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Abstract: In this work, we are interested in the famous FISTA algorithm. We show that
FISTA is an automatic geometrically optimized algorithm for functions satisfying a quadratic
growth assumption. This explains why FISTA works better than the standard Forward-Backward
algorithm (FB) in such a case, although FISTA is known to have a polynomial asymptotical
convergence rate while FB is exponential. We provide a simple rule to tune the α parameter
within the FISTA algorithm to reach an ε-solution with an optimal number of iterations. These
new results highlight the efficiency of FISTA algorithms, and they rely on new non asymptotic
bounds for FISTA.

Key-words: Nesterov acceleration, ODE, first order scheme, optimization.

1 Introduction

Let F = f+h be a composite convex function defined from RN to R whose set X∗ of minimizers is
not empty, such that ∇f is L−Lipschitz, and the proximal operator of h can be easily computed.
All along the paper, the function F is assumed to also satisfy a quadratic growth condition i.e it
exists µ > 0 such that

F (x)− F (x∗) >
µ

2
‖x− x∗‖2

where x∗ is the minimizer of F . This condition is actually in force when F is µ-strongly convex,
but it is more general as it will be shown later.

Under these hypotheses, the Forward-Backward algorithm (FB) defines a sequence (xn)n>0

satisfying F (xn) − F (x∗) = O(e−
µ
Ln), i.e the number nFBε of iterations necessary to get an ε-

solution satisfies nFBε = O( µL log( 1
ε )).

Several accelerations of FB have been proposed when F is convex or strongly convex. The
FISTA algorithm proposed by Beck and Teboulle [9] using an inertial scheme from Yurii Nesterov
[18] was built to improve the convergence rate of FB under a convexity assumption. Nesterov and
many others [18, 23, 6, 8, 22, 25] proposed various schemes dedicated to the strongly convex case.
All these schemes necessitate an estimation µ̃ of µ such that µ̃ 6 µ, and they reach an ε-solution

with at most nε = O
√

µ̃
L log( 1

ε ) iterations. The constant hidden is the O depends on the exact

algorithm and on the exact hypotheses made on F . It was shown in [20] that the constant in the
O cannot be larger than 2. In [18] a scheme (dubbed NSC later in the paper) is proposed with
a constant 1 in the O. Notice that [25] reaches the factor 2 in the O (and thus the optimality
of the convergence rate [20]), but at the cost of the additional hypothesis that the function F is
differentiable. In the non differentiable case, [6] proposes a variant of the Heavy-ball scheme with
a convergence rate of

√
2 within the O .

1



In a large dimension setting κ := µ
L � 1 and the square root gain may be crucial. It ex-

plains why inertial algorithms are widely used, and why they behave numerically better than FB,
especially when µ̃ is close to µ.

The main contribution of this paper is to show that the version of FISTA proposed by Cham-
bolle and Dossal [12] and Su, Boyd and Candès [24] can reach an ε-solution with at most
nFISTAε = O

√
µ
L log( 1

ε ) iterations under a quadratic growth condition which is weaker than a
strong-convexity assumption, without any estimation of µ. This result applies to the LASSO
problem which may not be strongly convex and for which the estimation of the growth parameter
µ can not be tackled easily.

This bound on nFISTAε especially explains the better performance of FISTA comparing to FB
on problems such like the LASSO problem, on which FB is known to reach an exponential rate
and where the previous bounds on FISTA indicate that its rate was only polynomial.

Even though FISTA was built to produce acceleration in a convex setting, it has two main
advantages comparing to algorithms built for strongly convex functions.

• There is no need to estimate µ and the convergence rate does not suffer from any underesti-
mation of µ. The bounds on nFISTAε depends on µ and not on µ̃ (an estimation of the true
µ).

• The bound on nFISTAε applies under a growth condition which is a weaker assumption than
strong convexity, and which extends the field of applications of FISTA.

In Section 2, notations and definitions are given, the various algorithms and the notion of ε−solutions
are detailed. The main contribution, Theorem 1, is stated and the comparison with the state of
the art is done.

Section 3 is devoted to the study of the continuous dynamic associated to FISTA and new
finite time bounds are provided for the solution of this dynamic.

In Section 4, the continuous analysis is applied to a non asymptotic study of FISTA which
provides finite time bounds allowing to prove Theorem 1.

2 Number of iterations to reach an ε-solution

2.1 Framework and notations

In this paper we focus on the class of composite functions: F = f + h where f is a convex,
differentiable function having a L-Lipschitz gradient and h is a proper lower semicontinuous (l.s.c.)
convex function whose proximal operator is known. The proximal operator of h is denoted by proxh
and defined by:

proxh(x) = argmin y∈RN

(
h(y) +

1

2
‖y − x‖2

)
. (1)

For this class of functions a classical minimization algorithm is the Forward-Backward algorithm
(FB) whose iterations are described by:

xn+1 = proxsh(xn − s∇f(xn)), s ∈
(

0,
2

L

)
. (2)

Beck and Teboulle, based on the ideas of the Nesterov acceleration, propose an accelerated version
FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)[13]:

yn = xn +
n

n+ 3
(xn − xn−1), xn+1 = proxsh(yn − s∇f(yn)). (3)

In this paper we consider the variant of FISTA proposed by Chambolle and Dossal in [12] and
denoted by FISTA:

yn = xn +
n

n+ α
(xn − xn−1), xn+1 = proxsh(yn − s∇f(yn)) (4)

2



that ensures in addition the weak convergence of the iterates (when α > 3). We assume moreover
that the function F satisfies some global quadratic growth property G2

µ namely:

∃µ > 0, ∀x ∈ RN , F (x)− F ∗ > µ

2
d(x,X∗)2 (5)

where: X∗ = arg minF denotes the set of minimizers of F and F ∗ = inf F . Classically the
quadratic growth condition G2

µ can be seen as a relaxation of the strong convexity, and it is

equivalent in the convex setting to a global  Lojasiewicz property with an exponent 1
2 [15, 16, 10].

Observe also that in the case when f satisfies G2
µ, then so does F .

For this class of functions, the Forward-Backward algorithm ensures an exponential decay
whereas FISTA classically only ensures a polynomial asymptotic convergence rate. The main
contribution of this paper is to provide a non-asymptotic analysis of the FISTA algorithm and to
compare the convergence rate in finite time to state-of-the art algorithms like Forward-Backward
and the Nesterov accelerated algorithm for strongly convex functions [20]. Analyzing these algo-
rithms in finite time provides a different insight on these convergence rates.

More precisely, let ε > 0 be the expected accuracy. The minimizers of a composite function F
can be characterized by the optimality condition 0 ∈ ∂F (x), or equivalently g(x) = 0 where:

g(x) = L(x− x+) := L

(
x− prox 1

Lh
(x− 1

L
∇f(x))

)
, x ∈ RN , (6)

denotes the composite gradient mapping and: x+ := prox 1
Lh

(x− 1
L∇f(x)). This last formulation

is convenient for defining an approximate solution to the composite problem, and thus to deduce
a tractable stopping criterion for a dedicated optimization algorithm:

Definition 1 (ε-solution) Let ε be the expected accuracy. The iterate xn is said to be an ε-
solution of the problem minx∈RN F (x) if:

‖g(xn)‖ 6 ε. (7)

Observe that in the differentiable case (i.e. when h = 0), we have: g(x) = ∇f(x) so that an
ε-solution is nothing more than an iterate xn satisfying:

‖g(xn)‖ = ‖∇F (xn)‖ 6 ε. (8)

The notion of ε-solution can be seen as a good stopping criterion for an algorithm solving
the composite optimization problem for mainly three reasons: first it is numerically quantifiable.
Secondly controlling the norm of the composite gradient mapping is roughly equivalent to having
a control on the values of the objective function. Indeed using the following property of the
composite gradient mapping proven in [19, Theorem 1] and [7]:

∀x ∈ RN ,
1

2L
‖g(x)‖2 6 F (x)− F (x+), (9)

we can prove that the composite gradient mapping is controlled by the values of the objective
function:

∀x ∈ RN ,
1

2L
‖g(x)‖2 6 F (x)− F ∗. (10)

Conversely, as shown in [7, Lemma 3.1], we also have:

∀x ∈ RN , F (x+)− F ∗ 6 2

µ
‖g(x)‖2. (11)

Thirdly, using (7) as a stopping criterion will enable us to analyze and compare algorithms in
terms of the number of iterations needed to reach a given accuracy ε.
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2.2 Analysing state-of-the-art optimization algorithms in terms of ε-
solution

2.2.1 FB and FISTA without the growth condition G2
µ

Let us first recall the Forward-Backward algorithm (FB) described by Algorithm 1:

Algorithm 1 FB: Forward-Backward algorithm to minimize F = f + h.

• Initialization: x0 ∈ RN , ε > 0.

• Iterations (n ≥ 0): update xn as follows:

xn+1 = prox 1
Lh

(xn −
1

L
∇f(xn)) (12)

until ‖g(xn)‖ ≤ ε.

The FB algorithm provides the following bound when F is convex [20, 9]:

F (xn)− F (x∗) ≤ 2L‖x0 − x∗‖2

n
. (13)

Using (10), this implies that a number of iterations of the order O
(
L2

ε2

)
is required to get an

ε-solution.
A. Beck and M. Teboulle propose in [9] an accelerated version of FB, known as FISTA (Fast

Iterative Shrinkage-Thresholding Algorithm). In this paper we focus on the version proposed by
Chambolle and Dossal [12] and Su, Boyd and Candes [24] and simply called FISTA from now on.

Algorithm 2 FISTA: Nesterov accelerated algorithm for convex functions F = f + h

• Initialization: x0 ∈ RN , x−1 = x0, ε > 0, α ≥ 3.

• Iterations (n ≥ 0): update xn and yn as follows: yn = xn +
n

n+ α
(xn − xn−1)

xn+1 = prox 1
Lh

(yn − 1
L∇f(yn))

(14)

until ‖g(xn))‖ 6 ε.

The FISTA algorithm provides the following bound when F is convex [20, 9]:

F (xn)− F (x∗) ≤ 2L‖x0 − x∗‖2

(n+ 1)2
. (15)

Using (10), this implies that a number of iterations of the order O
(
L
ε

)
is required to get an

ε-solution.

2.2.2 FB and FISTA with the growth condition G2
µ

In the rest of the paper, we assume that F additionally satisfies a quadratic growth condition G2
µ

for some real parameter µ > 0 i.e.:

∃µ > 0, ∀x ∈ RN , F (x)− F ∗ > µ

2
d(x,X∗)2 (16)
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where: X∗ = arg minF denotes the set of minimizers of F and F ∗ = inf F .
Classically the FB method provides then an ε-solution in O

(
1
κ log

(
1
ε

))
iterations [14], which

is of course much better than the previous case (without the G2
µ assumption). More precisely:

Theorem 1 Let F = f + g where f is a convex differentiable function having a L-Lipschitz
gradient for some L > 0, and g a proper convex l.s.c. function. Assume additionally that F
satisfies a quadratic growth condition G2

µ for some real parameter µ > 0.
Let ε > 0 and:

nFBε =
1

|log(1− κ)|
log

(
2LM0

ε2

)
(17)

where κ = µ
L and M0 = F (x0)−F ∗ denotes the potential energy at initial time. Let (xn)n∈RN be a

sequence of iterates generated by the FB algorithm. If n ≥ nFBε then the iterate xn is a ε-solution.

To provide bounds on the number of iterations to get an ε solution, asymptotic bounds on n
are not sufficient. The dependencies of these bounds on α and κ = µ

L are also crucial. The main
results of the paper (Theorems 3 and 4) are based on new explicit and non asymptotic bounds
developed in Part 4. These finite time bounds on FISTA are based on the Lyapunov analysis of
the continuous dynamic studied in Part 3.

