used in Addis Ababa and it is 

believed that this has contributed to high pollution. Besides; research has reported acute upper 

respiratory infection and unspecified diseases highly increased through time and the amount of carbon 

dioxide, carbon monoxide, nitrogen, and other toxic gases has increased in and around the city 

(Tarekegn and Gulilat, 2018; Kume et al., 2010).  
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The experimental test was performed from 15 sites of Addis Ababa city between October 16 

and November 23, 2018. To collect data the apparatus was mounted one meter far from the roadside 

and 1.5 m above the ground considering the wind direction on each selected road in a 1-minute interval 

for 24 hr. Some of the monitoring sites and apparatus setup is shown in Fig. 1. 

1.2. Data collection techniques  

Roadside pollutant emissions concentration data were collected using Aeroqual series-500 digital 

analyzer. The series 500-air quality monitor is an optical particle counter instrument that has a portable 

air quality monitor and the sensor head worked in a range of 1-1000 µg/m3 with an accuracy of ± 5 

µg/m3 (Air Quality Sensor, 2018). This apparatus is designed for portable emission measurement that 

can measure simultaneously PM2.5, PM10, relative humidity, and temperature.  

A traffic census, by manual counting, was conducted in the study area at a 4-hr interval for 24 

hr in all sites. In addition, secondary data were gathered for a few stations from the Addis Ababa traffic 

management office. Weather-related data as relative humidity and temperature were measured 

simultaneously every minute. Besides, weather data, including wind speed and wind direction above 10 

m from the ground, temperature, and relative humidity for the selected area were extracted from 

meteoblue online access.   

1.3. Artificial neural network models  

The ANNs are powerful modelling algorithm for non-linear relationships and can be trained to 

perfectly simplify when offered with new and fresh data (Maier et al., 2010). The ANN learns to model 

a relationship during a supervised training technique when they are frequently presented with a series 

of inputs and related output data. The ANN model is a mathematical model inspired by the biological 

neurons (Cirak and Demirtas, 2014), and are used to compute a complex and non-linear function. ANN 

is an effective optional statistical technique for predicting time series (Gardner and Dorling, 1999). The 

objectives of the prediction models are to bargain the unidentified functional connection between W 

and X, the relations in the input vectors in X to output vectors in Y (Fig. 2) using an activation function 

(Gardner and Dorling, 1998). The forecasting capability of ANNs outcomes from training in 

experimental data and following validation with unseen data (Park et al., 2018; Coudray et al., 2009). 

Each neuron contains �1, �2, �n inputs added to a weight w�j that designates the link interaction of a 

certain input for each linking, weight bias, and activation function. 
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The ANN models are general estimators with the capacity to simplify with learning non-linear 

associations between inputs and output variables. The ANN is interrelated dealt out elements known as 

neurons that are ordered in layers, which contains inputs, one or more hidden and output layers (Fig. 3). 

They are connected to each other with neuron or nodes to the next layer and the inputs multiplied by 

the corresponding weight of the neuron linking based on its virtual importance before entering the 

hidden layer (Cirak and Demirtas, 2014). The data transfer is permitted only to the next sequential 

layer. Each node of the hidden layer accepts the arriving signals from the nodes of the input layer. The 

total input indicator is calculated followings Eqs. (1) and (2): 

  u� = � W��X� + b��
�
�  (1) 

y� = f�u��        (2) 

1.4. Model architecture  

In this study, the Trainlm and Trainscg algorithm for MLP neural network learning is offered and 

selected based on their prediction performance of concentrations of PM2.5 and PM10 for the input data. 

The Trainlm algorithm is often used ANN model architecture applied for supervised learning problems 

and was found in a highly accurate recognition ratio of prediction (Suratgar et al., 2007).  

Experimental results acquired from the field measurement were used to train, validate, and test 

the ANN model. Using sigmoid symmetric activation function via Trainlm and Trainscg algorithm 

technique, the predictive value is associated with the measured value. Finally, the outcomes acquired 

from the ANN model based on their statistical conformity, especially, the correlation coefficient (R) 

between the targets and the output values, show which algorithm works best in ANN. In this work, an 

MLP holding five input layers, six hidden layers, and a single output layer. For comparison, the back-

propagation algorithm with an adaptive learning rate is designated as a standard neural network training 

method (Kermani et al., 2005). The overview of the model architecture is shown as follow in Fig. 3. 

1.5. Inputs variable selection  

Selecting the input variable is an important step to develop an ANN model. Hence, the input selection 

procedure considers the significance of the input that should be justified using an Adhoc approach 

based on prior information by considering the fact and available data. Road transport emissions are 

commonly interrelated to the traffic flow, vehicle fuel category, road gradient, and weather condition. 

Generally, for this work, the input variables are traffic volume, hourly mean temperature, humidity, 

wind speed, wind direction and PM concentrations. 
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In this work, feed-forward learning algorithm was used and data are categorized into two parts, 

for train the network 70% of the data was consumed and the remaining portion for testing and 

validation of the network. Afterwards distinct train of the networks, the performance of the model 

checked using since 24-hr data from 4-sites in the city. The models developed in this work used the 

same input data for a specific site in both cases. However, the model did not use the same input data for 

all sites because the input data varied from site to site based on their weather and traffic volume 

recorded. 

1.6. Data assurance  

To get quality data, the accuracy of the monitoring tool and methods of data collection affected the 

result. To assure this, the data collector continuously supervised the instrument on the spot. The 

accuracy of the monitor was crosschecked periodically with the same monitor borrowed from the 

Ministry of forest, environment, and climate change. To confirm the accuracy of the meteorological 

data additional weather data were also mined from meteoblue.  

