
HAL Id: hal-03491470
https://hal.science/hal-03491470

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A statistical-based optimization method to integrate
thermal comfort in the design of low energy

consumption building
Abed Al Waheed Hawila, Abdelatif Merabtine

To cite this version:
Abed Al Waheed Hawila, Abdelatif Merabtine. A statistical-based optimization method to integrate
thermal comfort in the design of low energy consumption building. Journal of Building Engineering,
2021, 33, pp.101661 -. �10.1016/j.jobe.2020.101661�. �hal-03491470�

https://hal.science/hal-03491470
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A statistical-based optimization method to integrate thermal 1 

comfort in the design of low energy consumption building 2 

Abed Al-Waheed Hawila a,*, Abdelatif Merabtine b, c  3 

a Institute Charles Delaunay, University of Technology of Troyes, 12 rue Marie Curie, CS 4 

42060, 10004, Troyes Cedex, France  5 

b EPF School of Engineering, 2 rue Fernand Sastre, 10430, Rosières-Prés-Troyes, France 6 

c Laboratory of Thermo-mechanics, GRESPI, SFR Condorcet FR CNRS 341, Université de 7 

Reims Champagne-Ardenne, Campus Moulin de la Housse, 51687 Reims Cedex, France 8 

 9 

 10 

* Corresponding author. E-mail address: abed_al_waheed.hawila@utt.fr, 11 

abedhawila88@gmail.com ; Phone number: +33 (0) 6 01432838   12 

 13 

  14 

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2352710220312420
Manuscript_b8e2d1f814d34cb803e2c75eb00b23ba

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2352710220312420


A statistical-based optimization method to integrate thermal 15 

comfort in the design of low energy consumption building 16 

Abstract 17 

It is necessary to design energy-efficient buildings so that a trade-off between energy-savings 18 

and occupants’ thermal comfort is fulfilled. Advanced thermal comfort-based control 19 

strategies have been proposed for this purpose. However, such an approach could consume 20 

energy as the conventional one if the building is poorly designed. The aim of this study is to 21 

propose a method that integrates thermal comfort in the design of energy-efficient buildings. 22 

The use of sensitivity analysis and an optimization approach to identify the values of design 23 

parameters represent its core steps. The meta-modeling approach based on the design of 24 

experiments technique is adopted to perform the sensitivity analysis. Then, the obtained meta-25 

models are used to optimize building design for the intended objectives. A case study is 26 

selected to test the proposed method. The results indicated that implementing the suggested 27 

strategy leads to about 20 % of heating energy-savings compared to the base case while 28 

significantly enhancing occupant thermal comfort. Moreover, the results indicated that a 29 

reduction of about 22% of heating energy can be achieved compared to the comfort controlled 30 

case while it consumes 4% more if the comfort control is applied to the optimized design 31 

while maintaining consistent thermal comfort conditions. 32 

Keywords: thermal comfort, energy savings, design of experiments, sensitivity analysis, 33 

Optimization, Analysis of Variance. 34 

1. Introduction 35 

In developed countries, the building sector accounts for about 40% of the final energy 36 

consumption and more than 30% of the greenhouse gas emissions ahead of transport and 37 

industry sectors [1]. Although progress is being made towards sustainable buildings, 38 

improvements are still not in line with a growing building sector and the increasing demand 39 



for energy services. The break-down of final energy consumption by end-use in the building 40 

sector demonstrates that  Heating, Ventilation, and Air conditioning (HVAC) systems account 41 

for about 34% to 40% of the total energy use in residential and commercial buildings, 42 

respectively [2]. However, these percentages may vary considerably from one region to 43 

another [3]. 44 

These concerns have led to the establishment of various standards and regulations 45 

aimed at prompting sustainable construction growth, such as zero energy buildings [4].  Such 46 

principles focus on improving building envelope design, using efficient equipment and 47 

deploying renewable energy resources [5]. Nevertheless, it is important to bear in mind that 48 

the main purpose of buildings is to provide a comfortable indoor environment to their 49 

occupants because people spent most of the day indoors, and uncomfortable indoor climate 50 

results in lower work efficiency and an indirect impact on energy consumption [6]. Therefore, 51 

improving the energy performance of buildings must consider thermal comfort alongside 52 

energy-savings measures, hence energy efficient-buildings must be designed so that a trade-53 

off between is achieved.  54 

Thermal comfort is defined as “the condition of the mind in which satisfaction is 55 

expressed with the thermal environment” [7]. Amid all the suggested thermal comfort indices, 56 

the Predicted Mean Vote (PMV) and Percentage of Persons Dissatisfied (PPD) are the most 57 

appropriate indices for evaluating thermal comfort in an air-conditioned environment [8]. It is 58 

calculated based on four environmental parameters defined as relative humidity, air velocity, 59 

air temperature and mean radiant temperature and two occupant related parameters renowned 60 

as metabolic rate and clothing insulation. Various national and international standards, such as 61 

ISO 7730 [9], ASHRAE 55 [7,10], and CEN CR 1752 [11], adopted the PMV index. To 62 

ensure a comfortable indoor environment, it is recommended to maintain the PMV at 0 with a 63 

tolerance of 0.5 [9].  64 



The used indices to evaluate occupants’ thermal comfort in air-conditioned buildings 65 

demonstrate that occupants’ thermal comfort is more than just an indoor air temperature. Most 66 

standards, however, adopt a static set-point temperature for the control of the indoor 67 

environment, alongside energy-efficient measures. For instance, in France, the RT2012 68 

recommends a set-point temperature of 19 °C during the winter season [12]. This legislation 69 

was created to encourage efficient energy use and to decrease environmental risks. Although 70 

this measure reflects good progress towards reducing building energy consumption, it is not 71 

satisfactorily considering occupant thermal comfort.  72 

To overcome this limitation, numerous research groups focused on developing 73 

innovative and advanced techniques for building control. For this purpose, thermal comfort 74 

based control strategies have been suggested and studied over the past decades [13]. These 75 

strategies are intended to maintain consistent indoor thermal comfort rather than fixed indoor 76 

temperature. For this aim, an advanced control scheme is utilized to regulate the monitored 77 

environmental parameters, so that the pre-defined PMV is preserved.  78 

Liang and Du [14] developed a direct neural network model to predict the PMV index 79 

using the abovementioned six parameters and showed how to incorporate such a model into 80 

the control system of a building. Ferreira et al. [15] applied a model-based predictive control 81 

using the branch and bound method to control an HVAC system, using the PMV index, in a 82 

university building. Castilla et al. [16] suggested an approximation of the PMV index using 83 

neural networks. The authors indicated that this approximation allows a reduction in the 84 

number of sensors required and the ability to control the HVAC system. Hussain et al. [17]  85 

compared the performance of a comfort-based fuzzy control with traditional ON/OFF control 86 

using simulation studies. The study reported decreases in heating and cooling energy 87 

consumption when using the comfort based control system. Garnier et al. [18] utilized a 88 

simulation-based neural predictive HVAC control approach to investigate the energy-saving 89 



and occupant comfort benefits compared to two other non-predictive approaches. The 90 

proposed method achieved energy-savings during both the heating and cooling seasons. 91 

