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Highlights 

• Perivascular adipose tissue (PVAT) does not only protect the vasculature but also 
secretes substances which are involved in dictating vascular tones. 

• PVAT is classified as white and brown PVAT and they are phenotypically and 
functionally distinct. 

• Under certain conditions, WAT could undergo phenotypic transdifferentiation to obtain a 
brown-like phenotype called Beige. 

• PVAT is a possible target in developing therapies for vascular diseases. 

Abstract 

Perivascular adipose tissue is a fat tissue deposit that encircles the vasculature. PVAT is 
traditionally known to protect the vasculature from external stimuli that could cause biological 
stress. In addition to the protective role of PVAT, it secretes certain biologically active 
substances known as Adipokines that induce paracrine effects on proximate blood vessels. These 
Adipokines influence vascular tones. 

There are different types of PVAT and they are phenotypically and functionally distinct. These 
are the White and Brown perivascular adipose tissues. Under certain conditions, White 
perivascular adipose tissue could undergo phenotypic switch to attain a Brown PVAT- like 
phenotype. This type of PVAT is referred to as Beige PVAT.  

The morphology of Adipose tissue is influenced by species, age and sex.  These factors play 
significant roles in adipose tissue mass, functionality, paracrine activity, and predisposition to 
vascular diseases. The difficulty that is currently experienced in extrapolating animal models to 
human physiology could be traceable to these factors. 

Up till now, the involvement of PVAT in the development of vascular pathology is still not well 
understood. Brown and White PVAT contribute differently to vascular pathology. Thus, the 
PVAT could be a therapeutic target in curbing certain vascular diseases. 
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In this review, knowledge would be updated on the multifaceted involvement of PVAT in 
vascular pathology and also explore its vascular therapeutic potential. 

Keywords; PVAT, Adipokines, Brown Adipose Tissue, White Adipose Tissue, Vascular 
pathology 

 

Abbreviations 

PVAT, Perivascular Adipose Tissue; BAT, Brown Adipose Tissue; WAT, White Adipose 
Tissue; VAT, Visceral Adipose Tissue; UCP-1, Uncoupling Protein-1; PVADRF, PVAT derived 
Relaxing Factors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Perivascular adipose tissue (PVAT) is a special form of Adipose tissue (AT) that shields the 
blood vessels. Interestingly, all blood vessels are surrounded by AT except the blood vessels 
located in the brain [1]. The proximity of PVAT to blood vessels allows its participation in 
various cardiovascular processes [2].  

Traditionally, PVAT was thought to be a passive system that protects the vasculature from 
external injuries. However, current studies have shown that PVAT secretes biologically active 
substances with paracrine effects on the vasculature. These substances are referred to as 
Adipokines. They are secreted by adipocytes then infiltrate into the vasculature. The adipokines 
exert their paracrine effects which then influence the vascular tones [3]. Generally, Adipokines 
could be anti-inflammatory or pro-inflammatory, thereby possessing the potency to modulate 
vascular properties [4].  

PVAT is of two different types which are structurally and functionally distinct. The PVAT could 
either be brown adipose tissue (BAT) or white adipose tissue (WAT). Phenotype shown by 
PVAT is said to be largely dependent on their anatomical locations. For example, the thoracic 
aorta is surrounded by brown PVAT while the abdominal aorta PVAT shows the WAT-like 
phenotype [5]. Interestingly, the WAT could undergo phenotypic switch under certain conditions 
to attain a brown-like phenotype called Beige adipose tissue [6]. 

White adipose tissue serves as the energy reservoir needed for metabolism. WAT shows distinct 
features and has different functions from their Brown counterparts. On the other hand, BAT 
serves as the channel for energy dissipation. That is, channel of energy release. Therefore, 
vascular homeostasis could be attained by striking a balance between BAT and WAT [7]. 

Generally, excessive caloric or dietary intakes affect adipose tissue’s morphology. AT 
dysfunction causes architectural alterations which are partly characterized by increased adipocyte 
size (hypertrophy). This gives more room for ectopic lipid deposition and macrophage 
infiltration [8][9]. The infiltrated macrophages could inflict paracrine effects on the vasculature, 
leading to vascular inflammation. It has been previously reported that PVAT inflammation 
increases the risk of cardiovascular disease onset [10].  