2.2.3 Algorithms devoted to strongly convex functions

Consider now the Nesterov scheme designed for strongly convex functions [20, Algorithm 2.2.11]

which is known to ensure obtaining an ε-solution at most inO
(

1√
κ

log
(

1
ε

))
iterations [20, Theorem

2.2.3]. More precisely:

Algorithm 3 NSC: Nesterov accelerated algorithm for strongly convex functions

• Initialization: x0 ∈ RN , x−1 = x0, s ∈ (0, 1
L ).

• Iterations (n ≥ 0): update xn and yn as follows: yn = xn +
1−
√
κ

1 +
√
κ

(xn − xn−1)

xn+1 = yn − 1
L∇F (yn)

(18)

until ‖g(xn)‖ ≤ ε.

Theorem 2 Let F be a convex differentiable function having a L-Lipschitz gradient and admitting
a unique minimizer x∗. Assume additionally that F is µ-strongly convex for some real parameter
µ > 0. Let ε > 0. Then for κ = µ

L small enough,

∀n ∈ N, F (xn)− F (x∗) 6 2(1−
√
κ)n (F (x0)− F (x∗)) ,

which means that an ε-solution can be obtained in at most:

nNSCε =
1

|log(1−
√
κ)|

log

(
4LM0

ε2

)
. (19)

where M0 = F (x0)− F ∗ denotes the potential energy at initial time.

A crucial point to keep in mind with this result, is that iterations (18) depends on µ, and thus, µ
must be estimated a priori. In practice, µ may be unknown and only an estimation µ̃ of µ can be
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used to define the sequence (xn)n>0. To apply the previous theorem we must have µ̃ 6 µ and the
previous bound becomes :

nNSCε =
1∣∣∣∣log(1−
√

µ̃
L )

∣∣∣∣ log

(
4LM0

ε2

)
. (20)

where µ̃ 6 µ is the one used to define κ := µ̃
L in (18). If µ̃ � µ, this bound may be much higher

than the one given in Theorem 3.
The field of accelerated methods for strongly convex functions is a very active one. The fastest

one is the one proposed in [25] (which improves NSC with a 2 factor within the exponential decay).
The references [22] (with the additional hypothesis of the differentiability of the function F ), and
[6] (without additional assumption) propose a

√
2 factor improvement with respect to NSC. Note

that the case of F = f+g with F convex satisfying a growth condition G2
µ for some real parameter

µ > 0 has recently been addressed in [23, 6, 8].

2.2.4 FISTA restart

Restarting FISTA is another way to get a linear convergence in the case when F is convex and
satisfies the growth condition G2

µ (see e.g. [17] or [21]). In particular, there has been recent works
where the growth parameter µ is estimated on the fly by the algorithms, see [1, 7, 13].

We give here the result of [7]: the number of iterations to get an ε-solution is bounded by

nRestartε =
7.2√
κ

(
4.5 + log

(
1 + 1.3

LM0

ε2

))
(21)

so that nRestartε is of order

O
(

1√
κ

log

(
1

ε

))
. (22)

2.3 FISTA is an automatic geometrically optimized algorithm

FISTA with a varying parameter α applied to strongly convex functions, or satisfying a quadratic
growth condition, has already been studied and is known to have a polynomial decay. In [24,
Theorem 9], the authors proved that if F = f + h and if f is strongly convex then for α > 9

2

F (xn)− F (x∗) 6 C(α)L

√
L

µ

‖x0 − x∗‖2

n3
6 C(α)

( √
L

√
µn

)3

(F (x0)− F (x∗)). (23)

In [4] and in [5], Attouch et al and Aujol et al. proved the following asymptotic decay :

F (xn)− F (x∗) = O
(

1

n
2αγ
γ+2

)
(24)

which coincides with the previous bound (23) if α = 9
2 and γ = 1, when F satisfies some flatness

hypothesis Hγ :

∀x ∈ RN , F (x)− F (x∗) 6
1

γ
〈∇F (x), x− x∗〉. (25)

To provide bounds on the number of iterations to get an ε solution, asymptotic bounds on n are
not sufficient. The dependencies of these bounds on α and κ = µ

L are also crucial. The following
Theorem is based on new explicit and non asymptotic bounds developed in Part 4. These finite
time bounds on FISTA are based on a Lyapunov analysis of the continuous dynamic studied in
Part 3.

Our main result is to prove that under some quadratic growth condition, the number of itera-

tions of FISTA to reach an ε-solution is actually in O
(

1√
κ

log( 1
ε )
)

:
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Theorem 3 Let F = f + h where f is a convex differentiable function having a L-Lipschitz
gradient for some L > 0, and h a proper convex l.s.c. function. Assume additionally that F
satisfies a quadratic growth condition G2

µ for some real parameter µ > 0.
Let ε > 0 and

α1,ε := 3 log

(
5
√
LM0

eε

)
and nFISTA1,ε :=

8e2

3
√
κ
α1,ε =

8e2

√
κ

log

(
5
√
LM0

eε

)
, (26)

where κ = µ
L and M0 = F (x0)− F ∗ denotes the mechanical energy at initial time. Let (xn)n∈RN

be a sequence of iterates generated by the FISTA algorithm with parameter α1,ε. There exists
κε ∈ (0, 1) such that for any κ ≤ κε, if n ≥ nFISTA1,ε then the iterate xn is an ε-solution.

Unlike Algorithm 3, the parameter of FISTA does not depend on µ and it follows that nFISTA1,ε

depends on the real value of µ, not on any estimation. To set α, one only needs to define an
accuracy ε, the value of L (which is supposed to be known, also to define the step), and the value
of M0. The value of M0 should be chosen to bound the mechanical energy of the system. In
several situations, simple bounds can be found for M0 for instance when F (x∗) is known (least
square problems) or can be estimated. Moreover since M0 appears in the logarithm, nFISTA1,ε is
not very sensitive to M0. But we must keep in mind that a bound on M0 must be given to set
α. It is not surprising that α depends on the ratio M0√

ε
because this ratio measures the decay we

want to reach on the value of F (xn)− F (x∗).
Additionally we assume now that F satisfies some flatness assumption Hγ ensuring that F is

not too sharp: let γ > 1. For any minimizer x∗, we assume that:

∀x ∈ RN , F (x)− F (x∗) 6
1

γ
〈∇F (x), x− x∗〉. (27)

Any convex differentiable function automatically satisfies H1. To have a better intuition of the
geometry of functions satisfying Hγ for some γ > 0, observe that the flatness property (27) implies
that for any minimizer x∗ ∈ X∗, there exists a real constant M > 0 such that:

∀x ∈ RN , F (x)− F ∗ 6M‖x− x∗‖γ , (28)

see [5, Lemma 2.2]. Thus any convex differentiable function satisfying both G2
µ and H2 for some

µ > 0 can be thus seen as almost quadratic. For this subclass of functions, Theorem 3 can be
slightly improved:

Theorem 4 Let F be a convex differentiable function having a L-Lipschitz gradient and admitting
a unique minimizer x∗. Assume that F satisfies a quadratic growth condition G2

µ for some real
parameter µ > 0 and a flatness assumption H2.

Let ε > 0 and

α2,ε = 2 log

(
3
√
LM0

e
√

2ε

)
and nFISTA2,ε =

11e2

4
√
κ
α2,ε =

11e2

2
√
κ

log

(
3
√
LM0

e
√

2ε

)
(29)

where κ = µ
L and M0 = F (x0)− F ∗ denotes the mechanical energy at initial time. Let (xn)n∈RN

be a sequence of iterates generated by the FISTA algorithm with parameter α2,ε. There exists
κε ∈ (0, 1) such that for any κ ≤ κε, if n ≥ nFISTA2,ε then the iterate xn is a ε-solution.

Proof of Theorems 3 and 4 The proof of Theorems 3 and 4 is based on new non-asymptotic
bounds for FISTA provided by Theorems 6 and 7 and of the form:

∀n > 3α√
κ
, F (xn)− F ∗ 6 Cγ(α)

2αγ
γ+2

(
n
√
κ
)− 2αγ

γ+2 M0

where M0 = F (x0)− F ∗, which means that an ε-solution can be obtained at most in

1√
κ
Cγ(α)

(
2LM0

ε2

) 2+γ
2αγ
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iterations where:

C1(α) =
2e

3
(4α− 3)

(
5

e
√

2

) 3
α

, C2(α) =
e

4
(11α− 6)

(
3

2e

) 2
α

.

Thus with these bounds, the optimized numbers nγ,ε, γ ∈ {1, 2} of iterations to reach an ε-solution
with FISTA, are respectively obtained for:

α1,ε = 3 log

(
5
√
LM0

eε

)
, α2,ε = 2 log

(
3
√
LM0

e
√

2ε

)
. (30)

For these choices of α, the number of iterations to reach an ε-solution is respectively given by:

nFISTA1,ε =
8e2

3
√
κ
α1,ε =

8e2

√
κ

log

(
5
√
LM0

eε

)
(31)

nFISTA2,ε =
11e2

4
√
κ
α2,ε =

11e2

2
√
κ

log

(
3
√
LM0

e
√

2ε

)
. (32)

�

2.4 Comparisons

2.4.1 Comparison with FB

Let us now compare the Forward-Backward algorithm to the FISTA scheme for a given accuracy
ε > 0. For a condition number κ small enough and choosing:

α = α1,ε = 3 log

(
5
√
LM0

eε

)
,

we easily check that FISTA requires fewer iterations than the FB algorithm to reach an ε-solution
of minx∈RN F (x). Indeed,

nFISTA1,ε =
8e2

√
κ

log

(
5
√
LM0

eε

)
6 nFBε =

1

|log(1− κ)|
log

(
2LM0

ε2

)
. (33)

Observe that the smaller κ is, the better FISTA is compared to FB.
Note also that since nFISTA2,ε 6 nFISTA1,ε , the comparison between FISTA and FB remains in

favor of FISTA for small κ:

nFISTA2,ε =
11e2

2
√
κ

log

(
3
√
LM0

eε
√

2

)
6 nFBε =

1

|log(1− κ)|
log

(
2LM0

ε2

)
. (34)

Even though FB is known to have an exponential convergence [14], and FISTA a polynomial
one [5], choosing the α parameter for FISTA enables to have a much better convergence rate in
term of ε-solution then FB.

2.4.2 Comparison with NSC

On this subsection only the comparison between FISTA and the inertial algorithm dedicated to
strongly convex functions proposed by Nesterov [20, Algorithm 2.2.11] is detailed but comparisons
with any other algorithms built for strongly convex functions described in [20, 23, 6, 8, 25] will
lead to the same conclusions.

The Nesterov algorithm for strongly convex functions (Algorithm 3) necessitates an estimation
µ̃ of the strong convexity parameter µ that is usually not known. If µ is underestimated (i.e.
µ̃ 6 µ), the NSC algorithm will be miscalibrated and therefore slowed down. One of the strengths
of FISTA, revealed by our non-asymptotic analysis, is that FISTA is self-adaptative and will have
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better performances than its NSC variant for strongly convex functions when the strong convexity
parameter is not known. Indeed, by choosing the α friction parameter only according to the
desired accuracy ε, FISTA will generate a sequence of iterates until reaching an ε-solution without
the need of any estimation of the strong convexity parameter µ. Note also that the number of
iterations to reach an ε-solution for FISTA actually depends on the true value of µ whether it is
known or not.