Ruano et al. [19] proposed an improved model predictive control based on the PMV index for 92 

an existing HVAC system. The authors reported a significant economic savings, compared 93 

with conventional control, while satisfying thermal comfort conditions.  Xu et al. [20] 94 

developed and tested a novel periodic event-triggered mechanism based on the PMV index. 95 

The authors reported energy and cost savings for the buildings and demand reduction for the 96 

power grid. Yoon and Moon [21] proposed a performance-based thermal comfort control 97 

model based on the Gaussian process regression and deep Q-learning algorithm. The authors 98 

indicated that the suggested approach provided the optimal control that maximizes the energy-99 

savings while maintaining acceptable thermal comfort conditions.  100 

The reviewed studies show that many research groups are orienting their work toward 101 

the use of advanced and intelligent control methods. This is due to the poor performance of 102 

conventional methods when dealing with complex, dynamic and non-linear systems [22]. 103 

Nevertheless, the literature proof of the advantage of these advanced control systems over 104 

traditional ones is scarcely adequate to persuade the building industry to substitute 105 

conventional controllers with advanced smart ones.  106 

All the above studies were conducted with a purpose of showing (i) the interest of the 107 

comfort-based control compared to the conventional one, mostly by numerical approaches 108 

and much understanding from real situation investigations is still needed, without (ii) 109 

changing the design parameters of the case study such as the building envelope parameters. 110 

There is no reason why these two aspects could not be studied simultaneously. In addition, the 111 

literature still lacks experimental studies that quantify the costs associated with the use of 112 

these advanced control strategies compared with conventional control ones, namely because 113 

predictive models require a consistent input data about the indoor environment to be able to 114 



make predictions. Also, some studies indicated that a poor design of the building has a direct 115 

impact on energy consumption regardless of the utilized control approach [23]. Therefore, the 116 

building design represents the first and crucial strategy to reduce energy consumption in the 117 

building sector. In addition, integrating occupant thermal comfort during the design process 118 

can be a step forward towards achieving energy-savings and maintaining satisfactory thermal 119 

comfort conditions. 120 

In this regard, the objective of this study, which in fact is an extension to the authors’ 121 

previous works [24–26], is to propose a new method to integrate occupant thermal comfort in 122 

the design of energy-efficient buildings to achieve optimally designed buildings for both 123 

energy consumption and thermal comfort. The study of Merabtine et al [24] investigates the 124 

actual thermal comfort condition without considering a new approach to enhance the thermal 125 

performance of the building. Besides, the investigation of Hawila et al [25,26] relies solely on 126 

numerical simulation to confirm the advantages of the thermal comfort control strategy, while 127 

in practice it is still a questionable approach as discussed above. And bearing in mind that a 128 

poor design influences the overall thermal performance of the building despite the utilized 129 

control strategy, the investigations in this study are oriented towards integrating occupant 130 

thermal comfort in the design process rather than the control method. 131 

 The main aims intended through this method are: i) to understand the relationship 132 

between thermal performance and design parameters, ii) to provide realistic and accurate 133 

predictions of the thermal performance throughout the design process, and iii) to identify the 134 

parameters and interaction between parameters that significantly affect the design goals. For 135 

this purpose, the combined use of dynamic numerical simulations and meta-modeling 136 

approach based on the Design of Experiment (DoE) technique are adopted to analyze the 137 

sensitivity of both energy consumption and thermal comfort to design parameters, as well as 138 

to develop meta-modeling relationships. These last are then validated and utilized to optimize 139 



building design for a trade-off using the desirability function approach. The proposed method 140 

differentiates from other approaches by allowing a significant reduction in the number of 141 

simulations, thanks to the DoE technique, to develop the mathematical relationship between 142 

response variables and design parameters. These mathematical relationships convert the 143 

discretized domain into a continuous one, thus leading to enhancing the accuracy of the 144 

optimal solutions. Moreover, the obtained meta-models can be utilized as an alternative of 145 

numerical simulations as a rapid and easy approach to predict the thermal performance and to 146 

optimize the building design in similar case studies.  147 

2. Methodology 148 

The proposed methodology to integrate occupant thermal comfort in the design of 149 

energy-efficient buildings comprises six main steps, as discussed in the following sections. 150 

Figure 1 illustrates the framework of the proposed method.  151 

 152 

 153 

Figure 1 : The framework of the proposed method. 154 



2.1 Identifying building type, desired behavior and design parameters 155 

The first step of the proposed method is concerned with identifying the building type 156 

under the design process. A key starting point is then to define the requirements, which lead 157 

to the exploration of functions and, eventually, the desired behavior of the building. The 158 

requirements and functions of the building are defined via a communicative interaction 159 

between the stakeholders of the building. Based on these requirements and functions, the 160 

expected behavior is then obtained from the existing standards and regulations.  161 

Subsequently, the design process and design parameters takes place. In this early 162 

stage, the stakeholders aim to find a joint decision for building design solution. This is first 163 

done by identifying the factors influencing the building’s thermal behavior, which can be 164 

divided into five categories i) Climate, ii) Building-associated characteristics, such as area, 165 

orientation, envelope, iii) Occupant-related features, such as occupancy schedules, iv) 166 

Building services systems and operation, such as HVAC systems, and v) Occupants’ behavior 167 

and activities.  168 

Afterward, it is important to set the values of the design parameters to achieve the 169 

desired thermal behavior. First, the designer or engineer might set the values based on 170 

previous experience or similar case studies. Second, an evaluation study must be performed to 171 

confirm if the considered parameters achieved the desired behavior or not. Indeed, the 172 

analysis process requires a suitable and adequate approach to predict the thermal behavior of 173 

the building, as well as clear evaluation criteria to evaluate the performance of the building.  174 