The input data must fully specify circumstances about which the network is essential to 

generalize. To minimize over-training the networks, it is required to split the data into three parts a 

training, validation and test set. The training step consumes a majority of the data. The validation and 

test step were used to confirm the overall performance of the trained model. Training can be a pause 

when the performance of the validation data approach to one. In this work, the models were trained 

using 70% of the collected data and the remaining 30% were used for testing and validating the model. 

The details of quality assurance and workflow in this work are shown in Fig. 4.  

1.7. Evaluation performance of the model 

The efficiency of the ANN models was assessed through the following arithmetical performance 

indicators; RMSE: the root mean square error, MAE: the mean absolute error, MSE: the mean square 

error, R2: correlation coefficient, MB: the mean bias, CRMSE: the centered root mean squared error, 

MEF:  the model efficiency and FB: the fractional bias defined (Eqs. (3)-(10)).  

 The RMSE (Eq. (3)) was commonly used for further evaluation of the ANN model using outstanding 

error among the measured and forecasted values to view the universal dissimilarity the two values 

(Paas et al., 2017). 
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 RMSE = 1N ���C� − C�� �
�
�      (3) 

The MAE (Eq. (4)) measures the deviation of predicted versus the measured value where all 

individual differences have equal weight without considering their direction. (Paas et al., 2017). 

MAE = 1N �"c�
�

�
� − c�|  (4) 

The MSE (Eq. (5)) is the mean square deviation that the mean scores between the prediction 

and actual values (Paas et al., 2017). 

 MSE = 1N �"c�
�

�
� − c�|   (5) 

The R (Eq. (6)) is often used in the linear regression to know how strong is the relationship 

between the predicted and actual values (Aydin et al., 2018).   

 
R = ∑�c� − c�& ��c� − c�''''�(∑�c� − c�& � )∑�c� − c�''''�  

(6) 

where, Cm is the measured value at given time i, *+ is a predicted particle concentration at the time i 

and N is the total number of observations, respectively. 

A target diagram is used as an additional performance measurement tool to see an extensive 

response of model that was adopted by the European Commission (Pederzoli et al.,) and the 

methodology synchronized with statistical pointers within the delta tool (Thunis et al., 2012; Paas et al., 

2017). The target diagram explains the MB and CRMSE values, both parameters are stabilized with the 

help of standard deviation of the observations (σO), on the ordinate and abscissa, respectively 

(Pederzoli et al.,) as follow (Eq.(7)) and (Eq.(8)). 

 MB = 1N ��C- − C.��
�
� =   C'- −  C'. 

 

(7) 
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 CRMSE = 1N ��[�C- − C'-� − �C. − C'.�] �
�
�  

 

 

   (8)   

For an acceptable model, it must fulfil the criteria of target diagram boundary condition (Eq. 

(9)); all the outcomes of the model values plotted under circle radius of one and the calculated value of 

MEF becomes greater than zero. Likewise, if the above two conditions are automatically fulfilled: the 

normalized MB and MEF values must lie less than or equal to one and the predicted and observed data 

are positively correlated. Generally, if MEF value is positive, the model has better performance and 

lower mean square error, whereas the target values is plotted outside the circle and values are negative 

(Pederzoli et al., 2012). 

MEF = 1 − 34.5678 9 
                                                    (9) 

The FB (Eq. (10)) is an additional performance measurement tool it indicates the basic 

difference between the predicted and observed data (Cox and Tikvart, 1990).  

FB =  �:&;<:&=�:&;>:&=                                                                         (10) 

 

2. Results and discussion  

2.1. Comparison of observed data with standards  

The monitoring result indicates that the average hourly PM emissions concentrations vary from site to 

site. The daily 24 hr average PM concentrations of the two particles measured at 15 sites in Addis 

Ababa are represented as shown in Fig. 5a, b. It shows that pollutant concentrations vary from sites to 

sites relative to traffic volume and weather data.   

As observed in Fig. 5a, the average daily mean concentrations of PM10 lie between 54.21 ± 5.81 

and 247.36 ± 37.32 µg/m3. At the two sites (K18 and KM), the average daily PM10 concentrations were 

54%-65% higher than the standard and other sites were under AQI (2006) limit values (150 µg/m3) set 

for 24 hr. However, in all sites, on average, all measured values were 8%-395% higher than the WHO 

(2005) limit values (50 µg/m3) for PM10. 
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As shown in Fig. 5b, the 24-hr mean PM2.5 concentrations of the selected area were between 

39.59 ± 4.13 and 85.34 ± 11.86 µg/m3. However, in all sites, the concentrations of PM2.5 were higher 

than AQI (35 µg/m3) and WHO (25 µg/m3) standard set for 24 hr mean value. Besides, the difference 

observed in this study were found to be between 13%-144% and 58%-241%, which is higher than 

WHO and AQI target value, respectively. These indicate that emissions related to PM2.5 have a 

significant effect on human health (Fan et al., 2009; Pope and Dockery, 1992). This might be due to the 

non-functionality of an emission controlling system, fuel quality, lack of controlling program, high 

traffic chocked; road quality, age, and mileage of vehicles are the main reason (Gu et al., 2019; 

Tarekegn and Gulilat, 2018; Kume et al., 2010). Currently, the urban area is polluted due to high 

vehicular exhaust emissions, thus highly alleged for a possible negative effect on human health like 

asthma and other respiratory diseases, exclusively for more vulnerable groups of the people such as 

elders, kids and people with other health problems (Habeebullah, 2013).  