If the strong parameter µ of F is known, it is clear that for small enough κ, Algorithm 3 is
faster than FISTA i.e.

nNSCε =
1

|log(1−
√
κ)|

log

(
4LM0

ε2

)
6 nFISTA1,ε =

4e2

√
κ

log

(
25LM0

e2ε2

)
. (35)

Hence the number of iterations needed to reach an ε−solution is smaller for the scheme built for
strongly convex functions and using explicitly this parameter µ at each step (18) (since κ = µ

L ) of
the algorithm than the one necessary for FISTA to get the same accuracy. This better behavior
was indeed expected.

On the other hand if µ is not perfectly known, which is often the case in large dimension
problem, µ should be estimated by µ̃ and to ensure that the exponential decay of these inertial
algorithms are in force, µ̃ must be chosen such that µ̃ 6 µ and

nNSCε =
1∣∣∣∣log(1−
√

µ̃
L )

∣∣∣∣ log

(
4LM0

ε2

)
>

1

|log(1−
√
κ)|

log

(
4LM0

ε2

)
(36)

If µ̃ is close to µ, one can expect that nNSCε 6 nFISTA1,ε . But if µ̃ 6 1
16e4µ then

nNSCε > nFISTA1,ε (37)

and thus if µ is not known with a good accuracy, it may be better to use FISTA.
In practice, FISTA may outperform Algorithm 3 even for much smaller underestimation of

µ. The bound given in Theorem 3 may be pessimistic. We illustrate this lower performance of
this inertial algorithm with fixed friction term in the numerical experiments comparing to FISTA
in the subsection dedicated to numerical experiments. These experiments confirm that even for
µ̃ = µ

10 the loss may be huge and FISTA is actually better for a large set of accuracies ε.
Indeed iterations of FISTA use the value of a parameter α which is defined from ε and not

from an estimation of µ which implies that nFISTA1,ε does not depend on any estimation of µ. The

fact that nNSCε may be larger than nFISTA1,ε when µ is not well estimated is a small surprise since

FISTA was not built for strongly convex functions. Moreover bounds on nFISTA1,ε apply under a
quadratic growth property and then extend the potential application of this result to a larger set
of functions F such as the LASSO :

F (x) =
1

2
‖Ax− y‖2 + λ ‖x‖1 (38)

widely used in Statistics and Image and Signal processing. This function F is not strongly convex
when λ > 0 but it satisfies some growth properties, see for example [11].

To be fair in the comparison between both algorithm, we must emphasize that for FISTA,
the parameter α depends on the targeted accuracy ε, and FISTA may be better than the other
inertial algorithms for this specific accuracy. If n goes to infinity, the algorithms built with a fixed

inertia (here 1−
√
κ

1+
√
κ

) may have a better behavior than FISTA, since for any fixed α, FISTA as a

polynomial decay rate, see for example [2, 3].

2.4.3 Comparison with FISTA restart

Under the assumption of quadratic growth it appears that the FISTA restart scheme has a con-
vergence rate similar to FISTA with optimal parameter. In both cases the bounds on the number

9



of iterations needed to get an ε-solution is proportional to 1√
κ

log(
√
ML
ε ). Preliminary numerical

experiments seem to indicate that the best solution may depend on the function F to minimize
and both approaches deserve to be tested. In Theorem 1, F is supposed to have a unique mini-
mizer, while one can notice that such an assumption is not needed for FISTA restart, even if in
practice, it does not seem to have any impact on the convergence rate. One can also observe that
the parameter of FISTA must be chosen according to the wished accuracy ε ; for this accuracy
FISTA will be efficient and almost optimal all along the trajectory. The main inconvenient of
FISTA restart scheme is its relative complexity where FISTA is really simple to implement.

When ε tends to 0, according to (21):

nRestartε ∼ 14.4√
κ

log

(√
LM0

ε

)
(39)

while

nFISTA1,ε ∼ 8e2

√
κ

log

(√
LM0

ε

)
(40)

nFISTA2,ε ∼ 11e2

2
√
κ

log

(√
LM0

ε

)
. (41)

Hence

nFISTA1,ε ≈ 59.1√
κ

log

(√
LM0

ε

)
(42)

nFISTA2,ε ≈ 40.6√
κ

log

(√
LM0

ε

)
. (43)

i.e. the bounds for FISTA restart [7] are always slightly better then the one proposed here in the
paper. However, we will see in the next subsection that this slight theoretical edge for the worst
case analysis may not always prevail in practice. Moreover, it can be argued that FISTA restart
needs in general more calls to the function to minimize then classical FISTA (which has a negative
impact on its speed), and that it is slightly more complicated to code.

2.4.4 Numerical comparisons

Let us first consider a function F (x) = ‖Ax− b‖2 where A is 100 × 100 gaussian matrix width
independent and identically distributed components. On that example κ ≈ 4.7× 10−7. On Figure
1, are given the values of log(‖∇F (xn)‖) along the trajectory for various algorithms.

The blue curve corresponds to the Gradient descend, the red curve yo FISTA with α = 8, the
yellow curve to FISTA with α = 30, the green one to the Algorithm 3 of Nesterov for strongly
convex functions using the exact value of µ computed from the realisation of the matrix A. The
grey curve corresponds to Algorithm 3 with µ̃ = 1

10µ. The graph is displaid in Figure 1. From
this graph, several comments can be done :

• For small ε, Algorithm 3 with the precise value of µ (the green curve), seems to be the best
one, which was expected.

• If µ is underestimated (grey curve), even of a 10 factor, the decay may be much small smaller
with the FISTA schemes.

• For ε 6 e−15, the parameter α = 8 (red curve) seems to be better than α = 30 for FISTA.

• For ε > e−15, the parameter α = 30 (yellow curve) seems to be better than α = 8 for FISTA.

10



Figure 1: Example on the least square problem. Green is NSC, grey is NSC with a 10 factor
underestimate of µ, red is FISTA with α = 8 and yellow is FISTA with α = 30.

More complete numerical experiments show in practice that the optimal value of α for a given
accuracy, that is the value of α ensuring the minimum number iteration to reach an ε-solution, is
actually a non increasing function of the accuracy ε, which illustrates Theorem 3.

We then illustrate the paper with a second example, where an inpainting problem is solved
using a LASSO formulation.

F (x) =
1

2
‖Mx−Mxo‖2 + λ ‖Tx‖1 (44)

where xo is a target image, M a random masking operator and T an orthogonal wavelet transform.
Figure 2 shows an example, with from the left to right, the original image xo, the masked image
Mxo and the solution x∗ minimizer of F .

Figure 2: An inpainting example (left: original image, middle: degraded image, right: inpainted
result)

Figure 3 displays the curves of the trajectory of log(L ‖xn − x+
n ‖) for several algorithms. The

blue curve corresponds to the Forward Backward algorithm. The red curve corresponds to FISTA-
restart scheme described in [7], the yellow curve to FISTA with α = 3 (which is the classical FISTA
algorithm), the green curve to FISTA with α = 12 and the grey curve to FISTA with α = 30.

Several comments can be done :

• All inertial schemes are better than FB (blue curve) for any precision ε.

• If we compare the three FISTA algorithms we observe that for large ε, α = 3 seems to be
better, for small ε, α = 30 seems to be the better choice and in between α = 12 is better

11



Figure 3: Example on a LASSO problem: FB is in blue, FISTA-restart in red, FISTA with α = 3
in yellow, FISTA with α = 12 in green, FISTA with α = 30 in grey.

than the two others. That is what was expected from Theorem 3 : the optimal value of α is
a non increasing function of ε.

• The restart FISTA [7] behaves quite well for any precision and its efficiency seems to be
close to FISTA with the best parameter for all accuracy.

3 The continuous case

Let F : RN → R be a convex differentiable function admitting at least one minimizer x∗ and
X∗ = argminF . In this section, we study the convergence rates in finite time for the values
F (x(t))− F (x∗) along the trajectories of the well-known ordinary differential equation:

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0 (45)

for any t > t0 with t0 > 0, associated to the Nesterov scheme. We assume that, for any initial
conditions (x0, v0) ∈ RN×RN , the Cauchy problem associated with the ODE (45) admits a unique
global solution satisfying (x(t0), ẋ(t0)) = (x0, v0).

Theorem 5 Let F : RN → R be a convex differentiable function admitting a unique minimizer
x∗. Assume that F satisfies both a quadratic growth condition G2

µ and a flatness condition Hγ :

∀x ∈ RN , F (x)− F (x∗) 6
1

γ
〈∇F (x), x− x∗〉 (46)

for some µ > 0 and γ > 1. If α > 1 + 2
γ and for µ small enough, we have:

∀t > αr∗

(γ + 2)
√
µ
> t0, F (x(t))− F (x∗) 6 C1e

2γ
γ+2C2(α−1− 2

γ )Em(t0)

(
αr∗

t(γ + 2)
√
µ

) 2αγ
γ+2

where Em(t) = F (x(t))−F (x∗) + 1
2‖ẋ(t)‖2 denotes the mechanical energy of the system, r∗ is the

unique positive real root of the polynomial: r 7→ r3 − r2 − 2(1 +
√

2)r − 4 and

C1 =

(
1 +

2

r∗

)2

, C2 =
1

r∗
+

1 +
√

2

r∗2
+

4

3r∗3
.

Theorem 5 provides an explicit bound on F (x(t)) − F (x∗) decaying like t−
2α
3 when γ = 1

(respectively like 1
tα when γ = 2). This bounds depends on the growth parameter µ and the

friction coefficient α and is valid for sufficiently large enough t namely for

t > tγ,α,µ :=
αr∗

(γ + 2)
√
µ
. (47)

12



Actually this restriction is not really a problem. First because it is possible to reduce tγ,α,µ in the
proof, which would lead to not as good asymptotic bounds and secondly because inequality such
that F (x(t)) − F (x∗) 6 K

t2α/3
may not provide interesting bounds for small t. It turns out that

for most inertial algorithm, the decay of the F (x(t))−F (x∗) is not significant if t� 1√
µ . Indeed,

even if finite time bounds are valid from t = t0 = 0, they only provide accurate bounds for t > 1√
µ .

We can also observe that the bound given by Theorem 5 for a given t, is not a decaying function
of α which explains why it is not relevant to choose α as large as possible if we consider the ODE
on an interval [t0, T ].

Finally observe that the choice of the parameter α can be optimized for a given t by choosing:

αopt = t
(γ + 2)

√
µ

r∗
e−1−C2 (48)

which implies a fast exponential decay rate on the values:

F (x(t))− F (x∗) 6 C1Em(t0)
(
e−1−C2

) 2γαopt
γ+2 e

2γ
γ+2C2(αopt−1− 2

γ )

6 C1Em(t0)e−(1+ 2
γ )C2e−

2γ
r∗ e

−1−C2
√
µt.

This optimal choice depends also on µ that can unknown in practice but we can remark that if
α ≈ t

√
µ, FISTA ensures a fast exponential decay which ensures the best possible decay for the

bound given in Theorem 5.

Proof of Theorem 5 Our analysis is based on the following Lyapunov energy:

E(t) = t2(F (x(t)− F (x∗)) +
1

2
‖λ(x(t)− x∗) + tẋ(t)‖2 , λ =

2α

γ + 2
(49)

where the parameter λ is chosen accordingly to [5]. Remember that the expected asymptotic

convergence rate is polynomial in O
(
t−

2αγ
γ+2

)
[5] with an exponent equal to λγ. Differentiating

the Lyapunov energy E , we easily prove that:

E ′(t) +
γλ− 2

t
E(t) = λγt

(
F (x(t))− F (x∗)− 1

γ
〈∇F (x(t)), x(t)− x∗〉

)
+
λ2(γλ− 2)

2t
‖x(t)− x∗‖2 + (λ2(γ + 1)− λ− αλ)〈x(t)− x∗, ẋ(t)〉

+t(λ+ 1− α+
γλ− 2

2
)‖ẋ(t)‖2.

