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Abstract

A robust design optimization (RDO) methodology for Organic Rankine Cy-
cles (ORC) is presented, allowing to ensure an improved, stable performance
over a large range of operating conditions. In contrast with classical ORC
design methods, whereby all modeling hypotheses and operating conditions
are considered as perfectly known, i.e. deterministic, the RDO approach al-
lows to account for the manifold sources of uncertainty affecting the system.
For geothermal ORC, the latter are related on one hand with the ill-known
properties of the geothermal source and, on the other, with intrinsically ran-
dom parameters, such as the condensation temperature. The proposed RDO
approach selects values of the design parameters that maximize the expected
(average) performance while minimizing its variance under uncertain nominal
operating conditions. The optimal design delivered by the proposed strat-
egy outperforms the one derived from the standard deterministic approach:
specifically, the expected power output is increased by 1.5%, while its stan-
dard deviation is reduced by 8.5% and the surface of the heat exchangers by
34%.
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1. Introduction1

The development of Organic Rankine Cycles (ORCs) in the last fifteen2

years has contributed significantly to the enlargement of the commercial ex-3

ploitation of geothermal power. Specifically, the ORC technology has fostered4

the use of low-temperature geothermal resources. Data collected by Bertani5

[1, 2] show a noticeable growth in the worldwide installed geothermal capac-6

ity of binary plants (almost exclusively based on ORC technology), which in7

just 5 years has almost doubled passing from 11% to 14.2% of the overall8

geothermal applications. Among the 780 MW of new geothermal capacity9

installed in 2016 [3], almost 30% consists in ORC systems [4].10

However, even if nowadays geothermal power is a mature, commercially11

available and well known technology providing low-cost base load capacity,12

several sources of uncertainty are hidden in the whole process adopted for its13

exploitation. Some major sources of epistemic uncertainties in geothermal14

power generation [5] are listed below:15

• temperature of the geothermal reservoir;16

• field extent for the definition of the drilling area;17

• soil permeability;18

• average well production;19

• re-injection cost;20

• phenomena like quenching, chemical clogging and corrosion.21

Among them, just a few can be reduced, investing a considerable amount22

of time and capital resources in preliminary discovery and exploration activ-23

ities, while some others can be reduced only through long term operation of24

the field (about a decade, as an order of magnitude). All of them are due25

to a lack of knowledge, and for that reason they are qualified as “epistemic”26

uncertainties [6, 7].27

A large amount of literature has been written since the 70s to identify28

the sources of uncertainty affecting geothermal power and to quantify their29

effects. A detailed overview can be found for instance in [8]. These sources30

of uncertainty can lead to the scenario presented in Fig. 1, showing that31
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from an investor viewpoint a geothermal project can be a risky and capital-32

intensive investment. The risk derives from the fact that an important part33

of the capital is required for preliminary activities like pre-survey, exploration34

and test drilling without any certainty about the presence of an exploitable35

geothermal resource. For instance, the test drilling can account alone for up36

to 15% of the overall capital cost [9], before that the project profitability37

can be determined. Moreover, these sources of uncertainty can result in the38

oversizing of the geothermal plant, with a significant reduction of profits39

and a possible failure of the whole geothermal project. Considering that,40

historically, the majority of the worldwide geothermal installed capacity has41

been funded mainly through private financing [10], such a scenario can deter42

investments in this technology.43

Figure 1: Typical uncertainty and expenditure profiles for a geothermal project [3]

Even if there is no reason to believe that the uncertainty and the risk44

associated with geothermal fields are any greater than those for other forms of45

electricity generation [5], the accurate quantification of geothermal resource46

risk is of a paramount importance in the financing of geothermal projects47

[11]. The objective of the present work is to employ a promising methodology48

aiming to perform the robust design optimization (RDO) of an ORC for a49
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geothermal application, which can take into account all these uncertainties50

in order to reduce the associated risk.51

ORC design typically relies on a mathematical model of the cycle, allow-52

ing to evaluate a set of performance parameters (or cost functions) given a53

set of design variables. The model is supposed to provide an accurate enough54

description of the ORC system over a range of operating conditions. Several55

examples of thermodynamic and techno-economic optimization can be found56

in [12]. Historically, a black-box strategy has been typically applied, whereby57

the cycle performance is computed with a simulation code, while the design58

parameters are optimized with an evolutionary algorithm (e.g. simulated59

annealing, particle swarm, artificial bees colony or genetic algorithms); some60

examples can be found in [13, 14, 15, 16, 17, 18, 19]. For several years, the61

analysis has been carried out solely at a fixed design point, corresponding to62

the nominal working conditions of the ORC plant. Only recently some ther-63

modynamic and techno-economic optimizations have been carried out consid-64

ering also part-load performance: a first contribution has been given by [20].65

Other interesting applications can be found in [21, 22, 23, 24, 25, 26, 27, 28].66