Adipokines have been implicated to participate either actively or passively in vascular disease 
pathology. Notwithstanding, some have been reported to show vascular protective properties. 
This multifunctional attributes of PVAT in vascular disease have always been a concern. It has 
led to the inability to characterize PVAT as either a friend or a foe. However, a better 
understanding of PVAT participation in vascular disease will help scientists in vascular diseases’ 
targeting. Thus in this review, knowledge would be updated on the multifaceted involvement of 
PVAT in vascular pathology and its possibility of being a potent therapeutics target.  

 



2. The White, Brown and Beige Adipose Tissue 

Adipose tissue is a loose connective tissue widely distributed throughout the body. It is involved 
in energy storage, metabolic homeostasis, and maintenance of equilibrium between energy 
storage and expenditure [11].  

Adipose tissue comprises of the white adipose tissue (WAT) and the brown adipose tissue (BAT) 
which are morphologically and functionally different. The WAT has the sole responsibility of 
energy storage in contrast to the thermoregulatory role of BAT [12]. 

White adipose tissue stores energy with the capability to expand its cells in other to meet 
metabolic requirements [13][14]. Phenotypically, WAT possesses slightly homogenous-large fat 
droplets serving as an energy reservoir within its adipocytes [15]. 

In contrast, BAT dissipates energy. It contains several mitochondria [15] which balances the 
excess energy storage possibility of WAT to maintain thermoregulation. BAT possesses many 
mitochondrial cells that use uncoupling protein 1 (UCP-1) to actively participate in the catalysis 
of ATP synthesis [16]. UCP-1 is a membranous protein specific to BAT. It helps in 
thermogenesis through protons translocation across BAT mitochondria [17]. It is known that a 
reduced amount of brown adipose tissue could be a possible mechanism underpinning ectopic fat 
deposition.  
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Figure1. Structural and functional differences between WAT and BAT  
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PVAT generally shows the BAT phenotype [18][19]. Notwithstanding, the phenotype of a PVAT 
shielding a specific blood vessel is said to be location dependent. Khanh-Van Tran et al. 
observed this when comparing PVATs isolated from Thoracic and abdominal aortas [20].  

Under certain conditions, white adipose tissue could undergo phenotypic transdifferentiation to 
take up a brown-like phenotype called Beige. This phenomenon has been reported to be a 
mechanism employed in maintaining vascular homeostasis [21]. 

Adipose tissue phenotypic switch could be initiated by different physiological processes. 
Exercise has been reported to induce AT phenotypic switch via different mechanisms but 
primarily by activating thermogenesis in energy-storing WAT. This dissipates the excess energy 
stored and instigates the browning process in which WAT takes up a brown-like phenotype. 
Another important mechanism is via exercise-induced Irisin production that activates WAT 
browning process [22][23]. The phenotypic switch of AT could be a therapeutic strategy in 
maintaining metabolic balance, especially in obesity. 

3. Differential adiposity; Influence of Age, Sex and species 

Adipose tissue morphology and functionality is influenced by certain physiological factors such 
as age, sex, and species, etc. Aging is a critical factor that influences adipose tissue mass, 
dysfunction, and predisposition to vascular diseases. The middle-aged mice have been reported 
to show more perivascular adipose tissue hypertrophy and visceral adiposity. This interesting 
report by Eva Schutz et al. shared insight on the effect of age on adipose tissue morphology and 
functionality. 52 weeks old male rats (middle-ages) were compared with the 16 weeks old 
counterparts in an experimental setup. The morphometric analysis and Hematoxylin/Eosin 
staining showed elevated glucose levels, increased perivascular adiposity, and increased vascular 
injury in the middle-aged group. This study eventually hypothesized that age could influence 
adipose tissue morphology and its paracrine based vascular activity [24].  

Furthermore, Demerath et al. published an interesting report on differential visceral adiposity 
concerning to sex, age, and race. The report published showed that these factors influenced 
visceral adipose tissue deposition [25]. This agrees with the clinical research conducted by Jean 

Pierre et al.  which reported that ethnicity/race and sex play influential roles in visceral adiposity 
and metabolic profiles [26].  

Lipogenesis is differential in humans and rats. This was shown by lesser expression of fatty acid 
synthase and acetyl-CoA carboxylase 1 mRNA concentrations (P < 0.05) in humans than rats. 
This shows a lesser activity of the lipogenic pathway in humans compared to rats [27]. 

