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Abstract: 

A thorough review and analysis of the classic contact deflection formulae in gear simulations 

are presented. Based on extensive analytical developments, it is shown that the scatter in the 

results given by the classic formulations is mainly due to their respective displacement datum 

(either explicit or implicit) where contact deflections are supposed to vanish. Several formulae 

appear as not adapted to gears and a general formula for contact deflection or stiffness in gear 

teeth is proposed. A number of comparisons with 2D and 3D finite element results prove its 

validity and show that simplified thin-slice contact models give realistic results except near 

the edges of the contact lines.    

  

 

 

 

 

Keywords: gear; contact deflection; contact stiffness; analytical formulae; finite element 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 - Introduction 

 Most of the elasticity models employed in gear simulations parallel the approach 

initially proposed by Weber [1-2] with the total tooth compliance decomposed into: a) the 

bending flexibility for the tooth assimilated to a cantilever beam or plate of variable thickness 

[2-6], b) the fillet and foundation contributions [1-3], [6-7] and, c) the local compliance at the 

contact [1-3, 6]. Although extensive finite element calculations are now routinely used, even 

for three-dimensional problems, lighter and faster models based on analytical or quasi-

analytical results remain interesting particularly when extensive parameter analyses and/or 

dynamic analyses are required. A number of papers, only a few of which can be cited here [1-

15], have dealt with the issues associated with tooth deflections and, if there is a global 

agreement on the modelling framework for structural deflections (bending and foundation), 

many contact deflection formulae can be found in the literature, which can lead to very 

contrasted results. It is therefore believed that a critical review of the various formulae for 

gear contact deflections is still of interest in order to clarify their respective underlying 

hypotheses and possible fields of application.  

 In the first section, several representative analytical formulations for contact 

deflections are derived using the elastic half-space theory and are commented upon. The 

corresponding orders of magnitude are then compared for realistic ranges of gear geometries 

and loading conditions. Some elements of explanation are proposed to account for the rather 

marked discrepancy between the results obtained by various formulae, suggesting that some 

of the classic contact compliance equations are not relevant for gears. Results are presented 

which, as far as the authors know, cannot be found in the open literature on gearing, and 

contribute to prove that, beyond their apparent disparity, a general form of tooth contact 

deflection formula can be formulated. In the second section, a number of comparisons with 

gear finite element models prove that the proposed analytical formulations are sound. Finally, 

the validity of a classic thin-slice model for three-dimensional simulations is analysed in the 

case not only of spur but also helical gears, where the contact lines are inclined on tooth 

flanks. 
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b  : half-width of contact (Figure 2) 

0c : constant in the contact deflection formula ( 00.214 0.148c− ≤ ≤  for steel gears) 

*,E E  : Young’s modulus, equivalent Young’s modulus (as defined in (3)) 

,a fh h  : addendum, dedendum coefficient 

k  : datum depth in the normal direction (Figure 5) 

h
k : contact stiffness 



HS
k  : contact stiffness derived from Hamilton Standard formula [6], (33) 
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l : half-length of contact (Figure 2) 

0m  : normal module (in mm) 
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= −  : maximum contact pressure,  contact pressure distribution 

, ,
b M
r r r  : base radius, radius at point M  (associated with M

α ), pitch radius 

1 2, ,R R R : radius of curvature of solid 1, solid 2, equivalent radius of curvature (3) 

1 2(0, , ) (0, , ) (0, , )w y z w y z w y z= + : vertical displacement at any point on the plane of 

symmetry 0x = caused by a normal pressure distribution (1) (also Annex – section 1) 

0( , , )w x y z : vertical displacement at any point caused by a lumped force normal to the surface 
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 , total load 

x  : profile shift coefficient 

L
z : dimensionless datum depth for Lundberg’s formula (approximate value) 

1 2, ,Z Z Z  : tooth number, tooth number on pinion, tooth number on gear 

0, M
α α  : pressure angle at pitch point, at any point of contact 

β  : helix angle 

ε : precision for the definition of the datum depth for Lundberg’s formula (14-15) 

,
T

δ δ  : contact deflection for one solid, total contact deflection for two solids 
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ν  : Poisson’s ratio 

 

Dimensionless variables 



X
X

b
= : variable normalised with respect to the half-contact width ( X  is a generic variable) 

ˆ X
X =

Λ
 : variable normalised with respect to the deflection of reference ( X  is a generic 

variable) 

 

2 - Analytical results 

 2-1 Three-dimensional analyses: 

 It is accepted that the characteristic dimensions of gear teeth are large compared with 

those of the contact area, so that the stresses and displacements can be calculated by 

considering each body as a semi-infinite elastic solid bounded by a plane surface, known as 

elastic half-space [16]. For standard lubrication conditions, friction forces can be neglected 

and the problem is reduced to finding the vertical displacements induced by a distribution of 

normal pressures applied to the contact area on the free surface.  

 
Figure 1- Lumped force perpendicular to the free surface of a half-space and coordinate 

system 

 

 Under the action of a normal concentrated force F at the origin of the coordinate 

system (Figure 1), the solution for the vertical displacement according to Boussinesq [17] 

reads: 

 

( )
( )

( )2

0 3/2 2 2 22 2 2

1 2 1
( , , )

2

F z
w x y z

E x y zx y z

ν ν
π

 + − = +
 + ++ + 

  (1) 

 

from which, the total displacement induced by a normal pressure distribution ( )', 'p x y over a 

surface ( )S  can be found by superposition as: 
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 A Hertzian pressure distribution over a rectangular strip 2 2b× l  (Figure 2) is 

considered as representative of the majority of the loading conditions in cylindrical gears, 

which reads: 
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Figure 2 – Pressure distribution at the surface of an elastic half-space. 