2.2. Comparing the current study with other particulate matter emissions studies 

The results of PM10 and PM2.5 emission levels of the current study (Addis Ababa) were compared with 

other cities in developing countries (Table 1). In developing countries, particularly cities in Africa air 

pollution has been severely affected by vehicles in urban areas due to old vehicle’s age (Zachariadis et 

al., 2001), high daily mileage travelled (Batterman et al., 2014), fuel quality and fleet composition 

(Sternbeck et al., 2002). Moreover, scarce of relevant transport-related data, air pollution controlling 

and monitoring activity has been given less attention by the higher official and sometimes even used as 

a political tool to motivate their people and celebrate once a year. Academician also did a little research 

from higher institute and research center for the fulfillment of their academic requirement on air quality 

emission, which all of the factors mentioned make getting data in this area challenging. However, here 

we find and incorporate seven African cities and three other countries (Brazil, India and Pakistan cities) 

data investigated from 2006 to 2018. The investigators included a single to 16 sites (Table 1). 

The PM concentration recorded in the Athi River Township (Kenya), at the three sites ranged 

from 13.51 to 463.31 µg/m3 for PM10 and 10.3 to 111.23 µg/m3 for PM2.5, which is exceeding the 

WHO guideline limits of 50 and 25 µg/m3, respectively. Industrial activities and road traffic considered 

as the major source in the area (Shilenje et al., 2015). Compared with our result in Athi River Township 

results showed lower minimum and higher maximum range values of PM10 and PM2.5 were observed in 

the later study (Table 1). In the same country, Kenya (at Nairobi city) relatively lower and higher 

ranges (10.7-128.7 µg/m3) of PM2.5 concentration were also observed in four sites investigated by other 



 

 

11 

 

researchers. High road traffic and rural background are the main sources of pollution in the area 

(Kinney et al., 2011), which is differed to our study roadside traffic emission. 

A study conducted in Accra, (Ghana), the 24-hr concentration of PM10 and PM2.5 ranged from 

57.9 to 93.6 µg/m3 and 22.3 to 40.2 µg/m3, respectively, which are lower than our study.  However, 

both exceeded the WHO limits in some sites. Road traffic, residential, biomass for small commercial 

purpose are the main sources of pollution in the city (Arku et al., 2008). A study carried out in Pakistan 

(Mahar et al., 2013), Egypt (Lowenthal et al., 2014), Algeria (Talbi et al., 2018), and Brazil (Souza et 

al., 2014) were also showed relatively lower PM2.5 and PM10 concentrations (Table 1). However, PM2.5 

and PM10 results reported in India (Das et al., 2015), Uganda (Schwander et al., 2014), and Congo 

(Mbelambela et al., 2017) has been by far greater than the current study (Table 1), suggesting that the 

intensity of air pollution difference in the four countries. 

2.3. Statistical performance measures of the two models  

 In this study for a better comparison of the models in different road configurations, two intersection 

road at two sites (National Theater and Kolf-18) and two roundabouts at two sites (Yekatit-12 and 

Ministry of Education square) were incorporated to see the prediction performance of the two proposed 

models. The sites are selected arbitrarily from previously collected data for the need for testing and 

validation of a trained model. The outputs of the two models was tested and validated using unseen 

input data of the four selected sites and then the result were associated with the observed data. Then, 

after the prediction performance of Trainlm and Trainscg model were evaluated using the RMSE, 

MAE, MSE, R2, MB, MEF, FB value and other statistical parameters as shows in (Table 2).  

As shown in Table 2, in all sites, the Trainlm and Trainscg models for PM10 R2 values lie 

between 0.965 and 0.993 and 0.925 and 0.944, respectively, which is almost approached to 1 in both 

models. Whereas, the statistical prediction performance of the two models for PM2.5 R2 values range 

between 0.867 and 0.976 for Trainlm and between 0.392 and 0.845 for Trainscg models. Results of 

predicted concentrations of PM10 in both models show quite approached with the observations over 

entire sites. However, the predicted concentration of PM2.5 values better in only in Trainlm than 

Trainscg models. Moreover, other statistical conformity, which has listed in Table 2, includes MAE, 

MSE, and RMSE, the minimum error was observed in Trainlm in both cases. Based on the results, the 

Levenberg-Marqudrant algorithm has shown a better advantage in terms of accuracy in MAE, MSE, 

RMSE, and R2. This clearly shows that the statistical prediction performance of Trainlm neural network 

models has higher than Trainscg in all areas. Similar to this study finding, other also reported the 
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outputs of both algorithms were comparable in terms of the correlation coefficient and other statistical 

parameters (Gardner and Dorling, 1999; Aydin et al., 2018). However, the Scaled Conjugate Gradient 

Algorithm has better performance in massive data (Mohamad et al., 2010). 

In Table 2 FB value have been found -0.043-0.075 for PM10 and -0.04-0.05 for PM2.5 in both 

cases the obtained results lay between the expected range. Fractional bias is a supplementary 

performance measurement the acceptable range between -2 for utmost overestimate, +2 for utmost 

under-estimate and zero for a perfect model (Chang and Hanna, 2004). The obtained MEF score values 

of PM10 range between 0.92 and 0.99 for Trainlm, 0.83, and 0.88 for Trainscg models. However, the 

model MEF score values of PM2.5 lie between 0.71-0.95 for Trainlm and 0.30-0.71 for Trainscg models. 

