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A mimetic numerical scheme for multi-fluid flows
with thermodynamic and geometric compatibility

on an arbitrarily moving grid

Thibaud Vazquez-Gonzalez, Antoine Llor∗, Christophe Fochesato1

CEA, DAM, DIF, F-91297 Arpajon Cedex, France

Abstract

Simulating transient and compressible multi-fluid flows in extreme situations such as Inertial Confinement Fusion is especially
challenging because of numerous and sometimes conflicting constraints: large number of fluids, both isentropic and strongly
shocked compressible evolution, highly variable, stiff or contrasted equations of state, large heat sources, large deformations, and
transport over large distances. Models and schemes for such flows all share a common non-dissipative “backbone” structure of
per-fluid mass, momentum, and energy evolution-and-transport equations, coupled through pressure terms.

A novel and efficient multi-fluid numerical scheme for solving the backbone equations over a moving grid (ALE or Arbitrary
Lagrangian–Eulerian) is here generated through a “Geometry, Energy, and Entropy Compatible” mimicking procedure [Eur. J.
Mech. B – Fluids 67, 494 (2017)]. Starting from the discretized density and energy fields, and transport operator, the procedure
yields the discrete evolution equations in a practically univocal way. With arbitrarily moving grids, number of fluids, contrasts of
volume fractions and equations of state, the resulting scheme is fully conservative in masses, momentum, and energy, preserves
isentropic behavior to the scheme order, and ensures per-fluid thermodynamic consistency. Noticeably, optimal isentropic behavior
is obtained thanks to a non-standard downwind form of pressure gradient.

Multi-fluid numerical test cases—including Sod’s shock tube, Ransom’s faucet, and a nine-fluids crossing test—are performed
in two-dimensions using deliberately strenuous grid motion strategies. The results confirm the expected properties and illustrate
the robustness, stability and versatility of the scheme at finite resolution, though it is not intended to be used as is. The scheme
is a foundation block to be complemented with (system-dependent and ubiquitous) physical dissipation terms which provide the
necessary damping of divergingly unstable modes at vanishing wavelengths.

Keywords: Multi-fluid flow, Arbitrary Lagrangian Eulerian, compatible scheme, thermodynamic consistency, shock, least action
principle

1. Introduction

TO REVIEWERS: The introduction has been substantially
improved in terms of length and legibility with splitting of new
Section 2 and new Section 1.5. It now stresses the specific find-
ings of this work that were questioned by Reviewer 1 and ad-
dresses the issues of conservation and convergence that were
also questioned by Reviewer 2.

1.1. Motivations: multi-fluid flow simulation

In many areas of industry (combustion, nuclear, propulsion,
health, pharmaceuticals, etc.) and academia (astrophysics, geo-
physics, meteorology, etc.) fluid flows may involve dispersed
multiple phases (liquid, gas, solid, and their combinations)
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or components (individual particles, droplets, bubbles, etc.).
Due to the high variety and complexity of interactions between
mixed phases—with widely disparate scales of pressure gradi-
ents, flow speeds, material properties, etc.—accurate and fully
detailed descriptions of such systems remain inaccessible ex-
cept for simple or ideal cases depending on nature, strength,
boundaries, sources, etc. However, there are numerous, com-
plex, and important situations which have to be dealt with, even
if in approximate ways, as for instance with bubbles and slugs
in pipes [1–3], nuclear reactor safety [4–6], cavitation [7], dust
combustion and explosions [8–10], fluidized beds [11], vol-
canic eruptions [12], atomization in combustion [8, 13, 14],
deflagration and detonation [15, 16], hydro-cyclone separa-
tors [17–19], sloshing in tanks [20], etc.

A widely used approach to describe flows containing multi-
ple components is the so-called multiphase or multi-fluid mod-
eling based on a time, space, or ensemble phase-conditional
average [see for instance 21–26, for details]. Phase-conditional
averaging operators are applied directly to single-phase local-
and-instantaneous mass, momentum, and energy equations and,
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after closure of unknown correlations, a broad variety of mod-
els can be produced—depending on phase characteristics, dis-
persion geometry, flow regime, dissipation processes, source
terms, boundary conditions, etc.

When stripped of all dissipation effects however, all the
multi-fluid models display a common structure of coupled
Euler-like fluid evolution equations for masses, momenta, and
energies involving transport and pressure terms only. In the
vast majority of systems, the fluid pressures also relax towards
a common pressure field and the authors designate the ensu-
ing set of equations as the “backbone model.” For two fluids,
this model is usually known as the “single-pressure six equa-
tion model” [27, 28, and references therein].2 The backbone
model plays a central role in the analysis of multi-fluid numer-
ical schemes and will be the main object of the present work.3

Independently of model details, the numerical resolution of
multi-fluid flow equations has remained challenging to this day
due to various of their features which happen to be almost all
retained in their associated backbone model equations: i) they
cannot be expressed in fully conservative form because of pres-
sure couplings [as noticed for instance in 32, § 2.3]; ii) they
may involve stiff terms when fluid properties are strongly con-
trasted (for example with highly variable or different EOS
characteristics) [as noticed for instance in 28, eq. 5 and com-
ments]; iii) they may be partially elliptic for subsonic inter-
fluid drift velocities—which produce divergingly fast unstable
modes at vanishing wavelengths;—and last but foremost here
iv) their thermodynamic consistency—compliance with the first
and second laws of thermodynamics, the latter of which for-
bids entropy reduction in a closed system and ensures entropy
preservation for vanishing dissipation,—can be lost in many nu-
merical integration schemes involving inconsistent calculations
of pressure work.

1.2. Ellipticity: a major and widely explored issue in multi-
fluid simulations

Ellipticity of the backbone system (point iii above in Sec-
tion 1.1) has been recognized as an important and recurring
issue as reviewed for instance in Ref. [33]. The model dis-
plays unstable behavior with discontinuous dependence with
respect to initial conditions: it is thus ill-posed in the sense of
Hadamard. Therefore, although the backbone model can be dis-
cretized in many consistent ways, the ensuing discrete models
cannot be made to converge for vanishing cell size on any test
case.

2Usage of word “model” for the set of backbone equations can be mislead-
ing but is now ingrained by over fifty years of custom: very few physical situ-
ations can actually be described by this idealized set of equations. Yet, among
these, two cases of practical impact must be noticed: separated flows whose
instabilities are critical for pipe slugging [see for instance 1, and references
therein], and numerical interfaces in mixed cells which formally follow the
very same equations [see for instance 29–31, and references therein].

3It is worth reminding that the extremely high rates of physical pressure
oscillations and relaxation processes in most systems justify the neglect of
pressure differences when disregarding contributions from surface tension and
added mass, but nevertheless, backbone-like models involving pressure imbal-
ance closed by algebraic relationships still behave very similarly to the single
pressure backbone model.

However, the backbone model is not intended to be used
as is but complemented with other physical dissipation pro-
cesses. These are system-dependent but ubiquitous and always
involve a cutoff length scale (for instance the size of particles or
droplets, the width of a duct, etc.) around which some efficient
dispersion and dissipation effects exist—and below which the
continuous multi-fluid description does not make much sense
anyway. Therefore if the system displays instabilities, these are
confined to length scales larger than the cutoff where the growth
rate is bounded by the growth rate of the backbone model at
cutoff. As already noticed by numerous investigators [32–40]
continuity with respect to initial conditions is then recovered. A
more elaborated and formal discussion is provided in Appendix
A with quotes from the aforementioned references.

Now, at fixed finite resolution, discretized backbone models
experience a cutoff scale given by cell size where numerical
dissipation damps instabilities just as a physical dissipation pro-
cess would do. It is thus possible to carry out calculations, lim-
ited in time and resolution, with discretized backbone models.
In this spirit, the numerical examples provided in the present
work do not test convergence but robustness and consistency at
fixed finite resolution. The present numerical scheme is merely
a foundation block to be complemented with system-dependent
dissipation terms which provide the necessary damping to even-
tually reach convergence.4

1.3. Thermodynamic consistency: another major but less ex-
plored issue in multi-fluid simulations

In contrast to ellipticity, thermodynamic consistency (point
iv above in Section 1.1) has drawn much less attention, leav-
ing many elements to be clarified, but more or less implicitly
it has been looming over and been coped with in the develop-
ment of most multi-fluid models [41] and hydro-schemes. For
instance, it was pointed out [28] that entropy errors in calcu-
lations may come from numerical residues on i) cell volume
variations, ii) relative-to-grid transport, and iii) volume fraction
coupling between drifting fluids, especially when solving with
respect to an arbitrarily moving grid. Analysis of these errors
requires disentangling all the contributions and is thus seldom
performed.5 Now, being produced by the discretization of the
pressure terms, the entropy errors are identical in both back-
bone and full “fleshed up” versions of the models: the back-
bone model here appears as the critical benchmark for thermo-
dynamic consistency. At this point, it must be stressed that this

4As an extreme example, a numerical scheme to solve some given well-
posed multi-fluid model could follow a splitting strategy whereby each time
step would involve two successive evolution phases under the discretized equa-
tions of i) the backbone model and ii) the remaining pure dissipation processes.
Although the backbone step could be viewed as unacceptable for its consis-
tency with an ill-posed problem, the full scheme would be perfectly acceptable
and converge towards the well-posed solution of the full model. Therefore, the
scheme for the backbone model only provides a consistent discretization of the
corresponding operators in the full model.

5The magnitude of this task can be illustrated by the example of a fully
compressible dispersed flow described by a 12-section reduction of the particle
distribution function (for instance over velocities, sizes, temperatures, etc.): this
low but realistic number of sections leads to 13 separate isentropic conditions to
hold when dissipation processes vanish, with 26 × 25/2 = 325 pressure-driven
exchange terms between the 26 different kinetic and internal energy reservoirs.
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consistency can be analyzed, both physically and numerically,
only by making the system perfectly non-dissipative and thus
elliptic: ellipticity thus becomes a requirement and not a nui-
sance.

A related and disturbing novel finding was reported in a pre-
vious publication by the authors [42, 43, § 2.6]: if a scheme
preserves entropy to its order of accuracy on isentropic single-
fluid flows, thermodynamic consistency demands that, if mass
transport relative to the grid is upwinded, then pressure gradi-
ent in the momentum equation be downwinded. This immedi-
ately raises the issue of the pressure gradient discretization in
multi-fluid schemes where fluids may be transported in oppo-
site directions relative to the grid while being locally at same
pressure: it is one of the major challenges that the present work
will tackle.

It cannot be stressed enough that thermodynamic consistency
has a strong impact on the simulation of multi-fluid systems: as
recently reported by R.W. Lyczkowski [44, § 7.5 pp. 99–100
and § 7.6 pp. 110–111 on “Standard Problem 1”], the devel-
opment of one of the earliest and major industrial codes for
safety assessment of nuclear reactors was stalled for about two
years to 1975 by what happened to be an inconsistent evolution
of the underlying entropy. From the authors’ experience, sim-
ilarly extreme situations are not uncommon, even nowadays,
though they may go unnoticed: many multi-fluid simulations
appear misleadingly robust thanks to sufficiently large physical
or numerical dissipation, or to quasi-incompressible behavior
of all but one fluid. Yet, like a sword of Damocles, the fragility
is hidden but present and can unexpectedly crash calculations
when for instance changing numerical conditions, force clo-
sures, equations of state, etc.

1.4. Aim: compressible multi-fluid ALE numerical scheme
In the present work, a novel discretization of the backbone

equations—to be included in numerical schemes for the simula-
tion of strenuous multi-fluid flows as found in Inertial Confine-
ment Fusion—is built in order to meet the following demands:
i) large number of compressible fluids (only restricted by com-
puting resources, for instance up to a few dozens) in order to
eventually implement sectional approaches to particle distribu-
tion functions [45–48] (multi-size, but possibly multi-velocity,
multi-temperature, etc.); ii) both isentropic or strongly shocked
fluid evolution; iii) for simplicity, no added mass nor surface
tension effects (which in principle can be consistently added to
the scheme); iv) highly variable and contrasted EOS stiffness
(such as water and air for which acoustic impedance differs by
a factor of 4000); and v) large deformations and advection over
possibly large distances.

This list of constraints translates into the following funda-
mental algebraic properties of the numerical scheme: i) ex-
act conservation of masses, momentum, and total energy up to
round-off errors in order to ensure the proper capture of jump
conditions in shocks; ii) thermodynamic consistency of pres-
sure work to second-order regardless of mesh motions; iii) ar-
bitrarily evolving computational mesh where grid motions can
be either defined by the user beforehand or adjusted on-the-fly
to the flow.

The last feature above is designated by ALE (Arbi-
trary Lagrangian–Eulerian) as first introduced for single-fluid
flow [49, 50]: it allows to retain the advantages of both Eulerian
and Lagrangian approaches which use meshes that respectively
stay fixed or follow the fluid motion. Numerous ALE strate-
gies have been designed for multi-material [51–55, and refer-
ences therein] and multi-fluid applications [56, § 13], [57, and
references therein]. In most of these works however, thermody-
namic consistency appears to have been a relatively minor con-
cern, possibly because they deal with practical situations where
all fluids except one can be assumed to be weakly compressible
(condensed phases) compared to the last one (gas).

Two broad categories of ALE strategies exist [42, 43, and ref-
erences therein]: indirect and direct. Indirect ALE approaches
perform a separation between Lagrangian evolution steps and
a remapping procedure after arbitrary time increments. In con-
trast, no remap step is used in direct ALE as mass, momen-
tum and energy fluxes at moving cell boundaries are directly
taken into account in the discrete evolution equations. Indirect
ALE approaches have been used for multi-fluid multi-velocity
flows [58]: as a major advantage, they can ensure thermody-
namic consistency upfront because the Lagrangian evolution is
intrinsically consistent and remap is dissipative, but they be-
come computationally expensive for multi-fluid systems in two-
or three-dimensions due to remapping [59]. In contrast, direct
ALE approaches appear more computationally efficient as they
do not involve remap steps but they can be challenged by the
capture of the pressure work in a thermodynamically consis-
tent way. Relaxing the thermodynamic consistency constraints
could be achieved by using multiple superposed meshes for the
different fluids, as was shown for 1D two-fluid slug flows with
a more complex double ALE strategy [60, 61]. The present
work will be devoted to a common-mesh direct ALE scheme for
multi-fluid flows.

1.5. General relevance of the present numerical scheme
TO REVIEWERS: New section, see note to reviewers in

Introduction.
Many of the demands that the numerical scheme must meet

(points i) to v) in Section 1.4) have been explored in (some-
times numerous) previous publications, but mostly separately:
integrating all these constraints simultaneously does not seem
to have ever been attempted. In course of the present work, en-
suring compressible-yet-consistent (isentropic) thermodynam-
ics on multi-fluid flows over a fully arbitrary ALE grid ap-
peared as a major challenge that eventually required developing
a novel and original discretization approach, here designated
as “GEEC” for “Geometry, Energy, and Entropy Compatible.”
The GEEC approach hinges on an very general variational con-
struction whose fundamental premises are exposed in Section 2
before being applied to the present multi-fluid scheme in Sec-
tions 3 and 4.

The present scheme may look somewhat limited by some of
its features, in particular for its order one transport with respect
to the grid. However, rigorous thermodynamic consistency al-
ready makes it valuable in “real” applications especially when
numerical diffusion is not dominant. But even beyond that, it
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must be considered foremost as a successful proof of concept
which, within the GEEC framework, opens the possibility of
numerous extensions—both numerical (higher orders, bound-
ary conditions, three dimensions, etc.) and physical (viscos-
ity, collisions, etc.)—but further, provides new perspectives to
multi-fluid numerical schemes in general.

This specific status of the scheme appears in the somewhat
unusual structure of the present document. The derivation is
discussed at length as most of the concepts involved are for-
eign to the dominant finite volumes and finite elements com-
munities. Some of scheme’s features are established in a rigor-
ous formal way (such as consistency; exact conservation laws;
entropic character to the scheme order; arbitrary mesh struc-
ture, dimension, or ALE capability; etc.) and are not tested
on reported “numerical experiments”—but have of course been
checked in the course of code developments [42]. To preserve
legibility, reported benchmarks are kept to just a few, but more
of them have been carried out [42]. The tests have been selected
for their widespread usage and accepted relevance in hydro-
schemes, with a last one specifically tailored to highlight all
the scheme’s features together on a short animated representa-
tion. Also noticeable is that, except for the classical Ransom
faucet test, the benchmark cases are in fact “superficially clas-
sical:” they involve the physical flows of classical tests but are
computed under much more scheme-strenuous numerical con-
ditions. Convergence tests have been carried out but are not
reported as the interfering ellipticity issues are out of the scope
of the present work (see Section 1.2) and emphasis is here on
robustness and consistency.