Part-load performance is evaluated by means of dynamic simulations [12] or,67

more often, through steady state calculations at off design conditions [27].68

In all cases, the optimization process is deterministic in the sense that the69

design variables, the operating conditions and any other input required by70

the model, as well as the model itself, are supposed as perfectly known.71

However, due to epistemic and aleatory uncertainties in the operating72

conditions (as discussed in the above), the values to be input to the code are73

more properly described as random variables. Consequently, the performance74

of the system, which is obtained as the model output, is also random. An75

essential step is therefore to estimate the probability distribution function76

(PDF) describing the random variations of performance parameters. Such77

information can subsequently be used in the process to design ORCs with78

a controlled performance uncertainty. Design strategies for the optimization79

of a system subject to uncertainties are known as robust design optimization80

(RDO) methods [29]. Several RDO strategies exist, e.g. [30, 31, 32].81

In this work, we focus on Taguchi’s RDO approach [30], which looks82

for the maximization (or, depending on the problem, minimization) of the83

expectancy of a set of cost functions while minimizing at the same time their84

variances, thus reducing the sensitivity of the optimal design to uncertain85

parameters. For that purpose, the uncertain input parameters are assigned86

probability distributions, and an uncertainty quantification (UQ) method is87
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used to propagate them through a mathematical model of the system and88

to obtain the expected (average) values and the standard deviations of the89

output performance parameters (the cost functions). The UQ algorithm is90

then coupled with a multi-objective optimizer, allowing to determine the91

optimal designs with respect to the multiple cost functions.92

In the context of ORC design under uncertain operating conditions, RDO93

represents a promising alternative to standard design methods [33], allowing94

to ensure a more stable performance over a range of randomly varying oper-95

ating conditions.96

The paper is presented as follows: Section 2 presents the ORC model97

employed in the calculations; Sections 3 and 4 describe the UQ methodology98

and the proposed RDO loop, respectively. Numerical results are presented99

in Section 5 and Section 6. Final remarks and conclusions are provided in100

Section 7.101

2. ORC model102

The object of the RDO carried out in this study is an ORC for geothermal103

application, whose plant layout is depicted in Fig. 2.104

Figure 2: Layout of the geothermal plant

The plant exploits geothermal brine in a single-pressure ORC employing105

iC4 as the working fluid. As depicted in Fig. 2, the brine is cooled-down106
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before the re-injection by a set of heat exchangers (HEXs). These include107

a pre-heater (PRE), an evaporator (EVA) and, eventually, a super-heater108

(SH) where heat is transferred to the ORC working fluid. The PRE is a shell109

and tube heat exchanger, while the EVA is a kettle reboiler. The vapour of110

the working fluid, which can be saturated or superheated (depending on the111

outcomes of the RDO), expands in an axial turbine directly connected with112

the generator by means of a coupling disc. The condenser (CD) is a shell113

and tube heat exchanger using water, which is cooled in a wet cooling tower114

to condensate the vapour coming from the discharge of the turbine. Finally,115

the pump is of the centrifugal type and it is connected to an electrical driver116

equipped with a variable-frequency drive.117

An in-house deterministic model for ORC systems written in Python is118

used for the design and the off-design simulation of the cycle, described in119

[34]. A brief overview of both design and simulation algorithms is provided120

hereafter for completeness.121

The design algorithm, which is sketched in Fig.3, defines the proper size122

of all ORC components, in order to evaluate the performance and the cost123

of the whole system. Therefore, first the nominal operating conditions of124

the cycle should be assigned; these include the characteristics of both hot125

and cold energy sources and, more specifically, the nominal temperature,126

mass flow rate and specific heat capacity of the geothermal brine, the brine127

re-injection temperature (which is fixed at 353.15 K, to avoid corrosion and128

deposition issues), the inlet temperature and the mass flow rate of the cooling129