2.2 Adopting suitable and adequate approach to predict the behavior of the building 175 

The prediction of building thermal performance requires models that accurately 176 

describe the physical phenomena. Numerous models were developed in the literature to 177 

predict the building performance, including dynamic simulation methods, statistical methods 178 



and artificial intelligence-based techniques. Each approach has its advantages and drawbacks. 179 

The combined use of dynamic simulation and statistical models is adopted in the proposed 180 

approach because building performance simulations are capable of providing adequate 181 

conclusions with less time and cost, as well as it enables analyzing different scenarios during 182 

the design phase without the need for an existing building. Besides, statistical and artificial 183 

intelligence methods require sufficient historical performance data to develop prediction 184 

models [27]. Indeed, the prediction capability of numerical models is an influential factor to 185 

reflect the reliability of the results, and model calibration and validation are required. For this 186 

purpose, the normalized mean bias error (NMBE), the coefficient of variation of the root 187 

mean square error (CVRMSE), and the coefficient of determination (��) are used in this 188 

study, as recommended by the ASHRAE Guideline-14 (G-14) [28].   189 

NMBE is a measure of how close the predicted data, ��, fits the measured data, 	�, 190 

and is expressed in percentage (%), as expressed in Equation (1), where 
 is the total number 191 

of measured data. It is the ratio of the sum of discrepancies between actual and predicted data 192 

to the mean of all measured data. Positive or negative value signifies that the model under- or 193 

over-predicts the measured data. 194 

CVRMSE measures the dispersion of the residuals between measured and predicted 195 

data, it is calculated using Equation (2). It is a measure of the ability of the model to fit the 196 

measured data. A lower value indicated that the model is a better fit. This index is not 197 

subjected to the cancellation phenomenon. 198 

The coefficient of determination (��) shows how close the predicted values are to the 199 

regression line of the measured data. This index is ranged between 0, which means that the 200 

  ��
� = 1	� × ∑ (	� − ��)���� 
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predicted and measured data do not fit, and 1, which means that the predicted values match 201 

perfectly the measured data. Table 1 summarizes the criteria of ASHRAE G-14 [28] to 202 

validate a model as calibrated. 203 

Table 1 : Threshold limits of statistical criteria for calibration in compliance with ASHRAE 204 

G-14 [28]. 205 

Statistical indices Monthly Calibration Hourly Calibration 

NMBE (%) ±5 ±10 
CVRMSE (%) 15 30 �� > 0.75 > 0.75 

2.3 Preliminary assessment 206 

The proposed design needs to be evaluated to check whether the building meets the 207 

predefined requirements. Indeed, during the design process, it is more important to compare 208 

design alternatives and use benchmarking than evaluating absolute values. A benchmark can 209 

be defined as a reference point against which building performance may be assessed. Two 210 

main approaches are used for building performance benchmarking: a) comparison of building 211 

behavior against historical performance, or b) comparison of behavior with the performance 212 

of similar buildings.  213 

Afterward, the results should be either satisfactory or unsatisfactory. The first implies 214 

that the considered design parameters are adequate to achieve the desired objectives, hence 215 

the design process can be terminated. An unsatisfactory result, however, implies that the 216 

deemed designed parameters need to be altered to achieve the desired objective. In this case, 217 

several iterations and comparisons must be performed to attain the main objectives. Indeed, 218 

this process requires considering and evaluating several scenarios. Here, sensitivity analysis 219 

can be used to develop design knowledge to understand and formulate the relationship 220 
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%
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between the considered design parameters and the desired objectives. This formulation allows 221 

optimizing the building design for the predefined requirements. 222 

2.4 Developing design knowledge using sensitivity analysis 223 

Sensitivity analysis (SA) is a valuable approach for identifying the key parameters 224 

influencing the thermal performance of buildings for both observational and energy 225 

simulation studies [29]. There are numerous techniques to employ SA in building 226 

performance studies. The meta-modeling approach based on the Design of Experiments 227 

(DoE) technique is adopted in the proposed framework. DoE allows the designer or engineer 228 

to derive mathematical formulation, noted as meta-models, between the studied variable and 229 

design parameters by drastically reducing the number of simulations. The developed meta-230 

models are then used to simplify and accelerate the parametric studies to find an optimal 231 

design to achieve the desired behavior.  232 

The most common meta-models are the first-order linear model, the linear model with 233 

interaction terms, the pure quadratic model, and the complete quadratic model. The 234 

coefficients of the meta-model is determined by simple matrix multiplication using the least-235 

squares method. Indeed, the validity of the obtained meta-models is vital to reflect the 236 

adequacy of the performed analysis. The significance of the obtained meta-model and model 237 

terms can be tested using the ANOVA approach in combination with Fisher’s statistical test 238 

(P-value < 0.05). In addition, graphical analysis of residuals can be applied to check the 239 

adequacy of the obtained meta-models, and as a result, the performed analysis. 240 

2.5 Optimization  241 

The next step is to use the validated meta-models to find the value of design 242 

parameters that outcome the predefined behavior of the building, such as minimizing or 243 

maximizing a response variable. However, in the case of building design, the desired behavior 244 



is a function of more than one response, such as minimizing energy consumption and 245 

maintaining acceptable thermal comfort levels. A compromise solution is thus desired and a 246 

simultaneous optimization procedure is needed. 247 

In this consequence, the desirability function approach represents a suitable method to 248 

optimize multiple responses. It aims to simultaneously optimize multiple equations by 249 

converting a multiple response problem into a single one. First, each response (3�) is 250 

converted into an individual desirability function (4�) depending on the desired objective, as 251 

expressed by Equations (4-6), if the objective is to achieve a target value, minimize, or 252 

maximize the response value, respectively. Then, the obtained function are combined in the 253 

Global Desirability Function (GDF), as indicated in Equation (7), where T, L and U are the 254 

target, the lower and the upper limits, respectively, and 5� is a weighting parameter. The 255 

Nelder-Mead simplex method is then used to search for the set of input factors to maximize 256 

the GDF [30].  257 

 258 
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2.6 Final evaluation 259 