1.6. General structure of the present work
The variational direct ALE scheme is thus derived accord-

ing to the GEEC principles discussed in Section 2. Because the
discretized equations are obtained by mimicking the derivation
of the continuous evolution equations from first principles, the
presentation is structured in two main parts: i) Section 3 pro-
vides the continuous guideline where coupled evolution equa-
tions for each fluid’s momentum and internal energy are ob-
tained from the least action principle and Gibbs relationship;
and ii) Section 4 provides the derivation of the coupled incre-
ment equations for fluids’ mass, momentum and internal energy
which mimic the continuous equations of Section 3. The sec-
tions are split into mirroring subsections as detailed in Table 1
and grouped in the three geometry, energy, and entropy steps of
the GEEC approach presented in Section 2.3

Readers who may not be interested in the step-by-step deriva-
tion of the increment equations of the scheme can skip Sec-
tions 2 to 4, and go to Section 5 where a summary of the multi-
fluid algorithm is presented, along with the time step definition
and the near-Lagrangian velocity reconstruction. Notations are
given in Appendix B.

When reduced to one fluid, the final scheme mostly coincides
to second order with the previous GEEC single-fluid scheme
developed by the authors [42, 43]: here, because of the com-
plexity of inter-fluid pressure couplings, the discrete internal
energy equations have not been fully corrected for second-
order-in-time entropy errors.

Results of tests in Section 6—variants of Sod’s shock tube,
Ransom’s water faucet, and the crossing of eight Gaussian
clouds of heavy fluids in a surrounding light gas—illustrate the
different built-in properties of the scheme in terms of geometric,
energetic, and entropic compatibility. Other test results were
reported previously [42, § 4.5] and an animation of the eight
Gaussian clouds crossing test is available as supporting infor-
mation on the journal website.

2. Basic principles for the present “GEEC” discretization
approach

TO REVIEWERS: New section, see note to reviewers in
Introduction.

2.1. Mimetic discrete variational derivation

Among the specifications of the numerical scheme listed in
Section 1.4, the proper isentropic behavior appears as an espe-
cially fragile but central property. It is fragile because, in prin-
ciple, even the slightest errors on internal energy integration—
for instance of numerical origin—are physically forbidden if
of wrong sign: they can crash calculations by uncontrolled run
offs of thermodynamic quantities. Though a successful isen-
tropic calculation may appear quite uneventful, especially if re-
turning to its initial state, it is nevertheless no simple task as it
is “living at the edge of stability” as quoted from Ascher and
McLachlan [66, § I]. This was exemplified in a short overview
of published results on Ransom’s faucet test case [28], which is
essentially an isentropic flow. Now, despite this fragility, isen-
tropic behavior is central because it is unique, and if numer-
ically tractable, it ensures that all the possible dissipative be-
haviors of the system also become accessible: dissipation pro-
cesses are merely added to the equations, the proper sign of
entropy production terms being simply ensured by elementary
algebraic relationships.

This strategy of first building an isentropic solver6 is in con-
trast with that of many common numerical schemes, mostly
derived from Godunov’s scheme [68] and relying on Riemann
solvers, which are intrinsically dissipative and may become dif-
ficult to adapt in convoluted systems [67]: in this respect, multi-
fluid systems are emblematic as the conservation equations do
not yield unique (Hugoniot) jump relationships as for single-
fluid shocks. Next to an infinite number of acceptable dissipa-
tive evolution paths, there is only one isentropic evolution. As a
related consequence, the non-conservative parts of the pressure-
coupling terms in the multi-fluid equations cannot be freely dis-
cretized and must match all the other discretized pressure terms
in order to ensure isentropic behavior (up to the scheme order).

Previous investigations in single-fluid cases, in La-
grangian [64] and then direct ALE settings [42, 43], revealed
a general principle that will be applied here to optimize the

6The first-ever designed Lagrangian hydro-scheme of von Neumann and
Richtmyer [62] actually follows this “isentropy first, dissipation next” approach
as reexamined in [64] and discussed more generally in [67].
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GEEC
step

“To mimic”
subsections

Discretization
subsections Content Comments, findings

I 3.1 4.1–4.2 Fields, mass transport, and
action integral definitions

Ensure simple second-order geometric consistency and
preserve legacy with previous space- and
time-staggered Lagrangian schemes [62–65]

I 3.2 4.3 Euler–Lagrange equations

I 3.3 4.4–4.5 Momentum equations Involve specific discrete pressure gradients and adapted
transport operators

II 3.4 4.6 Kinetic energy equations Required to build internal energy equations in next step
II 3.5 4.7 Internal energy equations Explicit, ensure total energy conservation

III 3.7 4.8 Artificial viscosity Required for shock capture, only added dissipation
process in present work

4.9 Discrete pressure closure Supplementary (non-mimicked) step for exact equal
fluid pressures

Table 1: Structure of the scheme derivation in the present work showing correspondence between the GEEC steps designated as I, II, and III (for respectively
Geometry, Energy, and Entropy), the continuous derivation to be mimicked in Subsections 3, and the discrete derivation in Subsections 4.

multi-fluid numerical scheme with respect to isentropic behav-
ior: isentropic flow is geometric [67]. This summarizes the fol-
lowing chain of properties: i) internal energies under isentropic
conditions depend only on volumes, which in turn depend only
on the positions of the fluid elements; ii) the total internal en-
ergy is thus a potential whose gradient produces all the non-
dissipative forces in the system; iii) the system can thus be de-
scribed by a Lagrangian functional within the general frame-
work of the least action principle; and iv) corresponding quasi-
isentropic numerical schemes can be obtained from a mimetic
approach, by minimizing discretized action integrals [69]. This
is just a special case of more general geometric mimicking prin-
ciples reviewed in Refs [66, § I], [70], and [71, § I], to which a
special issue of the J. Comput. Phys. was recently devoted [72].
Effective hydrodynamic schemes are eventually produced by
correcting possible numerical residues to recover conservation
properties and by adding physical dissipation terms—especially
for shock stability. As in Ref. [43] this general course to gener-
ate schemes will be designated here by GEEC for “Geometry,
Energy, and Entropy Compatible.”

2.2. Least action principle in continuous fluid dynamics

The least action principle is a fundamental ingredient of
mathematical physics and provides a unified theoretical frame-
work to derive geometrically and energetically consistent equa-
tions of motion for a wide range of physical systems, from
the simple harmonic oscillator to convoluted quantum gauge-
field theories [73]. It can also be applied to fluid dynamics
and its numerical schemes, as exemplified for the single-fluid
ALE setting in a previous publication by the authors [42, 43].
The present work can thus be considered as a multi-fluid exten-
sion of this investigation and, although a short summary of the
method is provided below, readers are strongly encouraged to
become familiar with the basics of the voluminous background
in the field and the technicalities of the scheme design respec-
tively summarized and exposed in Ref. [43, §§ 1.2 & 2].

Though it is not a strict requirement for the design of GEEC
discrete equations, mimicking the derivation of the continuous

equations turns out to provide invaluable guidance to ensure
the first step of “Geometric Compatibility:” once a continuous
action integral is defined, the discretization is merely reduced
to building an approximate quadrature for this integral whose
discrete minimization yields the scheme’s evolution equations.
The procedure has been extensively studied on physical systems
with finite degrees of freedom [69].

For single-fluid hydrodynamics—described by the Euler
equation—two equivalent variational routes can be followed
depending on the choice of the system’s coordinates: La-
grangian or Eulerian. Readers interested in the intricacies of
their progressive inception and development are referred for in-
stance to Ref. [74, § I and references therein]. For the present
study, it suffices to be retained that both approaches are now
well understood but differ quite substantially in terms of La-
grangian definition and algebraic complexity of the action in-
tegral minimization. As expected, both Lagrangian [75] and
Eulerian [76–78] derivations have been successfully adapted to
two-fluid flows and can be readily extended to any number of
fluids. However, for mimicking purposes in an ALE context
with transport relative to the grid, the Eulerian setting will be
privileged here as it involves a formally equivalent transport rel-
ative to the reference frame [42, 43].

2.3. Some general principles of the GEEC approach

Outside of the so-called SPH (meshless) methods [79, 80],
applications of mimetic least action approaches to fluid dynam-
ics schemes have been rather recent and scarce. Most relevant
for the present study are 2D Eulerian [81] and ALE [82] vis-
cous compressible flows, 1D Lagrangian [83] and ALE [84, 85]
reacting thermo-compressible flows, ALE 1D Burgers equa-
tion [86], Eulerian rotating stratified flows [87], Eulerian in-
compressible flows [88], Eulerian rotating or shallow water
flows [89], and ALE single-fluid compressible flows [42, 43].
A common feature in these works is the more or less explicit
and accurate discretization of mass-transport constraints in the
Lagrangian—as well as the possibly associated constraints on
entropy and particle labeling fields—which critically affects the
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order and the holonomic or symplectic character of the final
schemes.

In most of these cases, transport is discretized by simple first
order upwind fluxes which keep the derivation of the scheme
tractable by hand but also make the holonomy approximate—
though exact holonomy could be recovered in some schemes
by integrating the configuration variables [88, 89]. In any
case however, exact conservation of holonomy, momentum,
and energy cannot be simultaneously preserved in a numeri-
cal scheme [69, 90]. Thus in the present study, momentum and
energy will be exactly conserved and an approximately holo-
nomic transport of each fluid will be discretized by upwind first-
order cell-centered mass fluxes—very similar to those intro-
duced in Refs [88, 89] and adopted in the previous single-fluid
scheme [42, 43, §§ 2.2.1 eqs 12 & 14]. From there, second-
order upgrading could appear as possible even if tedious to de-
rive, but all known second-order flux formulas are actually in-
compatible with holonomy (even approximate) because of their
non-linear (quadratic) dependence on velocity. The discrete La-
grangian functional, built from the discrete integrals of kinetic
and internal energies and the discrete mass transport equations,
fully defines the first “Geometric Compatibility” step of the
GEEC approach.

The second “Energetic Compatibility” step of the GEEC ap-
proach aims at producing internal energy equations with ther-
modynamic consistency. In the single-fluid case, this is directly
obtained through exact energy conservation: the energy tally
with the discrete kinetic energy equation yields only one possi-
ble equation of internal energy. In the multi-fluid case however,
this tally is not sufficient as internal energy transfers between
fluids are possible and compatible with total energy conserva-
tion. It will thus be necessary to introduce supplementary con-
straints, namely the discretized fundamental thermodynamic re-
lations on each fluid, which must preserve isentropic evolution
to the scheme order. These must be carefully implemented as
the explicit forms of the thermodynamic relations coupled by
a common pressure exhibit various contributions of potentially
highly contrasted stiffness [28, eqs 4 & 5].

The third “Entropic Compatibility” step consists in adding
the irreversible energy processes through “dissipation poten-
tials” as introduced by Lord Rayleigh [91, § II]. These en-
tropy producing terms are here restricted to a multi-fluid arti-
ficial viscosity for shock capture, consistent with prescriptions
by D.L. Youngs [25, § 8.3].

3. “To-mimic” variational derivation of multi-fluid hydro-
dynamics

3.1. Fields, action integral, and transport

As mentioned in Section 2.2, a derivation of the continuous
multi-fluid Euler equations in Eulerian coordinates is provided
here from the least action principle. It extends the two-fluid
derivation of J.A. Geurst [76–78] to an arbitrary number of flu-
ids Φ—labeled ϕ with 1 ≤ ϕ ≤ Φ,—with an explicit volume-
filling constraint [75] and per-fluid Lin constraints as discussed
in Refs [92, § 15 eq. 15.6], [93, § I.1 eq. I.1.6], and [94, eq. 15].

The Lin constraints represent in an Eulerian description the
fact that all fluid elements can be ascribed a Lagrangian la-
beling coordinate: this ensures complete equivalence with La-
grangian descriptions. They appear here as a mere technical-
ity and their variants and subtle connections to vorticity and
entropy transport—already discussed at length elsewhere [92–
96]—are beyond the scope of the present work.

The action integral is

A =

∫∫
L(t, x) d3 x d t , (1)

where the Lagrangian density for the system of Φ fluids is

L =
∑
ϕ

(
1
2 [αρ]ϕuϕi uϕi − [αρ]ϕeϕ

(
ρϕ, sϕ(ξϕ)

)
+ φϕ Dϕ

t [αρ]ϕ + ψϕ Dϕ
t [αρξ]ϕ

)
− Π

(∑
ϕ α

ϕ − 1
)
, (2)

and where αϕ(t, x), ρϕ(t, x), uϕ(t, x), and ξϕ(t, x) are respec-
tively the fields of volume fraction, density, Eulerian velocity,
and Lagrangian coordinate of fluid ϕ—[αρ]ϕ and [αρξ]ϕ stand-
ing respectively for αϕρϕ and αϕρϕξϕ. The internal energy eϕ is
here taken to be a function of ρϕ and entropy sϕ, the latter being
a Lagrangian invariant field, i.e. a function of the Lagrangian
coordinate ξϕ: this defines an isentropic evolution for each fluid
element but not necessarily with uniform entropy fields. Dϕ

t
and dϕt are respectively the so-called Eulerian and Lagrangian
derivatives along fluid velocities uϕ, as defined and connected
through an extended product rule on any generic fields a and b

Dϕ
t a = ∂ta + (uϕi a),i , (3a)

dϕt a = ∂ta + uϕi a,i , (3b)
Dϕ

t (ab) = a Dϕ
t b + b dϕt a = a dϕt b + b Dϕ

t a . (3c)

Einstein’s notation of implicit summation on repeated coordi-
nate indices is assumed—thus ∇ · a = ai,i and ∇b = b,iêi.
Lagrangian derivatives express evolution of material elements
whereas Eulerian derivatives express evolution over fixed vol-
ume elements. The product rule is a key ingredient for varia-
tional derivations and conservation conditions which must thus
be properly mimicked by the many possible discrete versions of
the Eulerian and Lagrangian derivatives. Using the mass con-
servation condition one has

Dϕ
t [αρξ]ϕ = [αρ]ϕ dϕt ξ

ϕ + ξϕ Dϕ
t [αρ]ϕ = [αρ]ϕ dϕt ξ

ϕ , (4)

and thus the conservation equations for Lagrangian coordinates
ξϕ embedded in (2) are equivalent to their invariance along fluid
trajectories. Usage of Eulerian instead of Lagrangian deriva-
tives for expressing conservation constraints in (2) will be jus-
tified in Section 4.1.

The Lagrangian density (2) thus involves: i) the usual terms
of per-fluid kinetic and potential (internal) energies, ii) the mass
conservation constraints with multiplier fields φϕ(t, x) which re-
late velocity and density fields, iii) the Lin constraints on La-
grangian coordinates with multiplier fields ψϕ(t, x), and iv) the
volume-filling constraint with multiplier field Π(t, x).
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3.2. Euler–Lagrange equations, single pressure condition
The action integral minimization is performed over varia-

tions of the independent fields φϕ, ψϕ, ξϕ, [αρ]ϕ, uϕ, ρϕ, and Π .
This of course could be carried out over any other combination
of the fields but the present choice appears to be most conve-
nient to simplify later calculations. αϕ must thus be substituted
by [αρ]ϕ/ρϕ in the volume-filling constraint of the Lagrangian
expression (2). The action variation is thus

δA =

∫∫ [∑
ϕ

( ∂L
∂φϕ

δ φϕ +
∂L

∂ψϕ
δψϕ +

∂L

∂ξϕ
δ ξϕ

+
∂L

∂[αρ]ϕ
δ[αρ]ϕ +

∂L

∂uϕi
δ uϕi +

∂L

∂ρϕ
δ ρϕ

)
+
∂L

∂Π
δΠ

]
d3 x d t , (5)

where the field variations are assumed independent, continu-
ously differentiable, and vanishing at domain boundaries in t
and x. Partial derivatives with respect to each of the fields in (5)
implicitly assume that the other fields are kept constant. Im-
posing δA = 0 from extremal action (least action principle),
performing integration by parts in (5) according to (3c), and
dropping common factors yields the per-fluid Euler–Lagrange
equations

0 = Dϕ
t [αρ]ϕ , (6a)

0 = Dϕ
t [αρξ]ϕ , (6b)

0 = Tϕ ∂sϕ
∂ξϕ

+ dϕt ψ
ϕ , (6c)

0 = − 1
2 uϕj u

ϕ
j + eϕ + Π/ρϕ + dϕt φ

ϕ + ξϕ dϕt ψ
ϕ , (6d)

uϕi = φ
ϕ
,i + ξϕψ

ϕ
,i , (6e)

Π = Pϕ , (6f)
1 =

∑
ϕ α

ϕ , (6g)

where Pϕ = (ρϕ)2∂eϕ/∂ρϕ and Tϕ = ∂eϕ/∂sϕ are respectively
the pressure and temperature fields of fluid ϕ.

