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Abstract 20 

Recent intensification in climate change have resulted in the rise of hydrological extreme 21 

events. This demands modeling of hydrological processes at high temporal resolution to better 22 

understand flow patterns in catchments. To model surface and sub-surface flows in a catchment 23 

we utilized a physically based model called Hydrological Simulated Program-FORTRAN and 24 

two deep learning-based models. One deep learning model consisted of only one long short-term 25 

memory (simple LSTM), whereas the other model simulated processes in each hydrological 26 

response unit (HRU) by defining one separate LSTM for each HRU (HRU-based LSTM). The 27 

models use environmental time-series data and two-dimensional spatial data to predict surface 28 

and sub-surface flows at 6-minute time step simultaneously. We tested our models in a tropical 29 

humid headwater catchment in northern Lao PDR and compared their performances. Our results 30 

showed that the simple LSTM model outperformed the other models on surface runoff prediction 31 

with the lowest MSE (7.4e-5 m3s-1 ), whereas HRU-based LSTM model better predicted patterns 32 

and slopes in sub-surface flow in comparison with the other models by having the smallest MSE 33 

value (3.2e-4 m3s-1). This study demonstrated the performance of a deep learning model when 34 

simulating hydrological cycle with high temporal resolution.    35 

 36 

KEYWORDS: Deep learning model, Long short-term memory (LSTM), Sub-surface 37 

flow, Surface runoff, Hydrological Simulated Program-FORTRAN  38 
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1 Introduction 39 

Recently, increase in precipitation extreme events has been witnessed at global scale 40 

(Papalexiou and Montanari, 2019). Roxy et al., (2017) documented threefold increase in rainfall 41 

events from 1950 to 2017 in central India. The International Disaster Database noted global 42 

annual loss of over $30 billion as a result of floods in last decade (Roxy et al., 2017). To 43 

understand the hydrological complexity of flash floods, we need to model hydrological 44 

phenomena at sub-daily time-step (Jodar-Abellan et al., 2019). Reynolds et al., (2017) has also 45 

stressed the need for streamflow prediction at a sub-daily time-step for flood forecasting in 46 

medium-sized (10-1000 Km2) catchments due to small concentration time. The identification of 47 

water components contributing to total streamflow plays a key role in understanding bio-48 

geochemical cycles and transport processes at catchment scale (Burns and Kendall, 2002). 49 

Accurate estimation of sub-surface water flow is critical in time-continuous models in 50 

comparison with event-based models due to the dominance of groundwater in continuous 51 

rainfall-runoff models (Huang et al., 2016; Guse et al., 2014). 52 

  Several research groups have developed catchment-scale modeling tools, such as the 53 

Soil & Water Assessment Tool (SWAT) (Arnold and Fohrer, 2005), the Stormwater 54 

Management Model (SWMM) (Rossman, 2010), and the Hydrological Simulation Program-55 

FORTRAN (HSPF) (Bicknell et al., 2001). However, most of these hydrological models are used 56 

for a single rainfall event or daily simulation because sub-hourly simulation is complex and time 57 

consuming (Bennett et al., 2016). Jeong et al., (2010) improved the SWAT model to simulate 58 

stream discharge at a sub-hourly time-step; however, some processes in their improved model, 59 

such as baseflow and lateral flow, are still modeled with daily time-step. The output of these 60 

processes modeled at daily time-step is then distributed equally at the sub-hourly time-step. This 61 
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improved SWAT model has been used to perform sub-daily rainfall-runoff simulations (Boithias 62 

et al., 2017). Ficchì et al., (2016) modeled streamflow using a four-parameter lumped GR4 63 

(modified from GR4J, which stands for modèle du Génie Rural à 4 paramètres Journalier) model 64 

at different time-steps ranging from 6 min to 1 day, and studied the impact of frequency on 65 

model performance. However, their study did not model continuous streamflow, rather they 66 

simulated individual storm events. Their study found a mixed model response, i.e., both increase 67 

(0.7 to 0.8) and decrease (0.8 to 0.69) in Kling Gupta Efficiency (Gupta et al., 2009) for model 68 

with increases in temporal resolution. Temporal resolution of input data also affects simulation 69 

results in a catchment model. Numerous studies have shown that the use of input data with 70 

higher temporal frequency improves model accuracy (Huang et al., 2019; Wang et al., 2009; 71 

Pang et al., 2018). On the other hand, simulating model output at a shorter time-step causes a 72 

reduction in model accuracy (Gassman et al., 2007; Boithias et al., 2017; Bressiani et al., 2015).  73 

A data-driven model is considered as an alternative approach to overcome these 74 

complexities, and such models have higher predictive accuracy (Pascual et al., 2013; Park et al., 75 

2019). Numerous studies have been conducted to simulate hydrological processes using neural 76 

networks (NNs), which is one of the popular types of data-driven models (Ilunga and Stephenson, 77 