The MEF prediction result is an additional model performance measuring parameters. For this work, 

the calculated value of MEF was positive and all value is inside under the boundary value (radius = 1) 

or acceptable limited (Taylor, 2001). For an acceptable model, the outcomes must lie under the 

boundary circle of the diagram so that the obtained value of the MEF becomes > 0 (Pederzoli et al., 

2012).  

From Table 3, the stabilized CRMSE score values of PM2.5 and PM10 lie between 0.013-0.384 

for Trainlm and Trainscg models. Whereas, the stabilized MB score values of PM2.5 and PM10 lie 

between -0.18-0.081 for Trainlm and Trainscg models. The CRMSE and MB prediction results are an 

additional model performance measuring parameters. To accept the results, a minimum 90% of the 

observed sites should fulfilled the target performance indicator of the normalized value of CRMSE and 

MB is ≤ 1 (Thunis et al., 2012).  

2.4. Graphical performance measures of the two models   

In this section, the prediction performance of each model was evaluated using a scatter plot and a line 

chart. As shown in Fig. 6a-h, the predicted value for PM10 and PM2.5 concentrations has associated with 

observed data. The solid black and red lines represent the linear regression slope between observations 

and the forecasting using Trainlm and Trainscg models, for the respective sites. Whereas, the black and 

red dots indicate the predicted value from the Trainlm and Trainscg models for respective sites and the 

arrangement of each concentration to their slope. The results of predicted concentrations of PM10 from 

Fig. 6a-d in both models display a better agreement with observations over the entire sites. However, 

the obtained results of predicted concentrations of PM2.5 shown in Fig. 6e-h were found to be the best 

in Trainlm model. Whereas, in Trainscg except for Fig. 6e at K18 site the rest show somehow a fine 
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agreement with observations over the whole sites. The poor (R2 = 0.523) performance of the Trainscg 

model in K18 site most likely due to the physical reasons of the site. Indeed, K18 is the area more 

confided and proximity to residence house and service center (such as hotels, roadside fast wood 

cocker, and road construction activity) than other sampling sites. Moreover, the lower R-value 

observed for all sites in Trainscg model than Trainlm could be due to a limited data used to predict the 

concentration of PM. In fact, previous studies indicated that with vast data the Trainscg model showed 

better performance with accuracy at short time (Batra.D, 2014; Møller, 1993; Mohamad et al., 2010). 

As shown in all Fig.7, the black lines indicate the observed (experimental data) for the 

respective sites.  The red lines designate the forecasted values for Trainlm methods in all aspects. 

Finally, the blue lines specify the forecasted values for Trainscg methods for the respective sites. The 

graph clearly shows that each model's value outline with the actual data. For the PM10 model as shown 

in Fig. 7a-d in both models the profile almost coincides with the observed data, but still in Trainlm 

methods has a better fitting than Trainscg. Similarly, Fig. 7e-h shows the graphical performance of 

PM2.5, in this case, the difference is clearly observed between the two models that Trainlm graph is 

more approach to the observed graph. The better prediction performance outline obtained in Trainlm 

model. Besides, the graph has also been demonstrated that the pick hours for high PM concentration in 

the city. As shown in all graphs the pick hours of high concentration is early morning from 6 am to 9 

am, then again rise from 11 am, and stay until 7 pm. 

As shown in Table 4, the average predicted R2-values for 15 sites is lying between 0.918-0.993 

in Trainlm and 0.863-0.966 in Trainscg models for PM10. Whereas, the predicted R2-value in all 15 

sites for PM2.5 lies between 0.867-0.976 in Trainlm and 0.392-0.929 in Trainscg models. However, the 

overall average predicted R2-values of the city for PM10 are 0.959 for Trainlm and 0.920 in Trainscg. 

However, R2-values for PM2.5 are 0.943 and 0.775 for Trainlm and Trainscg respectively. 

Finally, the air quality model standard performance judging scale range value is not yet decided 

(Yassin, 2013). Even though there is not a common universally acceptable range, as observed in the 

figures and tables in this work, the Trainlm model can be considered and satisfactory when most of its 

forecasting value is more approached to the observations (Chang and Hanna, 2004). Usually, the 

predicted value closer to the observed value, the actual diagrams approached  to at the origin of the 

target diagram at this point the model performance is improved (Thunis et al., 2012). 
 

3. Conclusions  
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This work has shown that the levels of transport-related 24 hr average PM2.5 and PM10 concentrations in 

15 sites in Addis Ababa. Thereafter, using artificial neural networks can accurately model the 

relationship between meteorological, traffic data and PM2.5 and PM10 concentrations in the urban 

environment. The experimental result in this study shows that the city average 24-hr PM2.5 and PM10 

emission concentration were greater than the Air quality index and World health organization 24-hr 

standard limit value. This is maybe because of the vehicle mileage, age, emission treatment technology, 

fuel quality, driving style, road conjunction and other factors. In this study, the models were seen to 

learn the underlying pattern of emission without requiring any explicit mathematical representations. 

This allows easily predicting PM concentration with the Trainlm and Trainscg algorithm training 

function using an ANN modeling in MATLAB software. Although further detail seasonal variation 

effect on the ANN model required, various weather conditions such as sunny, cloud, rain and windy 

recorded during data collection in the study area highlights the potential application of this model at 

different seasons. The arrangement of the layers is 5-6-1 (number of input layers-hidden layers-outputs 

layers nodes). The overall results showed that a better correlation coefficient obtained in the Trainlm 

model, though this method has could be considered as optional methods to predict transport-related 

particulate matter concentration emission using  traffic volume and weather data.  
 