water. Additional inputs required by the model are:130

• the subcooling,131

• the superheating (∆TSH),132

• the isentropic efficiency of the turbine,133

• the efficiency of the pump,134

• the pressure drops across the HEXs,135

• the pinch points in the evaporator and in the condenser.136

• the working fluid.137
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Figure 3: Flowchart of the ORC model in design mode (nominal conditions).
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The turbine is designed to perform 85% isentropic efficiency at the design138

point, while the pump is chosen with a 70% overall efficiency. The PRE,139

the EVA and the SH (considered all together as a single block of HEXs) and140

the condenser are modelled with the generalized moving-boundary algorithm141

proposed in [35]; the ε-NTU method [36] is then used to estimate the exchange142

area at the ORC nominal point. Moreover, in order to have in the evaporator143

only the change of phase of iC4, a subcooling of 0.5 K of the working fluid is144

considered at the EVA inlet. The thermodynamic properties of the working145

fluid are calculated via the Coolprop 6.1.0 library [37].146

Following the algorithm in Fig.3, once that both hot and cold sources are147

specified, the model can start with the design of the HEXs and of the con-148

denser, which requires an initial guess of the temperature of the working fluid149

at the inlet of the condenser and of the HEXs block, as well as of the evap-150

orator and condenser temperatures (respectively, Teva and Tcd). The input151

data presented in Fig.4 are used to model the condenser and the HEXs. As152

an output of the design of these components, an estimation of the exchange153

areas, of the ORC mass flow rate and of the pinch points in the EVA and the154

condenser is provided; these two last quantities are used to check the pinch155

point values set at the beginning.156

If the calculated pinch point values do not match to the fixed ones, a157

new guess of Teva and Tcd is considered and a new run is performed. In the158

code, this iterative search of the roots is carried out with the Nelder-Mead159

algorithm [38] implemented in the Python library Scipy [39]. Once that the160

pinch-point values have been converged to within a tolerance of 10−4K, the161

algorithm proceeds with the design of the turbine, of the pump and of the162

pipelines between each item. The input data used for the design of each163

component are also listed in Fig.4. For the pipelines, a target pressure drop164

is imposed and the pipe diameters are calculated using the Colebrook-White165

correlation [40].166

Before the end of the design, a check on the temperature of the working167

fluid at the inlet of the condenser and of the HEXs block is done: if the168

calculated values differ from the initial guess by more than 10−4K, these169

quantities are updated and a new run of the code is performed. When the170

convergence is reached, the design model outputs a list of parameters corre-171

sponding to the characteristics of the ORC. Tab.1 shows typical results for172

the design of an ORC.173

Thus, the ORC model is first applied in the so-called design mode, to174

select the ORC design providing the best deterministic performance, at pre-175
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Figure 4: Input data for the design of the main components of the ORC at nominal
conditions

specified nominal design conditions. The ORC off-design performance is then176

evaluated by running the model in the simulation mode, illustrated in the177

flowchart of Fig.5.178

The hot and the cold sources are assigned for off design operating condi-179

tions: these include the mass flow rate, inlet temperature and specific heat180

capacity of the geothermal brine, and the inlet temperature and mass flow181

rate of the cooling water. A first guess for Teva and Tcd is used to define the182

thermodynamic state at the inlet of the turbine and of the pump; pressures183

at the outlet of both components are also calculated. The input parameters184

of Fig.6, along with empirical correlations given by Enertime are used to cal-185

culate the pump and turbine off-design isentropic efficiencies. The turbine186

simulation allows to compute the ORC mass flow rate; with this last piece187

of information, one can simulate the pipelines between the turbine and the188

condenser and the one between the pump and the HEXs, obtaining an estima-189

tion of pressure drops in each line knowing its own diameter. Furthermore,190

the HEXs and the condenser can be also simulated: the same generalized191

moving-boundary algorithm already employed in the design mode, is now192
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Table 1: Some major results from the ORC design module