The per-fluid Euler–Lagrange equations (6) display the fol-
lowing features: i) (6a) and (6b) represent respectively the per-
fluid mass and Lagrangian-coordinate conservation equations;
ii) (6c) represents the evolution equations of the Lagrange mul-
tipliers of Lin’s constraints; iii) (6d) provides evolution equa-
tions of the system through the Lagrange multipliers φϕ; iv) (6e)
provides Clebsch decomposition of velocities as functions of
Lagrange multipliers and shows that Lin’s constraints ψϕ,i , 0
lift the irrotational restrictions; v) (6f) prescribes that all flu-
ids share a common pressure field P = Π = Pϕ; and vi) (6g)
ensures that the Φ fluids are volume filling.

The common pressure feature is not an assumption but a con-
sequence of the Lagrangian energy structure and its volume-
filling constraint. It can be affected by algebraic corrections
if for instance interfacial energy or added mass effects are in-
troduced in the Lagrangian [76–78, 97]. However, dynami-
cally unequal pressures in a non dissipative system—i.e. in-
volving evolution equations for pressure imbalances—would
require adding to the Lagrangian other kinetic and internal en-
ergy contributions associated to volume fraction changes of the

fluids [75, 97, § 4 eqs 4.13–4.15]. This would produce supple-
mentary evolution equations of Rayleigh–Plesset type.

3.3. Momentum equations

The Euler–Lagrange equations (6) indirectly describe the
evolution of velocities (or momenta): they are decomposed
into combinations of fields and gradients of Lagrange multipli-
ers (6e), whose time derivatives are defined by the other equa-
tions. Eliminating the Lagrange multipliers basically requires
that the time derivative of (6e) be combined with gradients
of (6c) and (6d). Inspection of (6e) quickly reveals the appro-
priate linear combination, which, after lengthy but straightfor-
ward calculations, yields the evolution equation for the momen-
tum of fluid ϕ

Dϕ
t
(
[αρ]ϕ × (6e)i

)
+ [αρ]ϕuϕj,i × (6e) j − [αρ]ϕ × (6d),i

+ [αρ]ϕξϕ,i × (6c) − (6b) × ψϕ,i − (6a) × φϕ,i

⇒ Dϕ
t (αϕρϕuϕi ) = −αϕP,i . (7)

These coupled Euler like equations provide conservation of the
total momentum

∑
ϕ α

ϕρϕuϕ.∑
ϕ (7) ⇒

∑
ϕ Dϕ

t (αϕρϕuϕi ) = −P,i . (8)

The notation used to summarize the derivation of the last two
equations will be applied throughout this work: any linear op-
erator (sum, product, derivation, gradient, etc.) when applied to
one or many equations, is applied to both sides of the equations
as exactly given in text by the equation reference—in particular,
the order of the left and right-hand sides must be scrupulously
preserved.

3.4. Kinetic energy equations

The kinetic energy equation of fluid ϕ is obtained from the
work of the corresponding momentum equation as

(7) × uϕi − (6a) × 1
2 uϕi uϕi

⇒ Dϕ
t ( 1

2α
ϕρϕuϕi uϕi ) = −αϕP,iu

ϕ
i . (9)

Summation over ϕ yields the equation of total kinetic energy∑
ϕ (9) ⇒

∑
ϕ Dϕ

t ( 1
2α

ϕρϕuϕi uϕi ) = −P,iui , (10)

where u is the volume averaged velocity

u =
∑
ϕ α

ϕuϕ . (11)

3.5. Internal energy equations

Under isentropic evolution, the internal energy of fluid ϕ
is a function of the geometric configuration of the system, as
defined by the transported density and entropy fields, eϕ =

eϕ(ρϕ, sϕ). However, in the dissipative case where entropy is
for instance produced by shocks and other physical processes,
internal energies must be tracked by evolution equations which



Submitted to Int. J. Multiphase Flow, Nov. 25th, 2019. Revised March 14th, 2020. For private usage. Do not distribute. 8

express the fundamental thermodynamic relations along La-
grangian trajectories

dϕt eϕ =
P

(ρϕ)2 dϕt ρ
ϕ + Tϕ dϕt sϕ , (12a)

dϕt P =
γϕP
ρϕ

dϕt ρ
ϕ + ΓϕρϕTϕ dϕt sϕ . (12b)

In order to take into account the common pressure condition
explicitly, the system evolution is best expressed through the
evolution equation of pressure in each fluid ϕ (12b) which will
depend on the associated adiabatic exponent and Grüneisen co-
efficient, respectively γϕ and Γϕ—the isentropic speed of sound
is thus given by cϕ =

√
γϕP/ρϕ.

The pressure evolution equations (12b) together with mass
conservation (6a) can be combined so as to eliminate density
derivatives and make appear the sum of volume fraction deriva-
tives

∑
φ

(αφ
γφ
× (12b) −

P
ρφ
× (6a)

)
⇒

∑
φ

αφ

γφ
dφt P = −P

∑
φ Dφ

t α
φ +

∑
φ

Γφ

γφ
αφρφW̊φ , (13)

where W̊ϕ = Tϕ dϕt sϕ is the per-mass and per-fluid irreversible
energy source. Substitution of this pressure derivative eventu-
ally yields the fluid density derivative dϕt ρ

ϕ

αϕ

γϕ
× (12b) −

αϕ/γϕ∑
φ α

φ/γφ
× (13)

⇒
∑
φ µ

ϕφ(dϕt P − dφt P) =
αϕP
ρϕ

dϕt ρ
ϕ + βϕP

∑
φ Dφ

t α
φ

+
∑
φ µ

ϕφ(ΓϕρϕW̊ϕ − ΓφρφW̊φ) , (14)

which now does not involve any other explicit time derivatives
because ∑

φ Dφ
t α

φ = ui,i , (15a)

dϕt P − dφt P = (uϕi − uφi )P,i . (15b)

These contributions appear in (14) with the respectively global
and relative compressibility weighting coefficients which are
written in terms of γϕ or of sound velocities cϕ

βϕ =
αϕ/γϕ∑
φ α

φ/γφ
=

αϕ/[ρϕ(cϕ)2]∑
φ α

φ/[ρφ(cφ)2]
, (16a)

µϕφ =
(αϕ/γϕ)(αφ/γφ)∑

φ′ α
φ′/γφ

′ =
Pαϕαφ/[ρϕ(cϕ)2ρφ(cφ)2]∑

φ′ α
φ′/[ρφ′ (cφ′ )2]

. (16b)

The coefficients satisfy the identities
∑
ϕ β

ϕ = 1,
∑
φ µ

ϕφ =

αϕ/γϕ, and µϕφ = µφϕ = βϕαφ/γφ = βφαϕ/γϕ. The energy
evolution equation is then obtained as

αϕρϕ × (12a) + eϕ × (6a) − (14)

⇒ Dϕ
t (αϕρϕeϕ) = −βϕP

∑
φ Dφ

t α
φ +

∑
φ µ

ϕφ(dϕt P − dφt P)

−
∑
φ µ

ϕφ(ΓϕρϕW̊ϕ − ΓφρφW̊φ) + αϕρϕW̊ϕ , (17)

bearing in mind that the Eulerian and Lagrangian derivatives in
the right-hand side can but have not been eliminated by substi-
tution with (15): this is deliberate in order to later facilitate the
numerical mimicking into (52) to be carried out in Section 4.7.
Summation over ϕ cancels the exchange terms and yields the
equation of total internal energy∑

ϕ (17) ⇒
∑
ϕ Dϕ

t (αϕρϕeϕ) = −Pui,i +
∑
ϕ α

ϕρϕW̊ϕ , (18)

which matches the total kinetic energy to yield the conservation
of total energy

(10) + (18) ⇒
∑
ϕ Dϕ

t
(
αϕρϕ( 1

2 uϕi uϕi + eϕ)
)

= −(Pui),i +
∑
ϕ α

ϕρϕW̊ϕ . (19)

3.6. An important comment on internal energy equations

TO REVIEWERS: This section was separated from the pre-
vious in order to highlight an important feature which is not
specific to the present derivation and is potentially applicable
to any multi-fluid model or scheme.

The derivation of the internal energy equations (17) is an ex-
tension of that previously given forΦ = 2 fluids [28, eqs 4 & 5],
inspired by previous remarks [98] and calculations [99, 100,
resp. eqs 49 & 47]. Many comments therein also hold and are
worth being summarized here. This derivation and its conse-
quences are not specific to the present work and are potentially
applicable to any other multi-fluid model or scheme.

Multi-fluid studies generally hinge on the evolution equation
of per-fluid total energy written as

∂t
(
αϕρϕ( 1

2 uϕi uϕi + eϕ)
)

+
(
αϕ( 1

2ρ
ϕuϕi uϕi + ρϕeϕ + P)uϕi

)
,i

= −P∂tα
ϕ + αϕρϕW̊ϕ , (20)

in order to make apparent the hyperbolic transport structure on
the left-hand side and leave exchange and source terms on the
right-hand side. This is achieved at the expense of an implicit
and extensive coupling between all the evolution equations and
the equations of state through the ∂tα

ϕ term alone.
In contrast, the present evolution equations of per-fluid in-

ternal energies (17) explicitly separate three different pressure-
driven reversible processes besides the usual irreversible
αϕρϕW̊ϕ: i) −Pβϕui,i is the internal energy production due to
overall volume change; ii) P,i

∑
φ µ

ϕφ(uϕi − uφi
)

is the exchange
of internal energy between fluids due to their relative drift along
the pressure gradient; and iii) −

∑
φ µ

ϕφ(ΓφρφW̊φ − ΓϕρϕW̊ϕ) is
the reversible exchange of internal energy due to differences in
irreversible heating of fluids. The magnitude of these terms is
given by the global and relative compressibility weighting co-
efficients βϕ and µϕφ whose expressions (16) can induce strong
stiffness for highly contrasted equations of state: for the com-
mon example of air–water mixtures, the ratio βAir/αAir can
reach values in excess of 104 when αAir � 10−4.

The form (17) of the internal energy equation is thus par-
ticularly well suited to understand and design near-isentropic
numerical schemes.
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3.7. Artificial viscosity
TO REVIEWERS: This section was adapted with simpler

and equally robust artificial viscosity closures after (24), with
the corresponding changes in the discretized expressions of
Section 4.8. The characteristic length scale is now designated
as h for consistency with other cell related length scales, ap-
pearing and defined for instance in Section 5.

Artificial dissipation is required in order to stabilize shocks
in numerical schemes which are insufficiently dissipative [62,
101]: it is thus needed here because GEEC schemes are de-
signed from the onset to be non dissipative up to their order of
accuracy. Although it may be viewed as a strictly numerical de-
vice, artificial dissipation is most often designed by mimicking
an explicit physical dissipation processes [102]. In single-fluid
systems its detailed characteristics are of little importance pro-
vided its strength is properly scaled for optimal shock spread-
ing.

For multi-fluid systems in contrast, shocks are not uniquely
defined and may depend on the specificities of the actual phys-
ical dissipation processes—there are no simple Hugoniot jump
relationships—but very few studies have been devoted to ana-
lyzing and prescribing expressions for corresponding artificial
dissipation. It must be stressed that artificial dissipation here
aims at stabilizing the hyperbolic characteristics alone thus pre-
serving the elliptic modes.7 Now, out of the multiplicity of op-
tions, multi-fluid dissipation can be designed in a consistent but
formally minimal way in order to test schemes or if accurate
shock capture is not required. This approach is adopted here
following basic concepts previously introduced [25, § 8.3]. Be-
cause of the scarceness of similar prescriptions it is detailed
below.

Shock stabilization can proceed through many different
mechanisms such as shear and volume viscosities, thermal dif-
fusion, inter-fluid drag, and thermal exchange. However, it
is known that thermal diffusion alone cannot stabilize strong
shocks, in contrast to viscosity which is always effective [see
for instance 104, § VII.3 and references therein]. Therefore,
thermal diffusion will not be retained here although it may im-
prove numerical behavior on some singularities [105].

General shock capture in a multi-fluid system thus requires
the presence of a dissipative flux of total momentum in (8), here
taken isotropic and designated as the total artificial viscosity
stress Q ∑

ϕ (7) ⇒
∑
ϕ Dϕ

t (αϕρϕuϕi ) = −P,i − Q,i . (21)

From there, the momentum equations (7) of fluid ϕ can always
be rewritten as

Dϕ
t (αϕρϕuϕi ) = −αϕP,i − α

ϕQ,i −
∑
φ Dϕφ

i , (22)

where Dϕφ are artificial drag forces coupling fluids ϕ and φ.
These terms may correct the differential momentum produced
in a shock but will be neglected here as they appear to be

7In an interesting exception [103], artificial viscosity was adapted to only
stabilize the elliptic modes at small wavelengths.

only indirectly related to volume changes—characteristic of
shocks—and are included in usual physical drag terms—not
considered in the present work.

From (22) with Dϕφ = 0, the equation of total kinetic en-
ergy (18) is modified as∑

ϕ (22) × uϕi

⇒
∑
ϕ Dϕ

t ( 1
2α

ϕρϕuϕi uϕi ) = −P,iui − Q,iui , (23)

and, here excluding all other dissipation processes, the dissipa-
tive behavior of artificial viscosity now requires that∑

ϕ α
ϕρϕW̊ϕ = ρW̊ = −Qui,i ≥ 0 . (24)

This condition is always fulfilled if Q = −νui,i with ν ≥ 0 but
i) ν can be any non linear increasing function of strain ui,i and
ii) the separation of total dissipation into individual fluid dis-
sipations W̊ϕ remains open. These points however, can criti-
cally impact many applications such as with fluids of highly
contrasted equations of state: for instance, shock propagation
in a spray of water in air can be significantly affected by chang-
ing the dissipation fraction in the much less compressible and
denser fluid. For this purpose it is necessary to introduce sep-
arate per-fluid artificial viscosity stresses Qϕ whose thermody-
namically acceptable closures can vary dramatically in the ab-
sence of detailed physical descriptions: extreme cases would
be to concentrate dissipation on only one of the fluids ϕ, thus
imposing Qφ = 0 for any φ , ϕ.8

Another simple “neutral” two step closure is introduced here.
First, the general single-fluid form of artificial viscosity is pre-
served by setting

Q = ρ Q
[
ui,i, c

]
, (25)

where ρ =
∑
ϕ α

ϕρϕ and c are the mean density and the effec-
tive speed of sound to be defined. The generic artificial vis-
cosity function Q combines quadratic and linear contributions
according to commonly accepted practice [101]

Q
[
S ,C

]
= a2

(
min{0, S }h

)2
− a1CS h , (26)

where S is an expansion rate, C is a speed of sound, h is the
characteristic cell size, and a1 and a2 are dimensionless coef-
ficients of order one. Second, the total irreversible work of
the artificial viscosity stress (24) is distributed over the fluids
in such a way that it does not contribute to reversible pressure
work in (17), i.e. W̊ϕ are such that ΓϕρϕW̊ϕ = ΓφρφW̊φ for any
ϕ and φ. Elementary calculations then show that the irreversible
work of the artificial viscosity is distributed according to

αϕρϕW̊ϕ = λϕρW̊ , with λϕ =
αϕ/Γϕ∑
φ α

φ/Γφ
. (27)

8In a first version [42, eqs 4.16–18] inspired from previous prescriptions
[25, eq. 8.5], the per-fluid artificial viscosity stresses were connected to the
per-fluid compression rates and approximated as

αϕρϕW̊ϕ = −βϕQϕui,i , with Qϕ = −νϕβϕui,i .

Following (17), coefficients βϕ were here introduced to formally match the pres-
sure work terms. Although physically sound and plausible, and numerically
consistent with the single-fluid scheme in the case of interface cells, this ap-
proach was found to be too restrictive on time steps when dealing with small
volume fractions of fluids with highly contrasted EOS.
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Figure 1: Graphical representations of mesh and discretized quantities in space–time (left) and 2D-space (center), with the swept-flux cell-to-cell transfers (right).
Notice the respective node and cell centering of grid and per-fluid relative-to-grid velocities, wn+1/2

p and vϕn+1/2
c .