Acknowledgments                                                                                                        

We would like to thank Ecole Centrale Nantes, Campus France, and Arba Minch University for the 

support of testing kits and encouragement to undertake this study. We would like to thank Meteoblue 

Company in providing online access for meteorological data. Finally, we would like to extend our 

appreciation to the Office of Addis Ababa Traffic management and its entire traffic police staff for their 

full cooperation to undertake on-roadside PM sampling. 

We would like to thank Mr. Girmaw Tilahun for his continuous support during experimental 

Campaign.  Finally, we would also thank Mr. Shimels Reta for his great diligence during data 

collection processing phases.  
 

References   

Air Quality Sensor: Series 500 Portable Air Monitor Manual, 2018. Aeroqual. Available:  

https://www.aeroqual.com/product/series-500-portable-air-pollution-monitor.  Accessed date:  February 

18, 2019. 



 

 

15 

 

Amaral, S., de Carvalho, J., Costa, M., Pinheiro, C., 2015. An overview of particulate matter measurement 

instruments. Atmos. 6(9), 1327-1345. 

Arku, R.E., Vallarino, J., Dionisio, K.L., Willis, R., Choi, H., Wilson, J.G., et al., 2008. Characterizing air 

pollution in two low-income neighborhoods in Accra, Ghana. Sci. Total. Environ. 402(2-3), 217-231. 

Aydin, M., Yavuz, A., Sorusbay, C., 2018. Application of artificial neural network to predict exhaust emissions 

from road transport. Int. J. Sci. Technol. Res. 4(2), 1-12.  

Batra, D., 2014. Comparison between Levenberg-Marquardt and Scaled Conjugate Gradient training algorithms 

for image compression using MLP. Int. J. Img. Process. 8(6), 412-422. 

Batterman, S., Burke, J., Isakov, V., Lewis, T., Mukherjee, B., Robins, T., 2014. A Comparison of exposure 

metrics for traffic-related air pollutants: Application to epidemiology studies in Detroit, Michigan. Int. J. 

Environ. Res. Pub. Health. 11(9), 9553-9577. 

Cabaneros, S.M., Calautit, J.K., Hughes, B.R., 2019. A review of artificial neural network models for ambient air 

pollution prediction. Environ. Model. Softw. 119, 285-304.  

 Chang, J.C., Hanna, S.R., 2004. Air quality model performance evaluation. Meteorol. Atmos. Phys. 87, 167-

196. 

Cirak, B., Demirtas, S., 2014. An application of artificial neural network for predicting engine torque in a 

biodiesel engine. Am. J. Energy. Res. 2(4), 74-80.                

Coudray, N., Dieterlen, A., Roth, E., Trouvé, G., 2009. Density measurement of fine aerosol fractions from 

wood combustion sources using ELPI distributions and image processing techniques. Fuel 88(5), 947-

954.  

Cox, W.M., Tikvart, J.A., 1990. A statistical procedure for determining the best performing air quality 

simulation model. Atmos. Environ. A. Gen. Top. 24(9), 2387-2395.  

Das, R., Khezri, B., Srivastava, B., Datta, S., Sikdar, P.K., Webster, R.D., et al., 2015. Trace element 

composition of PM2.5 and PM10 from Kolkata a heavily polluted Indian metropolis. Atmos. Pollut. Res. 

6(5), 742-750. 

Fan, Z. (Tina), Meng, Q., Weisel, C., Laumbach, R., Ohman-Strickland, P., Shalat, S., et al., 2009. Acute 

exposure to elevated PM2.5 generated by traffic and cardiopulmonary health effects in healthy older 

adults. J. Expo. Sci. Environ. Epidemiol. 19(5), 525-533.  

Gardner, M.W., Dorling, S.R., 1999. Neural network modelling and prediction of hourly NOx and NO2 

concentrations in urban air in London. Atmos. Environ. 33(5), 709-719.             

Gardner, M.W., Dorling, S.R., 1998. Artificial neural networks (the multilayer perceptron) a review of 

applications in the atmospheric sciences. Atmos. Environ. 32(14-15), 2627-2636.          

Garg, B.D., Cadle, S.H., Mulawa, P.A., Groblicki, P.J., Laroo, C., Parr, G.A., 2000. Brake wear particulate 

matter emissions. Environ. Sci. Technol. 34(21), 4463-4469.            



 

 

16 

 

Habeebullah, T.M., 2013. Health impacts of PM10 using AirQ2.2.3 Model in Makkah. J. Basic Appl. Sci. 9, 259-

268. 

Hamanaka, R.B., Mutlu, G.M., 2018. Particulate matter air pollution: Effects on the cardiovascular system. 

Front. Endocrinol. 9, 680.  

Hung-Lung, C., Yao-Sheng, H., 2009. Particulate matter emissions from on-road vehicles in a freeway tunnel 

study. Atmos. Environ. 43(26), 4014-4022.              

Keil, C., Kassa, H., Brown, A., Kumie, A., Tefera, W., 2010. Inhalation exposures to particulate matter and 

carbon monoxide during Ethiopian coffee ceremonies in Addis Ababa: A pilot study. J. Environ. Pub. 

Health. 2010, 8.  

Kermani, B.G., Schiffman, S.S., Nagle, H.T., 2005. Performance of the Levenberg–Marquardt neural network 

training method in electronic nose applications. Sensors and Actuators B: Chem. 110(1), 13-22. 