  

 The analytical expressions and calculations can be simplified by using the following 

dimensionless variables: 
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R
Λ = Λ + Λ =  represents the penetration depth between two elastic cylinders 

when the elastic couplings in the cylinders are ignored as illustrated in Figure 3 and, 

consequently, Λ  can be viewed as the corresponding average deflection per solid. 

 

 
 

Figure 3 – Approach between two cylinders in contact when elastic couplings are ignored. 

 

 Direct integrations of (2) can be performed under certain conditions and, in what 

follows, only the displacements in the plane of symmetry 0x = are presented, in accordance 

with the hypothesis of line contacts on tooth flanks. 

 

a) At the surface of the loaded strip ( 0z = ), a closed-form expression of the vertical 

displacement can be obtained providing that 1y− >>l  (hence, excluding the points 

close to the edges of the loaded area at y = ± l  ) as: 
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1
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  + − +     
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l
  (5) 

 (see Annex, section 2, for the mathematical details) 

 from which, the classic Lundberg’s formula [18] for the deflection at the centre of the 

 contact is derived by setting 0y = : 

( )ˆ (0, 0,0) ln 2 1.193w + l   (6) 

  

 The expression of the vertical displacement at the edges of the contact can also be 

found to complement the previous formula since the exact integration at y = ± l  leads 

to (Annex, section 3): 



( ) 1
ˆ 0, , 0 ln(2 ) 0.943

2
w y = ± = +l l   (7) 

 

b) for the same conditions (not too close to the contact edges at y = ± l ), the vertical 

displacement at a given depth z  in the half-space is found to be (Annex, section 4) : 

 

( ) ( )
( ) ( )

( )

( ) ( )
( )

2
2

2
2

2 2

2 2
2 2

1 1 1 1
ˆ (0, , ) ln ln(2) ln 1 1

2 2

1
1

2(1 )

y z y A
w y z A

A
y z y

y y
z z z

y z y z
ν

 − + + − − + = + + − + + + 
+ + − +  

 
− + − + − + − − + + +  

l l

l l

l l

l l

 

                               (8) 

 

where 
( )

( )2 2 2

1
1

2

 + = +
 + +  

l

l

y
A

z y z
 

 

 If 1y z− >> >l , (8) can be simplified and it gives a vertical displacement 

conveniently expressed as (Annex, section 5): 
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1

1 1
²z
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 The validity of these analytical findings has been tested by comparisons with three-

dimensional finite element results. An elastic parallelepipedic block (not shown) has been 

meshed with a very high node density in the vicinity of a rectangular strip loaded by a 

pressure distribution corresponding to (3). The block dimensions ( 600 600 600b b b× × ) are 

far larger than the characteristic dimensions 2 30b b× of the loaded area in order to be close to 

the half-space conditions. The results in Figure 4 prove that the analytical developments and 

their underlying hypotheses are sound. The numerical and analytical displacements at the 

surface and at a dimensionless depth 5z =  are in excellent agreement. It can be observed that 

the surface deformed shape (in blue or blue squares) varies substantially with the y-

coordinate, mainly near the edges of the contact area, which can be problematic if the 

displacement at the centre is considered as representative of the whole contact compliance, as 

is the case in Lundberg’s formula. On the other hand, the relative deformed shape 

(displacements at the surface minus those at depth 5z = ) is flat over the major part of the 

loaded area, which makes it possible to characterise the contact compliance by a single value. 

Finally, the approximate equation (9) gives ˆ ˆ(0, , 0) (0, , ) 2.1w y w y z−  , which agrees very 



well with the analytical and finite element results on the (extended) central part of the 

deformed line.  

 
 

 

Figure 4 – Comparisons between FE results and half-space analytical formulae. 

(formula (6) was used for the two analytical deflections at the contact edges). 

 

  

 

 Referring to the methodology introduced in [1-2] and employed by many researchers 

since, the decomposition into structural and contact deflections implies that the possible 

interactions between the two scales of analysis are discarded so that the total displacement is 

simply the sum of each individual contribution. In order to be applicable, this method 

implicitly imposes the contact displacement to be nil where bending displacement is 

considered, i.e., most of the time, at the intersection of the force line of action and tooth 

neutral fibre or surface. In this context, rather than the absolute displacement field at the 

surface, the relative displacements with respect to a datum line or surface need to be 

considered. From (9), a simple closed-form expression of such relative displacement is 

derived as: 

 

( ) ( )
ˆ (0, ,0) (0, , ) ln

1
w y w y z z

νδ η
η ν

= − −
−

    (10) 

  

Based on these results, the following observations can be made: 

 

a) For the central part of the line load, the difference between the deflection at the 

surface and that  defined in (10) at any given depth z  is nearly constant 



(independent of y ), making it possible to define a unique parameter 

representative of the contact flexibility, 

 

b) If the datum depth is significantly larger than the contact half-length then 2η →  

and (10) takes the form of the classic bi-dimensional formula for the compression 

of a half-space relative to a point at depth z  below the centre of a Hertzian 

contact pressure distribution [16]. Denoting the depth of reference z k=  and 

considering two contacting bodies (subscripts 1 and 2 respectively), the total 

contact deflection reads: 
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 which, when re-introducing the physical parameters, takes the form: 
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  (12) 

 In the field of gearing, (12) is known as Weber-Banaschek’s formula [1-2,6], 

providing that the datum depth k corresponds to the intersection of the tooth centre line 

and the contact force line of action as shown in Figure 5. 