# Results from the ORC design module
1 ORC mass flow rate
2 Pressure at evaporator (Peva)
3 ∆TSH
4 Turbine Inlet Pressure
5 Turbine Outlet Pressure
6 Pressure at condenser (Pcd)
7 Thermodynamic points of the ORC @ nominal point
8 Pump mechanical power
9 Cooling water mass flow rate
10 Thermal power input
11 Turbine mechanical power
12 Turbine electric power
13 ORC net power (WORC,net)
14 ORC efficiency
15 Exchange area of PRE
16 Exchange area of EVA
17 Exchange area of SH
18 Exchange area of CD
19 Diameter of the pipe between EVA and turbine
20 Diameter of the pipe between CD and pump
21 Diameter of the pipe between turbine and CD
22 Diameter of the pipe between pump and EVA

used to define the thermodynamic state at the boundaries and inside the193

HEXs block and the condenser, while the ε-NTU method is still utilized to194

compute the exchange area of both these two items. Finally, the areas of195

the HEXs and of the condenser are used to check convergence: if the values196

calculated in the simulation mode differ from the design values at nomi-197

nal conditions by more than 10−6 m2, a new guess value of Teva and Tcd is198

considered and a new run is performed. To iterate through Teva and Tcd199

the multi-objective COBYLA optimization algorithm [41] available in the200

Python library Scipy is used.201
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Figure 5: Algorithm of the ORC simulation model for off design
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Figure 6: Input data for the simulation of the main components of the ORC in off design
conditions

In the following, the deterministic ORC model is coupled with an uncer-202

tainty quantification method, described in the next section, to account for203

uncertainties in the nominal conditions.204

3. ORC Uncertainty quantification205

The goal of uncertainty quantification (UQ) is to estimate variability in206

the output of a model, corresponding to a set of Quantities of Interest (QoIs),207

given variations in the model inputs. Hereafter, we adopt a probabilistic208

approach which aims at predicting the probability density distributions of209

the output QoIs, given some probability distributions assigned to the inputs.210

For that purpose, a numerical algorithm is used to propagate the input PDFs211

through the model, here treated as a black box, leading to approximated PDF212
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(e.g., histograms) for the QoIs. This process is sketched in Fig.7.213

Figure 7: General sketch of the UQ process of the ORC

For the ORC model considered in the present work, the uncertain inputs214

are the operating conditions (hot and cold source characteristics) and the215

uncertain output QoIs are ORC performance parameters (i.e. cycle efficiency216

or power output) or ORC working characteristics, such as the mass flow rate.217

In the next Section, we discuss the selection of performance parameters that218

will serve as cost functions for the RDO.219

3.1. Selection of the uncertain ORC performance parameters220

The uncertain parameter selected in the present work as the target of the221

UQ algorithm and, subsequently, of the RDO strategy is the ORC net power,222

WORC,net. This is calculated as the difference of the electric power delivered223

by the generator and the sum of all consumption devices, namely, the feed224

pump and the auxiliaries like the cooling tower system, the oil system, the225

air compressors and the control room system. WORC,net is here preferred226

to the global cycle efficiency, defined as the ratio of the ORC net power to227

the total heat content of the heat source: in fact, for a randomly varying228

thermal input, global efficiency does not necessarily correspond to the max-229

imum power output operation of the ORC system. This happens because230

during the optimization, in case of an increase in the evaporation pressure,231

an increased cycle efficiency can be obtained at the cost of a decrease in the232

amount of heat extracted from the heat source. Therefore, instead of consid-233

ering a possible trade-off between these two quantities, in the present study234
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we have chosen to work only with WORC,net, as it is an extensive quantity235

which is easier to be used in the optimization with respect to any possible236

constraint about the size of the plant.237

To evaluate the influence of uncertain inputs on the selected QoI, the238

ORC model is first run in the design mode, with nominal conditions fixed239

to the average values of the input parameters. This allows to determine the240

geometrical characteristics of the ORC. Afterwards, the ORC model is run241

several times in the simulation mode for a set of conditions sampled from the242

input PDFs, and the corresponding values of the ouput QoI are used to build243

an approximation of its PDF and of its main statistical moments (mean and244

variance).245

3.2. Identification of sources of uncertainty246

The ORC system under investigation is affected by two major uncertain-247

ties: the first is of epistemic nature, as it is due to the lack of complete infor-248

mation about the characteristics of the geothermal heat source; the second249

one is aleatory and associated with the random variations of the temperature250

of the cold medium at the condenser.251

About the first uncertainty, Sanyal and Morrow [11] conducted a local sen-252

sitivity study on the internal rate of return for a typical geothermal project,253