Kinney, P.L., Gichuru, M.G., Volavka-Close, N., Ngo, N., Ndiba, P.K., Law, A., et al., 2011. Traffic impacts on 

PM2.5 air quality in Nairobi, Kenya. Environ. Sci. Policy. 14(4), 369-378.  

Kume, A., Charles, K., Berehane, Y., Anders, E., Ali, A., 2010. Magnitude and variation of traffic air pollution 

as measured by CO in the city of Addis Ababa, Ethiopia. Ethiop. J. Health. Dev. 24(3).  

Lowenthal, D.H., Gertler, A.W., Labib, M.W., 2014. Particulate matter source apportionment in Cairo:           

             Recent measurements and comparison with previous studies. Int. J. Environ. Sci. Technol. 11   

            (3), 657-670.  

Mahar, A., Ahmad, I., Malik, N., Gabol, W.A., Channa, S.A., Shah, S.N.M., et al., 2013. Concentrations    

           of road transport-related air pollutants and its health implications of Hyderabad City, Pakistan.   

          Global. J. Environ. Sci. Manag. 3(2), 269-275. 

Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P., 2010. Methods used for the development of neural networks 

for the prediction of water resource variables in river systems: Current status and future directions. 

Environ. Model. Softw. 25(8), 891-909.                   

Mbelambela, E.P., Hirota, R., Eitoku, M., Muchanga, S.M.J., Kiyosawa, H., Yasumitsu-Lovell, K., et al., 2017. 

Occupation exposed to road-traffic emissions and respiratory health among Congolese transit workers, 

particularly bus conductors, in Kinshasa: a cross-sectional study. Environ. Health Prev. Med. 22(1), 11. 

Meiller, M.F., 1991. Original contribution a scaled conjugate gradient algorithm for fast supervised learning. 

Neural Netw. 6(4), 525-533. 

Mitike, G., Motbainor, A., Kumie, A., Samet, J., Wipfli, H., 2016. Review of policy, regulatory, and 

organizational frameworks of environment and health in Ethiopia. Ethiop. J. Health. Dev. 30(1), 42–49. 

Mohamad, N., Zaini, F., Johari, A., Yassin, I., Zabidi, A., 2010. Comparison between Levenberg-Marquardt and 

Scaled Conjugate Gradient training algorithms for breast cancer diagnosis using MLP. In 2010 6th Int. 

Colloquium on Signal. Process. Appl.  1-7. IEE. 



 

 

17 

 

Møller, M.F., 1993. A scaled conjugate gradient algorithm for fast-supervised learning. Neural Netw. 6(4), 525-

533. 

 A., Agrawal, M., 2017. A Global perspective of fine particulate matter pollution and its health effects. Rev. 

Environ. Contam. Toxic. 244. Springer, Cham. 5-51.    

Ngo, N.S., Asseko, S.V.J., Ebanega, M.O., Allo’o, S.M.A., Hystad, P., 2019. The relationship among PM2.5, 

traffic emissions, and socioeconomic status: Evidence from Gabon using low-cost, portable air quality 

monitors. Transp. Res. D. 68, 2-9.  

Paas, B., Stienen, J., Vorländer, M., Schneider, C., 2017. Modelling of urban near-road atmospheric PM 

concentrations using an artificial neural network approach with acoustic data input. Environ. 4(2), 26.   

Padoan, E., Amato, F., 2018. Vehicle non-exhaust emissions: impact on air quality. In: Non-Exhaust Emissions. 

Acad. Press, 21-65.  

Pant, P., Harrison, R.M., 2013. Estimation of the contribution of road traffic emissions to particulate matter 

concentrations from field measurements: A review. Atmos. Environ. 77, 78-97.  

Park, S., Kim, M., Kim, M., Namgung, H.-G., Kim, K.-T., Cho, K.H., et al., 2018. Predicting PM10 concentration 

in Seoul metropolitan subway stations using artificial neural network (ANN). J. Hazard. Mater. 341, 75-

82. 

Pederzoli, A., Thunis, P., Georgieva, E., Borge, R., Carruthers, D., Pernigotti, D., 2012. Performance criteria for 

the benchmarking of air quality model regulatory applications: the ‘target’ approach. Int. J. Environ. 

Pollut. 50(1-4), 175-189.            

Penkała, M., Ogrodnik, P., Rogula-Kozłowska, W., 2018. Particulate matter from the road surface abrasion as a 

problem of non-exhaust emission control. Environ. 5(1), 9.         

Pope, C.A., Dockery, D.W., 1992. Acute health effects of PM10 pollution on symptomatic and asymptomatic 

children. Am. Rev. Respir. Dis. 145(5), 1123-1128.               

Ropkins, K., Beebe, J., Li, H., Daham, B., Tate, J., Bell, M., et al., 2009. Real-world vehicle exhaust emissions 

monitoring Review and critical discussion. Crit. Rev. Environ. Sci. Technol. 39(2), 79-152.  

Schwander, S., Okello, C.D., Freers, J., Chow, J.C., Watson, J.G., Corry, M., et al., 2014. Ambient Particulate 

Matter Air Pollution in Mpererwe District, Kampala, Uganda: A Pilot Study. J. Environ. Pub. Health. 

2014. 

Shilenje, Z., Thiong’o, K.T., Ondimu, K.I., Nguru, P.M., Nguyo, J., Ongoma, V., et al., 2015. Ambient air 

quality monitoring and audit over Athi River Township, Kenya. Int. J. Sci. Res. Environ. Sci. 3(8), 291–

301. 