Indeed, after identifying the values of design parameters, a final evaluation step must 260 

be performed. Here the evaluation process follows the same approach as indicated in step 3, 261 

section 2.3. If the evaluation process is satisfying, then the values of design parameters are set 262 

to those obtained from the optimization process. Otherwise, repeat Step 4, with a different 263 

range of variation of the considered design parameters. 264 

3. Case study 265 

The selected case study for evaluating the proposed method is a highly glazed room 266 

situated in the south-east part of the ground floor of a low energy consumption educational 267 

building (Figure 2). Addressing this type of building is important because the energy issues 268 

and indoor environmental quality are of great concern and require greater attention due to 269 

their specific nature in comparison with other buildings. For instance, educational buildings 270 

have a specific pattern of occupation and different levels of freedom for adaptive activities. 271 

Located in the southern part of Troyes, France, the building was designed to meet the RT2012 272 

and committed to reducing its overall energy consumption by 20% and greenhouse gas 273 

emissions by 50% by 2025 and enhancing the indoor air quality of its occupants. Figure 3 274 

illustrates the monthly average outdoor temperature, the heating degree days (HDDs), and the 275 

hourly accumulation of monthly global solar radiation at the considered location. HDDs 276 

designate the sum of the average daily differences between outdoor temperature and 18 °C by 277 

considering that when the outdoor temperature is 18 °C, heating is not required.    278 

 279 



 280 

Figure 2: considered case study: (a) outdoor view, and (b) indoor view. 281 

 282 

Figure 3: Averaged outdoor temperature, HDD, and hourly accumulation of monthly sun 283 

radiation in Troyes, France. 284 



Despite all the efficient measures and innovative solutions to reduce emissions and 285 

total energy consumption of the building, students occupying the Foyer (Figure 2b), a public 286 

room for doing different activities, reported dissatisfaction in thermal comfort conditions. In 287 

this regards, both subjective and objective investigations were performed to assess the thermal 288 

comfort level in that space [25,31], a brief description of the space characteristics is 289 

summarized in Table 2. For this purpose, a multifunctional sensor (Figure 4) was utilized to 290 

monitor the environmental parameters and to calculate the indices of thermal comfort. The 291 

metabolic rate and clothing level were assumed to be 70 W.m-2 (1.2 met) and 0.155 K.m2.W-1 292 

(1 clo), respectively, representing sedentary activity and typical winter clothing. The 293 

characteristics of the used sensor and the conducted measuring cycles are reported in Table 3. 294 

In addition, survey questionnaires were prepared and collected from 41 students during the 295 

investigations. It is worth noting that the 41 students represent a sample of 90% confidence 296 

interval and a 12% margin of error compared to the total number of 281 students and staff 297 

members occupying the building. Bearing in mind that not all the students attend the Foyer 298 

and the total number includes the staff member, it is assumed that the sample size is 299 

statistically significant. The obtained PPD values form both the measured data and the survey 300 

were above the recommended comfort range of 10% (Figure 5). The results show a good 301 

agreement between the obtained results and students assumptions regarding the thermal 302 

environment conditions within the Foyer. Therefore, further investigations to improve the 303 

thermal comfort conditions in the Foyer are required. For this purpose, a numerical model 304 

using Modelica is developed, the model is comprehensively explained in [25,26]. It is worth 305 

noting that, during the experimentation and the survey the students were occupying different 306 

locations inside the Foyer. The responses, however, were almost similar or slightly different 307 

and in a good agreement with the experimental results even though only one measuring point 308 

was considered in the investigations. Thus, the transients in the Foyer are deemed 309 



insignificant and it is assumed that the PMV index can satisfactorily represent the thermal 310 

comfort condition in further investigations.  311 

Table 2 : Brief description of the Foyer’s characteristics 312 

Location Troyes, France (latitude 48.2°N, longitude 4.07°E) 
Net area 58.0m² 
Dimensions 6.525m x 8.9m 
Ceiling height 2.54m 
Orientation South and east facing glass facades 
Roof  U-value = 0.4W.m-².K-1 
Internal wall U-value = 4.1W.m-².K-1 
Glass facade Window Floor ratio = 0.6; double glazing with U=2.8W.m-².K-1and 

SHGC=0.6; equipped with internal shading. 
Internal gains Light=3.6W.m-², occupancy=0.2person.m-² , appliance=2W.m-² 
Operating hours All days: 8am–8pm 
HVAC   
(a)Ventilation Supply air temperature 20°C, heat recovery system efficiency 66% 
 Air volume flow rate 208m3.h-1 
(b)Radiators  Supply water temperature function of outdoor temperature  
 Maximum water volume flow rate 0.1m3.h-1 

Table 3 : Multifunctional sensor characteristics and experimental cycles 313 

Parameters Range of variation Accuracy 
Ambient temperature (°C) [-40.0, 123.8] ± 0.4 
Mean radiant temperature (°C) [0, 100] ± 0.4 
Relative humidity (%) [0, 100] ± 3 

Air velocity (m.s-1) [0.05, 5.00] 
± 0.05 for [0.05, 1.00] 
± 0.15 for [1.00, 5.00] 

Experimental cycles 
 12/11 13/11 14/11 
 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 
Start hour 10:47 am 2:46 pm 8:21 am 10:01 am 2:31 pm 
End hour 11:29 am 6:36 pm 8 :55 am (+1 day) 11:49 am 5:31 pm 



 314 

 315 

Figure 4 : Multifunctional sensor 316 

 317 

Figure 5 : Average values of PPD for the various cycles [24]. 318 

To validate the model, the predicted room temperature and relative humidity are 319 

compared with measured data. NMBE, CVRMSE and the coefficient of determination (��) 320 

were used to quantify the deviations between predicted and measured values. The NMBE and 321 

CVRMSE of both the room temperature and the relative humidity for the five measuring 322 

cycles are calculated and reported in Table 4. The obtained values of both NMBE and 323 

CVRMSE are within the acceptable limits of  ±10% and ±30%, respectively [28].  324 



Table 4: NMBE and CVRMSE of the room temperature and relative humidity for the five 325 

cycles. 326 

Moreover, the coefficient of determination that indicates how the predicted values fit 327 

the measured data is obtained by plotting the predicted values on a scatter graph as a function 328 

of measured values as demonstrated in Figure 6 and Figure 7. A good correlation is observed 329 

showing an  �� of 0.9751 and 0.9083 for the room temperature and the relative humidity, 330 

respectively, meaning that 97.51% and 90.83% of the variance is explained by the model. 331 

Also, the results show that the deviation of all the data is within a 10% deviation of the model. 332 

 333 

Figure 6 : Coefficient of determination of the room temperature for the five cycles and the 334 

relative deviation of the model prediction.  335 

Experimental cycles 12th November 13th 14th November 
 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