and illustrated that the most sensitive variables are resource parameters.254

Hereafter this uncertainty is considered as the outcome of the interaction of255

three sources of epistemic uncertainty, namely:256

1. mass flow rate of the geothermal brine ṁgeo,257

2. temperature of the geothermal brine Tgeo,258

3. heat capacity of the geothermal brine cgeo.259

Based on information available in the technical literature (see for instance260

[42, 43, 44, 45]), the preceding quantities are modelled as independent Gaus-261

sian random variables, whose parameters are listed in Tab. 2.262

Regarding the temperature of the cooling water Tcw in at the inlet of the263

condenser, the observation of historical data could be used to infer a probabil-264

ity distribution modelling for this source of aleatory uncertainty. However,265

for the present work, no data were available; therefore, some information266

found in literature [45, 46] was used to model this quantity as a Gaussian267

random variable, with parameters also reported in Tab. 2.268
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Table 2: Parameters of ORC uncertain variables, modelled by Gaussian PDFs

Parameter Distribution Mean Variance
ṁgeo Gaussian 162.0 kgs−1 72.25 kg2s−2

Tgeo Gaussian 388.15 K 6.25 K2

cgeo Gaussian 4.2 kJkg−1K−1 0.0025 kJ2kg−2K−2

Tcw in Gaussian 297.15 K 4 K2

3.3. Uncertainty propagation269

The objective of an UQ algorithm is to propagate input uncertainties270

through a model and estimate the PDF of output QoIs and/or their statistical271

moments. A large variety of UQ methods is available in the literature, the272

simplest and more general one being the Monte Carlo approach [47]. This273

consists in drawing samples from the input PDFs, and to compute for each274

of them the corresponding model outputs for the QoIs. The results may be275

used to construct an histogram of the output QoIs or to compute means276

and variances. Unfortunately, a very large number of samples is required to277

converge the statistics, which makes the Monte Carlo approach inapplicable278

to costly models. In [33] the Monte Carlo approach is successfully applied to279

the UQ and RDO of an ORC for automotive applications described through280

a simplified and inexpensive steady-state model, but a significant reduction281

of the number of samples is mandatory for extending its use to more realistic,282

complex models.283

A way for alleviating the cost of uncertainty quantification is to project284

the system’s response onto a suitable basis of analytical functions (often285

called a surrogate model) with coefficients estimated from a (possibly) small286

set of samples drawn from the costly model. The cheap surrogate is then287

used to evaluate Monte Carlo samples or to directly compute approximations288

of the statistical moments for the output quantities. An overview of UQ289

methods is out of the scope of this paper; examples can be found, e.g. in290

[48, 49, 50].291

In the present work, we adopt a so-called Kriging surrogate model (see292

[51] for a review of Kriging methods). More specifically, a Bayesian Kriging293

surrogate is constructed from a design of experiments (DOE), which is a set294

of initial samples drawn from the simulation mode of the ORC model. The295

Kriging surrogate is used to approximate the behaviour of the costly ORC296
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model, and more specifically the response of the QoI to random variations of297

the uncertain inputs, as a cheap analytical function. The latter corresponds298

to the realization of a Gaussian process [52]. A detailed description of the299

Bayesian Kriging surrogate is beyond the scope of this paper. The interested300

reader is referred to Refs [53, 54, 55, 56] for more details. A proof of concept301

of Bayesian Kriging for the UQ of an ORC for waste heat recovery is available302

in [57].303

Once the Bayesian Kriging surrogate has been trained on the DOE, a304

Monte Carlo sampling of the input PDF is carried out, as in the standard305

Monte Carlo method, and the QoI is evaluated for each sample using the306

analytical inexpensive surrogate instead of the full ORC model. The whole307

process can be summarized through the following steps:308

1. Set the operating conditions to their average values, and run the ORC309

model in the design mode to determine the geometrical characteristics.310

2. Build the DOE, by drawing a small set of samples, of size N , from the311

input PDF; these corresponds to multiple random combinations of the312

operating conditions.313

3. For each sample, run the ORC model in simulation mode and determine314

the value of the QoI.315

4. Use the data collected at points 2 and 3 to build the kriging surrogate316

function K: QoI = K(X).317

5. Draw a large set of samples, of size S, from the input PDF.318

6. For each sample of point 5, compute the QoI from the kriging surrogate.319

7. Use the results of point 6 to build an histogram of the QoI and/or to320

compute statistics (mean value of QoI, variance of QoI)321

In the following calculations, the samples of point 2 are extracted by using322

the Latin Hypercube Sampling (LHS) criteria [58]. A preliminary accuracy323

study for a related case [57] has been here considered to select a number of324

Kriging samples providing the best tradeoff between cost and accuracy.325

4. ORC optimization strategy326

In order to design an ORC with a stable performance under the uncertain327

inputs, a RDO strategy is considered: the ORC model is coupled with an328

UQ method and an optimization algorithm to select design parameters that329

maximize (or depending on the problem, minimize) the expected (average)330
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value of a set of design criteria while optimizing some of their statistical331