Using the flatness assumption and replacing λ = 2α
γ+2 , we finally get:

E ′(t) +
γλ− 2

t
E(t) 6 K(α)

(
2α

(γ + 2)t
‖x(t)− x∗‖2 + 〈x(t)− x∗, ẋ(t)〉

)
(50)

where: K(α) = 2αγ
(γ+2)2 (α − 1 − 2

γ ). We now need to control the scalar product whose sign is

unknown. Combining the following two inequalities:

|〈x(t)− x∗, ẋ(t)〉| 6
√
µ

2
‖x(t)− x∗‖2 +

1

2
√
µ
‖ẋ(t)‖2 (51)

where the factor
√
µ is chosen to get the tightest control on the energy, and

t2 ‖ẋ(t)‖2 6

(
1 + θ

α

t
√
µ

)
‖λ(x(t)− x∗) + tẋ(t)‖2 + λ2

(
1 +

t
√
µ

θα

)
‖x(t)− x∗‖2 (52)
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for any θ > 0, we get:

E ′(t) +
γλ− 2

t
E(t) 6 K(α)

[√
µ

2
+

2α

(γ + 2)t

(
1 +

1

(γ + 2)θ

)
+

2α2

(γ + 2)2√µt2

]
‖x(t)− x∗‖2

+
K(α)

2
√
µt2

(
1 + θ

α

t
√
µ

)
‖λ(x(t)− x∗) + tẋ(t)‖2 (53)

6
2

µ
K(α)

[√
µ

2
+

2α

(γ + 2)t

(
1 +

1

(γ + 2)θ

)
+

2α2

(γ + 2)2√µt2

]
(F (x(t))− F (x∗))

+
K(α)

2
√
µt2

(
1 + θ

α

t
√
µ

)
‖λ(x(t)− x∗) + tẋ(t)‖2 (54)

using the growth condition G2
µ. We then choose the parameter θ to make equal the coefficients

before 1
t3 in t2(F (x(t))− F (x∗)) and 1

2 ‖λ(x(t)− x∗) + tẋ(t)‖2, i.e. such that:

2

µ

2α

(γ + 2)

(
1 +

1

(γ + 2)θ

)
=
θα

µ
(55)

or equivalently:
(γ + 2)2θ2 − 4(γ + 2)θ − 4 = 0. (56)

A straightforward computation shows that this last equation has exactly one positive root:

θ =
2

γ + 2
(1 +

√
2) (57)

For these choice of parameters, we have:

E ′(t) +
γλ− 2

t
E(t) 6

K(α)

µt2

(
√
µ+

2α

(γ + 2)t
(1 +

√
2) +

4α2

(γ + 2)2√µt2

)
E(t). (58)

Let us now define:

ϕ(t) :=
K(α)

µt2

(
√
µ+

2α

(γ + 2)t
(1 +

√
2) +

4α2

(γ + 2)2√µt2

)
(59)

and: Φ(t) =
∫ +∞
t

ϕ(x)dx. We so have:

∀t > t0, E ′(t) +
γλ− 2

t
E(t) 6 ϕ(t)E(t).

Consequently the function t 7→ E(t)tλγ−2eΦ(t) is non-increasing, and for any t1 ∈ R, we get:

∀t > t1, E(t) 6 E(t1)

(
t1
t

)λγ−2

eΦ(t1)−Φ(t). (60)

A good choice of t1 is one ensuring a control as tight as possible on the energy E . For that, t1 is
chosen such that t1 minimizes the function u 7→ uλγ−2eΦ(u) i.e. such that t1 satisfies the equation:

λγ − 2

u
− ϕ(u) = 0 (61)

Noticing that: λγ − 2 = γ+2
α K(α) and simplifying the equation by K(α), the equation can be

rewritten as:
γ + 2

αu
=

1

µu2

(
√
µ+

2α

(γ + 2)u
(1 +

√
2) +

4α2

(γ + 2)2√µu2

)
. (62)

Introducing r = (γ + 2)
√
µ

α u, we finally have to solve:

r3 − r2 − 2(1 +
√

2)r − 4 = 0. (63)
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A straightforward computation shows that the polynomial r 7→ r3 − r2 − 2(1 +
√

2)r− 4 has only
one real root: r∗ ' 3 (for which Python gives us an analytical value).

Defining t1 = α
(γ+2)

√
µr
∗, the control on the energy is given by:

∀t > t1, E(t) 6 E(
α

(γ + 2)
√
µ
r∗)

(
αr∗

t(γ + 2)
√
µ

)γλ−2

eΦ(t1)−Φ(t). (64)

Observe now that the term E( α
(γ+2)

√
µr
∗) can be bounded by the mechanical energy of the system:

Em(t) = F (x(t))− F ∗ +
1

2
‖ẋ(t)‖2 (65)

Note that this energy is non-increasing since: E′m(t) = 〈∇F (x(t)) + ẍ(t), ẋ(t)〉 = −αt ‖ẋ(t)‖2 6 0,
hence Em is uniformly bounded on [t0,+∞[. We then have:

E(t1) = t21(F (x(t1))− F (x∗)) +
1

2

∥∥∥∥ 2α

γ + 2
(x(t1)− x∗) + t1ẋ(t1))

∥∥∥∥2

= t21(F (x(t1))− F (x∗) +
1

2
‖ẋ(t1)‖2) +

2α2

(γ + 2)2
‖x(t1)− x∗‖2 +

2α

γ + 2
t1〈(x(t1)− x∗), ẋ(t1)〉

6
α2

(γ + 2)2µ
(r∗ + 2)

2
Em(t1) 6 (1 +

2

r∗
)2t21Em(t0) (66)

using (51) again to control the scalar product.

Observe that the primitive Φ(t) =
∫ +∞
t

ϕ(x)dx of ϕ has a simple analytic expression showing
that Φ is non-positive and:

Φ(t1) = (γ + 2)
K(α)

α

(
1

r∗
+

1 +
√

2

r∗2
+

4

3r∗3

)
(67)

We finally obtain the following control on the values:

F (x(t))− F (x∗) 6 C1Em(t0)

(
αr∗

t(γ + 2)
√
µ

) 2αγ
γ+2

e
2γ
γ+2C2(α−1− 2

γ ) (68)

where: C1 =
(
1 + 2

r∗

)2
, C2 = 1

r∗ + 1+
√

2
r∗2 + 4

3r∗3 .

4 Discrete non asymptotic analysis of FISTA

Let F = f + h be a convex composite function where f is a convex, differentiable function having
a L-Lipschitz gradient and h is a l.s.c. convex function whose proximal operator is known. Let
X∗ = arg minF and F ∗ = inf F .

In this section we provide a complete non-asymptotic analysis of FISTA [12]:

yn = xn +
n

n+ α
(xn − xn−1), xn+1 = proxsh(yn − s∇f(yn)) (69)

for this class of convex composite functions F satisfying additionally some global quadratic growth
property G2

µ:

∃µ > 0, ∀x ∈ RN , F (x)− F ∗ > µ

2
d(x,X∗)2. (70)

Our main contribution is this section is to provide non-asymptotic bounds on the values F (xn)−F ∗
along the iterates generated by FISTA, see Theorem 6. Our analysis is based on Lyapunov energies
that can be seen as discretization of the Lyapunov energy introduced in the continuous setting:

2E(t) = 2t2(F (x(t)− F (x∗)) + ‖λ(x(t)− x∗) + tẋ(t)‖2 .

We then prove that this bound could be slightly improve when F is nearly quadratic (i.e. satisfying
both a quadratic growth condition and a flatness condition H2).
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4.1 Non asymptotic bounds for convex composite functions

Let
En = 2sn2(F (xn)− F (x∗)) + ‖λ(xn−1 − x∗) + n(xn − xn−1)‖2 (71)

be a well-chosen discretization of the Lyapunov energy (49) introduced in the continuous setting.
Our main result provides non-asymptotic bounds on the value F (xn) − F ∗ along the iterates
generated by FISTA:

Theorem 6 Let F = f + g where f is a convex differentiable function having a L-Lipschitz
gradient for some L > 0, and g a proper convex l.s.c. function. Assume additionally that F

satisfies a quadratic growth condition G2
µ for some real parameter µ > 0. Let α0 >

9+3
√

5
4 and

κ = µ
L .

Then there exist κ0 > 0 and a real constant C3 > 0 such that for any 0 < κ ≤ κ0, the sequence
(xn)n∈N generated by FISTA satisfies:

∀n > 3α√
κ
, F (xn)− F (x∗) 6

25

9
e−2M0

(
e

3

√
2

κ
(4α− 3)(1 + C3κ

1/4)

) 2α
3

n−
2α
3 (72)

where M0 = F (x0)− F ∗ denotes the mechanical energy of the system at initial time.

Observe that in finite time (i.e. for a given number of iterations n), a fast exponential decay may
be obtained from Theorem 6 by choosing α that minimizes the function:

α 7→ 2α

3
log

(
e

4
√

2α

3n
√
κ

(1 + C3κ
1/4)

)
.

A straightforward computation shows that the minimum value is reached for:

α∗ :=
3n
√
κ

4e2
√

2 (1 + C3κ1/4)
. (73)

and with this choice of parameters we finally deduce:

F (xn)− F (x∗) 6
25

9
e−2 exp

(
− n

√
κ

2e2
√

2 (1 + C3κ1/4)

)
M0. (74)

The sketch of the proof of Theorem 6 is given in Subsection 4.2, while the proofs of the technical
lemmas are detailed in Appendix A.

Assuming now that F additionally satisfies a flatness condition H2 i.e. for any minimizer x∗:

∀x ∈ RN , F (x)− F (x∗) 6
1

2
〈∇F (x), x− x∗〉. (75)

enables us to slightly improve the bounds on the values F (xn)− F ∗ for composite functions that
are nearly quadratic:

Theorem 7 Let F : RN → R be a convex differentiable function having a L-Lipschitz gradient
and satisfying a quadratic growth condition G2

µ for some real parameters µ > 0 and L > 0. Assume
that F also satisfies a flatness condition H2.

Let α0 > 2 and α ≥ α0. Then there exist κ0 > 0 and a real constant C3 > 0 such that for any
0 < κ ≤ κ0, the sequence (xn)n∈N generated by FISTA satisfies

∀n > 3α√
κ
, F (xn)− F (x∗) 6

9

4

(
e

11α− 6

4n
√

2κ

(
1 + C3κ

1/4
))α

e−2M0 (76)

where M0 = F (x0)− F ∗ denotes the mechanical energy of the system at initial time.
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The proof of Theorem 7 is based on a variant of the Lyapunov energy (71):

En = 2s n2(F (xn)− F (x∗) +
∥∥∥α

2
(xn−1 − x∗) + (n− α

4
)(xn − xn−1)

∥∥∥2

(77)

and follows the exact same steps than those of the proof of Theorem 6. The sketch of the proof
of Theorem 7 is given in Subsection 4.3, while the proofs of the technical lemmas are detailed in
Appendix A.2.

4.2 Sketch of the proof of Theorem 6

The proof of Theorem 6 is based on the following Lyapunov energy:

En = 2sn2(F (xn)− F (x∗)) + ‖λ(xn−1 − x∗) + n(xn − xn−1)‖2 (78)

which can be seen as a discretization of the Lyapunov energy introduced in the continuous setting:

2E(t) = 2t2(F (x(t)− F (x∗)) + ‖λ(x(t)− x∗) + tẋ(t)‖2 .