Adipose tissue deposition is heterogeneous in males and females. Irrespective of the body mass 
index, females are known to carry about 10 percent more body fats compared to males [28]. 
These factors (Sex, race, and age) should be considered in investigating predisposition to 
vascular diseases such as Atherosclerosis. It is necessary for researchers to do more 



comprehensive profiling of differential adiposity comparing different factors. This would 
validate and provide more data on the influence of sex, race, age, and species on the distribution 
of adipose tissue. Besides, it would aid research translations to clinics. 

Most researchers employ rats for researches relating to adipose tissue biology. However, the 
metabolic differences between humans and rats make it difficult for research translation to 
application ports. That is, difficulty in extrapolating data from animal models to human 
physiology and pathophysiology. These differential factors should be put into account at the 
experimental design phase. 

4. PVAT, Vascular contractility and Protection 

PVAT secretes bioactive molecules which could act as anti-contractile factors that aid vascular 
relaxation. However, the function of PVAT goes beyond the production of vasorelaxant 
molecules. It is also known to attenuate induced stress [29].  

An interesting study by Zaborsker et al. reported the anti-contractile role of PVAT in the 
offspring of obese rats. These rats were naturally pre-programmed to develop obesity and 
cardiovascular risk factors. However in the study, the author observed a significant reduction in 
vascular reactivity to norepinephrine. Their result showed that the PVAT confers anti-contractile 
property on vasculature via the release of nitric oxide synthase.  The anti-contractile effect was 
reverted by NOS inhibitor [30].  

It is necessary to note that reports are saying the anti-contractile role of PVAT may be location 
dependent. Such a report was published by Victorio et al. 2016. The authors investigated the 
anti-contractile role of PVAT of the thoracic and abdominal aortas. Surprisingly, the PVAT from 
Thoracic aorta gave anti-contractile support to the aorta but such was not observed with PVAT 
of abdominal aorta. Also, abdominal PVAT was found to exhibit reduced endothelial nitric oxide 
synthase [31]. This could imply that the anti-contractile role of PVAT may not be a general 
phenomenon as anatomical location may influence the PVAT anti-contractile function. Thus, the 
differential phenotype of abdominal PVAT could have pro-atherogenic implications. 

Vascular Smooth muscle dictates vascular contractility. Smooth muscle dysfunction alters 
contraction and relaxation capacity of blood vessels which may impair normal blood pressure. 
However, loss of Smooth muscle function is an underlying mechanism in vascular dysfunction 
and also, loss of vascular contractility [32].  Simvastatin effect on smooth muscle integrity was 
examined by Kang et al. It was observed that Simvastatin halted aortic smooth muscle function 
which then translated to vascular apoptosis via calcium ion influx disruption [33]. The Smooth 
muscle drives the desired response of vasculature to external stress. 

 

 



5. PVAT, Morphological dysfunction and Vascular inflammation 

Generally, PVAT could become dysfunctioned and this may be attributed to excess calories, 
nutrition, or any other triggers.  Adipose tissue dysfunction is a possible reason for the loss of the 
anti-contractile role of PVAT due to inflammation [34]. 

Published evidences have suggested a bi-directional biocommunication between the PVAT and 
the vasculature. It is known that inflammation progresses from inside to outside and vice versa of 
blood vessels. Pro-inflammatory flow from outside to inside could be traced to 
dysfunctioned/Atrophied PVAT [5][35].  

The adipocytes derived factors are biological agents which could be hormones, chemokines or 
peptides with paracrine or autocrine actions. Nevertheless, the PVAT phenotypes could influence 
adipokines production. Increased adiposity is a key factor that influences changes in adipokines 
production. Healthy PVAT tends to produce adipokines with anti-contractile paracrine effects 
[3]. 

Obesity is a metabolic state that impacts adipose tissue phenotypes, adipokines secretion, and 
vascular functions. It is characterized by increased adipocyte size enabling the secretion of 
Monocyte chemoattractant Protein (MCP-1). The process then favors the recruitment of pro-
inflammatory adipokines [36]; a molecular mechanism underpinning atherosclerosis. This 
process is more typical of WAT compared to their brown counterparts. It is probably 
consequential of larger adipocyte size exhibited by WAT that gives room for pro-inflammatory 
macrophage infiltration [37].  

On the other hand, lean animals are mainly composed of brown adipose tissue. This ensures 
activation of macrophages with possible secretion of anti-inflammatory cytokines. The anti-
inflammatory (M2) and pro-inflammatory cytokines (M1) of PVAT origin could exhibit 
phenotypic transdifferentiation. This phenomenon of phenotypic switch is hugely influenced by  
change in animals’ metabolic profile or state [38]. 