 

 

 

Figure 5 – Datum for contact displacements in [1-2] 

c) For three-dimensional half-spaces, the displacements shrink to zero for points far 

from the loaded surface (as opposed to two-dimensional half-planes), which 

reveals that the compliance given by Lundberg’s formula (6) must always be larger 

than that derived from Weber-Banaschek’s equation (11). Considering Lundberg’s 

formula, an order of magnitude of the datum depth L
z , where vertical 

displacements can be neglected, is derived by supposing that 
1

1 and 1L

L

z

z
>> <<

l
. 

In these conditions, the displacement ˆ (0, , )w y z in (8) can be linearized and 

keeping the value at the centre of the contact zone 0y = , one obtains: 
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The datum depth can be approximated using the following inequality: 
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 where ε  is a percentage below which the difference in displacement can be 

 ignored in practice. 

  

For 0.3ν = , (14) leads to: 
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≥
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l
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d) After some manipulations, it appears that formula (10) also gives the maximum 

compression of an infinite elastic slab of large thickness z compared with the 

contact length 2b, submitted to a semi-elliptic pressure field [19], 

 

 Finally, concerning three-dimensional models, the half-space approximation for gear 

teeth is certainly questionable in the axial direction, since the contact zone usually extends 

over the entire face width, and the influence of edge effects on contact deflections has to be 

assessed. To this end, a smaller block of dimensions 600 30 600b b b× ×  is simulated by 3D 

finite elements so that one dimension corresponds to the loaded length (same loaded area as 

that leading to the results in Figure 4). The results in Figure 6 prove that, compared with the 

half-space results, the overall contact compliance is increased by a factor of nearly 2 with 

more deflection near the free edges (as opposed to what is observed in Figure 4). However, it 

is also noticed that the relative displacement curve between the surface and depth 5z =  is 

still well represented using the difference between the displacements in (5) and (8), 

suggesting that formula (10) remains valid even for finite width solids. 

 



 
 

Figure 6. – Comparisons between FE results and the analytical formulae for a block.  

Eq. (10) gives ˆ 2.1δ   in good agreement with the numerical and analytical formulae. 

 2-2 Bi-dimensional formulae - Other formulae 

 Different formulae can be found in the literature, which stem from bi-dimensional 

models in the ( ), ,O x z plane. Considering elastic half-planes, the Hertz theory relates the load 

per unit of face width / 2W l  to the contact width 2b but no corresponding result can be given 

for the contact deflection (approach). The displacements of points in the contact area with 

respect to a datum, increase indefinitely with the datum depth (as indicated by (15) when 

→ ∞l would correspond to the bi-dimensional situation). For a state of plane strains and 

supposing that the vertical displacement vanishes at a depth z k=  under the origin (centre of 

the pressure distribution), one obtains equation (10) with 2η =  [16]. An alternative modelling 

strategy consists in replacing the elastic half-plane by a slab of infinite dimension in the x-

direction, whose thickness (in the z-direction) is larger than the contact width 2b. In the case 

of an infinite elastic layer of depth z k=  attached to a rigid base and indented by a rigid 

circular cylinder of radius R on its free surface (Figure 7), the vertical displacement at the 

centre of the contact according to Meijers [20] can be expressed, for a Poisson’s ratio 0.3ν = , 

as: 

 

( )ˆ ln 2 0.0268kδ = −   (16) 

 



 
 

 

Figure 7- Elastic slab parameters and loading. 

 

 

Greenwood et al. [21-22] have proposed a new mathematical solution for a semi-

infinite slab resting on a rigid frictionless base and indented by a rigid cylinder of radius R 

leading, for 0.3ν = , to the following contact deflection: 

 

( )ˆ ln 2 0.14832kδ = +  (17) 

  

 The two slab formulae (16) and (17) along with the proposed equation (10) (hence, 

Weber & Banaschek’s formula (11-12)) have very similar structures although the constant 

term can either be positive or negative but also dependent on Poisson’s ratio or not (as already 

pointed out by Greenwood and Barker [22]). In practice, however, these variations are of 

limited influence since the ratio k  in most gears is such that the logarithmic term is 

dominant with possible exceptions near tooth tips nonetheless. 

 In 1981, Cornell [6] published an approximate formula for the total contact deflection 

(whose exact origin remains unclear to the authors) initially developed at Hamilton Standard. 