Stating wn = 2s(F (xn)− F (x∗)) and:

hn = ‖xn − x∗‖2, δn = ‖xn − xn−1‖, αn =
n

n+ α
, λ =

2α

3
, (79)

the energy En can be rewritten as:

En = n2wn +
(
λ2 − λn

)
hn−1 +

(
n2 − λn

)
δn + λnhn (80)

As in the continuous setting, the first step of the proof consists in establishing some discrete
version of the differential inequality (58):

Lemma 1 Let α0 >
9+3
√

5
4 and κ = µ

L . There exists κ0 > 0 such that for any κ 6 κ0 and for any
α > α0, there exists some real constants c̃1 and c̃2 such that:

∀n > α√
κ
, En+1 −

(
1−

2α
3 − 2

n

)
En 6 C1(α, κ)

En
n2

+ C2(α, κ)
En+1

(n+ 1)2
(81)

and:

C1(α, κ) =

√
2

κ
(
4α2

9
− 2α+ 1)(1 +

√
κ)2(1 + c̃1

√
κ) (82)

C2(α, κ) =

√
2

κ
(
2α

3
− 1)(1 +

√
κ)2(1 + c̃2

√
κ) (83)

for some real constants c̃1 and c̃2.

The proof of Lemma 1 is detailed in paragraph A.1.1. The next step consists in integrating the
inequality (81):

Lemma 2 Let α0 >
9+3
√

5
4 and α > α0. Let n0 > α√

κ
. If the energy En satisfies (81) then we

have:

∀n > n0, En ≤ En0

(
n

n0

)−( 2α
3 −2)

eΦ(n0) (84)

with

Φ(n0) =
2

9n0

√
2

κ
(α− 3) (4α− 3)

(
1 + C3κ

1/4
)

(85)
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Remembering that F (xn)− F (x∗) 6 1
2sn2En for any n, we thus have:

∀n > α√
κ
, F (xn)− F (x∗) 6

En0

2s

(
n

2α
3 −2

0 eΦ(n0)
)
n−

2α
3 . (86)

A good choice of n0 is one ensuring a control as tight as possible on the values F (xn)− F ∗. For

that, n0 is chosen such that it minimizes the function f : x 7→ x
2α
3 −2eΦ(x). A straightforward

computation gives:

n0 =
1

3

√
2

κ
(4α− 3)(1 + C3κ

1/4). (87)

Observe that f(n0) = (e n0)
2α
3 −2

and that reducing κ0 if needed, we get for any κ < κ0:

α√
κ
6

1

3

√
2

κ
(4α− 3)(1 + C3κ

1/4) 6 3
α√
κ
. (88)

We deduce:

∀n > 3α√
κ
, F (xn)− F (x∗) ≤ En0

2s
n−

2α
3 (e n0)(

2α
3 −2) (89)

i.e.:

∀n > 3α√
κ
, F (xn)− F (x∗) ≤ En0

2se2n2
0

(
e

3

√
2

κ
(4α− 3)(1 + C3κ

1/4)

) 2α
3

n−
2α
3 (90)

Applying Lemma 6 to uniformly bound the energy En0
and the fact that n0 > α√

κ
, we have:

En0

2sn0
2
6

(
1 +

2α

3
√
κn0

)2

Mn0
6

25

9
Mn0

(91)

where Mn is the mechanical energy: Mn = F (xn)−F (x∗) + 1
2‖xn−xn−1‖2. Since the mechanical

energy associated to the Nesterov scheme is non-increasing (see [12, Corollary 2]) and x−1 = x0,
we then get:

∀n > n0, F (xn)− F (x∗) 6
25

9
e−2M0

(
e

3

√
2

κ
(4α− 3)(1 + C3κ

1/4)

) 2α
3

n−
2α
3 .

4.3 Sketch of the proof of Theorem 7

The proof of Theorem 7 follows the same line than the proof of Theorem 6, and is based on the
following Lyapunov energy:

En = 2s n2(F (xn)− F (x∗) +
∥∥∥α

2
(xn−1 − x∗) + (n− α

4
)(xn − xn−1)

∥∥∥2

. (92)

As in the proof of Theorem 6, the first step of this proof consists in establishing some discrete
version of the differential inequality (58):

Lemma 3 Let α0 > 2 and κ = µ
L . There exists κ0 > 0 such that for any κ 6 κ0 and for any

α > α0, there exists some real constants c̃1 and c̃2 such that:

∀n > α√
κ
, En+1 −

(
1− α− 2

n

)
En 6 C1(α, κ)

En
n2

+ C2(α, κ)
En+1

(n+ 1)2
(93)

where:

C1(α, κ) =
(α− 2)(5α− 2)

4
√

2κ

(
1 + c̃1

√
κ
)

(1 +
√
κ)2 (94)

C2(α, κ) =
(α− 2)2

4
√

2
√
κ

(
1 + c̃2

√
κ
)

(1 +
√
κ)2. (95)
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The proof of Lemma 3 is detailed in paragraph A.2.1. The next step consists in integrating the
inequality (93).

Lemma 4 Let α0 > 2 and α > α0. Let n0 > α√
κ

. If En satisfies (93) then there exists a real

constant C3 > 0 such that:

∀n > n0, En ≤ En0

(n0

n

)α−2

eΦ(n0) (96)

with

Φ(n) =
(α− 2)(11α− 6)

4n
√

2κ

(
1 + C3κ

1/4
)

(97)

A good choice for n0 is one ensuring a control as tight as possible on the values F (xn) − F ∗.
For that n0 is chosen such that it minimizes the function f : x 7→ xα−2eΦ(x). A straightforward
computation gives:

n0 :=
11α− 6

4
√

2κ

(
1 + C3κ

1/4
)
. (98)

Observe that f(n0) = (e n0)
α−2

and that reducing κ0 if needed, we get for any κ < κ0:

α√
κ
6

11α− 6

4
√

2κ

(
1 + C3κ

1/4
)
6 3

α√
κ
. (99)

Hence:

∀n > 3α√
κ
, F (xn)− F (x∗) 6

En
2sn2

6
En0

2sn2
0

(n0

n

)α
eα−2 (100)

i.e.:

∀n > 3α√
κ
, F (xn)− F (x∗) 6

En0

2se2n2
0

(
e

11α− 6

4n
√

2κ

(
1 + C3κ

1/4
))α

(101)

Applying Lemma 8 to uniformly bound the energy En0
and noticing that: α

2n0
√
κ
6 1

2 , we have:

En0

2sn2
0

6

(
1 +

α

2n0
√
κ

)2

Mn0 6
9

4
Mn0

where Mn is the mechanical energy: Mn = F (xn)−F (x∗) + 1
2‖xn−xn−1‖2. Since the mechanical

energy associated to the Nesterov scheme is non-increasing (see [12, Corollary 2]) and x−1 = x0,
we then get:

∀n > 3α√
κ
, F (xn)− F (x∗) 6

9

4

(
e

11α− 6

4n
√

2κ

(
1 + C3κ

1/4
))α

e−2M0 (102)

Let us now reformulate this very last inequality. Let ε > 0. For κ0 small enough and for any
0 < κ < κ0, we have:

∀n > 3α√
κ
, F (xn)− F (x∗) 6

9

4

(
e

11α− 6

4n
√

2κ
(1 + ε)

)α
e−2M0

6
9

4

(
e

11α

4n
√

2κ
(1 + ε)

)α
e−2M0

To find a good value of α with respect to n, we are led to minimize

α 7→ α log

(
e

11α

4n
√

2κ
(1 + ε)

)
.

A straightforward computation shows that the minimum value is reached for:

α∗ :=
4n
√

2κ

11e2 (1 + ε)
. (103)

We therefore deduce

∀n > 3α√
κ
, F (xn)− F (x∗) 6

9

4
e−2 exp

(
− 4n

√
2κ

11e2(1 + ε)

)
M0. (104)
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A Technical results of Section 4

A.1 Technical Lemmas for Theorem 6

The proof of Theorem 6 is based on the following Lyapunov energy:

En = 2sn2(F (xn)− F (x∗)) + ‖λ(xn−1 − x∗) + n(xn − xn−1)‖2 (105)

which can be rewritten as:

En = n2wn +
(
λ2 − λn

)
hn−1 +

(
n2 − λn

)
δn + λnhn (106)

using the reduced notations (107):

wn = 2s(F (xn)− F (x∗)), hn = ‖xn − x∗‖2, δn = ‖xn − xn−1‖, αn =
n

n+ α
, λ =

2α

3
, (107)

A.1.1 Proof of Lemma 1.

First step: using the reduced notations (107), we prove that:

En+1 −
(

1−
2α
3 − 2

n

)
En 6

4αK(α)

3

hn
n

+A1(n, α)δn +B1(n, α)(hn−1 − hn)

+B3(n, α)(hn+1 − hn − δn+1) (108)

with:

A1(n, α) =
17α2

9
− 8α

3
+ 2− α (10α2 − 18α+ 9)n+ 7α3 − 12α2 + 6α

3(n+ α)2
,

B1(n, α) = −2

9
α2 +

4

3
α− 1 +

1

3

3α− 2α3

n+ α
+

1

27

8α3 − 24α2

n
,

B3(n, α) =
2

3
α− 1.

Indeed:

En+1 −
(

1−
2α
3 − 2

n

)
En = (n+ 1)2wn+1 −

(
1−

2α
3 − 2

n

)
n2wn

+
(
(n+ 1)2 − λ(n+ 1)

)
δn+1 −

(
1−

2α
3 − 2

n

)(
n2 − λn

)
δn

+

(
λ2 − λ(n+ 1)− λn

(
1−

2α
3 − 2

n

))
hn + λ(n+ 1)hn+1

−(λ2 − λn)

(
1−

2α
3 − 2

n

)
hn−1 (109)
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Observe now that:

(n+ 1)2wn+1 −
(

1−
2α
3 − 2

n

)
n2wn

=

(
1−

2α
3 − 2

n

)
n2(wn+1 − wn) +

(
(n+ 1)2 − n2

(
1−

2α
3 − 2

n

))
wn+1

= n

(
n− (

2α

3
− 2)

)
(wn+1 − wn) + (

2α

3
n+ 1)wn+1

Combining the two following inequalities

wn+1 − wn 6 α2
nδn − δn+1 (110)

from [12] and:
wn+1 6 ‖xn + αn(xn − xn−1)− x∗‖2 − ‖xn+1 − x∗‖2

from [2], or equivalently with our notations:

wn+1 6 (1 + αn)hn − αnhn−1 − hn+1 + (αn + α2
n)δn (111)

we then deduce:

(n+ 1)2wn+1 −
(

1−
2α
3 − 2

n

)
n2wn

6 n

(
n− 2α

3
+ 2

)
(α2
nδn − δn+1) + (

2α

3
n+ 1)

(
(1 + αn)hn − αnhn−1 − hn+1 + (αn + α2

n)δn
)

It follows:

En+1−
(

1−
2α
3 − 2

n

)
En 6 A1(n, α)δn+A2(n, α)δn+1+B1(n, α)hn−1+B2(n, α)hn+B3(n, α)hn+1

(112)
where:

A1(n, α) =
17α2

9
− 8α

3
+2−α (10α2 − 18α+ 9)n+ 7α3 − 12α2 + 6α

3(n+ α)2
, A2(n, α) = 1− 2α

3
. (113)

and

B1(n, α) = −2

9
α2+

4

3
α−1+

1

3

3α− 2α3

n+ α
+

1

27

8α3 − 24α2

n
, B2(n, α) =

2

9
α2−2α+2− 1

3

3α− 2α3

n+ α
,

(114)
and

B3(n, α) =
2

3
α− 1. (115)

Observe now that: A2(n, α) = −B3(n, α) and:

B1(n, α) +B2(n, α) +B3(n, α) =
8α2

27

α− 3

n
=

4αK(α)

3n
.

so that (112) becomes:

En+1 −
(

1−
2α
3 − 2

n

)
En 6

4αK(α)

3

hn
n

+A1(n, α)δn +B1(n, α)(hn−1 − hn)