Dysfunctioned PVAT is characterized by increased oxidative state, decreased production of 
adipocyte derived vasorelaxing factors and increased production of pro-inflammatory adipokines 
that infiltrates to proximate vasculature [39].  

6. Adipokines transport mechanisms; paracrine effect of Adipokines 

Adipokines could infiltrate into an adjacent vasculature. They exert paracrine effects that 
influence vascular tones. Infiltration of pro or anti-inflammatory adipokines to the proximate 
vasculature enables the exertion of their paracrine effects on the vasculature. The infiltrated 
adipokines dictate vascular tones serving as either vasodilator or vasoconstrictor. Therefore, 
these adipokines could exert anti or pro-atherosclerotic action on adjacent vasculature.  



Infiltration of adipokines to adjacent vasculature follows different mechanisms such as diffusion. 
This involves the translocation of local adipokines to the vascular wall following the 
concentration gradient. This may translate into vascular wall remodeling in response to 
infiltrated adipokines [40][41]. Also, adipokines could be transported to adjacent vasculature via 
direct release into the vasa vasorum which allows downstream transport into the arterial wall via 
iliac artery [42][43].  

The vasa vasorum transport mechanism has been reported to be bidirectional; vasa vasorum 
depicts the outside to inside and the vasa vasorum retrograde transport mechanisms. Outside to 
inside transport mechanism aids the translocation of PVAT derived relaxation factors, 
Macrophages, Adipokines to vascular wall via iliac artery [44]. However, systemic macrophages 
could also be transported to the intima layer of the vascular wall following the reverse transport 
mechanism i.e., the vaso vasorum retrograde transport. The vasa vasorum retrograde transport 
mechanism could be found in the report of Uchida et al. The authors observed that systemic low-
density Macrophages penetrated the myocardium and the pericoronary adipose tissue following 
retrograde mode [45]. 

Furthermore, receptor-mediated transport is another mechanism that ensures adipokines 
paracrine effects. Certain receptors are expressed in the vasculature through which adipokines 
induce agonism to trigger biological signaling [46]. 
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Figure2. Transport mechanisms showing outside to inside infiltration of adipokines in to the 
vasculature and retrograde movement of systemic macrophages to vascular wall.  



Research on adipokines and their involvement in Atherosclerosis development is still on the 
move. A cross-sectional study on Plasma Leptin correlation with atherosclerosis in type 2 
diabetic patients shows a positive relationship. The result from the study showed a significant 
association between plasma Leptin and the coronary calcification score [47]. Although reports on 
Leptin has been contradicting.  

We have certain reports showing the anti-contractile contribution of PVAT derived Leptin when 
in synergy with other relaxant factors [48][49]. At this point, it is important to make a clear 
difference between the physiological and therapeutic Leptin levels regarding vascular tone 
dictation.  

Adiponectin (APN) seems to show a contrary correlation. Different reports attest to the inverse 
relationship between plasma Adiponectin and atherosclerosis pathology. Based on the 
contrasting influence of Leptin and Adiponectin in atherosclerosis, Leptin to Adiponectin ratio 
has been proposed as a model of evaluating vascular endothelial dysfunction [50]. Even though 
Adiponectin has been reported to attenuate vascular inflammation and Atherosclerosis, the 
molecular mechanism that underpins APN is still not well known. However, inhibition of NF-ϏB 
and its transcription factors is a possible anti-vascular dysfunction mechanism deployed by 

Adiponectin [51]. 

Another interesting study by Nishimura et al researched the possible relationship between 
plasma Omentin, Adiponectin and Atherosclerosis. The study suggested that Omentin has an 
inverse relationship with Atherogenesis in type 2 diabetes and may have an anti-atherosclerotic 
function in concert with circulating Adiponectin [52].  

As an opinion, the use of plasma level of adipokines to correlate its involvement in pathology 
should not be relied on and clinically should not be a major diagnostic tool. The increase in 
plasma concentration of certain adipokines could be likened to immune response to vascular 
injury or may be perceived as a marker for vascular injury induction. 