Assuming that each contacting solid contributes to approximately half of the total contact 

deflection, it leads to the following order of magnitude for the individual contact deflection: 

ˆ (2 ) 3.57
2

πδ +    (18) 

 A very popular equation for contact stiffness in gears (Yang and Sun [23]) is used in a 

number of papers [24-28]. It is similar to the formula proposed by Popov [29] in the 

qualitative analysis of the contact between an elastic cylinder and a rigid plane and based on 

modelling hypotheses corresponding to the situation shown in Figure 3. Under the same 

hypothesis as for (18), (half of the contact deflection attributed to each solid in contact), it 

gives the contact deflection for one solid as: 

ˆ 1δ    (19) 

 The empirical relationship proposed by Palmgren [30] for a steel cylinder compressed 

between two elastic platens can be adapted to derive the deflection of one contacting body as: 
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or alternatively 
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Wδ
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 l
l

  (20-3) 

  

 Finally, for geometrical and loading conditions close to Palmgren’s empirical formula, 

it is worth mentioning the theoretical expression for the deflection of a half-cylinder 

submitted to a Hertzian pressure distribution (Johnson [16]), which reads: 

 

   

( )ˆ ln 2 0.193Rδ = +   (21) 

 

 2-3 Synthesis 

 Table 1 synthetises the deflection formulae presented in the previous sections for one 

contacting body assuming that the material is steel ( 2.07 GPa 0.3E ν= = ). 

 

 

 

 

 

Reference -  Formula Equation 

 Proposed formula - SV 
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  Weber-Banaschek – WB [1-2] ( )ˆ ln 2 0, 214kδ = −  
Same as (10) 

with 2η =   

Meijers - M [20] ( )ˆ ln 2 0,027kδ = −  (16) 

Greenwood-Barber - GB [ 21-22] ( )ˆ ln 2 0.148kδ = +  (17) 

Hamilton Standard - HS [6] ˆ 2 3.57
2

πδ +   (18) 

Yang-Sun and Popov – YS-P [23] 

and [29] 
ˆ 1δ   (19) 



Lundberg - L [18] ( )ˆ ln 2 1.193δ + l  (6) 

Palmgren - P [30] 
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Johnson – J [16] ( )ˆ ln 2 0.193Rδ = +  (21) 

 

Table 1 – Contact deflection formulae – Synthesis. 

 

2-4 Orders of magnitude and ranges of variation 

 
 The relevant groups of parameters in the contact deflections formulae listed in Table 1 

are mainly 
k

k
b

= , 
2

2
b

= l
l  and 

R
R

b
= , whose orders of magnitude need to be determined 

for quantitative comparisons. 

 

a) The distance k  to the tooth centre-line in the normal direction with respect to the 

tooth profile (Figure 5) can be expressed as: 
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   (See the nomenclature for the parameter definition) 

 

 No closed form has been found for k but systematic sweeps over realistic ranges of 

variables can be easily conducted whose results are shown in Figure 8 for a standard pressure 

angle of 20°, tooth numbers in the range [15 -150] and profile shift coefficients of -0.5, 0, 

+0.5. From the figure, it can be concluded that: 

0.3 1.2
o

k

m
≤ ≤   (23) 

 



 
 

Figure 8 - 0/k m  for a range of tooth numbers and three profile shift coefficients. 

 

  

b) Orders of magnitude can be derived for the equivalent radius of curvature R  

which, 

at the pitch point, is given by 

1

0 1 2

sin( ) 1 1

2

oR

m Z Z

α
−

 
= + 

 
 in the absence of profile shift. 

For the conditions listed above and assuming that 1 218 45 and18 150Z Z≤ ≤ ≤ ≤ , one 

obtains: 
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m
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c) Limits for the contact half-width b  can be found for steel gears and realistic loads 

per unit of contact length 
2

W

l
 in gears between 100 N/mm and 300 N/mm as: 

 

00 0

0.041 0.141b

mm m
≤ ≤   0( in mm)m   (25) 

 

d) The typical range for face widths (or contact lengths here) is such that: 

 

 

0

2
5 20

m
≤ ≤l

  (26) 

 



 Finally, for the ranges of geometry and loads considered above, the following bounds 

of variations are derived: 

 

0 0

0 0

0 0

0

4.25 2 29.27

28.35 2 487.8

21.69 2 290.7

( in mm)

m k m

m m

m R m

m

≤ ≤

≤ ≤

≤ ≤

l
 (27) 

 

which, when re-injected in the analytical expressions in Table 1, makes it possible to define 

the bounds of variation given by the various contact deflection formulae in Table 2. 

A number of conclusions can be drawn from the results in Table 2: 

a) YS-P formula (19) leads to substantially lower deflections about 2-3 times smaller on 

average than those obtained by all the other equations in this survey.  

 

b) 2 groups of formulae can be distinguished: 

 

 

• WB-SV (10), M (16), GB (17), which, for typical modules between 1 and 10 mm, 

lead to average dimensionless deflections around 2.9– 3.3, i.e., the same order of 

magnitude as the Hamilton Standard formula HS (18).  

• L (6), P (20), J (21), which give rise to larger average deflection amplitudes more 

adapted to elastic cylinders and commonly used in roller bearing design, thus 

relying on a deeper displacement datum equal to the cylinder radius R  (hence far 

larger than k). From a deflection viewpoint, a tooth cannot be assimilated to a 

cylinder in contrast to what is often assumed to define the local geometry at the 

contact. The good agreement between (20) and (21) is to be noted. 

 

c) The compliances derived from semi-infinite slab formulations M (16), GB (17), are 

slightly higher than those from semi-infinite elastic media based on a displacement 

datum or relative displacement WB-SV (10). 