Souza, D.Z., Vasconcellos, P.C., Lee, H., Aurela, M., Saarnio, K., Teinilä, K., et al., 2014. Composition of PM2.5 

and PM10 Collected at Urban Sites in Brazil. Aerosol Air Qual. Res. 14(1), 168-176.  



 

 

18 

 

Stafoggia, M., Faustini, A., 2018. In Book: Chapter 3 - Impact on public health epidemiological studies:   A 

review of epidemiological studies on non-exhaust particles: Identification of gaps and future needs, Non-

exhaust emissions. Acad. Press, 67-88.  

Sternbeck, J., Sjödin, Å., Andréasson, K., 2002. Metal emissions from road traffic and the influence of 

resuspension results from two tunnel studies. Atmos. Environ. 36(30), 4735-4744.  

Suratgar, A.A., Tavakoli, M.B., Hoseinabadi, A., 2007. Modified Levenberg-Marquardt method for neural 

networks training .World Acad. Sci. Eng. Technol. 6(1), 46-48. 

Talbi, A., Kerchich, Y., Kerbachi, R., Boughedaoui, M., 2018. Assessment of annual air pollution levels with 

PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria. Environ. Pollut. 232, 252-263.  

Tarekegn, M.M., Gulilat, T.Y., 2018. Trends of ambient air pollution and the corresponding respiratory diseases 

in Addis Ababa. Res. Rep. Toxi. 2(1), 5.  

Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 

Atmos. 106(D7), 7183-7192. 

Tefera, W., Asfaw, A., Gilliland, F., Kumie, A., Worku, A., 2014. Indoor and outdoor air pollution- related 

health problem in Ethiopia: Review of related literature. Ethiop. J. Health .Dev. 30(1), 5-16. 

Thunis, P., Georgieva, E., Pederzoli, A., 2012. A tool to evaluate air quality model performances in regulatory 

applications. Environ. Model. Softw. 38, 220-230.               

Timmers, V.R.J.H., Achten, P.A.J., 2016. Non-exhaust PM emissions from electric vehicles. Atmos. Environ. 

134, 10-17. 

US EPA, O., 2016. Particulate Matter (PM) Basics.  Available:    

 https://www.epa.gov/pm-pollution/particulate-matter-pm-basics. Accessed date: June 5, 2020. 

Watson, A.Y., Bates, R.R., Kennedy, D., 1988. Automotive emissions, air pollution, the automobile, and public 

health. National Acad. Sci. Eng. Med. 704.   

Winkler, S.L., Anderson, J.E., Garza, L., Ruona, W.C., Vogt, R., Wallington, T.J., 2018. Vehicle criteria 

pollutant (PM, NOx, CO, HCs) emissions: how low should we go? N.P.J. Clim. Atmos. Sci. 1(1), 1-5. 

Xue, H., Jiang, S., Liang, B., 2013. A study on the model of traffic flow and vehicle exhaust emission. Math. 

Probl. Eng. 2013. 

Yassin, M.F., 2013. Numerical modeling on air quality in an urban environment with changes of the aspect ratio 

and wind direction. Environ. Sci. Pollut. Res. 20(6), 3975-3988.  

Zachariadis, T., Ntziachristos, L., Samaras, Z., 2001. The effect of age and technological change on motor 

vehicle emissions. Transp. Res. D. Transp. Environ. 6(3), 221-227.  

 



 

 

19 

 

Table1. Shows the range of 24 hr-mean PM10 and PM2.5 concentrations levels obtained from this study and other developing country. 

      RT: River Township, NR: Not Reported 0 

Study area 
  

 Concentrations (µg/m3) 
Periods Site description Reference  

Place  Country  # Site PM10 PM2.5 
Addis Ababa Ethiopia 15 54.2-247.4 39.6-85.3 Oct. to Nov., 2018 Road traffic  This study  

Athi RT Kenya 3 13.5-463.3 10.3-111.2  Dec., 2014  to Jan., 2015 Industrial and road traffic (Shilenje et al., 2015).  

Nairobi Kenya 4 NR 10.7-128.7  Jul., 2009 Road traffic and rural background (Kinney et al., 2011) 

Accra Ghana 4 57.9-93.6 22.3-40.2 Jun. to  Jul., 2006 Residential and traffic site (Arku et al., 2008) 

Kampala Uganda  1 132.7-208.1 103.7-104.9 Dec., 2012 to Jan., 2013 Urban background and traffic (Schwander et al., 2014).  

Kolkata India  16 167.0-928.0 83.0-783.0 Dec.  2013 to Jan., 2014 Road traffic, construction,  and industrial (Das et al., 2015), 

Kinshasa Congo  4 NR 64.2-128.7 Apr.  to May, 2015 Road-traffic (Mbelambela et al., 2017) 

Hyderabad Pakistan 5 40.0-117.0 NR Dec. to Jan., 2013 Road traffic, industrial, and background (Mahar et al., 2013) 

Cairo Egypt 5 104.0-184.0 32.0-58.0 May  to Oct., 2010 Road traffic, industrial, and background (Lowenthal et al., 2014) 

Algiers Algeria 2 15.5-121.6 9.4-84.7 Jan., 2015 to Nov., 2016 Roadside, urban and industrial (Talbi et al., 2018) 

Sao Paulo Brazil 2   9.0-39.0 6.0-83.0 Aug. to Nov., 2008 Road traffic, industrial, and agricultural (Souza et al., 2014) 
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Table 2. Artificial Neural Network model statistical performance for PM10 and PM2.5 concentration the 
values of the selected sites. 