 

Adipokines Origin       Vasoactivity Mechanism of action Reference(s) 

Chemerin BAT  Initiates and Promotes aortic 
atherosclerosis 

By promoting NF-kBp65 expression and 
p38 MAPK phosphorylation 

[53] [54] 

Adiponectin WAT 
and 

BAT  

Amelioration of Atherosclerotic 
plaque 

Down regulation of VCAM-1 and 
ICAM-1 

[55] [56][57] 

Omentin  
VAT 

Protects against high glucose 
induced endothelial dysfunction 

Restoration of endothelial dependent 
relaxations by inhibiting oxidative stress 
and increasing Nitric oxide production 

[58][59] 

Leptin WAT 
and 

BAT  

Promotes VSMC phenotypic switch 
 

Increased p38 MAPK phosphorylation [60][61][62] 



Visfatin  
WAT 

Induction of vascular endothelial 
dysfunction and tissue 

inflammation 

Via the activation of NLRP3/IL-1β/IL-1 
Signaling pathway 

[63][64] 

Resistin  
WAT 

 

Induction of hypertension  Activation of Renin-Angiotensin 
System (RAS) 

[65][66] 

Apelin  
WAT 

 

Maintenance of vascular structure Upregulation of endothelial Nitric Oxide [67][68] 

Vaspin  
WAT 

 

Modulation of Endoplasmic 
Reticulum stress 

Upregulation of pAKt and pAMPK  [69][70] 

 

Table1. The table showing certain PVAT derived vasoactive compounds, their primary 
source(s), bioactivity and the molecular mechanism of action. 

7. Adipocyte-derived relaxing factors; Potassium channel agonists 

PVAT is not only known to exhibit protective roles against external stress. It also produces 
certain substances that relax the vasculature. Such substances could be gaseous in nature, such as 
Nitric oxide or could be peptide or hormone-like [29].   

Voltage-gated Potassium channel is a key membrane port involved in vascular homeostasis. Its 
activation results in the efflux of potassium ion (K+), closure of voltage dependent calcium 
channel and thus, enhancing vasorelaxation [71]. 

Potassium channel agonists are said to mimic the effects of PVADRF. Thus, there is a rationale 
that ADRFs act through voltage gated potassium channel activation [72]. Lee et al. investigated 
the role of a perivascular adipose tissue derived methyl palmitate in vascular function. 
Interestingly, Methyl Palmitate caused vasorelaxation by opening voltage-gated potassium 
channels on smooth muscle cells [73].  

Nitric oxide synthase (NOS) catalyzes the production of Nitric oxide (NO), a widely reported 
PVADRF. NO also activates voltage-gated potassium channel [74]. Apart from the above 
mentioned, different researchers have published involvement of the vasorelaxation factors in 
voltage-gated potassium channel activation [75][76][77].  

Potassium ion channels undergo alteration in vascular pathological conditions. Alteration of the 
potassium ion channel causes membrane depolarization. This leads to vasoconstriction and 
abnormality in vascular tones. Modulation of potassium channel is a molecular approach in 
vascular pharmacology [78]. Clement-Chomienne et al. published an interesting result on how 
Angiotensin II-induced blood vessel constriction and blood vessel apoptosis partly via potassium 
ion channel inhibition mechanism [79].  At the moment, Implication of the voltage-gated 



potassium channel in vascular tone dictation is not yet fully explored. However, pharmacological 
manipulation of voltage-gated potassium channel is worthy of more explorations in the search 
for vascular therapies. 

8. Perspectives and Pharmacological implication 

There is absolutely no doubt about the involvement of PVAT in vascular pathology. Aside from 
the traditional protective role of PVAT, there are tones of reports on the paracrine effect of 
PVAT derived biological substances (Adipokines) on vasculature. The role of PVAT in 
vasculature seems to depend on factors such as anatomical location, age, sex, and PVAT 
phenotypes. 

Considering the widely reported roles of BAT as a channel of energy expenditure, more attention 
should be given to BAT therapeutic possibilities. For example, Exploring BAT transplantation as 
a therapeutic mean seems promising [80][81]. Exploring different means of maintaining a 
balance between WAT and BAT will be a unique strategy for maintaining vascular homeostasis.  

Furthermore, the development of small molecules with pharmacological ability of activating 
voltage-gated potassium channel is also a promising route in vascular therapeutics. These 
molecules may serve as a potassium ion channel agonists which would trigger vasodilation. 
Small molecules could also be targeted towards the process of PVAT phenotypic 
transdifferentiation. 

In conclusion, further research is needed to explore the possibility of targeting PVAT as a 
promising therapeutic means for vascular disease. As an opinion, extensive profiling of different 
adipokines is needed to ascertain their exact roles in the vasculature. Also, scientists need to give 
a clear distinction between the physiological and therapeutic involvement of these adipokines in 
vascular dysfunction. 
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