 

Reference Limits for 01 10m≤ ≤      0( in mm)m  

 Proposed formula – SV 

and Weber-Banaschek  -

WB [1-2] 

ˆ1.23 4.31δ≤ ≤  

Meijers - M [20] ˆ1 .42 4 .5δ≤ ≤  

Greenwood-Barber - GB 

[22] 

ˆ1.59 4.68δ≤ ≤   



Hamilton Standard - HS 

[6] 
ˆ 3.57δ   

Yang-Sun and Popov – 

YS-P [23], [29] 

ˆ 1δ   

Lundberg - L [18] ˆ4.53 8.53δ≤ ≤  

Palmgren - P [30] ˆ3 .62 6 .2 4δ≤ ≤  

Johnson – J [16] ˆ3.27 7.01δ≤ ≤  

 

Table 2 – Realistic ranges of variation for various contact deflection formulae. 

 Conditions: steel gears (
112.0710 Pa, 0.3E ν= = ), standard pressure angle 0 20α = ° , 

 load per unit contact width between 100 and 300 N/mm, face-widths between 5 and 20 

 modules, tooth numbers between 15 and 150, modules between 1 and 10 mm.  

 

 Figure 9 shows comparisons between the various deflection formulae and reveals a 

remarkable continuity between all the formulations, providing that the datum range is 

sufficiently large (variation approximately proportional to ( )ln k ). This remark highlights the 

fact that contact deflections do not necessarily vanish at points on the tooth centre-line as 

implicitly assumed in the approaches superimposing contact, tooth bending and foundation 

displacements. It is also confirmed that L (6) represents the asymptotic limit of the difference 

between (5) and (8) when the datum depth increases. 

 



 
 

 

Figure 9 – Comparisons between several analytical formulae over a broad range of 

dimensionless datum depths k   

  

2– Comparisons with results from finite element models 

2.1 Two-dimensional models 

 

 The finite element model of three consecutive teeth in Figure 10 is used to calculate 

the contact deflections on realistic tooth geometries (Table 3) as opposed to the semi-infinite 

elastic media employed in the analytical formulations. Only the central tooth is loaded in 

order to minimise the influence of the boundary conditions and the node density on its profile 

is adjusted so that a Hertzian semi-elliptical pressure distribution can be directly applied 

(Table 3). Adaptive meshing ensures that the highly refined grid always matches with the 

loaded area as it is displaced along the profile. Note that the load and contact width b are kept 

constant and that the transition between one and two tooth pairs in contact is not simulated. 

         

 Figure 10 – 2D finite element model. 



 

 

 In accordance with the analytical findings, the difference between the displacements in 

the load direction i) at the contact centre and, ii) at the intersection between the load line of 

action and tooth centre line, has been calculated for several positions from the tooth tip to the 

root. Figure 11 shows the corresponding results versus the position of the load on the profile 

and proves that the selected formulations agree generally well with the numerical values. The 

finite element results lie between the displacement curves given by M (16) and GB (17), 

whereas the deflections based on WB-SV (10) are systematically lower. 

 

 
 

Figure 11 – Comparisons between FE and analytical results at various positions  

on the tooth profile.  

 

 

2.2 Three-dimensional models 

 
 The 3D finite element model for one spur gear tooth is shown in Figure 12-a. The 

displacements are blocked at the three interfaces with the gear body and only the limits of the 

various sub-domains in terms of node density are represented. Figure 12-b shows all the nodes 

in the FE model whereas Figure 12-c represents the node distribution over and near the loaded 



area showing that a semi-elliptical Hertzian pressure distribution can actually be accounted 

for with enough precision. The node density is, in fact, comparable to that used for the blocks 

(leading to the results in Figures 4 and 6), which was proved accurate enough as it gave the 

same deflections as the theoretical results for a loaded elastic half-space. The pressure 

distribution is applied on the highest node density zone centred on the intersection between 

the pitch cylinder and the tooth flank.  The datum deflections are the displacements in the 

force direction (normal to tooth flank) on the line defined as the intersection between the tooth 

mid-surface and the base plane. In order to reproduce the analytical conditions, the contact 

deflections are then calculated as the differences between the normal surface displacements 

along the centre line of the loaded zone and the datum deflections. 

 

 
a) Different subdomains in the FE grid 

 

 

 
b) Representation of all the nodes – Entire tooth 



 

 

c) Node density near the loaded area (detail of figure 12 – b above). The highest density 

surface corresponds to the loaded area on tooth flank. 

 

Figure 12 – 3D finite element model – Spur gear example. 

 

 On the other hand, the analytical deflections are derived from a classic thin-slice 

approach whereby two-dimensional results can be extended to line contacts sliced into a 

number of independent equal segments across the face width, each of them being dealt with as 

a 2D contact of width equal to the segment length.  

 Considering, first, a uniform pressure distribution, the results in Figure 13 show the 

contact deflection distribution in the face width direction and prove that the 3D finite element 

and analytical results (especially the Greenwood & Barber formula (21-22)) agree well. As 

expected, however, more deviations are noticed close to the tooth edges, in line with the 

observations on elastic convectivity and thin-slice models in [31-32]. 

 

 
 

Figure 13 – Comparisons between 3D FE and analytical results across the face width for a 

uniform load distribution at a height corresponding to the pitch radius. Spur gear example. 