      @  K18  site  PM10 @  NT site   @ MOE site    @ Y12 site  

Model  PM  Trainlm  Trainscg Trainlm  Trainscg Trainlm  Trainscg Trainlm  Trainscg 

MAE 
10 16.34 53.78 3.71 13.96 5.34 10.48 4.50 7.86 

2.5 10.27 36.21 4.30 13.71 3.42 7.44 5.51 6.23 

MSE 
10 832.88 4202.04 29.10 292.78 154.89 229.65 44.47 154.29 

2.5 245.21 2385.45 63.76 371.07 23.04 104.24 48.14 71.33 

RMSE 
10 28.86 64.82 5.39 17.11 12.45 15.15 6.67 12.42 

2.5 15.66 48.68 7.99 19.26 4.80 10.21 6.94 8.45 

R
2 

10 0.99 0.93 0.99 0.92 0.96 0.94 0.98 0.93 
2.5 0.963 0.523 0.976 0.845 0.947 0.732 0.867 0.392 

FB 
10 -0.043 0.001 -0.015 -0.017 -0.032 0.075 0.020 -0.044 
2.5 -0.03 -0.04 0.04 0.00 0.02 0.05 -0.01 0.03 

MEF 
10 0.97 0.87 0.99 0.86 0.92 0.88 0.95 0.83 
2.5 0.93 0.30 0.95 0.71 0.89 0.52 0.76 0.64 

SD' (µg/m3) 
10 178.79 178.79 45.2 45.2 43.1 43.1 29.91 29.91 
2.5 58.11 58.11 35.61 35.61 14.74 14.74 14.15 14.15 

SD (µg/m3) 
10 173.91 154.66 46.27 44.48 46.56 39.11 32.53 34.12 
2.5 53.51 35.31 36.11 35.07 14.00 11.52 12.50 11.51 

CM (µg/m3) 

10 231.72 231.7 76.56 76.56 80.29 80.29 54.29 54.29 
2.5 85.34 85.34 50.50 50.50 57.31 57.31 44.54 44.54 

CP (µg/m3) 
10 241.8 231.34 77.78 77.95 82.91 74.48 53.22 56.73 

2.5 87.58 88.95 48.62 50.58 56.10 54.66 45.10 43.10 
LM; Levenberg-Marquardt, SCG: Scaled Conjugate Gradient, SD': Standard Deviations of observations, SD: Standard 
Deviation of predictions CM: mean concentration of observations, and CP Mean concentrations of Predictions. 
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    Table 3. Stabilized centralized mean square error and mean bias tabulated for target diagram. 
  PM10(CRMSE/σO) PM2.5(CRMSE/σO) PM10(MB/σO) PM2.5(MB/σO) 

Model Trainlm Trainscg Trainlm Trainscg Trainlm Trainscg Trainlm Trainscg 

K18 0.027 0.089 0.078 0.384 0.056 -0.002 0.039 0.062 

NT 0.043 0.023 0.013 0.015 0.026 0.030 -0.053 0.002 

Y12 0.086 0.052 0.114 0.182 -0.036 0.081 0.039 -0.108 

MOE 0.079 0.169 0.049 0.214 0.061 -0.135 -0.083 -0.180 
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Table 4. Summary of obtained results from the model for 24-hr concentrations. 
Model R value Trainlm Trainscg 

Area code PM10 PM2.5 PM10 PM2.5 
ATS 0.955 0.951 0.895 0.845 
JMS 0.932 0.923 0.897 0.700 
KM 0.926 0.937 0.863 0.823 

KGM 0.967 0.966 0.911 0.734 
K18 0.988 0.963 0.931 0.523 

LM 0.974 0.961 0.942 0.891 
MDS 0.918 0.940 0.910 0.711 
MES 0.956 0.959 0.925 0.929 

MS 0.931 0.938 0.896 0.866 

MES-1 0.975 0.959 0.941 0.867 

MOE 0.965 0.947 0.944 0.732 
NT 0.993 0.976 0.925 0.845 

THS 0.962 0.925 0.925 0.921 
TD 0.965 0.933 0.966 0.841 
Y12 0.980 0.867 0.933 0.392 
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 Fig.1. Study area and monitoring sites.  
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Fig. 2. A non-linear model of neural computation.  
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Fig. 3. Architecture of the proposed artificial neural network model.   
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Fig. 4. Quality assurance and workflow for the proposed model. 
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Fig. 5. Radar chart 24 hr average PM10 (µg/m3) (a) and PM2.5 (µg/m3) (b) concentrations at 15 sites. 

ATS: Ayer Tena Square (ATS), JMS: Jemo Michael Intersection, KM: Kaliti Maseltegna, KGM: Kera-Gofa 

Mazoria, K18: Kolfa 18, LM: Lafto-Mebrate, MDS: Megenagna Diaspora Square, MS: Meskel Square, MS: 

Menilik Square, MSE1: Meskel Square -1, MOE: Ministry of education square, NT: National Theater, THS: 

Torhyloch square, TD: Tulu Dimtu, and Y12: Yekatit 12 Square. 
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Cont. Fig. 6 

 

 

Fig.6. Scatter plot diagrams show the two artificial neural network model predictions of PM10 (a - d) 

and PM2.5 (e- h) concentrations for (a and e) K18 site, (b and f) for NT site, (c and g) for MOE site and 

(d and h) for Y12 sites. 
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Cont. Fig. 7 

 

Fig. 7. Observed and Predicted PM10 (a-d) and PM2.5 (e-h) concentration for 24 hr at K18, NT, MOE, 
and Y12 sites, respectively. 