Start hour 10:47 a.m. 2:46 p.m. 8:21 a.m.  10:01 a.m. 2:31 p.m. 
End hour 11:29 a.m.  6:36 p.m. 8:55 a.m.(+1 day) 11:49 a.m. 5:31 p.m. 
NMBE (%)   
Room Temperature  -2.12 -2.60 -0.29 -1.25 -4.68 
Relative humidity -2.21 1.55 -1.13 1.85 -3.10 
CVRMSE (%)      
Room Temperature 2.20 5.00 6.38 2.40 4.73 
Relative humidity 2.23 3.09 3.43 2.56 2.89 



 336 

Figure 7 : Coefficient of determination of relative humidity for the five cycles and the relative 337 

deviation of the model prediction. 338 

The obtained results indicate that the model prediction is in good agreement with the 339 

measured data, although some discrepancies were noticed. These discrepancies could be 340 

attributed to experimental errors which are a function of the accuracy of the sensor. As well as 341 

the lack of exact occupancy profile at the time of experimentations and some weather data 342 

parameters. On the other hand, the discrepancies can be reduced by monitoring occupancy 343 

profiles and matching simulation schedules with real data; however, this could result in 344 

increasing modeling time and complexity and outcomes robust results for specified periods.  345 

Therefore, based on all these aforementioned discussions and bearing in mind that the 346 

main intention is to obtain a model that can represent the real building in general terms rather 347 

than out coming exact results for a specified time, the model is considered to be validated and 348 

deems it useful for further evaluations and investigations. 349 



4. Results and discussion 350 

The existing thermal comfort standards, such as ISO 7730, ASHRAE standard 55, and 351 

EN 15251 provide thermal comfort ranges for four categories of mechanically conditioned 352 

spaces (Table 5). Educational buildings are considered in the second category with a normal 353 

level of expectations. Besides, energy consumption in educational buildings is usually high. In 354 

recent studies, the annual heating energy consumption for some European educational 355 

buildings is reported to be in the range of 67 kWh/m2 and 192 kWh/m2 [32]. However, the 356 

thermal regulation in France sets a benchmark of 50 kWh/m2 for annual heating energy 357 

consumption in new and renovated educational buildings. Therefore, the desired behavior in 358 

the deemed case study is to maintain the PMV values within the range of [-0.5, 0.5] and to 359 

reduce the annual heating energy consumption to less than 50 kWh/m2. 360 

Heating energy consumption and occupants’ thermal comfort are considered in the 361 

preliminary assessment and throughout the remaining parts of the paper. The thermal 362 

environment of the building meets the criteria of a specific category when the PMV values are 363 

outside the category limits no more than 3% of occupied hours. For instance, to meet the 364 

criteria for class II, 97% of the PMV values must be in the range of [-0.5, 0.5]. The obtained 365 

occurrence frequencies can be used to calculate a single index, known as the Environmental 366 

Quality Index (EQI), using Equation (8) [33], where @STU,V is the occurrence frequency 367 

defined as the fraction of time during which the values of the PMV outcome within the range 368 

limits defining the jth category of quality. The EQI is an index utilized for the long term 369 

assessment of the indoor environment and varies between 0 when all PMV values fall in 370 

category IV, and 100 when they fall in category I. A value of 70 indicates that all the PMV 371 

values fall in category II. Hence, it facilitates the long term assessment of the considered 372 

environment while implicitly demonstrating the PMV value variations.  373 



 374 

Table 5 : Recommended categories and PPD-PMV for mechanically conditioned buildings 375 

[9,34]. 376 

 377 

4.1. Preliminary assessment 378 

Two different cases are considered for the preliminary assessment step: 379 

1. A set-point room temperature of 20°C representing the base case scenario. 380 

2. A set-point room temperature of 19°C as recommended by RT2012.  381 

The PMV values for each case are calculated using the validated numerical model. The 382 

measure of central tendency and dispersion and the Box plots of the obtained hourly PMV 383 

values are reported in Table 6 and Figure 8. Box plots represent a useful way to compare 384 

different data sets. They summarize sets of data by showing the shape of the data distribution, 385 

their central value, and variability. The mean PMV increases by about 0.18 by increasing the 386 

set-point temperature from 19°C to 20°C. The median values of both cases indicate that at 387 

least 50% of the time the PMV values fall outside the acceptable thermal comfort limits. High 388 

values of the standard deviation indicate that the PMV is spread out over a wide range of 389 

values, which can be visually noticed using the Box plots. The standard errors’ values, 390 

however, signify less variability around the mean values.  391 

  �WX = 100 × @STU,Y + 70 ×  @STU,YY + 35 ×  @STU,YYY   . (8) 

Category Thermal state of the body as a whole 

PPD % Predicted mean vote 

I <6 -0.2 < PMV < +0.2 
II <10 -0.5 < PMV < +0.5 
III <15 -0.7 < PMV < +0.7 
IV >15 PMV < -0.7; or PMV > +0.7 



Moreover, the total heating energy consumption and the EQI for the two cases are 392 

illustrated in Figure 9. The results show that the case of set-point 19°C consumes the least 393 

heating energy consumption, while the case of set-point 20°C offers better thermal comfort 394 

conditions. These results indicate that both cases fail to maintain the desired thermal comfort 395 

levels under the current design and no significant improvements in energy-savings are 396 

achieved by shifting the set-point temperature to 19°C as recommended by the French thermal 397 

regulation standard RT2012. Also, bearing in mind that, in practice, due to the variation of 398 

actual indoor temperature, a 1°C change in the set-point temperature could be insignificant to 399 

allow for much change in energy-savings and occupant thermal comfort. It can be concluded 400 

that these recommendations must be aligned with an improvement in the thermal performance 401 

of building envelope to achieve the desired objectives. 402 

These results indicate that both cases fail to maintain the desired thermal comfort 403 

levels under the current design. Besides, the overwhelming majority of the obtained values are 404 

below -0.5, and hence an increase in the set-point temperature may lead to better thermal 405 

comfort conditions. However, this may lead to more heating energy consumption. In addition, 406 

the dispersion of the obtained PMV values can be correlated to the presence of fully glazed 407 

facades, which leads to fluctuations in the radiant temperature under different and extreme 408 

weather conditions. So reducing the area of the glass facades could lead to better thermal 409 

comfort conditions, yet this may lead to an increase in heating energy consumption as it 410 

reduces the solar heat gain. Therefore, both desired objectives compete with each other and a 411 

sensitivity analysis is required to simultaneously optimize both variables.  412 

Table 6: Descriptive statistics of obtained PMV values. 413 

19°C 20°C 

Measure of central tendency 

Mean -0.53909 -0.35592 
Median -0.75609 -0.54912 
Mode -0.84031 -0.59025 



Measure of variability 

Standard deviation 0.477445 0.44433 
Standard Error 0.009816 0.009135 
Min  -0.90701 -0.70526 
Max 1.6325 1.75418 