 

 The second set of results in Figs. 14 and 15 corresponds to non-uniform axial load 

distributions namely, a linear and a cosine variation, aimed at simulating large misalignments 

and lead crowns, of the form: 

 

( ) ( )
( ) ( )

0

0

1 0.95

1 0.95cos( )

L

C

W y W y

W y W yπ
= −

= +
  (28) 

 with  1 1y− ≤ ≤  and 0 252 /W N mm=   

 

 In these cases, both the contact width b and maximum pressure 0p  vary and have been 

adjusted based on the local load on each slice.  For the linear load variation across the face-

width, the thin-slice and finite element results are still in good agreement (except at the 

edges), whereas more discrepancies can be noticed for the cosine load variation. For the latter, 

larger differences are visible near the flank edges, thus highlighting the limitations of thin-

slice models when tooth loading is neither constant nor linear. This observation is consistent 

with the findings in [31-32] proving that the influence of couplings between adjacent slices 

are of secondary importance as long as the curvature induced by deflections in the contact line 

direction can be neglected. For other cases, more deviations are to be expected, although the 

analytical and finite element deflection curves in Fig. 15 remain reasonably close in the 

central part of the loaded area. Although relative deviations as high as 25% can be observed 

close to the edges, their influence on the global behaviour remains limited and compatible 

with dynamic models, which are mainly dependent on global mesh properties. 

 

 

 
 

 

Figure 14 - Comparisons between 3D FE and analytical results across the face width for a 

linear load distribution at a height corresponding to the pitch radius. Spur gear example. 

 



 
 

Figure 15 - Comparisons between 3D FE and analytical results across the face width for a 

half-cosine load distribution at a height corresponding to the pitch radius. Spur gear example. 

 

 

 Finally, the case of helical gears is tackled (Figure 16) for two different helix angles of 

10° and 30° with similar node density and boundary conditions while keeping as a reference 

the normal displacements along the curved intersection between the tooth mid-surface and the 

base plane. For the smallest helix angle (Fig. 17), the behaviour is similar to that of spur gears 

and the analytical deflections compare well with the numerical results (similar results have 

been found for a helix angle of 20°, which are not shown here for the sake of brevity). The 

thin-slice approach is not as effective for the largest helix angle and, close to the flank edges, 

substantial deviations are here again observed although the global agreement remains 

acceptable (Fig. 18). 

 

 

 



Figure 16 – Finite element models of helical gears. 

 

 
 

Figure 17 - Comparisons between 3D FE and analytical results at various points along the 

contact line. Uniform load distribution at the intersection between the tooth flank and the 

pitch cylinder. Helical gear example ( 10β = ° ). 

 

 
 

Figure 18 - Comparisons between 3D FE and analytical results at various points along the 

contact line. Uniform load distribution at the intersection between the tooth flank and the 

pitch cylinder. Helical gear example ( 30β = ° ). 

 

 



 

3 – Discussion 

 

 The vast majority of the deflection equations stem from the hypothesis of two- or 

three-dimensional semi-infinite elastic media (either half-plane, half-space or infinite slabs) 

and, for line contacts ( 1>>l ), it has been proved that their formal differences are mainly due 

to their respective datum position (implicit or explicit) for vertical displacements, i.e.  

 

 a) a set datum depth for WB-SV (10), usually k as defined in Figure 5  

 b) the slab thickness for M (16), GB (17), which can be made equal to k in gear 

 applications 

 c) the cylinder centre for J (21) and other related equations in the literature [33-34]   

d) for L (6), a ‘floating’ implicit datum L
z  (13) depending on the loading conditions 

whose minimum value, for a precision 0.02ε = , is found to be consistently far larger 

than the maximum value of k for the range of gear modules considered in this paper. 

 

 In view of the symmetry in the experimental conditions, the empirical equation P (20) 

can be affiliated to category c) as the centre of a cylinder pressed against two elastic 

platens does not experience any vertical displacement [30], [34]. The corresponding 

orders of magnitude for the contact deflection in Figure 9 and Table 2 are comparable 

with those found for J (21), thus confirming this hypothesis.  

 The linear contact deflection (proportional to load) derived from YS –P (19) is clearly 

apart from all the other equations in the literature, whereas HS (18) seems to be a 

reasonable estimate of the average contact deflections in gears.  

 Based on these observations, it can be deduced that the equations in categories c) and 

d) are generally not suited to gear tooth compliance since, for standard gear geometries, 

their datum depths often correspond to points outside the teeth that could not be 

considered as part of the same elastic body. On the other hand, formulae in categories a) 

and b) appear as more adapted to gears. The hypothesis of a three-dimensional half-space 

submitted to a finite pressure band is not valid in absolute terms (since the load generally 

covers the entire tooth face-width) but, interestingly, it still gives good results (Figure 6) 

providing that relative displacements between the surface and the datum are considered. 

Based on these formulae relevant for gears, a unique dimensionless expression of the 

contact deflection for one solid (labelled i  here) is therefore proposed under the form: 

 

( ) 0
ˆ ln 2i ik cδ = +   (29) 

  

 where 0c  is a constant whose contribution is, most of the time, rather secondary 

compared with the logarithmic term (see Table 1). 