properties, which are then added to the set of the cost functions.332

In the following, we adopt the RDO criterion of Taguchi [30] which con-333

sists in optimizing the expectancy (statistical average) of some cost functions334

minimizing their variance at the same time.335

More precisely, the following cost functions (CFs) are selected for the336

present work:337

1. CF1 is the mean value of the PDF of the QoI (E[WORC,net]),338

2. CF2 is the variance of the PDF of the QoI (var[WORC,net]),339

3. CF3 is the global area of HEXs AORC .340

The latter has been chosen as an indicator of the cost of the ORC: in341

fact, as a first approximation the cost of HEXs is proportional to their area,342

while the cost of components like the turbine and the pump is less sensitive343

to the design parameters as they benefit from a kind of economy of scale, due344

to the fact that the fix part of their cost is usually quite important and the345

variable part is usually proportional to their rated power. Consequently, the346

optimization problem has 3 objectives, which are the maximization of CF1,347

the minimization of CF2 and the minimization of CF3.348

The design variables of the optimization process are the source character-349

istics ṁgeo and Tgeo and the condensation temperature Tcd. Such parameters350

are uncertain, as discussed in the preceding sections. An additional design351

parameter, the superheating ∆TSH , is also considered, and it is treated as352

deterministic. As an outcome of the UQ analysis performed (see results in353

Section 5), any other source of uncertainty, and namely cgeo, is neglected354

and the corresponding input parameters are set to their average values and355

assumed as deterministic.356

The RDO algorithm, whose flowchart is depicted in Fig.8, proceeds as357

follows:358

1. A nominal design point is randomly sorted from the input parameter359

distribution.360

2. The ORC model is run in the design mode with deterministic inputs,361

determined at Point 1.362

3. As an outcome of Point 2, the ORC characteristics are defined, includ-363

ing AORC .364

4. The operating conditions are then randomly perturbed, according to365

their PDFs.366

17



Figure 8: RDO simplified scheme

5. The random samples are propagated through the ORC model in simu-367

lation mode.368

6. The cost functions CF1 and CF2 are evaluated as statistical moments369

of the QoI WORC,net.370

7. Based on the values of the cost functions, a new set of design variables371

is selected and the process is repeated from Point 2.372

In the present work, the optimizer is the multi-objective non-dominated373

sorting genetic algorithm (NSGAII) [59]. The design parameters space is374

defined by the support of the PDFs for the uncertain parameters and the375

interval [0, 4] K for ∆TSH .376
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In the genetic algorithm, an initial population of 40 individuals (alterna-377

tive nominal designs) is let to evolve over 80 generations. The evaluation of378

the cost functions for each individual corresponds to an UQ calculation, as379

described in Section 3. To alleviate the computational cost of the optimiza-380

tion process, the RDO is conducted by using two nested Bayesian Kriging381

(TNBK) surrogates, as in [56, 57].382

The inner Kriging surrogate is used for UQ and the evaluation of CF1383

and CF2, while the outer surrogate, describing variation of the CFs with the384

design parameters, is directly coupled with the optimizer. The workflow of385

the surrogate-based RDO, represented in Fig.9, proceeds as follows.386

Figure 9: RDO detailed algorithm

1. An initial population, corresponding to 40 alternative design conditions387

is selected through LHS of the parameter space.388

2. For each design, a UQ calculation is carried out based on the workflow389

in Fig. 8 and the cost functions are computed.390

3. The external Bayesian Kriging relating the design variable to the cost391

functions, is constructed from the data collected at Point 1 and Point392

2.393
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4. The NSGA II algorithm is run on the Kriging surrogate until conver-394

gence criteria are met.395

In order to increase the accuracy of the external Kriging surrogate, during396

the NSGA II iterations an adaptive infill strategy based on the expected397

improvement (EI) criterion is used to add new samples to the initial set398

of data. Precisely, the infill procedure identifies a new design, whose cost399

functions are calculated with the full ORC model. The new point is then used400

to retrain the Kriging surface and the NSGA II is continued on the improved401

model. Based on numerical tests, we observed that applying an adaptive402

infill every 5 generations enables an accurate estimate of the optimal design.403