 414 

Figure 8: Box plots of hourly PMV index values. (The quartiles represent the 25%-75% 415 

interval, and the intermediate line the median.) 416 

 417 

Figure 9: Total heating energy consumption and the EQI for the two cases, set-point of 19°C 418 

and 20°C. 419 



4.2. Development of design knowledge using sensitivity analysis 420 

4.2.1. Response variables and choice of factors and levels 421 

As previously discussed, this study focuses on heating energy consumption and 422 

occupants’ thermal comfort. The considered response variables are thus the daily heating 423 

energy consumption, the average, the maximum, and the minimum PMV values. The reason 424 

for choosing a daily bases is to facilitate the integration of outdoor climatic conditions in the 425 

sensitivity study, as it will be indicated later.  426 

The considered factors for investigations are room temperature, sol-air temperature, 427 

WFR, and glazing type. Sol-air temperature is defined as “the outside air temperature which, 428 

in the absence of solar radiation, would give the same temperature distribution and rate of 429 

heat transfer through a wall (or roof) as exists due to the combined effects of the actual 430 

outdoor temperature distribution plus the incident solar radiation” [35]. It represents a good 431 

demonstration of the weather conditions. The mathematical formulation of the sol-air 432 

temperature is presented in [26]. The selection criteria of the considered factors are further 433 

explained in [31]. Each factor has two levels, the high level (+1) of the Window-Floor-Ratio 434 

(WFR) and glazing type represents the base case study, and the low level (-1) has been 435 

selected based on the values recommended by the French and the European standards [12,34]. 436 

The daily average sol-air temperature was calculated and the minimum and maximum values 437 

were chosen to represent the lower and higher levels. Table 7 reports the considered factors 438 

and their corresponding codes and levels.  439 

Table 7: Investigated factors and their corresponding codes and levels. 440 

Factor Code Unit Level  
   -1 +1 
Set-point temperature  A  °C 19 21 
Sol-air temperature  B  °C -2.2 17.2 
glazing type (U-value) 

                     (g-value) 

C  W.m-2.K-1 

- 
0.7 
0.3 

2.8 
0.77 

WFR D % 16 60 



4.2.2. Performing the simulations 441 

In this study, the two-level full factorial design is adopted because few factors are 442 

considered and it considers all the possible combinations of factors. Once the experimental 443 

plan was obtained, the experiments were carried out by running the simulation model for 444 

different combinations of factors levels. The design matrix considering the further tests and 445 

the simulation results of the considered response variables are reported in Table 8. The full 446 

factorial design considering four factors, each at two levels results in 16 runs. Design-Expert® 447 

Software version 11 (Stat-Ease Inc., Minneapolis, MN, USA) was used to analyze the data.  448 

4.2.3. Statistical analysis of the data 449 

It worth noting that the statistical analysis focused only on heating energy 450 

consumption because those related to the PMV are presented and discussed in detail in [31]. 451 

The results of the daily heating energy consumption were analyzed with ANOVA and for the 452 

response surface plots. Figure 10 shows the effect of the considered factors on the response 453 

variables using 3D graphs. These graphs are obtained by the combination of the different 454 

design parameters and the resulting daily heating energy consumption. 455 

Table 8: Design matrix and the obtained results. 456 

Run 
order 

Standard 
order 

Set-
point 

sol-air 
temperature 

Glazing 
type 

Glazing 
Area 

Daily 
heating PMVavg PMVMin PMVMax 

1 1 -1 -1 -1 -1 14.80 -1.02 -1.04 -0.99 
2 7 -1 1 1 -1 5.00 -0.55 -0.57 -0.51 
3 3 -1 1 -1 -1 4.80 -0.66 -1.02 -0.23 
4 2 1 -1 -1 -1 16.22 -0.30 -0.76 0.05 
5 9 -1 -1 -1 1 21.50 -1.01 -1.05 -0.99 
6 13 -1 -1 1 1 29.40 -0.53 -0.55 -0.50 
7 15 -1 1 1 1 6.80 -0.78 -1.02 -0.48 
8 11 -1 1 -1 1 5.94 -0.37 -0.73 -0.08 
9 5 -1 -1 1 -1 16.75 -1.12 -1.20 -1.03 

10 6 1 -1 1 -1 18.40 -0.65 -0.72 -0.55 
11 10 1 -1 -1 1 23.79 0.24 -1.27 2.03 
12 4 1 1 -1 -1 5.91 0.57 -0.98 2.29 
13 12 1 1 -1 1 6.46 -1.08 -1.12 -1.03 
14 8 1 1 1 -1 5.88 -0.60 -0.64 -0.54 



15 16 1 1 1 1 7.67 0.07 -1.12 1.58 
16 14 1 -1 1 1 32.98 0.42 -0.80 1.88 

 457 

Figure 10: 3D response surface interactive effects of varied: (a) sol-air temperature and set-458 

point temperature, (b) set-point temperature and glazing type, (c) set-point temperature and 459 

glazing area, (d) sol-air temperature and glazing type, (e) sol-air temperature and glazing area, 460 

and (f) glazing type and glazing area, on heating energy consumption.  461 

 462 

Figure 10 (a) and (d) show the interactions between sol-air temperature and set-point 463 

temperature and glazing type, respectively, and it is observed that the lowest heating energy 464 

consumption values are located in the region defined by the higher sol-air temperatures. This 465 

evident observation is correlated to the fact that at higher sol-air temperatures, more heat is 466 

transmitted into the indoor environment of the room. However, the interactions between sol-467 



air temperature and glazing area Figure 10(e) indicates that the heating energy consumption 468 

decreases as the glazing area decreases alongside the increase in sol-air temperature. This 469 

indicates that the sensitivity of heating energy consumption to outdoor climatic conditions is 470 

highly dependent on the glazing area. On the other hand, the interactions between set-point 471 

temperature and both glazing type and glazing area, and the interactions between glazing area 472 

and glazing type demonstrates that the heating energy consumption values decrease while all 473 

the parameters decrease (Figure 10(b), (c) and (f)). This can be correlated to the following: i) 474 

decreasing the set-point temperature implies less energy consumption, ii) improving glazing 475 

properties implies less heat loss to the external, and iii) less glazing area implies more 476 

insulated envelope.  477 

Figure 10 demonstrates the behavior of the studied parameters on the daily heating 478 

energy consumption; however, it is not possible to understand which interactions were more 479 

important. For this purpose, Pareto Charts have been presented and analyzed. The Pareto chart 480 

for standardized effects at p = 0.05 for the daily heating energy consumption is shown in 481 