 

 Considering two contacting solids ( 1, 2i = ), the total compliance is derived from the 

total dimensionless deflection ˆ
T

δ  as: 

 

 

( )ˆ ˆ
ˆ ˆ 1

T
T T

T T

d

W dW W W

δδ δδ δ
∂ Λ  ∂ ∂Λ Λ Λ   = = + Λ = −    ∂ ∂Λ ∂Λ   

  (30) 



 

 where ( )
2

1 2 0

1

ˆ ˆ ln 4 2T i k k cδ δ= = −∑    

 

 Contact stiffness h
k is a key parameter in most gear models and it is determined as the 

inverse of the contact compliance (30), such that: 

 

2

ˆ 1
h ys

T

k k
δ

=
−

  (31) 

 where 
( )

( )
2

2 4 1 ²
ys

EW
k

π
ν

= =
Λ −

l
 is the linear contact stiffness introduced in [23-29] for a 

 pinion and gear of the same material. 

  

 Taking the double of the numerical limits for the relevant formulae in Table 2 in order 

to account for two contacting solids (hence ˆ2.46 9.36
T

δ≤ ≤ ), it is found that overall: 

0.24 1.37h

ys

k

k
≤ ≤   (32) 

whereas the Hamilton Standard formula leads to a linear stiffness 0.28HS ysk k so that: 

0.85 3.5h

HS

k

k
≤ ≤   (33) 

 Figure 19 shows the range of contact stiffness derived from (31), (32) and (33) for 

modules between 1 and 8 mm, which confirms these general trends and brings additional 

information. If ( ) ( )2 4 1 ²
ys

k Eπ ν= −l could be used as an upper bound for the smaller 

modules between 1 and 2 mm, it clearly overestimates the contact stiffness for modules above 

3 mm (by a factor of more than 2 if one considers the average stiffness). On the other hand, 

HS (18) more or less always coincides with the lower bound of (31). 



 

Figure 19 – Comparisons between several contact stiffness models. 

 

 The non-linearity of the load-dependent contact stiffness h
k  (via ˆ

T
δ ) can be appraised 

by calculating its rate of variation with respect to load given by: 

 

( )
( )2

1 1
2 0

ˆ 1 ˆ 1
h ys

T
T

d
k k

W dWδ δ

 ∂ ∂ Λ= = >  ∂ ∂Λ −  Λ −
  (34) 

which, confirms the hardening character of contact stiffness. 

 

4 - Conclusion 

 A thorough analysis of the classic contact deflection formulae in the literature has been 

presented in this paper, which, in the authors’ opinion, sheds light on the links between 

apparently very different approaches. A number of results appear as not adapted to gears since 

they rely on data located outside the teeth or give deflection amplitudes which are far too 

small because elastic couplings are discarded. A unique expression of the contact deflection 

and corresponding stiffness is proposed whose structure is close to that derived from (9), (10), 

(16) and (17), which all compare well with the results obtained using 2D and 3D finite 

element models. It is noticed, however, that, in a way, the definition of the contact deflection 

and stiffness for gears depend on how the total displacements are reconstructed by 

superimposing structural (tooth bending, foundation) and contact deflections. The classic 

methodology, that dates back to the early works of Weber [1], consists in setting contact 

displacements to zero at the intersection between the base plane and the tooth mid-surfaces or 

centre lines so that only structural displacements are taken into account at these points. The 

results in this paper also suggest that the influence of contact deflections does not necessarily 



vanish at the reference point at depth k. It can therefore be inferred that the overall mesh 

compliance can be underestimated by this superposition method and, as proposed by Sainsot 

[35], it could be more accurate to set a nil contact displacement on the coast side of the teeth. 

Finally, for three-dimensional models, it has been shown that a classic thin-slice 

representation with independent elements distributed along the contact lines can effectively 

represent contact compliance or stiffness. Deviations are noted when the deformed shape is 

distorted (mainly near the free edges) and elastic couplings cannot be ignored. Even so, the 

deflections in the central part of the contact lines are correctly reproduced.  
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Annex 

 

1 – General expressions for vertical displacements in a half-space loaded by a pressure 

distribution as shown in Figure 2. 

 Following Boussinesq [17], the normalised vertical displacement ( )ˆ 0, ,w y z  at any 

point on the plane of symmetry 0x =  of an elastic homogeneous half –space submitted to a 

pressure distribution semi-elliptical in the ( ),O x  direction and uniform over y− ≤ ≤l l   in 

the ( ),O y can be expressed as: 

1 2
ˆ ˆ ˆ(0, , ) (0, , ) (0, , )w y z w y z w y z= +   (A) 

 where   
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A first integration with respect to 'y  gives : 
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2 - Displacement at the surface 0z = such that '− >>l y x  (not too close to the contact 

edges) 

2
ˆ (0, , ) 0w y z =   (C-1) 

 and 
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Assuming that '− >>l y x , (C-2) is transformed into : 

( ) ( )
( ) ( ) ( )

( )2
2 21 1

2 2

22
1 1

2

41 1
ˆ (0, ,0) 1 ' ln ' 1 ' ln '

''
1

y y y
w y x dx x dx

xx
y y

y

π π

+ +

− −

 
 

 − + −  −
= − −   

    − + + + + +  

∫ ∫
l l l



l l

l

 

            (C-3) 

Introducing a new variable θ  such that : ' sin and ' cosx dx dθ θ θ= = , one obtains: 