4. Derivation of the ALE multi-fluid GEEC scheme

4.1. Discretized fields and action integral

As already mentioned, the present scheme is a multi-fluid
extension of a previously developed single-fluid scheme [43]
from which, for each fluid’s set of fields, it inherits the same
discretization choices. These in turn were first selected so as
to retain the simple second-order geometric consistency of the
von Neumann–Richtmyer scheme [62, 63] (closely related to
the Størmer–Verlet integrator) and preserve legacy with exist-
ing space- and time-staggered Lagrangian codes [64, 65]. The
discretization is described in the following and represented in
Fig. 1, but readers are referred to Ref. [43, § 2.2.1] for the un-
derlying rationale.

i) The grid, common to all fluids, is defined at integer-labeled
times tn by nodes labeled p at positions xn

p; ii) According to a
fixed connectivity, the nodes delimit polygonal (2D) or polyhe-
dral (3D) cells labeled c with volumes Vn

c ; iii) The grid evolu-
tion is defined by the velocity of each node wn+1/2

p at half-integer-
labeled times as

wn+1/2
p = (xn+1

p − xn
p)/∆tn+1/2 , (28)

where ∆tn+1/2 = tn+1 − tn; iv) Each fluid possesses its own abso-
lute (in the laboratory frame) velocity uϕn+1/2

c and relative-to-grid
velocity vϕn+1/2

c , both defined at half-integer-labeled times but at
cell centers and related by

uϕn+1/2
c = wn+1/2

c + vϕn+1/2
c , (29)

where wn+1/2
c is a mesh velocity interpolated at cell centers

from neighboring node values using a simple procedure—for
instance arithmetic mean; vi) All other per-fluid quantities—
introduced in Section 3.1 for the continuous description—are
defined at cells and integer-labeled times as in finite volume ap-
proaches: volume fraction α

ϕn
c , density ρ

ϕn
c , per-mass internal

energy eϕn
c , per-mass entropy sϕn

c , Lagrangian coordinate ξϕn
c ,

etc. The mass of fluid ϕ in cell c at time tn is thus Vn
c [αρ]ϕn

c .
With the above definitions of discrete fields, a discrete action

integral is built as

(1) & (2)
   A =

∑
n,c,ϕ

(
∆tn+1/2Vn

c
1
2 [αρ]ϕn

c (uϕn+1/2
c )2

− ∆tnVn
c [αρ]ϕn

c eϕ
(
ρ
ϕn
c , sϕ(ξϕn

c )
)

+ φ
ϕn+1
c Dϕ

∆t[αρ]ϕn
c + ψ

ϕn+1
c Dϕ

∆t[αρξ]
ϕn
c

)
−

∑
n,c Π

n
c

(∑
ϕ α

ϕn
c − 1

)
, (30)

which mimics the continuous definition term-to-term—symbol
   will be used in all the following to relate mimicked equa-
tions. The physical meaning of this action integral is thus
identical as that introduced and discussed in Sections 2.2
and 3.1, with kinetic and internal energy contributions, conser-
vation constraints for masses and Lagrangian coordinates, and
a volume-filling constraint. Important numerical details in (30)
are however to be noticed:9 i) the integral of internal energy is
second-order accurate in space and time according respectively
to the mid point and trapezium rules as ∆tn = (tn+1 − tn−1)/2;
ii) the integral of kinetic energy is second-order accurate in
space according to the mid point rule, but only first order
accurate in time because of the half time-step off-centering
of the fluid density—this off-centering is required to match
the explicit time discretization of the transport operators dis-
cussed below;—iii) the discretization of kinetic energy—and
thus momentum—at cell centers does not involve nodal masses
and thus complies with the so-called DeBar condition whereby
a uniform self-advecting velocity field must remain uniform
regardless of density gradients [106, p. 13]; iv) the mass and
Lagrangian coordinate constraints are expressed as conserva-
tion laws to be rigorously preserved by the discretized transport
operators Dϕ

∆t discussed below in Section 4.2; v) the associ-
ated Lagrange multipliers must not be viewed as the discretized
versions of some continuous fields and have thus been freely
labeled in order to best simplify notations in the subsequent
Euler–Lagrange equations (38).

4.2. Discrete transport operators
The definition of the so-called “Eulerian” transport opera-

tor Dϕ
∆t is a critical ingredient in all the following. It must

9Some of these details have evolved compared to earlier [42, § 4.3.2.1
eq. 4.26] and single-fluid versions [43, § 2.2.1 eq. 16].
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i) be identical for all conserved fields such as [αρ] and [αρξ]
to simplify later derivations, ii) ensure exact conservation down
to round-off errors, and iii) be rigorously positive to preserve
physical constraints on [αρ]. For proof of concept and for us-
age in applications where transport diffusion is not dominant,
an explicit first order upwind discretization is here retained to
mimic (3a) as∫∫

Vn+1/2
c ,∆tn+1/2

(a Dϕ
t b) d3 x d t

   aϕn+1
c Dϕ

∆t bϕn
c = aϕn+1

c

[
Vn+1

c bϕn+1
c − Vn

c bϕn
c

+ ∆tn+1/2 ∑
d
(
V̊ϕn+1/2

cd bϕn
c − V̊ϕn+1/2

dc bϕn
d

)]
, (31)

with the definitions for the upwind volume transfer rate from
cell c to adjacent cell d

V̊ϕn+1/2
cd = σ

ϕn+1/2
cd sn+1/2

cd · vϕn+1/2
c , (32a)

and the associated upwinding indicator factor (= 0 or 1)

σ
ϕn+1/2
cd = H

(
sn+1/2

cd · vϕn+1/2
c

)
, (32b)

sn+1/2
cd being the outward-oriented face-normal surface vector

from cell c to adjacent cell d and H being the Heaviside step
function. Figure 1 provides a graphical interpretation of this
discrete transport operator in terms of swept fluxes.

In all the following unless explicitly denoted, sums
∑

d will
be restricted to the adjacent cells d of the nominal current cell c
by formally setting sn+1/2

cd = 0 if c = d or if cells c and d do not
share any common boundary. Contour integration around the
closed boundaries of cells c or d provides the useful relation-
ships ∑

c sn+1/2
cd =

∑
d sn+1/2

cd = 0 . (33)

Transport from cell to cell is evidently defined here by the flu-
ids’ relative-to-grid velocities alone vϕn+1/2

c instead of absolute
velocities uϕ in (2). In contrast with the implicit transport
considered at one point along Ref. [43, eq. 14], transport is
here taken explicit: this simplifies the derivations to follow and
eventually leads to nearly identical schemes when all operators
are corrected to become explicit. Furthermore, whenever the
relative-to-grid velocities on two adjacent cells c and d are such
that σϕn+1/2

cd = σ
ϕn+1/2
cd according to (32b), these upwinding indi-

cator factors must be corrected so as to preserve the relationship

σ
ϕn+1/2
cd + σ

ϕn+1/2
dc = 1 , (34)

which is necessary condition for consistency of the transport
operator [107, eq. 6a]. It must also be noticed that the off-
centering of transport operators breaks the Galilean invariance
of the action integral towards relative-to-grid motion.

In order to clarify later calculations, it is useful to also mimic
the “Lagrangian” transport operator (3b), dual to the direct Eu-
lerian transport through space and time integration by parts:∫

a Dϕ
t b +

∫
b dϕt a =

∫
Dϕ

t (ab) =
∮

(ab). Rearranging terms
in (31) and neglecting contributions from the space-and-time

domain boundary, this simply yields∫∫
Vn+1/2

c ,∆tn+1/2

(b dϕt a) d3 x d t

   bϕn
c dϕ

∆t aϕn
c = bϕn

c

[
Vn

c (aϕn+1
c − aϕn

c )

+ ∆tn+1/2 ∑
d V̊ϕn+1/2

cd (aϕn+1
d − aϕn+1

c )
]
. (35)

With the notations of Ref. [88], one can write dϕ
∆t = (Dϕ

∆t)
[ and

Dϕ
∆t = (dϕ

∆t)
]. It must be noticed that duality transforms the ex-

plicit upwind Eulerian operator (31) into an implicit downwind
Lagrangian operator (35). These definitions however, do not
ensure a local product rule as visible on the identity

aϕn+1
c Dϕ

∆t bϕn
c + bϕn

c dϕ
∆t aϕn

c = Vn+1
c aϕn+1

c bϕn+1
c − Vn

c aϕn
c bϕn

c

+ ∆tn+1/2 ∑
d
(
V̊ϕn+1/2

cd aϕn+1
d bϕn

c − V̊ϕn+1/2
dc aϕn+1

c bϕn
d

)
, Dϕ

∆t(a
ϕn
c bϕn

c ) . (36)

The explicit–implicit upwind–downwind duality and the loss
of a product rule have major consequences on the variational
derivation of the momentum equation—and most notably of its
pressure gradient—as shown in Sections 4.4 and 4.5.

4.3. Discrete Euler–Lagrange equations, single pressure con-
dition

The least action principle applied to the discrete system states
that the increment equations (or discrete evolution equations)
are provided by canceling the variations of the action inte-
gral (30) with respect to the discrete field variations

(5)    δA =
∑

n,c,ϕ

(
∂A

∂φ
ϕn+1
c

δ φ
ϕn+1
c +

∂A

∂ψ
ϕn+1
c

δψ
ϕn+1
c

+
∂A

∂ξ
ϕn
c

δ ξ
ϕn
c +

∂A

∂[αρ]ϕn
c

δ[αρ]ϕn
c +

∂A

∂vϕn+1/2
c

· δ vϕn+1/2
c

+
∂A

∂ρ
ϕn
c

δ ρ
ϕn
c

)
+

∑
n,c

∂A

∂Πn
c

δΠn
c = 0 . (37)

Performing discrete integration by parts and dropping common
factors eventually yields

(6a)    0 = Dϕ
∆t[αρ]ϕn

c , (38a)

(6b)    0 = Dϕ
∆t[αρξ]

ϕn
c , (38b)

(6c)    0 = Tϕn
c

∂sϕ
∂ξϕ
|nc + dϕ

∆t ψ
ϕn
c , (38c)

(6d)    0 = −∆tn+1/2Vn
c

1
2 (uϕn+1/2

c )2 + ∆tnVn
c eϕn

c + Πn
c /ρ

ϕn
c

+ dϕ
∆t φ

ϕn
c + ξ

ϕn−1
c dϕ

∆t ψ
ϕn
c , (38d)

(6e)    Vn
c uϕn+1/2

c =
∑

d σ
ϕn+1/2
cd sn+1/2

cd
(
φ
ϕn+1
d − φ

ϕn+1
c

+ ξ
ϕn
c (ψϕn+1

d − ψ
ϕn+1
c )

)
, (38e)

(6f)    Πn
c = ∆tnVn

c Pϕn
c , (38f)

(6g)    1 =
∑
ϕ α

ϕn
c , (38g)



Submitted to Int. J. Multiphase Flow, Nov. 25th, 2019. Revised March 14th, 2020. For private usage. Do not distribute. 12

which mimics the continuous version, equation to equation. It
must be noticed that in order to reach (38e) two important el-
ements are required: i) off-centering factors σϕn−1/2

cd are not af-
fected by velocity variations δ vϕn−1/2

c , i.e. ∂σϕ/∂vϕ = 0, because
according to (32b) they are piecewise constant functions of the
fluids’ relative velocities; and ii) [αρ]ϕn

c is factored out because
it is specifically matched between the expressions of kinetic
energies and transport operators in (30). The ∂σϕ/∂vϕ = 0
assumption may introduce distortions only in the singular La-
grangian limit where vϕ = 0 which generally defines a null sub-
set of the calculation domain.

The close mimicking followed so far makes all the comments
in Section 3.2 on the continuous Euler–Lagrange equations (6)
to also hold on the discrete equations (38). Particularly no-
ticeable again is that all fluids share a common pressure field
Pn

c = Πn
c /(∆tnVn

c ) = Pϕn
c , which is the dual relationship to the

volume-filling constraint. However, this equal pressure con-
dition may induce numerical constraints depending on EOS
stiffness and may thus require specific algorithms beyond the
scope of the present study (for instance involving unequal semi-
relaxed fluid pressures).

4.4. Variational increment equations of momenta
The close mimicking of the continuous Euler–Lagrange

equations (6) by their discrete versions (38) can let believe
that the derivation leading to the continuous momentum equa-
tion (7) might be similarly mimicked to produce its discrete
version. Unfortunately, the simplifications appearing when go-
ing from (6) to (7) involve the repeated application of inte-
gration by parts and product rule whose discrete versions re-
quire specific space-and-time off-centering in order to be ex-
act. The present definitions of operators Dϕ

∆t and dϕ
∆t in (31)

and (35), and the cell indices appearing in the Clebsch decom-
position of velocity (38e) do not comply with such require-
ments. The combination of Euler–Lagrange equations in (7)
when applied to (38) produces supplementary non-conservative
non-Galilean-invariant terms which explicitly involve the La-
grange multipliers.

Three main paths appear in order to circumvent the loss of
accurate mimicking: i) seek another combination of the dis-
crete Euler–Lagrange equations which would eliminate all the
Lagrange multipliers—but the authors have reservations on the
existence of such a combination, fueled by numerous unsuc-
cessful exploratory calculations;—ii) use the full set of discrete
Euler–Lagrange equations (38) to simulate the system evolu-
tion, instead of the usual discrete Euler equations only—but
the Lagrange multipliers evolve through downwind transport
operators (38c) to (38d) which are known to be highly unsta-
ble and would require adding “exotic” artificial dissipation;—
or iii) substitute transport and pressure gradient as implicitly
contained in (38) by other similar but consistent, conservative,
and Galilean-invariant operators—error terms with respect to
options i) and ii) would be of higher than the operators’ order
as it appears for instance from (36) and as it was previously
analyzed [43]. This last substitution approach will be retained
here as it is consistent, simple, and recovers exact Galilean in-
variance, a highly desirable physical property which is merely

approximated to the scheme order in the discrete action inte-
gral (30).

Substitution of momentum transport does not require a de-
tailed analysis of how it is embedded in (38) as consistency is
preserved by merely adapting the explicit upwind conservative
Galilean-invariant transport (31) of the other conserved quan-
tities such as mass and Lagrangian coordinate—detailed 1D
single-fluid tests confirmed for instance the marginal impact of
the explicit or implicit character of the momentum transport op-
erator [42, §§ 3.5.2 & 3.5.3]. Now, this simple substitution is
not applicable to pressure gradients: i) there is no obvious re-
lationship between any of the transport operators and the pres-
sure gradients which could hint at a possible conservative dis-
cretization approach; and furthermore ii) in contrast to momen-
tum transport which does not produce work, pressure gradient
defines reversible work in internal energy equations and must
thus be carefully discretized to preserve thermodynamic con-
sistency. In order to preserve as closely as possible the isen-
tropic (and thus holonomic) character of the discrete momen-
tum equation while restoring its conservation, the contributions
to pressure gradient in (7) must be traced, mimicked, and cor-
rected as little as possible.