Figure 11. Each bar represents a factor or an interaction between factors. The effect of a factor 482 

or interaction between factors is significant if its corresponding bar exceeds the vertical 483 

dashed line. This means that the response variable is influenced by the factor or interaction at 484 

a minimum statistically significant level of 95% confidence. The results reported in Figure 11 485 

designate that the most significant factors influencing the energy consumption are (in 486 

descending order): Sol-air temperature (B), Glazing area (D), the interaction between Sol-air 487 

temperature and Glazing area (BD), Glazing type (C), interaction between Sol-air temperature 488 

and glazing type (BC), interaction between glazing type and glazing area (CD), and set-point 489 

temperature (A). 490 



 491 

Figure 11: Pareto chart of the standardized effects. 492 

The Pareto chart helps in determining the significant factors and interactions. 493 

However, the normal probability plot is important to complement the analysis. It assists in 494 

determining if the significant effects have a negative, positioned to the left, or positive, 495 

positioned to the right of the fit line, impact on the response variable. The fit line identifies the 496 

expected values if the factor does not affect the response variable. Figure 12 illustrates the 497 

normal probability plot of standardized effects at p=0.05 for the daily heating energy 498 

consumption. Sol-air temperature (B) and the interactions between sol-air temperature and 499 

glazing area (BD) and glazing type (BC) are the factors having a negative influence on the 500 

daily heating energy consumption, which means that an increase in their levels leads to a 501 

decrease in the heating energy consumption. On the other hand, the factors with positive 502 

influence on the considered response variable are, in descending order, glazing area, glazing 503 

type, interaction between glazing area and glazing type, and set-point temperature, which 504 

means that the response variables increase with increasing level. 505 



 506 

Figure 12: Normal probability plot of the standardized effects. 507 

4.2.4. ANOVA and Development of meta-models 508 

The Analysis of Variance (ANOVA) approach is used to identify the significant 509 

factors. The results of ANOVA reported in Table 9 indicate that the obtained model is 510 

significant (p-value < 0.05). The non-significant factors (p-value>0.05) could be eliminated in 511 

the aim to simplify the obtained meta-models. The ANOVA results showed good performance 512 

with R2 (> 0.99) and adjusted R2 (0.98), the residuals versus fit values plots demonstrates less 513 

patterned structure (Figure 13), and the normal probability plot of residuals illustrated in 514 

Figure 14 show that the residuals followed a straight line. This indicates that the obtained 515 

meta-model is appropriate, and can be used to predict the set of design parameters that lead to 516 

the desired objective.  517 

  518 



Table 9: ANOVA results for daily heating energy consumption. 519 

Source DF Seq SS Adj SS Adj MS F-Value P-Value 
Model 14 1290.82 1290.82 92.201 4779.13 0.011 

  Linear 4 1161.84 1161.84 290.459 15055.54 0.006 

    A 1 9.64 9.64 9.637 499.53 0.028 

    B 1 980.69 980.69 980.687 50832.49 0.003 

    C 1 34.71 34.71 34.711 1799.17 0.015 

    D 1 136.8 136.8 136.803 7090.97 0.008 

  2-Way Interactions 6 120.41 120.41 20.068 1040.19 0.024 

    A*B 1 2.03 2.03 2.025 104.98 0.062 
    A*C 1 0.16 0.16 0.156 8.07 0.215 
    A*D 1 0.3 0.3 0.3 15.57 0.158 
    B*C 1 22.51 22.51 22.509 1166.71 0.019 

    B*D 1 81.68 81.68 81.681 4233.8 0.01 

    C*D 1 13.74 13.74 13.737 712.02 0.024 

  3-Way Interactions 4 8.58 8.58 2.144 111.13 0.071 
    A*B*C 1 0.13 0.13 0.129 6.68 0.235 
    A*B*D 1 0.75 0.75 0.75 38.87 0.101 
    A*C*D 1 0.18 0.18 0.178 9.21 0.203 
    B*C*D 1 7.52 7.52 7.52 389.77 0.032 
Error 1 0.02 0.02 0.019     
Total 15 1290.84       

 520 

Figure 13 : Residuals versus fitted values for daily heating energy consumption. 521 



 522 

Figure 14 : Normal probability plot of residuals for daily heating energy consumption. 523 

4.2.5. Determination and analysis of optimal solutions 524 

Finally, and after developing and validating the meta-models, an optimization process 525 

is needed to identify the values of the considered design-parameters to achieve the desired 526 

objectives. The optimization process considers three different scenarios: 527 

• First scenario (S1): Optimizing building design for energy-savings. In this case, the 528 

obtained meta-model is used to minimize the daily heating energy consumption.  529 

• Second scenario (S2): Optimizing building design for both thermal comfort and 530 

energy-savings. Here, the obtained meta-model and the meta-models of PMV values, 531 

developed in [31], are used to achieve a building optimized design for a trade-off 532 

between heating energy consumption and thermal comfort. 533 

• Third Scenario (S3): Optimizing building design for thermal comfort. This scenario 534 

represents the one demonstrated in [31], where the authors optimized the design for 535 

thermal comfort without considering the heating energy consumption.  536 

 537 



The range of variation of the factors is the same as indicated in Table 7. In the first 538 

scenario (S1) the numerical optimizations indicated that the maximum GDF value is provided 539 

when the set-point temperature is 19°C, the glazing type is triple low-e (u-value = 0.7, g-value 540 

= 0.3), and the WFR is 16%. The optimization results suggest that using this combination of 541 

parameters will outcome an average daily heating energy consumption of 8.705 kWh and an 542 

average, minimum, and maximum PMV values of -0.808, -1.044, and -0.518, respectively.  543 