+B3(n, α)(hn+1 − hn − δn+1) (116)
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Step 2: First observe that combining the growth condition G2
µ with the control of the values by

the energy (namely: En > n2wn for all n), we have:

∀n ∈ N∗,
hn
n
6
wn
κn
6

En
κn3

6
En

κn(n− 2α
3 )2

,

so that applying the following Lemma whose proof is detailed in Appendix A.1.3:

Lemma 5 for all n > 1 and any (A,B) ∈ R2

Aδn +B(hn−1 − hn) 6

(
2|A+B|+

√
2|B|
√
sµ

+
8α2

9sµn2

)
En

(n− 2α
3 )2

. (117)

we can prove that:

4αK(α)

3

hn
n

+A1(n, α)δn +B1(n, α)(hn−1 − hn) 6
C̃1(n, α, κ)En

(n− 2α
3 )2

(118)

and:

B3(n, α)(hn+1 − hn − δn+1) 6
C̃2(n, α, κ)En+1

(n+ 1− 2α
3 )2

(119)

where:

C̃1(n, α, κ) = 2|5
3
α2− 4α

3
+1+R(n, α)|+

√
2
| − 2α2

9 + 4α
3 − 1 +Q(n, α)|
√
κ

+
8α2

9κn2
+

4αK(α)

3κn
(120)

and:

C̃2(n, α, κ) =
√

2
2α
3 − 1
√
κ

+
8α2

9κ(n+ 1)2
. (121)

with: |R(α, n)| 6 Kα3

n and |Q(α, n)| 6 Kα3

n . Finally observe that for all n > 2α
3 (1 + 1√

κ
), we have:

1

n− 2α
3

≤ 1

n

(
1 +
√
κ
)

and
1

n+ 1− 2α
3

≤ 1

n+ 1

(
1 +
√
κ
)

(122)

hence:

En+1 −
(

1−
2α
3 − 2

n

)
En 6 (1 +

√
κ)2

(
C̃1(n, α, κ)

En
n2

+ C̃2(n, α, κ)
En+1

(n+ 1)2

)
. (123)

Step 3: The last step is to uniformly bound the coefficients C̃1(n, α, κ) and C̃2(n, α, κ) with
respect to n. For any n > α√

κ
and α > 3, we have:

C̃2(n, α, κ) =

√
2

κ

(
2α

3
− 1

)(
1 +

8α2

9
√

2( 2α
3 − 1)κ(n+ 1)2

√
κ

)

6

√
2

κ

(
2α

3
− 1

)(
1 + c̃2

√
κ
)

with: c̃2 = 8
9
√

2
. The calculations to bound the coefficient C̃1(n, α, κ) are similar but a little more

painful. For all n > α√
κ

, we have:

4α
K(α)

3κn
6

8α(α− 3)

27
√
κ
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so that:

C̃1(n, α, κ) = 2|5
3
α2 − 4α

3
+ 1 +R(n, α)|+

√
2
| − 2α2

9 + 4α
3 − 1 +Q(n, α)|
√
κ

+
8α2

9κn2
+ 4α

K(α)

3κn

6

√
2

κ

(
2α2

9
− 4α

3
+ 1 + |Q(n, α)|+ (

5

3
α2 − 4α

3
+ 1 + |R(n, α)|)

√
2κ+

4
√

2α2

9n2
√
κ

+
4
√

2α(α− 3)

27

)

6

√
2

κ

(
4α2

9
− 2α+ 1 + |Q(n, α)|+ (

5

3
α2 − 4α

3
+ 1 + |R(n, α)|)

√
2κ+

4
√

2α2

9n2
√
κ

)

Let P (α) = 4α2

9 − 2α+ 1. The coefficient C̃1(n, α, κ) can be rewritten as:

C̃1(n, α, κ) 6

√
2

κ
P (α)

(
1 +

∣∣∣∣Q(n, α)

P (α)

∣∣∣∣+
√

2κ

(
5α2 − 4α+ 3

3P (α)
+

∣∣∣∣R(n, α)

P (α)

∣∣∣∣)+

√
2

κ

4α2

9P (α)n2

)

Studying the variations of the function α 7→ α2

P (α) , we can prove that for any real α0 >
9+3
√

5
4 , we

have for any α > α0

P (α) > P (α0) and 0 <
α2

P (α)
6

α2
0

P (α0)

so that:

∀n > α√
κ
,

α3

nP (α)
6

α2

P (α)

√
κ 6

α2
0

P (α0)

√
κ

and

∀n > α√
κ
,

√
2

κ

4α2

9P (α)n2
6

4
√

2

9P (α0)

√
κ (124)

It finally exists some real constant c̃1 such that for any n ≥ α√
κ

,

C̃1(n, α, κ) 6

√
2

κ

(
4α2

9
− 2α+ 1

)(
1 + c̃1

√
κ
)
. (125)

Combining (122) and (125), there thus exists κ0 > 0 such that for any κ 6 κ0 and for any

α > α0 >
9+3
√

5
4 , the inequality (81) holds as expected:

En+1 −
(

1−
2α
3 − 2

n

)
En 6

C1(α, κ)En
n2

+
C2(α, κ)En+1

(n+ 1)2

with:

C1(α, κ) =

√
2

κ
(
4α2

9
− 2α+ 1)(1 +

√
κ)2(1 + c̃1

√
κ) (126)

C2(α, κ) =

√
2

κ
(
2α

3
− 1)(1 +

√
κ)2(1 + c̃2

√
κ) (127)

�

A.1.2 Proof of Lemma 2

Assume that the energy En satisfies:

En+1 −
(

1−
2α
3 − 2

n

)
En 6

C1(α, κ)En
n2

+
C2(α, κ)En+1

(n+ 1)2
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i.e.: (
1− C2(α, κ)

(n+ 1)2

)
En+1 −

(
1−

2α
3 − 2

n
+
C1(α, κ)

n2

)
En 6 0. (128)

Let n0 > α√
κ

. We then deduce:

∀n > n0, log(En+1)− log(En0
) 6

n∑
k=n0

log

1−
2α
3 −2

k + C1(α,κ)
k2

1− C2(α,κ)
(k+1)2

 . (129)

Using now the following classical inequalities:

∀x > −1,
x

x+ 1
≤ log(1 + x) ≤ x, (130)

we get:

log

(
1−

2α
3 − 2

k
+
C1(α, κ)

k2

)
≤ −

2α
3 − 2

k
+
C1(α, κ)

k2
(131)

and

− log

(
1− C2(α, κ)

(k + 1)2

)
6

C2(α, κ)

(k + 1)2 − C2(α, κ)
(132)

We therefore get:

log

1−
2α
3 −2

k + C1(α,κ)
k2

1− C2(α,κ)
(k+1)2

 ≤ − 2α
3 − 2

k
+
C1(α, κ)

k2
+

C2(α, κ)

(k + 1)2 − C2(α, κ)
(133)

Hence:

log(En+1)− log(En0
) 6

n∑
k=n0

(
−

2α
3 − 2

k
+
C1(α, κ)

k2
+

C2(α, κ)

(k + 1)2 − C2(α, κ)

)
(134)

We are now going to make use of the fact that the functions x 7→ 1
x , x 7→ 1

x2 and x 7→ C2(α,κ)
x2−C2(α,κ)

are decreasing functions on (C2,+∞). Observe that all coefficients in the very last inequality are
actually non negative since α > α0 > 3. We then have:∫ k+1

k

dx

x
≤ 1

k
,

1

k2
≤
∫ k

k−1

dx

x2
(135)

and:
C2(α, κ)

(k + 1)2 − C2(α, κ)
≤
∫ k+1

k

C2(α, κ)

x2 − C2(α, κ)
dx (136)

so that:

log(En+1)− log(En0
) 6 −

(
2α

3
− 2

)∫ n+1

n0

dx

x
+C1(α, κ)

∫ n

n0−1

dx

x2
+C2(α, κ)

∫ n+1

n0

dx

x2 − C2(α, κ)

Noticing that:

1

x2 − C2(α, κ)
=

1

2
√
C2(α, κ)

(
1

x−
√
C2(α, κ)

− 1

x+
√
C2(α, κ)

)
,

we eventually get:

log(En+1)− log(En0
) 6 −

(
2α

3
− 2

)
log

(
n+ 1

n0

)
+ C1(α, κ)

(
1

n0 − 1
− 1

n

)
+

√
C2(α, κ)

2
log

(
(n+ 1−

√
C2(α, κ))(n0 +

√
C2(α, κ))

(n+ 1 +
√
C2(α, κ))(n0 −

√
C2(α, κ))

)
(137)
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i.e.:

log(En+1)− log(En0) 6 −
(

2α

3
− 2

)
log

(
n+ 1

n0

)
+ C1(α, κ)

(
1

n0 − 1
− 1

n

)
(138)

+

√
C2(α, κ)

2

(
log

(
n+ 1−

√
C2(α, κ)

n+ 1 +
√
C2(α, κ)

)
+ log

(
n0 +

√
C2(α, κ)

n0 −
√
C2(α, κ)

))
Taking the exponential, we get:

En+1 ≤ En0

(
n+ 1

n0

)−( 2α
3 −2)

exp(Φ̃(n0)− Φ̃(n+ 1)) (139)

with:

Φ̃(n) =
C1(α, κ)

n− 1
+

√
C2(α, κ)

2
log

(
n+

√
C2(α, κ)

n−
√
C2(α, κ)

)
.

Let us finally compute a more tractable bound on the function Φ̃(n): using the inequality log(1 +
x) ≤ x for x ≤ 1, we have:

0 ≤ log

(
n+

√
C2(α, κ)

n−
√
C2(α, κ)

)
= log

(
1 +

2
√
C2(α, κ)

n−
√
C2(α, κ)

)
6

2
√
C2(α, κ)

n−
√
C2(α, κ)

(140)

Hence we deduce that:

0 ≤
√
C2(α, κ)

2
log

(
n+

√
C2(α, κ))

n−
√
C2(α, κ)

)
6

C2(α, κ)

n−
√
C2(α, κ)

(141)

Now, using the definition of the coefficients C1(α, κ) and C2(α, κ) given in Lemma 1, we get:

0 ≤ Φ̃(n) ≤ C1(α, κ)

n− 1
+

C2(α, κ)

n−
√
C2(α, κ)

6
2C1(α, κ)

n
+

C2(α, κ)

n−
√
C2(α, κ)

(142)

6
1

n

√
2

κ
(1 +

√
κ)2

2

(
4α2

9
− 2α+ 1

)(
1 + c̃1

√
κ
)

+

(
2α

3
− 1

)
1 + c̃2

√
κ

1−
√
C2(α,κ)

n


Observe then that for any n > α√

κ
,

1

1−
√
C2(α,κ)

n

6
1

1−
√
C2(α,κ)

α

√
κ
6 1 + 2

√
C2(α, κ)

α

√
κ

so that there exists a real constant c̃3 such that for κ small enough and any α > α0 we have:

1

1−
√
C2(α,κ)

n

6 1 + c̃3κ
1/4.

Therefore we finally get for any n > α√
κ

:

Φ̃(n) ≤ 1

n

√
2

κ

(
1 +
√
κ
)2((8α2

9
− 4α+ 2

)(
1 + c̃1

√
κ
)

+

(
2α

3
− 1

)(
1 + c̃2

√
κ
) (

1 + c̃3κ
1/4
))

(143)

Since 8α2

9 − 4α + 2 + 2α
3 − 1 = 2

9 (α− 3) (4α− 3), we then deduce that there exists C3 > 0
(independent to α) such that

∀n > α√
κ
, Φ̃(n) 6

2

9n

√
2

κ
(α− 3) (4α− 3)

(
1 + C3κ

1/4
)

(144)
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Let us introduce:

Φ(n) =
2

9n

√
2

κ
(α− 3) (4α− 3)

(
1 + C3κ

1/4
)
.