Inspection of (7) reveals that the pressure gradient arises
when eliminating the time derivative of the Lagrange multiplier
φϕ through the partial combination of Euler–Lagrange equa-
tions Dϕ

t
(
[αρ]ϕ × (6e)i

)
− [αρ]ϕ × (6d),i + · · ·. Its discrete mim-

icking can be generated by numerous different combinations
of (6) but a “canonical” form is found when constraining the
combination of discrete equations to: i) produce the Eulerian
increment of momentum density [αρ]ϕn−1

c uϕn−1/2
c , ii) fully elimi-

nate the time increments φϕn+1
c −φ

ϕn
c , and iii) only leave discrete

space derivative terms of φϕn+1
{c} , to be compensated by contribu-

tions from the other equations in (6)—similar conditions apply
to the discrete elimination of ψϕn+1

c and ξ
ϕn+1
c . Therefore, the

following expression

[αρ]ϕn
c × (38e)n+1/2

c − [αρ]ϕn−1
c × (38e)n−1/2

c − [αρ]ϕn−1
c

×
∑

d σ
ϕn−1/2
cd sn−1/2

cd ×
[

(38d)n
d/V

n
d − (38d)n

c/V
n
c
]
+ · · ·

⇒ Vn
c [αρ]ϕn

c uϕn+1/2
c − Vn−1

c [αρ]ϕn−1
c uϕn−1/2

c

= −∆tn[αρ]ϕn−1
c

∑
d σ

ϕn−1/2
cd sn−1/2

cd
(
eϕn

d − eϕn
c + Pn

d/ρ
ϕn
d − Pn

c/ρ
ϕn
c

)
+ n.c.t.t. , (39)

is the simplest to match the three conditions: explicit expansion
shows that all φϕn

c terms cancel, only leaving φϕn+1
c . In the sec-

ond expression, terms involving eϕ and Π are made explicit and
all other terms are designated as n.c.t.t. for “non conservative
transport terms.” Applying discrete Gibbs’ equations and prod-
uct rules, the term on the right-hand side can be transformed
according to

eϕn
d − eϕn

c + Pn
d/ρ

ϕn
d − Pn

c/ρ
ϕn
c

= Pϕn
d (ρϕn

d − ρ
ϕn
c )/(ρϕn

d ρ
ϕn
c ) + T n

c (sn
d − sn

c) + O
[
h2]

+ (Pn
d − Pn

c)/ρϕn
c + Pϕn

d (ρϕn
c − ρ

ϕn
d )/(ρϕn

d ρ
ϕn
c )

= (Pn
d − Pn

c)/ρϕn
c + T n

c (sn
d − sn

c) + O
[
h2] . (40)
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The entropy gradients can be dropped as they eventually can-
cel in combination with (38c). Absorbing all the higher order
residues into the non conservative transport terms and approxi-
mating to first order in time [αρ]ϕn−1

c /ρ
ϕn
c = α

ϕn
c (1 +O[∆t])—as

justified in Section 4.6,—the momentum equation can now be
written as

Vn
c [αρ]ϕn

c uϕn+1/2
c − Vn−1

c [αρ]ϕn−1
c uϕn−1/2

c + n.c.t.t.

= −∆tnα
ϕn
c

∑
d σ

ϕn−1/2
cd sn−1/2

cd (Pn
d − Pn

c) . (41)

Despite the coupling of the fluids through the equal pressure
condition (38f), this equation shows that each fluid experiences
a separate discrete pressure gradient which is downwinded
with respect to its own velocity—as already discussed for the
special case of the single-fluid scheme [43, § 2.6].

4.5. Conservative increment equations of momenta, pressure
gradient

TO REVIEWERS: This section was adapted with a simpler
and more robust pressure gradient discretization, with the as-
sociated changes in the discretized expressions of kinetic and
internal energies in Sections 4.6 and 4.7

Conservation of momentum requires pressure gradient terms
in the right-hand side of (41) to cancel when summed over some
local sets of cells c or d and all fluids ϕ. This is clearly not en-
sured as off-centering factors can possibly take all combinations
of 0 or 1 values depending on relative velocities—the pressure
gradient in (41) is not the discrete version of a flux divergence.
Just as for the single-fluid scheme [43, § 2.3.2], this must be
corrected in the least intrusive way and the privileged approach
consists in: i) separating centered contributions, produced by
formally setting σϕn−1/2

cd = 1
2 and which are naturally conserva-

tive, and ii) symmetrizing remaining terms over pairs of neigh-
boring cells. With identity (34) this transforms the pressure
gradient into10

∑
ϕ,d α

ϕn
c σ

ϕn−1/2
cd sn−1/2

cd
(
Pn

d − Pn
c
)

=
∑
ϕ,d

1
2
(
α
ϕn
c + α

ϕn
c (σϕn−1/2

cd − σ
ϕn−1/2
dc )

)
sn−1/2

cd
(
Pn

d − Pn
c
)

=
∑
ϕ,d

1
2
(
α
ϕn
c + 1

2 (αϕn
c + α

ϕn
d )(σϕn−1/2

cd − σ
ϕn−1/2
dc )

)
× sn−1/2

cd
(
Pn

d − Pn
c
)

+ 1
4
∑
ϕ,d

(
α
ϕn
c − α

ϕn
d

)(
σ
ϕn−1/2
cd − σ

ϕn−1/2
dc

)
sn−1/2

cd
(
Pn

d − Pn
c
)
. (42)

In this last form the first term is conservative because i) for
given cells d or c the following respective sums∑

ϕ,d α
ϕn
c sn−1/2

cd Pn
c =

∑
ϕ,c α

ϕn
c sn−1/2

cd Pn
d = 0 , (43)

cancel thanks to (33), and ii) the off-centered contributions are
obviously opposite for each fluid ϕ over each c–d couple as
(αϕn

c + α
ϕn
d )(σϕn−1/2

cd − σ
ϕn−1/2
dc )sn−1/2

cd (Pn
d − Pn

c) is anti-symmetric

10The present approach is less intrusive and more robust than a previous
one [42, eq. 4.33] which corrected independently the per-fluid pressure gra-
dients, with ensuing factors at cell c in (45) that matched α

ϕn
c to the scheme

order only.

through c–d permutation. The last term however, though obvi-
ously non conservative, appears to be of higher order

∑
ϕ

∣∣∣∇αϕ ·
∇P

∣∣∣h4 than the main term in
∑
ϕ ‖α

ϕ∇P‖h3: it can thus be safely
neglected at the scheme order while preserving the upwind fea-
ture produced by the geometric derivation. From (42), the con-
servative approximation of the total pressure gradient can then
be rewritten as∑

ϕ,d α
ϕn
c σ

ϕn−1/2
cd sn−1/2

cd
(
Pn

d − Pn
c
)

≈
∑
ϕ,d

1
2 (αϕn

c + α
ϕn
d )σϕn−1/2

cd sn−1/2
cd

(
Pn

d − Pn
c
)
. (44)

The final expression of the conservative discrete pressure
gradient must now be redistributed on each fluid in the least
intrusive way, but still according to weights αϕ in order to pre-
serve coupling consistency for any contrasts or gradients of vol-
ume fractions. When correcting the pressure gradient according
to (44) and substituting the non-conservative transport terms by
an explicit upwind conservative operator, the per-fluid momen-
tum increment equation (41) eventually becomes

(7)    Vn
c [αρ]ϕn

c uϕn+1/2
c − Vn−1

c [αρ]ϕn−1
c uϕn−1/2

c

+ ∆tn−1/2 ∑
d
(
V̊ϕn−1/2

cd [αρ]ϕn−1
c uϕn−1/2

c − V̊ϕn−1/2
dc [αρ]ϕn−1

d uϕn−1/2
d

)
= −∆tnα

ϕn
c

∑
d σ

ϕn−1/2
cd sn−1/2

cd (Pn
d − Pn

c + Qn
d − Qn

c) , (45)

where the corrected upwinding factors are defined as

σ
ϕn−1/2
cd = 1

2σ
ϕn−1/2
cd + 1

2
∑
φ α

φn
d σ

φn−1/2
cd (46)

and where, following (22), the total artificial viscosity stress Qn
c

has been included—its expression will be given in (56). Just as
in the single-fluid case [43, eq. 24], it must be noticed that trans-
port and pressure gradient in (45) involve different time steps,
respectively ∆tn−1/2 and ∆tn: this difference is already present
in the Euler–Lagrange equation (38d), between the transport of
the Lagrange multiplier φϕn

c and the pressure term, and reflects
the initial discretization choice of the action integral in (30).
The ∆tn−1/2 factor may appear inappropriate in the increment of
velocities centered at half-integer labeled times, but it is per-
fectly consistent to the scheme order. As of the pressure gradi-
ent, it now involves corrected upwinding factors σϕn−1/2

cd which
coincide with the single fluid values [43, eq. 22] in the limit
where all αϕ vanish except one, but which, in general are not
equal to 0 or 1 and do not verify (34), i.e. σϕn−1/2

cd + σ
ϕn−1/2
dc , 1.

However, it can be shown that (45) still preserves total angular
momentum.

At this stage, it is worthwhile commenting on the present
derivation of the multi-fluid discrete pressure gradient as com-
pared to previously published procedures. Generally a projec-
tion formula is designed to generate discrete quantities from an
ideal continuous solution—assumed smooth to some degree or
possibly singular. To varying levels, emphasis is then on con-
servation, monotonicity, consistency, well-posedness and other
similar properties which put few constraints on the discretiza-
tion of the non-conservative pressure terms −αϕP,i. Some au-
thors then resort to supplementary and somewhat ad hoc condi-
tions in order to generate “canonical” discrete pressure terms.
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Two such explicit examples can be cited: i) in Ref. [108,
§§ 3.1.1, 3.2.3, and remark 4], by changing the (arbitrary) pres-
sure origin P0, the balance between flux and exchange terms,
−(αϕ(P + P0)),i and αϕ,i(P + P0), is modified and enables using
a discretization procedure that demands the well-posedness of
the truncated conservative equations; ii) in Ref. [31, § 2.2 and
Fig. 3], the scheme is forced to match the discretization of a
separated flow where volume fractions behave as a supplemen-
tary “internal” dimension. Here, in contrast, the preeminence
of thermodynamic consistency for isentropic evolution effec-
tively lifts all ambiguities on the pressure gradient discretiza-
tion, even if corrections to the scheme order are added to re-
cover exact conservation. The observed impact of the ensuing
pressure downwinding is consistent with previous observations
showing that the low Mach behavior of single-fluid schemes is
improved by pressure gradient centering [109, § 5.3] or by the
implicit downwinding embedded in Lagrange-plus-Remap ap-
proaches [110–112].

4.6. Increment equations of kinetic energies

The increment equation of per-fluid kinetic energy is ob-
tained from the momentum increment equation and, after
lengthy but straightforward calculations, gives

(9)    (45)· 12 (uϕn+1/2
c +uϕn−1/2

c )−(38a)n−1× 1
2 (uϕn+1/2

c ·uϕn−1/2
c )

⇒ Vn
c

1
2 [αρ]ϕn

c (uϕn+1/2
c )2 − Vn−1

c
1
2 [αρ]ϕn−1

c (uϕn−1/2
c )2

+ ∆tn−1/2 ∑
d
(
V̊ϕn−1/2

cd
1
2 [αρ]ϕn−1

c (uϕn−1/2
c )2

− V̊ϕn−1/2
dc

1
2 [αρ]ϕn−1

d (uϕn−1/2
d )2)

+ ∆tn−1/2 ∑
d V̊ϕn−1/2

dc
1
2 [αρ]ϕn−1

d

(uϕn+1/2
c − uϕn−1/2

d ) · (uϕn−1/2
c − uϕn−1/2

d )

= −∆tnα
ϕn
c

1
2
∑

d σ
ϕn−1/2
cd sn−1/2

cd · (uϕn+1/2
c + uϕn−1/2

c )
× (Pn

d − Pn
c + Qn

d − Qn
c)

= −∆tnα
ϕn
c

(
〈uϕ ·∇P〉nc + 〈uϕ ·∇Q〉nc

)
, (47)

with the following definition which will simplify later calcula-
tions

〈uϕ·∇P〉nc = 1
2
∑

d σ
n−1/2
cd (uϕn+1/2

c + uϕn−1/2
c ) · sn−1/2

cd (Pn
d − Pn

c) . (48)

The term on the right-hand side of (47) is simply the work
of pressure forces and is to be matched by opposite terms in
the internal energy equations. On the left-hand side, the trans-
port of kinetic energy was separated into the common transport
operator of conserved quantities and a numerical residue. The
residue is quadratic in velocity and from its canonical form

(uϕn+1/2
c − uϕn−1/2

d ) · (uϕn−1/2
c − uϕn−1/2

d )

= 1
4 (uϕn+1/2

c + uϕn−1/2
c − 2uϕn−1/2

d )2 − 1
4 (uϕn+1/2

c − uϕn−1/2
c )2 , (49)

its sign is found positive for small enough values of time step
∆tn: as already established [113, § 7], explicit discrete transport
of momentum dissipates kinetic energy under CFL condition.

Finally the increment equation of total kinetic energy is
found as

(10)    
∑
ϕ (47)

⇒ Vn
c
∑
ϕ

1
2 [αρ]ϕn

c (uϕn+1/2
c )2 − Vn−1

c
∑
ϕ

1
2 [αρ]ϕn−1

c (uϕn−1/2
c )2

+ ∆tn−1/2 ∑
ϕ,d

(
V̊ϕn−1/2

cd
1
2 [αρ]ϕn−1

c (uϕn−1/2
c )2

− V̊ϕn−1/2
dc

1
2 [αρ]ϕn−1

d (uϕn−1/2
d )2)

+ ∆tn−1/2 ∑
ϕ,d V̊ϕn−1/2

dc
1
2 [αρ]ϕn−1

d (uϕn+1/2
c − uϕn−1/2

d )

· (uϕn−1/2
c − uϕn−1/2

d )

= −∆tn 1
2
∑
ϕ,d α

ϕn
c σ

n−1/2
cd sn−1/2

cd · (uϕn+1/2
c + uϕn−1/2

c )
× (Pn

d − Pn
c + Qn

d − Qn
c) . (50)

4.7. Increment equations of internal energies

As already introduced in Section 2.3, designing the scheme’s
increment equations for internal energies requires: i) balancing
the increment equations of kinetic energies in order to achieve
energy conservation, ii) mimicking the (continuous) evolution
equations of internal energies, here in explicit form (17), and
iii) producing the highest order of approximation compatible
with both the first two constraints and an acceptable level of
algorithmic complexity. This approach could be carried out
to second order in previous studies of Lagrangian space- and
time-staggered schemes [64] and of the variational direct ALE
single-fluid version of the present scheme [43]. As a first step,
because of the complexities of the internal energy couplings and
because the scheme order is already limited by the first order
discretization of transport, we shall here apply the procedure
on a low order but simple explicit time discretization.

Inspection of (17) and (9)—complemented with (10)
and (11)—reveals how the correspondence between the various
pressure work terms can be applied here to (50). First, the mean
expansion ui,i appears as dual to the pressure work P,iui in the
total kinetic energy equation(10). Thus, factorizing terms in Pn

c
from the whole domain which are present at the right-hand side
of (50) yields the compatible discrete mean volume derivative

(15a)    〈V̊〉nc = 1
2
∑
ϕ,d sn−1/2

cd ·
[
α
ϕn
c σ

n−1/2
cd (uϕn+1/2

c + uϕn−1/2
c )

+ α
ϕn
d σ

n−1/2
dc (uϕn+1/2

d + uϕn−1/2
d )

]
. (51)

Next, the Lagrangian drift derivatives uϕi P,i appear in the kinetic
energy equation (9). From (47) by energy conservation, it is
thus straightforward to build the following increment equation
of internal energy

(17)    Vn+1
c [αρ]ϕn+1

c eϕn+1
c − Vn

c [αρ]ϕn
c eϕn

c

+ ∆tn+1/2 ∑
d
(
V̊ϕn+1/2

cd [αρ]ϕn
c eϕn

c − V̊ϕn+1/2
dc [αρ]ϕn

d eϕn
d

)
= −∆tnβ

ϕn
c Pn

c〈V̊〉
n
c

+ ∆tn ∑
φ µ

ϕφn
c

(
〈uϕ · ∇P〉nc − 〈u

φ · ∇P〉nc
)

−
∑
φ µ

ϕφn
c

(
Γ
ϕn
c 〈ρ

ϕ
δ Wϕ〉nc − Γ

φn
c 〈ρ

φ
δ Wφ〉nc

+ α
ϕn
c 〈ρ

ϕ
δ Wϕ〉nc , (52)
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where notations (51) and (48) have been used and dissipation
contributions from artificial viscosity and numerical transport
of kinetic energy have been regrouped as

α
ϕn
c 〈ρ

ϕ
δ Wϕ〉nc = −∆tnλ

ϕn
c Qn

c〈V̊〉
n
c

+ ∆tn−1/2 ∑
d V̊ϕn−1/2

dc
1
2 [αρ]ϕn−1

d

× (uϕn+1/2
c − uϕn−1/2

d ) · (uϕn−1/2
c − uϕn−1/2

d ) , (53)

with

(27)    λ
ϕn
c =

α
ϕn
c /Γ

ϕn
c∑

φ α
φn
c /Γ

φn
c

. (54)

At this stage, some important features of the increment equa-
tion of internal energy (52) must be highlighted and com-
mented: i) mimicking of the global volume rate of change ui,i

in (51) is relatively straightforward and, being dual of a down-
winded P,i, it is necessarily upwinded; ii) mimicking of the drift
induced pressure work (uϕi − uφi )P,i is less trivial and must com-
bine the per-fluid downwinded P,i because, as visible in (15b), it
involves per-fluid Lagrangian (not Eulerian) time derivatives of
P; iii) as already mentioned above, it is explicit—thus avoiding
a complex non-linear, non-local, and implicit coupling between
internal energies of all the fluids, formally written as

eϕn+1
c = eϕn

c · · · −
∑
φ,d〈∆ V〉φn

d Pφ(eφn+1
d ) , (55)

as shown by inspection of (52);—iv) it is thus first order ac-
curate in time with the corresponding reduction in the accu-
racy of isentropic behavior—in contrast to what was achieved
in the single-fluid case [43]; and v) in principle, the mimick-
ing procedure should still be applicable when crafting an ex-
plicit second-order scheme based on a prediction–correction
approach [64, 65]. This last option will be explored in later
publications.