In the second scenario, the numerical optimizations indicated that the maximum GDF 544 

value is provided when the set-point temperature is 21°C, the glazing type is triple low-e (u-545 

value = 0.7, g-value = 0.3), and the WFR is 16%. The optimization results suggest that using 546 

this combination of parameters will outcome an average daily heating energy consumption of 547 

10.170 kWh and an average, minimum, and maximum PMV values of -0.404, -0.5, and -548 

0.086, respectively. 549 

After determining the combination of parameters for each proposed scenario, a 550 

comparative study is performed. The comparative study considers the hourly PMV values, 551 

EQI, and heating energy consumption throughout the whole winter season. The measure of 552 

central tendency and dispersion of the obtained hourly PMV values for all the considered 553 

scenarios are reported in Table 10. The results show that the distribution, the central values, 554 

and the variability of the PMV values for both S2 and S3 lies within the recommended 555 

acceptable thermal comfort levels, but not those of S1. An important inference that can be 556 

noticed is the low values of the standard deviations for the three scenarios (S1, S2, and S3), 557 

which implies less dispersion of the obtained PMV values.  558 

On the other hand, the heating energy consumption is the lowest for S1 compared to all other 559 

scenarios, however, the EQI is very low and lies below the recommended acceptable range 560 

(Figure 15). These results indicate that optimizing for heating energy consumption alone is 561 

not enough to ensure acceptable thermal comfort conditions. Further, comparing S2 and S3 562 



indicates that a simultaneous optimization, here S2, is the best scenario. Considering both 563 

parameters allows for energy-saving, as well as maintaining acceptable thermal comfort 564 

conditions. 565 

Table 10: Descriptive statistics of obtained PMV values. 566 

19°C 20°C S1 S2 S3 
Measure of central tendency   
Mean -0.53909 -0.35592 -0.69191 -0.26796 -0.28435 
Median -0.75609 -0.54912 -0.72082 -0.28677 -0.30586 
Mode -0.84031 -0.59025 -0.74445 -0.30502 -0.31499 
Measure of variability   
Standard deviation 0.477445 0.44433 0.083469 0.059749 0.068324 
Standard Error 0.009816 0.009135 0.001716 0.001228 0.001405 
Min  -0.90701 -0.70526 -0.78578 -0.37774 -0.40989 
Max 1.6325 1.75418 -0.2079 0.08962 0.12456 

 567 

Furthermore, although the optimized case allows an increase in the set-point 568 

temperature, it results in reducing the heating energy consumption (S2 compared to the cases 569 

of set-point temperature of 19°C and 20°C). This can be correlated to the optimized design of 570 

the glazed envelope, which leads to enhanced thermal resistance by reducing the glazing area. 571 

This results in reducing the transmission heat loss under low outdoor temperatures, and as a 572 

consequence reduced heating energy consumption.  573 

 574 



Figure 15: Total heating energy consumption and the EQI for the five simulated scenarios.  575 

4.3. Comparison with thermal comfort based control 576 

After identifying the best scenario to simultaneously optimize both energy-saving and 577 

thermal comfort, it is important to compare with another approach to highlight the added 578 

value of the proposed approach. In this consequence, a comparative study with two other 579 

scenarios is performed. The fourth and fifth considered scenarios are: 580 

• Fourth Scenario (S4): Using a PMV-based thermal comfort control without 581 

altering the current design. 582 

• Fifth Scenario (S5): Using a PMV-based thermal control in the case of 583 

optimized design.  584 

The EQI index and total heating energy consumption are shown in Figure 16. The 585 

obtained results show that the optimized thermostatic cases, S2 and S3, allowed about 22% 586 

and 16.5%, respectively, reduction of heating energy consumption compared to the comfort 587 

controlled case (S4), and consumed about 4% and 11% more than that of S5. In addition, 588 

scenarios S1 to S4 offered equivalent thermal comfort levels, almost equal EQI values, and 589 

better than all the studied cases using the base design. These results indicate that i) thermal 590 

comfort control is a reasonable solution to neutralize the trade-off between thermal comfort 591 

and energy savings under poorly designed building, ii) integrating occupants thermal comfort 592 

in the design process leads to an optimized design for both thermal comfort and energy 593 

consumption, and iii) by considering S2 and S5, one can observe that it could be possible to 594 

suppress the need for an advanced control strategy, which could require additional devices 595 

installations to keep continuous monitoring of the indoor environment, thus leading to 596 

additional installation and functional costs.  597 



 598 

Figure 16: Total heating energy consumption and EQI for the considered scenarios in this 599 

study. 600 

5. Conclusion 601 

In this paper, we proposed that integrating occupants’ thermal comfort in the design of 602 

energy-efficient buildings leads to a trade-off between energy-savings and thermal comfort. 603 

This act alongside the shift towards designing and constructing energy-efficient buildings, 604 

which leads to further requirements of performance and sustainability, causes the design 605 

process of buildings to be more complex. Adopting a method that is capable of, firstly 606 

integrating occupants’ thermal comfort simply and efficiently, and secondly providing 607 

accurate predictions, is thus an essential need for building designers.  608 

For this reason, a method for integrating occupant thermal comfort in the design process 609 

was proposed. The method, comprising six main steps, was evaluated by applying it in the 610 

design of a reference case study, particularly a highly glazed room, to investigate the impact 611 

of integrating occupant thermal comfort in the design of energy-efficient buildings. A 612 



previously developed numerical model was utilized. The DoE technique was then used to 613 

perform sensitivity analysis and to develop meta-models that approximate the response 614 

variables as a function of design parameters. Using the desirability function approach the 615 

meta-models were then used in the optimization process of building design. The results 616 

indicated that integrating occupants’ thermal comfort in the design of energy-efficient 617 

buildings leads to optimized building design for both thermal comfort and heating energy 618 

consumption.  619 

A comparative study between the proposed approach and a comfort controlled 620 

approach was then performed. The results indicate that in the case of extensive glazing areas, 621 

before optimizing building design, PMV-based thermal comfort-control is a reasonable 622 

solution to neutralize the trade-off between thermal comfort and energy-savings. However, 623 

the results show that optimizing building design using the proposed method could lead to 624 

suppress the need for an advanced control strategy, which could require additional device 625 

installations to keep continuous monitoring of the indoor environment, thus leading to 626 

additional installation and functional costs. 627 

Finally, developing a tool that allows the combined use of dynamic simulation, DoE 628 

and desirability function approach would make the application of the proposed method very 629 

useful for designers and decision-makers of building construction projects. 630 
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