( ) ( )
/2 /2

2 2 2 2

0 0

2 4
ˆ (0, ,0) ln 4 cos cos ln sinw y y d d

π π

θ θ θ θ θ
π π

 = − −  ∫ ∫l   (C-4) 

 

which, integrated using BI (305) (8) in [36] leads to: 

 

( ) ( ) ( )2 2 2 21 4 1
ˆ(0, ,0) ln 4 1 ln 4 ln 2 1 ln 4)

2 8 2
w y y y

π
π
    = − − − + = − + +     

l l   (C-5) 

re-written as: 

( )
2

1
ˆ(0, ,0) ln 2 ln 1 1.193

2

y
w y

  + − +     
 l

l
  (C-6) 

 

3- Displacement at the surface 0z =  at the contact edges y =±l  

 From (C-2), one obtains: 



( ) ( )
1 2

2

2
2

0

2 '
ˆ (0, ,0) 1 ' ln '

2 ' 2

x
w x dx

x
π

+  
 = −  
− + +  

∫l

l l

  (D-1) 

which, using the same change of variable in (C-4) and supposing that 

2

1
x  << 

 l
 gives: 

( )
2 2

0 0

2
ˆ(0, ,0) cos ² ln 4 cos ² ln(sin )w d d

π π

θ θ θ θ θ
π

+ + 
 = − 
  

∫ ∫l l   (D-2) 

 

The structure of (D-2) is similar to that of (C-4) and can be integrated the same way, leading 

to: 

( )1
ˆ (0, , 0) ln 2 0.943

2
w = +l l   (D-3) 

It can be verified that the result is the same at y =−l. 

 

4 - Displacements at depth 0z ≠ and assuming that ( )2 2 '+ + >>l y z x  

The first displacement component in (A) is transformed into 

( ) ( )
( ) ( )

2
2

2
2 2

1
2

2

2

1 1
ˆ (0, , ) ln cos ln 1 sin

2

y z y
w y z A d

y z y

π

π

θ θ θ
π

+

−

 − + + −   = − +  
+ + − +  

∫
l l

l l

  (E-1) 

 with  
( ) ( )

( )

2 2

22 2
2

 + + + +  =
+ +

l l

l

y z y

A

z y z

 

Integration using BI (309) (15) in [36] gives: 

 

( ) ( )
( ) ( )

2
2

1
2

2

1 1 1 1 1 1
ˆ (0, , ) ln ln

2 2 2 1 1

y z y A A
w y z

Ay z y

 − + + −   + + − + = − +    + +   + + − +  

l l

l l

 (E-2) 

The second displacement 2
ˆ (0, , )w y z  in (A), which is not nil in this case, reads: 



( ) ( )
1

2

2 22 2
2 2

1

1 1
ˆ (0, , ) 1 ' '

2 (1 ) '
1

²

y y
w y z x dx

xy z y z
z

π ν

+

−

 
− + = + − −  − + + + +    

 

∫
l l

l l

 (E-3) 

Assuming that 

2'
1

²

x

z
<< , the integral is re-written as: 

1 2 2
2

1

2

' 1
1 ' 1 ' cos ² 1 sin ²

² ²

x
x dx d

z z

π

π

θ θ θ
++

− −

   − − = −   
  

∫ ∫   (E-4) 

which, after integration, gives: 

( ) ( )
( )2 2

2
2 2

2 2

1
ˆ (0, , ) 1

2(1 )

y y
w y z z z z

y z y z
ν

 
− + = − + − + − − + + +  

l l

l l

 (E-5) 

 

The total displacement at depth 0z ≠  is finally derived by adding (E-2) and (E-5) which 

leads to equation (8).  

 

5 – Relative displacement between the surface and at depth 0z ≠ and assuming that 
2

1
z

y

 
<< ± l

 (central part of the contact width) 

In these conditions, it can be shown that A  in (E-1) and (E-2) becomes: 

2

1
A

z
  (F-1) 

and that (E-1) and (E-2) can be simplified as: 

( )1

1 ² 1 1 1
ˆ (0, , ) ln 2 ln 1 ln(2) ln 1 1 ² 1 1

2 ² 2 ² ²

y
w y z z z

z z

     + − + + − + + + − +                
 l

l
 

 (F-2) 

 

2

2 2

1 1
ˆ (0, , ) 1 1

(1 )
w y z z

zν
 

− − +  −  
   (F-3) 

The total vertical displacement is deduced as: 



( ) 1 ² 1 1
ˆ (0, , ) ln 2 ln 1 1.193 ln 1 1 ² 1 1

2 ² ² 1 ²

y
w y z z z

z z

ν
ν

     + − + − + + − − +           −      
 l

l
 

 (F-4) 

finally re-written as: 

1 1
ˆ ˆ(0, , ) (0, ,0) ln 1 1 ² 1 1

² 1 ²
w y z w y z z

z z

ν
ν

    
− + + − − +         −    

   (F-5) 

which corresponds to (9) in the text. 



 

 

 

Z  
0m         

(mm) 

0α              

(°) 

β               

(°) 
a

h  
f

h  x   
0p         

(GPa) 

b       

(mm) 

25 2 20 0         

10      

30 

1 1.25 0  1.34      

1.30     

1.23 

0.12        

0.12      

0.16 

 

 

Table 3 – Gear data and loading conditions 