4.8. Discrete artificial viscosity
Mimicking of artificial viscosity as discussed in Section 3.7

does not raise any major issues. Criteria to select coefficients
and shock spreading length, a2, a1, and hn

c , have been already
explored and reviewed at length [101, see for instance], and
their extension to the present multi-fluid case will not be fur-
ther discussed here: in general a2 ≈ a1 ≈ 0.5, and hn

c can be
identified with the cell size used for CFL estimation as in Sec-
tion 5.1.

The discrete artificial viscosity stress is thus defined by mim-
icking as

(25)    Qn
c = ρn

cQ
[
〈V̊〉n−

1/2
c /Vn

c , c
n
c
]
. (56)

where Q is given by (26). Because according to (51) compu-
tation of 〈V̊〉nc requires knowledge of the velocity field at time
tn+1/2 which in turn requires knowledge of Qn

c , the volume rate
of change in (56) was adapted into

〈V̊〉n−
1/2

c =
∑
ϕ,d sn−1/2

cd ·
(
α
ϕn
c σ

n−1/2
cd uϕn−1/2

c +α
ϕn
d σ

n−1/2
dc uϕn−1/2

d
)
. (57)

Again, a prediction–correction approach can correct this ap-
proximation to the scheme order and widen the CFL stability
range as was previously shown for Lagrangian schemes [64,
65].

4.9. Pressure, densities, and volume fractions

At the end of the cycle, both [αρ]ϕn+1
c and eϕn+1

c are available
by solving (38a) and (52) respectively, but αϕn+1

c , ρϕn+1
c , and

Pn+1
c need to be computed. The last two quantities are simul-

taneously obtained by solving the local system of Φ + 1 (non
linear) equations in the Φ + 1 variables ρϕ and P

Pϕ(ρϕ, eϕ) = P , (58a)∑
ϕ[αρ]ϕ/ρϕ = 1 , (58b)

where Pϕ are the pressure parts of the fluids’ equations of state,
and time and cell indices have been dropped here for simplicity.

It must be stressed that, in contrast to many other multi-
fluid schemes which require entropic pressure relaxation proce-
dures [114], this step does not modify internal energies through
neither reversible nor irreversible processes. The thermody-
namically consistent evolution of energies is completely cap-
tured to the scheme order by (52) and eϕ are thus known and
fixed in (58). Excluding single calls to the thermodynamic co-
efficients γϕ and Γϕ, (58) is the only place in the scheme where
equations of state are called: this convenient feature is a direct
consequence of the explicit form of the energy equations.

The system (58) has simple explicit solutions for mixtures
of different Tammann’s “stiffened” gases for which (see [115,
eqs 7.31–7.35] for a rationale on notations)

Pϕ(ρϕ, eϕ) = Γϕρϕeϕ − πϕ , (59)

with Γϕ and πϕ constant but with only one or two different
offset pressures πϕ for 1 ≤ ϕ ≤ Φ, possibly degenerated
into perfect gases when πϕ = 0—notice here that in general
γϕ = Γϕ + 1 + πϕ/P , Γϕ + 1 is pressure dependent, equality
holding for perfect gases only. For two common offset pres-
sures π1 and π2 and labeling the two corresponding subsets of
ϕ by sub-subscripts m = 1 and 2, it is found

ρϕm =
P + πm

Γϕm eϕm
, (60a)

αϕm =
Γϕm [αρ]ϕm eϕm

P + πm , (60b)

where P is solution of the 2nd degree equation

1 =

∑
ϕ1
Γϕ1 [αρ]ϕ1 eϕ1

P + π1 +

∑
ϕ2
Γϕ2 [αρ]ϕ2 eϕ2

P + π2 . (60c)

For one common offset pressure π1 = π2 = π, equations (60)
hold, with the last (60c) simplified into

P =
∑
ϕ Γ

ϕ[αρ]ϕeϕ − π , (61)

For more elaborated or numerous equations of state—which are
beyond the scope of this work—(58) can be solved using an
iterative Newton–Raphson method. Improved convergence of
the algorithm can be achieved by providing a good estimate of
ρ
ϕn+1
c as initial value, for instance produced with the discrete

version of (14) analogous to (52) for internal energies.



Submitted to Int. J. Multiphase Flow, Nov. 25th, 2019. Revised March 14th, 2020. For private usage. Do not distribute. 16

5. Summary of the GEEC multi-fluid ALE scheme

5.1. Time step

The time step of the simulation ∆tn+1/2 is bounded by an
approximate but simple CFL condition involving the fluids’
relative-to-grid velocities and the upper bound of the sound ve-
locity of the mixture cn

c according to

∆tn+1/2 = CFL ×min
ϕ,c

{
hn

c/
(
cn

c + |vϕn−1/2
c |

)}
, (62)

where hn
c is a characteristic length scale of cell c at time tn,

also used to scale artifical viscosity in (56) with (26)—here for
a quadrilateral, hn

c is the smallest of the diagonal and median
lengths. In any mixed system the upper bound of the sound
velocity is obtained when all dissipation processes vanish—i.e.
at zero drag force and zero thermal exchange—and can be ex-
pressed using the sound velocities of the fluids and the com-
pressibility weighting coefficients (16a) according to [58]

(cn
c)2 =

∑
ϕ β

φn
c (cϕn

c )2 , with (cϕn
c )2 = γ

ϕn
c Pn

c/ρ
ϕn
c . (63)

For more streamlined calculations the time-step limitation
should also take into account all the other potential sources
of numerical stiffness, in particular those of the energy equa-
tions as visible in (17). In its present form however, (62) with
CFL ≈ 0.25 was found sufficient to carry out all the tests re-
ported in Section 6.

5.2. Near-Lagrangian grid velocity

As the grid velocity w and the absolute velocities of fluids
uϕ are not discretized over identical elements, an interpolation
or averaging procedure must be applied in order to compute a
near-Lagrangian grid velocity for usage in grid evolution pre-
scriptions.

Following the strategy elaborated in Ref. [43, App. B], a
near-Lagrangian grid velocity can be obtained by minimizing
the quadratic total volume flux over the cell edges (c, d) neigh-
boring each node p of the grid, yielding

wNL n+1/2
p = arg minw

∑
ϕ,(c,d)∈C(p)

(
α
ϕn
c sn+1/2

cd ·
(
uϕn+1/2

c −w
))2

, (64)

where uϕn+1/2
c is the absolute fluid velocity given by the scheme.

The sum over fluids ϕ is here carried out with αϕ weights over
1 ≤ ϕ ≤ Φ, but could be differently weighted or restricted
to fewer or even just one ϕ depending on the grid evolution
strategy defined by the user. Equation 64 is implicit and non-
local as knowledge of wn+1/2

p is required in order to calculate
sn+1/2

cd . An iterative procedure could be used—possibly with sta-
bility and convergence issues—but in all the tested applications
a first order approximation obtained by replacing sn+1/2

cd by sn
cd

was found satisfactory. Second-order accuracy can be obtained
by a prediction–correction approach.

Taking the derivative of (64) with respect to w yields∑
ϕ,(c,d)∈C(p)(α

ϕn
c )2(sn+1/2

cd ⊗ sn+1/2
cd

)
·
(
uϕn+1/2

c −wNL n+1/2
p

)
= 0 , (65)

which can be written under the final formulation

wNL n+1/2
p =

(∑
ϕ,(c,d)∈C(p)(α

ϕn
c )2(sn+1/2

cd ⊗ sn+1/2
cd

))−1

·
(∑

ϕ,(c,d)∈C(p)(α
ϕn
c )2(sn+1/2

cd ⊗ sn+1/2
cd

)
· uϕn+1/2

c

)
. (66)

The actual grid velocity can then be defined through some pre-
scribed function as wn+1/2

p = W
({

wNL n+1/2
p

})
.

5.3. Summary of iteration cycle, basic properties

The multi-fluid GEEC scheme solves the evolution equations
for mass, momentum, and internal energy of each fluid, respec-
tively (6a), (7), and (17). Starting from the main quantities at
time tn, the scheme’s elementary time step to tn+1 consists in the
successive application of increment equations as schematized in
Table 2.

Boundary conditions have not been discussed in the present
work as they can take a very wide variety of types in multi-fluid
systems and are generally rather simple to implement in a first
order explicit scheme—for instance through ghost cells. Tests
in Section 6 involved basically perfect walls or static homoge-
neous states at infinity.

As reflected in the notations, the scheme is applicable in any
number of dimensions on any type and structure of time de-
pendent (ALE) mesh with constant connectivity. This last con-
straint can be relaxed (with heavier notations) as it is not neces-
sary in order to properly define a discrete action integral.

The scheme is formally of second order in space and time in
the Lagrangian limit but first order for relative-to-grid transport
and its associated terms.

6. Two-dimensional numerical results

6.1. Comments on test selection

Extensive benchmarking of the present numerical scheme
with all its specific and numerous features is beyond the scope
of the present work. Three test cases are just provided here as
illustrations. The first two are Sod’s shock tube and Ransom’s
faucet which are retained for being de facto mandatory bench-
marks in the communities of compressible single- and two-fluid
CFD, but are here adapted to deliberately stress the scheme
in its 2D ALE features. The third is an original eight-clouds-
crossing test specifically designed to simultaneously and stren-
uously probe the compressible high-speed high-contrast multi-
fluid ALE features as can be found in some extreme applica-
tions. An animation of this last test is available as supporting
information on the journal website. Various others tests were
also carried out [42, § 4.5] with another but almost identical
scheme, only differing by high-order numerical residues in the
energy equation.

In all test cases, fluids represent for instance air or water as
described by equation of state (59), for respectively perfect or
stiffened gas, with commonly accepted coefficients πAir = 0
and ΓAir = 2/5 (= γAir − 1), and πWater = 21 × 108 Pa and
ΓWater = 6. Initial densities at ambient pressure P = 105 Pa will
be ρAir = 1 kg.m−3 and ρWater = 103 kg.m−3
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At tn ∆tn−1/2 uϕn−1/2
c wn−1/2

p xn
p vϕn−1/2

c σ
ϕn−1/2
cd [αρ]ϕn

c eϕn
c α

ϕn
c ρ

ϕn
c Pn

c Qϕn
c

(62) ∆tn+1/2

(45) uϕn+1/2
c

e.g. (66) & (28) wn+1/2
p xn+1

p

(29) & (32b) vϕn+1/2
c σ

ϕn+1/2
cd

(38a) [αρ]ϕn+1
c

(52) eϕn+1
c

(58) α
ϕn+1
c ρ

ϕn+1
c Pn+1

c

(56) Qϕn+1
c

Table 2: List of increment equations to be successively applied (left column, from top to bottom) in order to complete one time step of the present multi-fluid ALE
scheme: from the values at tn (top line), the final values at tn+1 appear successively over the time step.

(a) Density map (b) Superposed density profiles along x

(c) Volume fraction map (d) Superposed volume fraction profiles along x

Figure 2: Density (top) and volume fraction (bottom) maps and profiles for the two-dimensional two-fluid Sod’s shock tube computed with the present GEEC
multi-fluid scheme on grid sheared across the x direction. Grid velocity is wx = 5y and wy = 0 and is thus supersonic over bottom and top zones of the domain.
Black lines on density maps are loci of points where grid moves at material and sonic velocities wx = ux and wx = ux ± c. At the black dot, grid and shock velocities
match. CFL = 0.5, 320 × 290 cells, one in ten grid lines represented in both dimensions (white lines).

6.2. Sod’s shock tube variant: two-dimensional, sheared ALE
grid, two-fluid

Sod’s shock tube [116] is a simple 1D Riemann problem on
a perfect gas at Γ = γ − 1 = 2/5 with initial left and right states
specified as

ρ± P u± α+ α−

x < 1/2 1 1 0 1 − 10−12 10−12

x > 1/2 1/8 1/10 0 10−12 1 − 10−12
(67)

Its analytical solution consists in three waves: a shock, a contact
discontinuity, and an expansion fan. It is generally used to test
the one-dimensional behavior of numerical schemes, mostly on
Eulerian or Lagrangian grids.

Two-dimensional variants of Sod’s shock tube test were
reported for the single-fluid versions of the present GEEC
scheme [43, § 4.3 and Fig. 5]. While keeping the physical 1D
plane symmetry of the flow, they intended to reveal possible nu-
merical distortions from deliberately non-symmetric ALE mesh
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evolution, there taken as simple shears along the x or y axis.
This produced highly non-uniform fluid motions relative to the
grid, from quasi-Lagrangian to supersonic, whose impact could
be deleterious on a possibly inconsistent integration of inter-
nal energy. This strategy of grid shearing is even more rel-
evant in the present multi-fluid context of simultaneous inte-
gration of coupled internal energy equations and will thus be
adopted here. As in Ref. [43, § 4.3] the calculation domain is
[0; 1] × [−0.3; 0.6] and the grid velocity is wx = 5y and wy = 0,
with maximal and minimal values of respectively wx = 3 at
y = 0.6 and wx = −1.5 at y = −0.3. As illustrated in Fig. 2a,
the grid then undergoes a shearing across the x direction with
a shifting of the characteristics. The domain is meshed into
320 × 290 initially square cells which become parallelograms
with a π/4 tilt at final time t = 0.2.

The test is here further expanded into a two-fluid variant,
where the left and right initial states are described as numer-
ically different fluids, labeled + and −, even if of physically
identical equations of state. As the present implementation of
the scheme does not handle fluid disappearance—all fluids must
be present in all cells, even if at low volume fractions,—the ini-
tial left and right states are asymmetric mixtures of the fluids
with volume fractions α± close but not equal to 0 and 1 as given
in (67). In order to avoid physical mixing at the contact discon-
tinuity, the fluid velocities were relaxed to a common value in
each cell by momentum conservation at every time step: this
implements a stick condition and can be interpreted as modify-
ing the backbone model by either constraining the Lagrangian
to a single velocity or by adding an infinitely strong drag force.
No supplementary dissipation of kinetic energy is produced by
this infinitely strong drag and the internal energy equations do
not require any changes. In principle, sharp interfaces would be
physically preserved when forcing equal velocities of the flu-
ids, but they can still be smeared by numerical diffusion due to
transport.

Results in Fig. 2 show that the symmetry of the problem
is well preserved despite the large deformation of the cells.
The scheme handles the shifting of Lagrangian and supersonic
characteristics—black lines in maps of Fig. 2—without produc-
ing any numerical artifact nor oscillation. The impact of the
grid motion is basically reduced to numerical diffusion, mostly
visible by the smearing of the contact discontinuity between the
two fluids as illustrated by the fluid volume fraction in Figs 2c
and 2d. As expected, the slice of the mesh at y ≈ 0.2, whose
velocity exactly matches that of the contact discontinuity where
transport fluxes cancel, shows negligible spreading of this sin-
gularity.

In order to reduce numerical diffusion at the contact dis-
continuity specific steepening or interface reconstruction algo-
rithms could be introduced, but here the ALE capability of the
scheme can also be exploited, for instance by simply prescrib-
ing the mesh displacement to depend on the near-Lagrangian
velocity (66): i) nodes initially tagged at contact, x = 1/2, are
moved according to the near-Lagrangian velocity, ii) nodes ini-
tially tagged at left and right boundaries, x = 0 or 1, are fixed,
and iii) all other nodes move so as to be evenly distributed in-
between these limits at all times. The ensuing results on density

Figure 4: Volume fraction profiles for Ransom’s water faucet problem com-
puted with the present GEEC multi-fluid scheme. CFL = 0.8, 50×2 to 1000×2
cells, black line is exact solution.

and volume fraction fields, illustrated in Fig. 3, show negligi-
ble spreading of the contact discontinuity and accurate capture
of the three waves. It must be stressed that this was achieved
without input of the otherwise available analytical solution of
the Riemann problem, but by merely computing on-the-fly a
near-Lagrangian velocity.