As expected we finally have:

∀n > n0, En+1 ≤ En0

(
n+ 1

n0

)−( 2α
3 −2)

eΦ(n0) (145)

�

A.1.3 Technical lemma

Lemma 6 Let Mn the mechanical energy, that is:

Mn = F (xn)− F (x∗) +
1

2s
‖xn − xn−1‖2 (146)

Then we have

En
2sn2

6

(
1 +

4α2

9κn2
+

4α

3
√
κn

)
Mn =

(
1 +

2α

3
√
κn

)2

Mn (147)

Proof: Let us first remark that:

bn =

∥∥∥∥2α

3
(xn−1 − x∗) + n(xn − xn−1)

∥∥∥∥2

=

∥∥∥∥2α

3
(xn − x∗) +

(
n− 2α

3

)
(xn − xn−1)

∥∥∥∥2

=
4α2

9
‖xn − x∗‖2 + (n− 2α

3
)2‖xn − xn−1‖2 +

4α

3
(n− 2α

3
)〈xn − x∗, xn − xn−1〉

6
4α2

9
‖xn − x∗‖2 + n2‖xn − xn−1‖2 +

4α

3
(n− 2α

3
)〈xn − x∗, xn − xn−1〉

Using a discrete version of the inequality (51), we have:

|〈xn − x∗, xn − xn−1|〉 6
√
κ

2
‖xn − x∗‖2 +

1

2
√
κ
‖xn − xn−1‖2 (148)

so that:

bn ≤
4α2

9
‖xn − x∗‖2 + n2 ‖xn − xn−1‖2 +

2αn

3

(√
κ‖xn − x∗‖2 +

1√
κ
‖xn − xn−1‖2

)
(149)

Hence:

En
2sn2

= F (xn)− F ∗ +
1

2sn2
bn

= Mn +
2α2

9sn2
‖xn − x∗‖2 +

α

3sn

(√
κ‖xn − x∗‖2 +

1√
κ
‖xn − xn−1‖2

)
Using now the quadratic growth condition G2

µ and remembering that: sµ = κ, we get:

En
2sn2

6

(
1 +

4α2

9κn2
+

4α

3
√
κn

)
Mn =

(
1 +

2α

3
√
κn

)2

Mn
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Proof of Lemma 5 Let us prove that for all n > 1 and any (A,B) ∈ R2

Aδn +B(hn−1 − hn) 6

(
2|A+B|+

√
2|B|
√
sµ

+
8α2

9sµn2

)
1

(n− 2α
3 )2

En. (150)

Firstly notice that

Aδn +B(hn−1 − hn) = (A+B)δn +B(hn−1 − hn − δn) (151)

and for any θ > 0

|hn−1 − hn − δn| = 2|〈xn − xn−1, xn − x∗〉| 6
hn
θ

+ θδn. (152)

Combining the last two inequalities, it follows that for any θ > 0:

Aδn +B(hn−1 − hn) 6 (A+B + θ|B|)δn +
|B|
θ
hn (153)

To bound the coefficient of δn we use a specific expression of bn:

bn =

∥∥∥∥2α

3
(xn − x∗) + (n− 2α

3
)(xn − xn−1)

∥∥∥∥2

(154)

Applying the inequality ‖u‖2 6 2 ‖u+ v‖2+2 ‖v‖2 to u = (n− 2α
3 )(xn−xn−1) and v = 2α

3 (xn−x∗),
we get:

‖u‖2 6 2 ‖u+ v‖2 + 2 ‖v‖2 (155)

can be written

(n− 2α

3
)2δn 6 2bn +

8α2

9
hn. (156)

It follows that

δn 6
2

(n− 2α
3 )2

bn +
8α2

9(n− 2α
9 )2

hn. (157)

and thus

Aδn +B(hn−1 − hn) 6 (|A+B|+ θ|B|) 2

(n− 2α
3 )2

bn +

(
|B|
θ

+
8α2

9(n− 3α
4 )2

)
hn (158)

Using now the growth condition hn 6 1
sµwn for all n ∈ N, we get:

Aδn +B(hn−1 − hn) 6 (|A+B|+ θ|B|) 2

(n− 2α
3 )2

bn +

(
|B|
sµθ

+
8α2

9sµ(n− 2α
3 )2

)
wn (159)

Choosing θ = 1√
2sµ

we finally deduce:

Aδn +B(hn−1 − hn) 6 (2|A+B|+
√

2|B|
√
sµ

)
1

(n− 2α
3 )2

bn +

(√
2|B|
√
sµ

+
8α2

9sµ(n− 2α
3 )2

)
wn (160)

and

Aδn +B(hn−1 − hn) 6

(
2|A+B|+

√
2|B|
√
sµ

+
8α2

9sµn2

)
1

(n− 2α
3 )2

En. (161)

which concludes the proof of the lemma.
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A.2 Technical lemmas for Theorem 7

The proof of this theorem is based on the analysis of the following Lyapunov sequence:

En = 2s n2(F (xn)− F (x∗) +
∥∥∥α

2
(xn−1 − x∗) + (n− α

4
)(xn − xn−1)

∥∥∥2

. (162)

Using the reduced notations wn = 2s(F (xn)− F (x∗)) and:

hn = ‖xn − x∗‖2, δn = ‖xn − xn−1‖, αn =
n

n+ α
, λ =

α

2
, (163)

the energy En can be rewritten as:

En = n2wn +
(
λ2 − λn+

α

4
λ
)
hn−1 +

[(
n− α

4

)2

− λ(n− α

4
)

]
δn + λ(n− α

4
)hn (164)

which can be seen as a discretization of the Lyapunov energy in the continuous setting.

A.2.1 Proof of Lemma 3

First step: using the reduced notations (163), we prove that:

En+1 −
(

1− α− 2

n

)
En 6 αK(α)

hn
n

+A1(n, α)δn +B1(n, α)(hn−1 − hn)

+A2(n, α)δn+1 +B3(n, α)(hn+1 − hn) (165)

with:

A1(n, α) = 1− 2α+
37

16
α2 − α

16n(n+ α)2

[
n2
(
77α2 − 90α+ 24

)
+ 2nα

(
25α2 − 26α+ 8

)
− 3α3 (α− 2)

]
A2(n, α) = 1− α+

α2

16

B1(n, α) = −1

2

(
1− 2α+

3

4
α2

)
− α

8n(n+ α)

(
(α2 + 6α− 4)n− 3α2(α− 2)

)
B3(n, α) = −1

8
(α− 2)2

Indeed:

En+1 −
(

1− α− 2

n

)
En = (n+ 1)2wn+1 −

(
1− α− 2

n

)
n2wn

+

(
λ2 − λ(n+ 1) +

α

4
λ− λ

(
1− α− 2

n

)
(n− α

4
)

)
hn

+
(

(n+ 1− α

4
)2 − λ(n+ 1− α

4
)
)
δn+1

−
(

1− α− 2

n

)(
(n− α

4
)2 − λ(n− α

4
)
)
δn + λ(n+ 1− α

4
)hn+1

−(λ2 − λn+
α

4
λ)

(
1− α− 2

n

)
hn−1 (166)

Observe now that, combining the two following inequalities

wn+1 − wn 6 α2
nδn − δn+1 (167)

from [12] and:

wn+1 6
1

2

(
‖xn + αn(xn − xn−1)− x∗‖2 − ‖xn+1 − x∗‖2

)
28



from [2], or equivalently with our notations:

wn+1 6
1

2

(
(1 + αn)hn − αnhn−1 − hn+1 + (αn + α2

n)δn
)

(168)

we deduce:

(n+ 1)2wn+1 −
(

1− α− 2

n

)
n2wn = n (n− (α− 2)) (wn+1 − wn) + (αn+ 1)wn+1

6 n (n− α+ 2) (α2
nδn − δn+1)

+
1

2
(αn+ 1)

(
(1 + αn)hn − αnhn−1 − hn+1 + (αn + α2

n)δn
)

Noticing that:

B1(n, α) +B2(n, α) +B3(n, α) =
α2(α− 2)

4n
=
αK(α)

n
,

we get:

En+1 −
(

1− α− 2

n

)
En 6 αK(α)

hn
n

+A1(n, α)δn +B1(n, α)(hn−1 − hn)

+A2(n, α)δn+1 +B3(n, α)(hn+1 − hn) (169)

as expected.

Step 2: combining the growth condition G2
µ with the control of the values by the energy (namely:

En > n2wn for all n), we have:

∀n ∈ N∗,
hn
n
6
wn
κn
6

En
κn3

6
En

κn(n− 3α
4 )2

,

so that applying the following Lemma whose proof is detailed in Appendix A.2.3:

Lemma 7 For any n > 1 and (A,B) ∈ R2, we have:

Aδn +B(hn−1 − hn) 6

(
2|A+B|+

√
2|B|
√
sµ

+
α2

4sµn2

)
1

(n− 3α
4 )2

En. (170)

we can prove that:

αK(α)
hn
n

+A1(n, α)δn +B1(n, α)(hn−1 − hn) 6
C̃1(n, α, κ)En

(n− 3α
4 )2

(171)

and:

A2(n, α)δn+1 +B3(n, α)(hn+1 − hn) 6
C̃2(n, α, κ)En+1

(n+ 1− 3α
4 )2

(172)

where:

C̃1(n, α, κ) = |31

8
α2 − 2α+ 1 +R(n, α)|+

| 3α
2

4 − 2α+ 1 +Q(n, α)|
√

2κ
+

α2

4κn2
+
αK(α)

κn
(173)

and:

C̃2(n, α, κ) =

∣∣∣∣α2

8
+ α− 1

∣∣∣∣+
√

2
(α− 2)2

8
√
κ

+
α2

4κ(n+ 1)2
. (174)

with: |R(α, n)| 6 Kα3

n and |Q(α, n)| 6 Kα3

n . Finally observe that for all n > 3α
4 (1 + 1√

κ
), we have:

1

n− 3α
4

≤ 1

n

(
1 +
√
κ
)

and
1

n+ 1− 3α
4

≤ 1

n+ 1

(
1 +
√
κ
)

(175)

hence:

En+1 −
(

1− α− 2

n

)
En 6 (1 +

√
κ)2

(
C̃1(n, α, κ)

En
n2

+ C̃2(n, α, κ)
En+1

(n+ 1)2

)
. (176)
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Step 3: The last step is to uniformly bound the coefficients C̃1(n, α, κ) and C̃2(n, α, κ) with
respect to n. Let α0 > 2. For any n > α√

κ
and α > α0, we have:

C̃2(n, α, κ) =
α2

8
+ α− 1 +

√
2

(α− 2)2

8
√
κ

+
α2

4κ(n+ 1)2
6
α2

8
+ α− 3

4
+
√

2
(α− 2)2

8
√
κ

6
(α− 2)2

4
√

2
√
κ

(
1 +

α2 + 8α− 6√
2(α− 2)2

√
κ

)
6

(α− 2)2

4
√

2
√
κ

(
1 + c̃2

√
κ
)

with c̃2 =
α2

0+8α0−6√
2(α0−2)2

. The calculations to bound the coefficient C̃1(n, α, κ) are similar but a little

more painful. Noticing that

∀n > α√
κ
,
αK(α)

κn
6
α(α− 2)

4
√
κ
6
α(α− 2)

2
√

2κ
, (177)

and that: 3α2

4 − 2α+ 1 > 0 for any α > 2, the coefficient C̃1(n, α, κ) can be rewritten as:

C̃1(n, α, κ) 6

∣∣∣∣31

8
α2 − 2α+ 1

∣∣∣∣+ |R(n, α)|+
3α2

4 − 2α+ 1 + |Q(n, α)|
√

2κ
+

α2

4κn2
+
αK(α)