The cost functions of the optimal designs are finally recomputed exactly with404

the UQ solver in order to verify the residual errors.405

5. UQ results and global sensitivity analysis406

The sensitivity of the selected QoI, i.e. the ORC net power WORC,net,407

to random variations of the uncertain parameters described in Section 3.2 is408

first investigated by means of the UQ algorithm described above. The ORC409

model is first run in the design mode, with input parameters corresponding410

to the average values of Tab. 2. Afterwards, the ORC power output under411

random variation of the uncertain parameters is determined from a Bayesian412

Kriging surrogate of the ORC model in the simulation mode. More specifi-413

cally, 50 LHS are drawn from the distribution of the uncertain parameters,414

and the resulting 50 sets of inputs are supplied to the ORC model to obtain415

the output WORC,net. A Bayesian Kriging surrogate of the output is then416

used to approximate the ORC model response for any value of the uncertain417

parameters. A set of 106 Monte Carlo samples is drawn from the input dis-418

tributions and an approximation of WORC,net is evaluated from the surrogate419

for each of them. These values are used to build a normalized histogram, re-420

ported in Fig. 10. We observe that the histogram follows closely a Gaussian421

distribution (also reported in the figure), with a standard deviation equal to422

approximately 14% of the mean value.423

The UQ results are also used to carry out a global sensitivity analysis of424

the QoI to the uncertain parameters. For that purpose, we apply the anal-425

ysis of variance (ANOVA) decomposition [60], and we use the Monte Carlo426

samples to estimate Sobol indexes [61] associated to the uncertain inputs.427

More specifically, for each input parameter we extract the first-order and428
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Figure 10: Histogram of the QoI WORC,net under uncertainty

total Sobol indexes. The reader in referred to [62] for more details on Sobol429

global sensitivity analysis. Here we just recall that the first-order Sobol in-430

dexes measure the effect on the variance of the output QoI when perturbing431

each input parameter individually. The total Sobol indexes represent instead432

the overall contribution of a given input to the total variance of the output,433

when such a parameter is perturbed individually or in conjunction to other434

parameters. By construction, the Sobol indexes are numbers comprised be-435

tween 0 and 1. Higher values indicate a stronger sensitivity of the QoI to a436

given parameter.437

Table 3: Global sensitivity analysis with Sobol indexes

Sobol 1st order Sobol Total
ṁgeo 17.6% 18.0%
Tgeo 64.4% 64.7%
cgeo 0.40% 0.50%
Tcd 17.1% 17.4%

The results are reported in Tab.3 and Fig.11. The table shows that the438

first-order and total indexes are very close to each other, indicating that439

coupled effects due to the simultaneous variation of multiple inputs are small440
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Figure 11: Total Sobol Index from Global sensitivity analysis

and that the system output is, to a good approximation, a linear function of441

the inputs. This is consistent with the Gaussian shape of the output PDF442

in Fig. 10 (a linear transformation of a Gaussian is a Gaussian). Fig.11443

highlights the relative influence of the input parameters on the variance of444

the QoI WORC,net. The results show that the source temperature Tgeo is by445

far the most important influential parameter. The brine mass flow rate ṁgeo446

and the condenser temperature Tcd also play a significant role, while the effect447

of cgeo can be neglected.448

6. RDO results449

The NSGA II algorithm allows to find an approximation of the Pareto450

front of sub-optimal solution, corresponding to different compromise solu-451

tions among the various objective. More precisely, the Pareto front is the452

subset of designs, for which all objective functions are equal or better than453

for all other designs. For the present RDO problem, the objective space has454

three dimensions and a graphical representation of the Pareto-optimal solu-455

tions is difficult. Fig.12 and Fig.13 show all the solutions computed by the456

NSGA II during the convergence process (blue dots) as well as the Pareto457

front (black line) in two dimensional subspaces. The cost functions are ap-458

proximated from the Kriging surrogate.459

Fig.12, corresponding to a scatter plot of CF2 versus CF1, shows a pos-460

itive correlation between the first two cost functions, as the optimizer finds461