6.3. Ransom’s faucet variant: two-dimensional, random grid

Ransom’s water faucet [117] is a 1D ideal two-fluid flow
which is simply captured by the present two-fluid backbone
model. It consists of a 12 m vertical pipe initially filled with a
mixture of water and air at P = 105 Pa with uniform velocities
and volume fractions uWater = 10 m.s−1, uAir = 0, αWater = 0.8,
and αAir = 0.2. Top boundary conditions are constant velocities
and volume fractions uWater = 10 m.s−1, uAir = 0, αWater = 0.8,
and with αAir = 0.2. Bottom boundary conditions are free
fluxes to ambient pressure P = 105 Pa. Equations of state for
water and air are approximated by respectively stiffened and
perfect gases as defined in Section 6.1 and no inter-fluid fric-
tion terms or any other dissipation effects are added (fluctua-
tions, turbulence, pressure relation, etc.)—as sometimes done
in order to stabilize elliptic modes at the expense of spurious
distortions. Under the action of gravity G = 10 m.s−2, the water
initially in the pipe undergoes an undistorted “solid like” free
fall—barely disturbed by the presence of air—while the con-
stant flux stream flowing from the top accelerates and stretches.
In the limit of incompressible water and infinite density ratio, an
analytical solution is known [117] which provides an approxi-
mate but accurate enough reference for numerical results.

The two main features of the simulated flow are: i) the pro-
file of the stretched stream, to be compared with the smooth
analytical solution; and ii) the volume fraction discontinuity, to
be captured without too much numerical diffusion or oscilla-
tions. They are usually examined on the gas volume fraction
profile αAir(t, x) at a fixed time, here t = 0.5. Two grid mo-
tion strategies are tested: i) a quasi-1D Eulerian grid, with fixed
nodes w = 0 in order to study the convergence of the solution;
and ii) a 2D grid of square cells, dynamically distorted by a
random-in-space-and-time field of node velocities w(t, x).

As shown in Fig. 4 for quasi-1D Eulerian grids from 50 × 2
to 1000 × 2 the scheme accurately captures the profile of the
stretched stream while producing some diffusion of the volume
fraction discontinuity. Despite transport being only first order,
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(a) Density map (b) Superposed density profiles along x

(c) Volume fraction map (d) Superposed volume fraction profiles along x

Figure 3: Density (top) and volume fraction (bottom) maps and profiles for the two-dimensional two-fluid Sod’s shock tube computed with the present GEEC
multi-fluid scheme on a grid linearly interpolated between the Lagrangian contact discontinuity and the side boundaries. CFL = 0.5, 320× 290 cells, one in ten grid
lines represented in both dimensions (white lines).
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(a) Volume fraction map (b) y-superposed volume fraction profiles

Figure 5: Volume fraction map and profiles for Ransom’s water faucet problem computed with the present GEEC multi-fluid scheme on a randomly distorted ALE
grid. CFL = 0.8, 120 × 40 cells (left), 120 × 40 and 240 × 80 cells (right), black line is exact solution.

these results compare very favorably with previous results ob-
tained with other schemes on the same six-equation backbone
model [28]: as previously noted [28], the thermodynamic con-
sistency of the scheme is one of the crucial elements to robustly
capture the here quasi-isentropic behavior of the fluids. Robust-
ness is estimated by the highest CFL value before code “crash,”
here found to be above the high value of 0.8.

For the finest mesh, a slight undershoot appears in the vol-
ume fraction profiles upstream of the discontinuity which is
generally recognized to be a consequence of the non hyperbolic
behavior of the two-fluid backbone model—a form of Kelvin–
Helmholtz instability [36, § IV]. As already discussed [see for

instance 28, and references therein], the amplification of this
physical oscillation is always present, even if not visible at early
times, and occurs sooner when numerical dissipation is reduced
through mesh refinement.

Figure 5a displays the volume fraction map for Ransom’s wa-
ter faucet problem performed on a randomly distorting mesh.
The [0; 12]×[0; 4] domain is initially meshed with 120×40 uni-
form square cells which are then dynamically distorted by a grid
velocity defined by w = (wx,wy) where wx and wy are random
numbers drawn between ±10−2 at each time step. Figure 5b
displays the superposed volume fraction profiles for two mesh
sizes 120 × 40 and 240 × 80. Even with a relatively coarse grid
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submitted to random motions, the position and level of the vol-
ume fraction discontinuity are properly captured. The amount
of numerical diffusion can be reduced by increasing the number
of mesh cells.

6.4. Supersonic crossing of eight Gaussian clouds on shrink-
then-stretch swirling ALE grid

Many elementary test cases for multi-fluid flows are avail-
able in the literature on which the present scheme could or has
been [42, § 4.5] applied. However, its combined features de-
serve being tested on a specific and demanding configuration.
The present “supersonic crossing of eight Gaussian clouds”
aims at simultaneously stressing the discretized pressure work
terms by as many effects as possible: i) highly contrasted equa-
tions of state, here water and air, ii) large and extreme changes
in volume fraction, down to the percent range in air, iii) su-
personic drift velocities with respect to air’s speed of sound,
subsonic and supersonic with respect to water’s, and iv) large
transport with respect to an ALE grid undergoing large distor-
tions including volume changes.

This 2D test involves eight packets or clouds of water in a
background of still air. The clouds and the background are each
represented by separate fluids thus defining a nine-fluid system
whose evolution can thus be captured by the present scheme.
Though described by separate equations, the eight water clouds
have the same equation of state provided in Section 6.1. Apart
of pressure terms, no interactions between the clouds or be-
tween clouds and air are added—collisions, drag, thermal trans-
fers, etc. Clouds can thus cross each other freely. The computa-
tion domain is [−3; 3]× [−3; 3] m. The initial condition at t = 0
consists in cloud volume fractions αϕ(0, x), all with Gaussian
profiles of amplitudes 0.15 and root mean square radii 0.2 m,
but centered at different positions xϕ0 and set in different uni-
form motions uϕ(0, x) = uϕ0 according to

ϕ xϕ0 (m) yϕ0 (m) uϕ0x (m.s−1) uϕ0y (m.s−1)
1, 2 ±1 0 ∓1000 0
3, 4 0 ±1 0 ∓1000
5, 6 ±2 0 ∓2000 0
7, 8 0 ±2 0 ∓2000

(68)

(notice matched ± and ∓ signs). The velocity field of the air
background is initially set so that the mean volume weighted
velocity cancels, u =

∑
ϕ α

ϕuϕ = 0. Boundary conditions are
perfect zero flux walls. The computation is carried out up to
time t = 2 × 10−3 s on an initially-Cartesian shrink-then-stretch
swirling ALE grid defined by a node velocity field given as

wx(t, x, y) =
[
σx/L + cos(πx/L) sin(πy/L)

]
× L/τ , (69a)

wy(t, x, y) =
[
σy/L − cos(πy/L) sin(πx/L)

]
× L/τ , (69b)

d
d t L(t) = σL/τ . (69c)

with L(0) = 3 m, τ = 2 × 10−3 s, and σ = −1 or +1 for respec-
tively t < τ/2 or > τ/2. The grid is thus shrunk to about 60% at
t = 10−3 s and swirled at the center by about a half turn at final
time.

Figure 6 displays the volume fraction maps produced at
t = 0, 10−3, and 2 × 10−3 s by the present GEEC multi-fluid
scheme for the eight Gaussian clouds crossing on a 480 × 480
mesh. At t = 10−3 s, all the clouds cross (without merging) at
the origin where the air volume fraction drops to αAir ≈ 3.8%.
At final time t = 2 × 10−3 s, the clouds occupy opposite po-
sitions with respect to the initial configuration, their trajectory
being marginally affected by the crossing and by the air mo-
tion despite the large volume fraction variations and the severe
mesh distortion. The only visible distortion of the clouds is
the expected smearing due to numerical diffusion. An animated
version of this test is provided as supporting information on the
journal’s web site.

This test is akin to collisions of particle jets, often simulated
by Euler–Lagrange approaches as in Ref. [118, § 4.3], which
are important benchmarks of schemes used in spray simula-
tions.

7. Conclusion

The present work provides a consistent and robust discretiza-
tion of the compressible multi-fluid backbone model, which en-
sures geometric, energetic, and entropic compatibility in a di-
rect ALE setting. It was successfully tested on various ideal but
constraining 2D flow configurations thus showing its potential
for further enrichment with dissipation terms such as viscos-
ity, drag, thermal transfers, etc. for simulating a wide range of
practical configurations.

In its present version, the general features of the scheme
are: i) arbitrary number of fluids; ii) arbitrary mesh dimen-
sion, structure, and motion—prescribed by the user or ad-
justed on-the-fly to the flow’s evolution;—iii) continuity with
the workhorse space-and-time-staggered schemes of in-house
legacy codes; iv) explicit mass, momentum, and internal en-
ergy increment equations for each fluid, coupled by a single
common pressure field; v) exact conservation to round-off er-
rors of each fluid’s mass, total momentum, and total energy;
vi) second-order accuracy in the Lagrangian limit and first-
order accuracy of fluid transport relative to the grid; vii) proper
capture to second-order accuracy of isentropic flows—or quasi-
symplectic behavior;—viii) shock capture and scheme stabi-
lization ensured by a proper multi-fluid extension of usual
single-fluid closures of artificial viscosity; and viii) stable and
robust behavior with high CFL condition on usual stiff test
cases—devoid of common distortions such as hourglassing, De-
Bar artifacts, fragility to small volume fractions or large density
ratios, etc.

These properties were obtained by extending a three-step
procedure already introduced [64, 67] when revisiting the his-
torical scheme of von Neumann and Richtmyer [62], and now
designated as GEEC for “Geometry, Energy, and Entropy Com-
patible [43].” It consists in: i) applying a discrete least
action variational principle—which mimics the derivation of
the continuous evolution equations from kinetic and internal
energies—to build the proper isentropic momentum equations
in the present multi-fluid ALE setting; ii) enforcing energy con-
servation and consistency with fundamental thermodynamic re-
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Figure 6: Volume fraction maps at times t = 0 (left), t = 10−3 (center), and t = 2 × 10−3 s (right, final) for the nine-fluids crossing test on a shrink-then-stretch
swirling grid. Residual volume fraction of air at center at t = 10−3 s is αAir ≈ 3.8%. CFL = 0.7, 480 × 480 cells, one in twenty grid lines represented in both
dimensions (white lines). An animated version is provided as supporting information on the journal’s web site.

lations to produce explicit energy equations; and iii) adding dis-
sipative processes to the equations, for instance for shock cap-
ture.

In the course of the derivation, the proper isentropic behav-
ior constrained the scheme with two non-trivial features: i) the
discrete pressure gradient operator must be an adapted down-
wind dual of the upwind transport operators—as already ob-
served in the single-fluid case [43, § 2.6];—and ii) the internal
energy equations must be made explicit and decoupled from
other equations by separating the various physical and numeri-
cal contributions to pressure work. The pressure downwinding
derivation confirms and justifies previous observations show-
ing that the low Mach behavior of single-fluid schemes is im-
proved by pressure gradient centering [109, § 5.3] or by the
implicit downwinding embedded in Lagrange-plus-Remap ap-
proaches [110–112]. Explicit equations for internal energies
yield simpler and uncoupled calls to the equations of state and
also provide a stiffness analysis of all the pressure work effects.

The GEEC approach embodies two principles of hydro-
schemes which have been recently put forward. Quoting for
instance P. Roe [119, § 10]: “There should be no dissipation
if no dissipation is needed. There should be distinctly different
approaches to the propagation of advective and acoustic distur-
bances, because in more than one dimension there is little that
these phenomena have in common.” The present variational
procedure is built upon a minimal dissipation and an upfront
separation of advective and pressure fluxes.

With added dissipation terms—drag, collisions, thermal
transfers, etc.—this scheme can meet the requirements of multi-
fluid simulations in many applications. Yet, it appears more
valuable as a general proof of concept of variational mimick-
ing approaches applied to multi-fluid scheme design. Exten-
sions to full second-order accuracy and to other non-dissipative
effects—inter-particle pressure or turbulence, added mass, sur-
face tension, etc.—are straightforward in principle. The ensu-
ing technicalities and tediousness of such derivations may ap-
pear intractable by hand but would be accessible to symbolic
calculation software with automated source code generation.

Efforts are being pursued along these lines.
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Appendix A. On ellipticity as defined by eigenmodes

The present appendix provides an expanded and more rigor-
ous version of the discussion in Section 1.2 following the very
widespread approach of plane-wave perturbations (or von Neu-
mann stability analysis) which has been applied to multi-fluid
systems in different contexts and variations for over forty years.
A discussion on the subtle relation between this and other ap-
proaches can be found in Ref. [36].

Consider a generic system for two- or multi-fluid equations
of formal type

∂tU+B1(∇⊗U) = D0(U)+ D1(∇⊗U)+ D2(∇⊗∇⊗U) , (A.1)

where U(t, x) is the vector field of the fluids’ conservative quan-
tities (densities, momenta and total energies), B1 is the (back-
bone) non-dissipative operator, and D0, D1, and D2 are the
other mostly dissipative terms which operate on space deriva-
tives of respective ranks 0, 1, and 2. In order to preserve homo-
geneity with the time derivative ∂tU, these operators must in-
volve characteristic factors scaling as frequencies ∼ 1/T , veloc-
ities ∼ L/T , and diffusion coefficients ∼ L2/T according to their
respective ranks 0, 1, and 2. Other terms can also be considered
but do not change in essence the discussion to follow. Char-
acteristic velocities in B1 are built from combinations of fluid
velocities and speeds of sound as visible in the non-dissipative
terms investigated in the present work.

Formally expanding (A.1) to first order into a plane-wave
perturbation of frequency ωk and wave vector k around a sta-
tionary and uniform solution, U = U0 + uk exp[i(ωkt − k · x)],
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yields the linear system in uk

iωkuk − ik · ∂B1
∂(∇⊗U) · uk

=
∂D0
∂U · uk − ik · ∂D1

∂(∇⊗U) · uk − (k ⊗ k) : ∂D2
∂(∇⊗∇⊗U) · uk . (A.2)

ωk and uk are thus the eigenvalue and eigenvector of a linear
operator that combines the non-dissipative and dissipative con-
tributions scaled by powers of k. Depending on the presence,
magnitude, spectra, and degeneracy of these contributions, var-
ious situations can appear, of which four limiting cases are of
special interest here

D0 = D1 = D2 = 0, dissipation free: ωk ∝ k

ωkuk = k · ∂B1
∂(∇⊗U) · uk , (A.3a)

D0 , 0, k→ 0, drag-like dissipation: ωk ∝ k0

ωkuk = −i ∂D0
∂U · uk , (A.3b)

D0 = D2 = 0, “flat dissipation:” ωk ∝ k

ωkuk = k ·
( ∂B1
∂(∇⊗U) −

∂D1
∂(∇⊗U)

)
· uk , (A.3c)

D2 , 0, ‖k‖ → ∞, diffusion-like dissipation: ωk ∝ k2

ωkuk = i(k ⊗ k) : ∂D2
∂(∇⊗∇⊗U) · uk . (A.3d)

Case (A.3a) is the (elliptic) backbone model whose operator
spectrum, as is well known, contains conjugate complex eigen-
values proportional to k. Because of the imaginary factor i in
the wave phase, this produces discontinuous sensitivity to ini-
tial conditions as perturbations at divergingly large k (or small
scales) experience exponential growth at divergingly fast rate
ωk.

Case (A.3b) is produced for instance when adding drag to the
backbone model, with generally negative eigenvalues. Thus,
below a cutoff wavevector of magnitude ∼ ‖ ∂D0

∂U ‖/‖
∂B1

∂(∇⊗U)‖ it
may relax perturbations in finite time, but cannot damp the di-
vergingly fast instabilities at divergingly large k of case (A.3a).

Case (A.3c) is produced for instance by various stabilization
techniques such as artificial drag [120, 121, eq. 15 & § 3], added
mass [76, 122, § 6], or supplementary evolution equations for
pressure relation [15]. No cutoff wavelength appears and care-
ful crafting of D1 may achieve damping of instabilities for all
values of k. It is however unlikely that an actual physical pro-
cess may be able to exactly compensate the instability of the
backbone model across the whole range of k.

Case (A.3d) is produced for instance when adding diffu-
sion, viscosity, or conduction, with generally positive eigen-
values. Thus, above a cutoff wave vector of magnitude ∼
‖

∂B1
∂(∇⊗U) ‖/‖

∂D2
∂(∇⊗∇⊗U) ‖ it may relax in finite time the otherwise di-

vergingly fast instabilities at divergingly large k of case (A.3a).
This weak stabilization is always present in calculations be-
cause of numerical dissipation at cell-size cutoff 1/h. Some
physical situations require that low k modes remain unstable
as representing Kelvin–Helmoltz like instabilities [36, § IV]
which are of prime importance as seeds for slug flows [123].