κn

6
(α− 2)(5α− 2)

4
√

2κ

[
1 +

4|Q(n, α)|
(α− 2)(5α− 2)

+
α2
√

2

(α− 2)(5α− 2)
√
κn2

+

(∣∣∣∣ 31α2 − 16α+ 8

2(α− 2)(5α− 2)

∣∣∣∣+
4 |R(n, α)|

(α− 2)(5α− 2)

)√
2κ

]
Observe now that for any α > α0 > 2, we can prove that:

1

(α− 2)(5α− 2)
6

1

(α0 − 2)(5α0 − 2)
and

α2

(α− 2)(5α− 2)
6

α2
0

(α0 − 2)(5α0 − 2)
(178)

so that there exists some real constant c̃1 > 0 such that:

∀n ≥ α√
κ
, C̃1(n, α, κ) 6

(α− 2)(5α− 2)

4
√

2κ

(
1 + c̃1

√
κ
)

(179)

Combining (123) and (125), there thus exists κ0 > 0 such that for any κ 6 κ0 and for any
α > α0 > 2, the inequality (93) holds as expected:

En+1 −
(

1− α− 2

n

)
En 6

C1(α, κ)En
n2

+
C2(α, κ)En+1

(n+ 1)2

with:

C1(α, κ) =
(α− 2)(5α− 2)

4
√

2κ

(
1 + c̃1

√
κ
)

(1 +
√
κ)2 (180)

C2(α, κ) =
(α− 2)2

4
√

2
√
κ

(
1 + c̃2

√
κ
)

(1 +
√
κ)2 (181)

�

A.2.2 Proof of Lemma 4

Assume that the energy En satisfies:

En+1 −
(

1− α− 2

n

)
En 6

C1(α, κ)En
n2

+
C2(α, κ)En+1

(n+ 1)2
(182)
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i.e.: (
1− C2(α, κ)

(n+ 1)2

)
En+1 −

(
1− α− 2

n
+
C1(α, κ)

n2

)
En 6 0. (183)

Let n0 > α√
κ

. We then deduce:

∀n > n0, log(En+1)− log(En0) 6
n∑

k=n0

log

1− α−2
k + C1(α,κ)

k2

1− C2(α,κ)
(k+1)2

 . (184)

Using now the following classical inequalities (if −1 < x):

x

x+ 1
≤ log(1 + x) ≤ x (185)

we get:

log

(
1− α− 2

k
+
C1(α, κ)

k2

)
≤ −α− 2

k
+
C1(α, κ)

k2
(186)

and

− log

(
1− C2(α, κ)

(k + 1)2

)
6

C2(α, κ)

(k + 1)2 − C2(α, κ)
(187)

We therefore get:

log

1− α−2
k + C1(α,κ)

k2

1− C2(α,κ)
(k+1)2

 6 −α− 2

k
+
C1(α, κ)

k2
+

C2(α, κ)

(k + 1)2 − C2(α, κ)
(188)

Hence:

log(En+1)− log(En0
) 6

n∑
k=n0

(
−α− 2

k
+
C1(α, κ)

k2
+

C2(α, κ)

(k + 1)2 − C2(α, κ)

)
(189)

We are now going to make use of the fact that the functions x 7→ 1
x , x 7→ 1

x2 , and x 7→ C2

x2−C2

are decreasing functions on (C2,+∞). Observe that all coefficients in the very last inequality are
actually non negative for any α > α0 > 2. We then have:∫ k+1

k

dx

x
≤ 1

k
,

1

(k + 1)2
≤
∫ k+1

k

dx

x2
(190)

and
C2(α, κ)

(k + 1)2 − C2(α, κ)
6
∫ k+1

k

C2(α, κ)

x2 − C2(α, κ)
dx (191)

so that:

log(En+1)− log(En0
) 6 −(α− 2)

∫ n+1

n0

dx

x
+ C1(α, κ)

∫ n

n0−1

dx

x2
+ C2(α, κ)

∫ n+1

n0

dx

x2 − C2(α, κ)
(192)

Noticing that:

1

x2 − C2(α, κ)
=

1

2
√
C2(α, κ)

(
1

x−
√
C2(α, κ)

− 1

x+
√
C2(α, κ)

)
,

we eventually get:

log(En+1)− log(En0
) 6 −(α− 2) log

(
n+ 1

n0

)
+ C1(α, κ)

(
1

n0 − 1
− 1

n

)
+

√
C2(α, κ)

2
log

(
(n+ 1−

√
C2(α, κ))(n0 +

√
C2(α, κ))

(n+ 1 +
√
C2(α, κ))(n0 −

√
C2(α, κ))

)
(193)

31



i.e.:

log(En+1)− log(En0
) 6 −(α− 2) log

(
n+ 1

n0

)
+ C1(α, κ)

(
1

n0 − 1
− 1

n

)
(194)

+

√
C2(α, κ)

2
log

(
n+ 1−

√
C2(α, κ)

n+ 1 +
√
C2(α, κ)

)
+

√
C2(α, κ)

2
log

(
n0 +

√
C2(α, κ)

n0 −
√
C2(α, κ)

)
Taking the exponential, we get:

En+1 ≤ En0

(
n+ 1

n0

)−(α−2)

exp(Φ̃(n0)− Φ̃(n+ 1)) (195)

with

Φ̃(n) =
C1(α, κ)

n− 1
+

√
C2(α, κ)

2
log

(
n+

√
C2(α, κ))

n−
√
C2(α, κ)

)
(196)

Following the same calculations as in the case γ = 1, we have:

0 ≤
√
C2(α, κ)

2
log

(
n+

√
C2(α, κ))

n−
√
C2(α, κ)

)
6

C2(α, κ)

n−
√
C2(α, κ)

(197)

hence:

0 ≤ Φ̃(n) ≤ C1(α, κ)

n− 1
+

C2(α, κ)

n−
√
C2(α, κ)

6
2C1(α, κ)

n
+

C2(α, κ)

n−
√
C2(α, κ)

(198)

Now, using the definition of the coefficients C1(α, κ) and C2(α, κ) given in Lemma 3, we get:

0 ≤ Φ̃(n) ≤ α− 2

4n
√

2κ
(1 +

√
κ)2

2 (5α− 2)
(
1 + c̃1

√
κ
)

+ (α− 2)
1 + c̃2

√
κ

1−
√
C2(α,κ)

n


Note now that for any n > α√

κ
,

1

1−
√
C2(α,κ)

n

6
1

1−
√
C2(α,κ)

α

√
κ
6 1 + 2

√
C2(α, κ)

α

√
κ

6 1 + 2−1/4α− 2

α
(1 +

√
κ)κ1/4

√
1 + c̃2

√
κ

so that there exists a real constant c̃3 > 0 such that for κ small enough:

1

1−
√
C2(α,κ)

n

6 1 + c̃3κ
1/4.

Therefore we finally get:

0 ≤ Φ̃(n) 6
α− 2

4n
√
κ

(1 +
√
κ)2
[
2 (5α− 2)

(
1 + c̃1

√
κ
)

+ (α− 2) (1 + c̃2
√
κ)(1 + c̃3κ

1/4)
]

(199)

so that there exists a real constant C3 > 0 (independent of α) such that:

0 ≤ Φ̃(n) 6
(α− 2)(11α− 6)

4n
√

2κ

(
1 + C3κ

1/4
)

(200)

Introducing:

Φ(n) =
(α− 2)(11α− 6)

4n
√

2κ

(
1 + C3κ

1/4
)

we finally have:

∀n > n0, En ≤ En0

(
n

n0

)−(α−2)

eΦ(n0) (201)

�
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A.2.3 Technical lemmas

Lemma 8 Let Mn the mechanical energy, that is:

Mn = F (xn)− F (x∗) +
1

2s
‖xn − xn−1‖2 (202)

Then we have

En
2sn2

6

(
1 +

α

2n
√
κ

)2

Mn. (203)

Proof: Let us first remark that:

bn =
∥∥∥α

2
(xn−1 − x∗) + (n− α

4
)(xn − xn−1)

∥∥∥2

=

∥∥∥∥α2 (xn − x∗) +

(
n− 3α

4

)
(xn − xn−1)

∥∥∥∥2

=
α2

4
‖xn − x∗‖2 +

(
n− 3α

4

)2

‖xn − xn−1‖2 + α

(
n− 3α

4

)
〈xn − xn−1, xn − x∗〉

Using a discrete version of the inequality (51), we have:

|〈xn − x∗, xn − xn−1|〉 6
√
κ

2
‖xn − x∗‖2 +

1

2
√
κ
‖xn − xn−1‖2 (204)

so that:

bn 6
α2

4
‖xn − x∗‖2 +

(
n− 3α

4

)2

‖xn − xn−1‖2 +
αn

2

(√
κ‖xn − x∗‖2 +

1√
κ
‖xn − xn−1‖2

)
Hence:

En
2sn2

= F (xn)− F ∗ +
1

2sn2
bn

6 Mn +
α2

8hn2
‖xn − x∗‖2 +

αn

4sn2

(√
κ‖xn − x∗‖2 +

1√
κ
‖xn − xn−1‖2

)
Using now the quadratic growth condition G2

µ, we get:

En
2sn2

6

(
1 +

α

2n
√
κ

)2

Mn.

�

Proof of Lemma 7 Let us prove that for any n > 1 and (A,B) ∈ R2, we have:

Aδn +B(hn−1 − hn) 6

(
2|A+B|+

√
2|B|
√
sµ

+
α2

4sµn2

)
1

(n− 3α
4 )2

En. (205)

First, observe that:

∀n ∈ N, Aδn +B(hn−1 − hn) = (A+B)δn +B(hn−1 − hn − δn) (206)

and that for any θ > 0,

|hn−1 − hn − δn| = 2|〈xn − xn−1, xn − x∗〉| 6
hn
θ

+ θδn. (207)
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Combining the last two inequalities, it follows that:

∀n ∈ N, Aδn +B(hn−1 − hn) 6 (A+B + θ|B|)δn +
|B|
θ
hn

6 (A+B + θ|B|)δn +
|B|
sµθ

wn

using the growth condition: hn 6 1
sµwn for all n ∈ N. Let us now focus on the term bn rewritten

as:

bn =

∥∥∥∥α2 (xn − x∗) + (n− 3α

4
)(xn − xn−1)

∥∥∥∥2

(208)

Applying the inequality ‖u‖2 6 2 ‖u+ v‖2 +‖v‖2 to: u = (n− 3α
4 )(xn−xn−1) and v = α

2 (xn−x∗),
we get:

∀n ∈ N, (n− 3α

4
)2δn 6 2bn +

α2

4
hn. (209)

so that:

∀n ∈ N, δn 6
2

(n− 3α
4 )2

bn +
α2

4(n− 3α
4 )2

hn. (210)

We thus deduce:

∀n ∈ N, Aδn+B(hn−1−hn) 6 (|A+B|+ θ|B|) 2

(n− 3α
4 )2

bn+

(
|B|
sµθ

+
α2

4sµ(n− 3α
4 )2

)
wn (211)

Choosing θ = 1√
2sµ

, we deduce:

Aδn +B(hn−1 − hn) 6 (2|A+B|+
√

2|B|
√
sµ

)
1

(n− 3α
4 )2

bn +

(√
2|B|
√
sµ

+
α2

4sµ(n− 3α
4 )2

)
wn (212)

Remembering that: En = n2wn + bn, we finally get:

Aδn +B(hn−1 − hn) 6

(
2|A+B|+

√
2|B|
√
sµ

+
α2

4sµn2

)
1

(n− 3α
4 )2

En. (213)

as expected.
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