some design maximizing the mean value of the PDF of WORC,net, maximiz-462
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Figure 12: Objective space – CF1 vs CF2

ing at the same time its variance. Such a trend is also observed in Fig.13,463

where it appears that the maximization of the expected net power output464

corresponds to higher values of AORC . As a consequence, a unique optimum465

solution does not exist and different compromise solutions among the cost466

functions are possible.467

Among all the designs lying on the Pareto front, we select the one offer-468

ing the best trade-off among all optimization targets; the selected design is469

represented as a red symbol in Fig.12 and Fig.13 and it is identified by the470

parameters reported in Tab.4. The main characteristics of the final RDO471

design are listed in Tab.5.472

The selected sub-optimal designs is input to the UQ solver, to verify the473
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Figure 13: Objective space – CF1 vs CF3

Table 4: Optimal solution as a compromise of the optimization targets

ṁgeo Tgeo Tcd ∆TSH
148.1 kgs−1 391.6 K 301.0 K 1.0 K

accuracy of the Kriging estimates of the cost functions by comparison with474

the full model. The distance between this solution and the line of the optimal475

solutions calculated with the TNBK approach, i.e. the surrogate approxima-476

tion error, is found to be always lower than 5%. Despite this deviation, the477

selected design point outperforms the results of the deterministic optimiza-478

tion (green large dots in Fig.12 and Fig.13) carried out in three design points479

corresponding respectively to average, minimum and maximum conditions480

for the geothermal source, according to the PDFs in Tab.2.481
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Table 5: Optimal solution as a compromise of the optimization targets

Quantity Unit Value
ORC nominal mass flow rate kgs−1 61.1

ORC nominal evaporation pressure bar 16.56
Superheating K 1.0

Turbine nominal inlet pressure bar 15.86
Turbine nominal outlet pressure bar 4.70
ORC nominal condenser pressure bar 4.60

ORC nominal thermal input kW 23905.4
Turbine nominal mechanical power kW 2491.3

Turbine nominal electric power kW 2391.6
Pump nominal mechanical power kW 189.4

ORC nominal net power kW 2185.1
ORC nominal efficiency - 9.1%

Heat exchangers total area m2 8297
Evaporator to Turbine pipe diameter mm 500
Turbine to Condenser pipe diameter mm 450
Condenser to Pump pipe diameter mm 300
Pump to Evaporator pipe diameter mm 300

7. Conclusions482

A promising robust design optimization strategy based on two nested483

Bayesian kriging surrogates with an expected improvement infill approach484

has been successfully applied to an ORC for geothermal applications, af-485

fected both by epistemic and aleatory uncertainty. The first comes from the486

lack of information about the geothermal source and it is considered as the487

outcome of the interaction of the mass flow rate of the geothermal brine ṁgeo,488

the temperature of the geothermal brine Tgeo, and the heat capacity of the489

geothermal brine cgeo; on the other hand, the aleatory uncertainty is due to490

the yearly variation of the cooling water temperature at the condenser Tcd.491

Both these uncertainties can lead to an economic risk involving the whole492

geothermal project.493

Before the RDO, a preliminary global sensitivity analysis has been carried494

out to evaluate the effect of the uncertain design parameters on the response495
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of the system; it turns out that the the most influential parameters are Tgeo,496

ṁgeo and Tcd, while cgeo can be neglected. These results are used to reduce497

the number of optimization parameters that are considered in the RDO of498

the ORC.499

From the analysis of the Pareto front, it comes out that a unique opti-500

mum solution does not exist and different compromise solutions among the501

cost functions are possible. Among them, the one offering the best trade-off502

among all optimization targets is selected. This optimal solution obtained503

with the RDO methodology is then compared with the optimal solutions504

from the deterministic optimization, which are always outperformed. In par-505

ticular, the best RDO solution wins against the best deterministic optimum,506

increasing the mean value of the PDF of the QoI (the power production) by507

1.5%, while its standard deviation is reduced by 8.5% and the surface of the508

heat exchangers by 34%.509

Future work will focus on applying the present RDO methodology to more510

complex ORC configurations (for instance, recuperative cycles, multilevel511

cycles or systems with several pre-heaters in parallel), giving a focus also on512

operational aspects like failure probability.513
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