These situations and other combinations have been studied
for instance in Ref. [40]. An interesting alternative to the strong

stabilization provided by case (A.3c), “ideal” but often unphys-
ical, is the combination of the long and short wavelength damp-
ing of cases (A.3b) and (A.3d): this requires closing the gap
of possible unstable modes, thus yielding a condition of type
‖

∂B1
∂(∇⊗U) ‖

2 . ‖ ∂D0
∂U ‖ × ‖

∂D2
∂(∇⊗∇⊗U) ‖ [see for instance 124, Ap-

pendix].
The above comments summarize findings by numerous

(early and notable) investigators of multi-fluid flows, some of
which are deservedly quoted below.

[34, § 6.4, translated from French by the authors]: “The pres-
ence of differential terms in the transfer laws [between fluids]
turns out to be an essential characteristic of the system. They
must be taken into account in modeling.”

[35, § ‘Stability’]: “[. . . ] the ill-posed nature is precluded by
dissipative processes, which are especially effective in damp-
ing the highest frequency components of any perturbation, at
the same time having relatively little effect on the larger scale
fluctuations.”

[36, § VI]: “[. . . ] the single most essential modification to the
basic equation system is the introduction of such short-wave-
length effects as surface tension or viscosity. In retrospect, this
modification is clearly suggested by the well-known fact that
such effects are sufficient to stabilize short wavelengths and pro-
duce properly posed problems in other contexts.”

[37, § ‘Conclusions’]: “[. . . ] numerical calculation with
a two-fluid finite-difference model of two-phase flow can be
well-behaved provided there is sufficient momentum transfer
between phases, and the spatial mesh is not too fine.”

[38, § 3]: “[. . . ] the indicated systems of equations correctly
define the behavior of a disperse mixture only when the char-
acteristic distances considered in the problem (in particular the
wave length λ) are considerably greater than the dispersed par-
ticle dimension a. It is, therefore possible to assume that the
boundless increase of the exponent of −D as λ → 0 is the con-
sequence of the neglect in equations of type (1.1) or (3.1) of
some dissipation processes that occur when ultrashort waves
λ . a pass through disperse media.”

[32, § 2.3]: “With the inclusion of any nonzero viscosity, no
matter how small, the basic model becomes well-posed in the
sense that for the linearized frozen coefficient problem, pertur-
bations of wave number k are bounded as k → ∞, for any fixed
time [. . . ] Thus, it seems improper to consider the behavior of
the differential equations at arbitrarily small wavelengths with-
out including viscosity, which is not zero for real fluids and
gases.”

[39, § 6]: “[. . . ] the flow instabilities present in the mean mo-
tion equations of two-phase flow can be explained as a result of
the failure to include appropriate closure models for the veloc-
ity fluctuations in the momentum equations. If these terms are
neglected unstable mean flow equations are exactly what one
should expect and what one obtains.”

[33, § 6]: “The degree of ill-posedness is therefore defined
by the role and effect of the lost, filtered-out, sub-grid-scale
information on the collective, global flow behavior described
by the averaged field equations.”
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Appendix B. Notations, definitions

Labels, indices:
ϕ, φ fluid labels, with 1 ≤ ϕ, φ ≤ Φ.
i, j = 1, 2, 3, or x, y, z, coordinate labels.
n, n + 1/2 time labels.
c, d cell labels.
p node label.
C(p) set of cell labels around node p.

Continuous and discrete coordinates and geometry:
h, hn

c typical size of cell, or of cell c at time n.
t, tn, tn+1/2 time values, generic and discrete,

with tn+1/2 = (tn + tn+1)/2.
∆tn, ∆tn+1/2 integer and half-integer time steps.
x, xn

p position, generic and of node p at time tn.
Vn

c volume of cell c at time n (unrelated to V̊ϕn+1/2
cd ).

sn
cd outward pointing vector

normal to boundary element from cell c to cell d at time n
(amplitude given by area of boundary element, sn

cd = −sn
dc).

Continuous and discrete fields
(respectively functions of t and x,

or indexed by n or n + 1/2, and c or p):
ρϕ, ρϕn

c mass density of fluid ϕ.
eϕ, eϕn

c per-mass internal energy of fluid ϕ.
cϕ, cϕn

c speed of sound in fluid ϕ.
c, cn

c effective zero-drag adiabatic
speed of sound of fluid mixture.

P, Pn
c common pressure of fluids.

Q, Qn
c total artificial viscosity stress.

Qϕ, Qϕn
c artificial viscosity stress in fluid ϕ.

W̊ϕ, W̊ϕn+1/2
c irreversible energy production on fluid ϕ.

w, wn+1/2
p , wn+1/2

c grid velocity.
vϕ, vϕn+1/2

c relative-to-grid velocity of fluid ϕ.
uϕ, uϕn+1/2

c = wn+1/2
c + vϕn+1/2

c , absolute velocity of fluid ϕ.
u =

∑
ϕ α

ϕuϕ, volume averaged absolute velocity.
V̊ϕn+1/2

cd = σ
ϕn+1/2
cd sn+1/2

cd · vϕn+1/2
c , volume transport rate

of fluid ϕ from cell c to cell d at time n + 1/2.
σ
ϕn+1/2
cd = H

(
sn+1/2

cd · vϕn+1/2
c

)
, transport upwind factor

of fluid ϕ from cell c to cell d at time n + 1/2.
σ
ϕn+1/2
cd corrected upwinding factor

of fluid ϕ from cell c to cell d at time n + 1/2.
αϕ, αϕn

c volume fraction of fluid ϕ.
[αρ]ϕ, [αρ]ϕn

c = α
ϕn
c ρ

ϕn
c , mass per-total-volume of fluid ϕ.

βϕ, βϕn
c global compressibility weighting coefficient

of fluid ϕ.
γϕ, γϕn

c adiabatic exponent of fluid ϕ.
Γϕ, Γϕn

c Grüneisen coefficient of fluid ϕ.
λϕ, λϕn

c global dissipation weighting coefficient
of fluid ϕ (impacts artificial dissipation).

µϕφ, µϕφn
c relative compressibility weighting coefficient

between fluids ϕ and φ.
πϕ, πϕn

c pressure offset
for stiffened gas equation of state of fluid ϕ.

φϕ, φϕn
c Lagrange multiplier of mass transport of fluid ϕ.

ψϕ, ψϕn
c Lagrange multiplier

of Lagrangian coordinate transport of fluid ϕ.
ξϕ, ξϕn

c Lagrangian coordinate field of fluid ϕ.
Π , Πn

c Lagrange multiplier of volume fraction closure.

Miscellaneous:
Dϕ

t , Dϕ
∆t “Eulerian” transport derivative along velocity

of fluid ϕ, continuous and discrete.
dϕt , dϕ

∆t “Lagrangian” transport derivative along velocity
of fluid ϕ, continuous and discrete.

A continuous or discrete action integral.
L continuous Lagrangian density.
Pϕ pressure function

as given by equation of state of fluid ϕ.
Q normalized artificial viscosity function.
δ variation operator.
〈uϕ ·∇P〉nc power of pressure forces on fluid ϕ.
〈V̊〉nc mean volume derivative of fluid mixture.
〈ρϕ δ Wϕ〉nc irreversible energy production on fluid ϕ.
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K. D. Kim, A. Kovtonyuk, A. Petruzzi, FONESYS: the FOrum & NEt-
work of SYStem thermal-hydraulic codes in nuclear reactor thermal-
hydraulics, Nucl Eng Des 281 (2015) 103–113. doi:10.1016/j.

nucengdes.2014.12.001.
[7] C. E. Brennen, Cavitation and bubble dynamics, Oxford, 1995.

URL https://authors.library.caltech.edu/25017/1/

cavbubdynam.pdf

[8] S. Jay, F. Lacas, S. Candel, Combined surface density concepts for dense
spray combustion, Combust Flame 144 (3) (2006) 558–577. doi:10.

1016/j.combustflame.2005.07.017.
[9] M. J. Sapko, E. S. Weiss, K. L. Cashdollar, I. A. Zlochower, Ex-

perimental mine and laboratory dust explosion research at NIOSH,
J Loss Prev Process Ind 13 (3–5) (2000) 229–242. doi:10.1016/

S0950-4230(99)00038-8.
[10] Y. P. Zheng, C. G. Feng, G. X. Jing, X. M. Qian, X. J. Li, Z. Y. Liu,

P. Huang, A statistical analysis of coal mine accidents caused by coal
dust explosions in China, J Loss Prev Process Ind 22 (4) (2009) 528–
532. doi:10.1016/j.jlp.2009.02.010.

[11] N. G. Deen, M. Van Sint Annaland, M. A. Van der Hoef, J. A. M.
Kuipers, Review of discrete particle modeling of fluidized beds, Chem
Eng Sci 62 (1) (2007) 28–44. doi:10.1016/j.ces.2006.08.014.

[12] L. Wilson, Relationships between pressure, volatile content and ejecta
velocity in three types of volcanic explosion, J Volcanol Geotherm Res
8 (2) (1980) 297–313. doi:10.1016/0377-0273(80)90110-9.

[13] A. Murrone, P. Villedieu, Numerical modeling of dispersed two-phase
flows, AerospaceLab 2 (4) (2011) 1–13.
URL https://www.aerospacelab-journal.org/sites/www.

aerospacelab-journal.org/files/AL2-04.pdf



Submitted to Int. J. Multiphase Flow, Nov. 25th, 2019. Revised March 14th, 2020. For private usage. Do not distribute. 24

[14] A. Vallet, R. Borghi, An Eulerian model of atomization of a liquid jet,
C R Acad Sci, Ser IIb: Mec, Phys, Chim, Astron 327 (10) (1999) 1015–
1020. doi:10.1016/S1287-4620(00)87013-1.

[15] M. R. Baer, J. W. Nunziato, A two-phase mixture theory for the
Deflagration-to-Detonation Transition (DDT) in reactive granular ma-
terials, Int J Multiphase Flow 12 (6) (1986) 861–889. doi:10.1016/

0301-9322(86)90033-9.
[16] A. Chinnayya, E. Daniel, R. Saurel, Modelling detonation waves in het-

erogeneous energetic materials, J Comput Phys 196 (2) (2004) 490–538.
doi:10.1016/j.jcp.2003.11.015.

[17] M. Brennan, CFD simulations of hydrocyclones with an air core: com-
parison between large eddy simulations and a second moment closure,
Chem Eng Res Des 84 (6) (2006) 495–505. doi:10.1205/cherd.

05111.
[18] A. Davailles, E. Climent, F. Bourgeois, Fundamental understanding of

swirling flow pattern in hydrocyclones, Sep Purif Technol 92 (2012)
152–160. doi:10.1016/j.seppur.2011.12.011.

[19] M. Narasimha, M. Brennan, P. N. Holtham, A review of CFD mod-
elling for performance predictions of hydrocyclone, Eng Appl Comput
Fluid Mech 1 (2) (2007) 109–125. doi:10.1080/19942060.2007.

11015186.
[20] V. J. Chanteperdrix, P. Villedieu, J.-P. Vila, A compressible model for

separated two-phase flows computations, Vol. 1 of ASME Fluids Engi-
neering Division Summer Meeting, 2002, pp. 809–816. doi:10.1115/
FEDSM2002-31141.
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Answer to Reviewers

Reviewer 1

The paper presents a multi-fluid numerical scheme for solv-
ing the backbone equations over a moving grid. The concept
“Geometry, Energy, and Entropy Compatible” is discussed and
the derivation of the coupled increment equations for fluids
have been presented. Three 2D numerical test cases - includ-
ing Sod’s shock tube, Ransom’s faucet, and a nine-fluids cross-
ing test are presented. Unfortunately, I don’t think the cur-
rent manuscript reaches the standard for publication in IJMF
and regret to recommend its rejection. The manuscript is more
suitable for other numerical methods focused journals. – Vari-
ous key ingredients involved in building the numerical scheme
are very uncommon and closely related to multiphase physics:
mimicking of the backbone non-dissipative but elliptic equa-
tions, least action principle, explicit multi-fluid Gibb’s relation-
ship, etc. Yet, a previous submission to a journal of numeri-
cal methods was rejected on the grounds that “this is merely
physics.” We actually pride ourselves of having built a scheme
that is deeply grounded on basic physical principles. We thus
believe that IJMF is the appropriate medium for this work
where many readers will find answers to recurring questions re-
garding thermodynamic consistency of multi-fluid schemes. –
The following is a list of issues motivating my recommendation
for rejection.

1. There are many 3D numerical studies for multiphase flows
and multi-physics based on ALE. However, it is only 2D
study here. – As now explicitly commented in new Sec-
tion 1.5, numerical schemes can be found which meet
some but, to our knowledge, not all of our specifications in
Section 1.4. We would happily analyze and cite any acces-
sible reference to a scheme complying with all the specifi-
cations. As of 3D studies, they would only marginally il-
lustrate the scheme capabilities, would not affect any of its
underlying principles, would require a significant invest-
ment in code and computer technicalities, would signifi-
cantly lengthen the manuscript (already 25 journal pages),
and would reduce its legibility and consistency. –

2. The numerical examples here are all classical benchmark
problems and there is no convergence study here. – As
now explicitly commented in new Section 1.5, the numer-
ical schemes are only “superficially classic” and, because
of the ellipticity issues, convergence studies are deliber-
ately set aside for later works involving dissipation terms.
– In addition, there are no comparisons with other numer-
ical methods to see its advantage or efficiency. – Here
again, we would need to have another scheme with sim-
ilar capabilities in order to make comparisons. It must be
stressed that the aim of this work is not to provide a some-
what novel “better-than” scheme for a somewhat standard
situation, but rather to provide one that “does it” in stren-
uous cases. The numerical tests mostly support this capa-
bility. –

3. Most parts of the manuscripts focus on the derivation of
the numerical scheme with some simple benchmark cases,

which might be more suitable for a numerical method jour-
nal. – See first comment above. –

4. Artificial viscosity has been introduced in the numerical
treatment. What happens for the shock profiles if there is
no artificial viscosity? – This point has been investigated
since artificial viscosity was first introduced [for a review,
see for instance 101]: shocks generate large oscillations,
become unstable, and eventually crash the calculations. –

5. The numerical results are only shown for the density and
volume fraction. What about the internal energy and pres-
sure? – In order to avoid excessive lengthening of the
manuscript, the usual choice of only showing density and
volume fraction was done. Internal energy and pressure
are less directly interpreted and would bring marginal sup-
plementary understanding. – The conservation property of
the results has not been discussed in the result section, es-
pecially for the mass in the multi-fluid systems. – As now
explicitly commented in new Section 1.5, the exact con-
servation properties are established from the rigorous for-
mal derivation. It comes from the inherent conservation to
round off errors of all finite volume approches. –

Reviewer 2
This manuscript addresses an interesting topic in the field

of multi-fluid flow problems. They developed a compressible
multi-fluid backbone model with arbitrary Lagrangian-Eulerian
descriptions for the simulations. Second-order accuracy in tem-
poral and spatial discretizations in a Lagrangian limit is satis-
fied. Some advantages could be found in this model; for in-
stance, the arbitrary number of fluids, stabilization for shock
capture and the stable numerical treatment with high CFL con-
ditions. It is good to see an applicable computational work
in this area of research after testifying three two-dimensional
cases, including the Sod’s shock tube variant, Ransom’s faucet
variant and supersonic nine-fluid crossing test on a shrink-then-
stretch swirling grid. The numerical results performed in this
manuscript are authentic and meaningful. The manuscript is
also well-written and well-organized with clear content. I be-
lieve that this is a competent work, with novel results and can
be interest to the readers. In my viewpoint, it could be accept-
able for publication in the International Journal for Multiphase
Flow. – We are grateful to the Reviewer for his appreciation. –
However, two issues in simulations need to be clarified in this
manuscript for improving the information, as follows

1. It is necessary to add the convergence test in each testing
case. – As now explicitly commented in new Section 1.5
and because of the ellipticity issues, convergence studies
are deliberately set aside for later works involving dissipa-
tion terms. Numerical tests have been chosen to illustrate
the proof-of-concept and the gains brought by the scheme.
They are not meant to be an extensive test for the time be-
ing. –

2. The criterion and limitation in wide use should be elabo-
rated. – A sentence was added to Section 4.8 to specify
length scale for artificial viscosity. The notations for char-
acteristic lengths have also been changed and made con-
sistent. –