2005; Ogwueleka and Ogwueleka, 2009). Several review papers (Besaw et al., 2010; Yaseen et 78 

al., 2015; Mosavi et al., 2018) have shown that most data-driven rainfall-runoff models have 79 

used daily time-steps and very few studies have been conducted using an hourly time-step. No 80 

study mentioned in these reviews showed any data-driven model using sub-hourly time-step for 81 

continuous streamflow prediction or estimating both surface and sub-surface outflows 82 

simultaneously. Granata et al., (2016) also employed a machine learning methodology for sub-83 
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hourly streamflow simulation. However, this study focused only on individual hydrographs and 84 

not on continuous streamflow prediction.  85 

Long short-term memory (LSTM) cell constitute a special type of NN, which has also 86 

been used for streamflow simulation (Kratzert et al., 2018;  Le et al., 2019; Yan et al., 2019; 87 

Campos et al., 2019). The special feature of LSTM is its ability to learn time-dependent features 88 

using its “memory” thereby it is regarded as an adequate NN for modeling hydrological cycles 89 

(Shen, 2018; Greff et al., 2016; Zhang et al., 2018). To the best of our knowledge, no studies 90 

have been published so far that discuss the use of LSTMs to simulate surface and sub-surface 91 

flow simultaneously at a sub-hourly time-step. However, such a study is required because 92 

modeling hydrological response of catchments at minutes-scale temporal resolution can enhance 93 

the capacity of hydrological models to simulate contaminants whose concentrations vary at 94 

logarithmic scale within short span of time such as fecal bacteria. In this study, we developed 95 

two different data-driven models based on LSTM neural networks and compared their 96 

performance with a physical model (HSPF) using sub-hourly data collected at the outlet of a 97 

highly responsive headwater catchment in northern Laos, where land use dramatically changed 98 

over the past 20 year: annual crops was replaced by teak tree plantations managed without 99 

understorey. As different landuses have different flow patterns, change in landuse can affect soil 100 

loss or stream water quality (Ribolzi et al., 2017). The specific objectives of this study were (1) 101 

to evaluate the models’ ability to perform simulations of surface runoff and sub-surface flow at 102 

high temporal resolution of 6 minutes, (2) to conduct sensitivity analysis of the models 103 

developed in this study, and (3) to predict HRU level surface and sub-surface responses from 104 

LSTM-based models and to analyze whether HRU-level discretization in LSTM-based model 105 

can yield better result as compared to non-HRU based LSTM model. 106 
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2 Materials and Methods 107 

2.1 Study area 108 

This study was conducted in a 0.6 km² Houay Pano headwater catchment, located 10 km 109 

south of Luang Prabang city in Northern Lao P.D.R. It is a sub-basin of the Houay Xon river 110 

basin, which is a tributary of the Mekong River (Figure 1). The experimental site is part of the 111 

critical zone observatories’ network named Multiscale TROPIcal CatchmentS (M-TROPICS), 112 

which belongs to the French Research Infrastructure OZCAR (Gaillardet et al., 2018). This 113 

catchment can be considered as being representative of the montane agro-ecosystems of South-114 

East Asia. The bedrock is made up of siltstone and fine-grained sandstones of Permian to upper 115 

carboniferous age. Soils are Entisol, Ultisol, and Alfisol covering 20, 30, and 50% of the 116 

catchment, respectively (Chaplot et al., 2005). The slope in the area varies from 0% to 171% 117 

with an average slope of 54% (Ribolzi et al., 2016). The climate is sub-tropical humid. The mean 118 

annual rainfall is 1500 mm per year; however, the rainfall pattern is highly seasonal as the 119 

monsoon season, which runs from mid-May to mid-October, constitutes 77% of the rainfall. The 120 

average monthly temperature at the site lies between 12 and 35 °C with the highest temperature 121 

in April, just at the beginning of the wet season. The humidity level varies from 17% to 100%. 122 

The catchment experiences several storms during the rainy season, with heavy rainfall (up to 100 123 

mm h-1), a phenomenon which is characteristic of tropical regions (Ribolzi et al., 2016).  We 124 

measured hourly temperature (Celsius), relative humidity (%), wind speed (m/s), and solar 125 

radiation (J/�� ). The precipitation, electrical conductivity of stream water, surface and sub-126 

surface flow were measured at 6-minute time-step at the study site. Moreover, a survey is 127 
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conducted every year to ascertain landuse changes in study area. More details on data acquisition 128 

are given in Supplementary Information (Text S1). 129 

The area consists of four major land use types consisting of annual crops, teak, fallow, 130 

and forests (Figure S1). Recently, the area has undergone major land use changes with an 131 

increasing number of teak tree plantations (Ribolzi et al., 2017). Several studies have been 132 

conducted to understand the impact of land use changes on hydrological responses in the area 133 

(Ribolzi et al., 2018; Patin et al., 2018; Kim et al., 2018). We observed that the increase in teak 134 

tree plantations from 2002 onwards has resulted in a decrease of infiltration and consequently an 135 

increase in overland flow and sediment yield (Ribolzi et al., 2017).   136 

2.2 Hydrological Simulation Program-FORTRAN Model setup 137 

           Hydrological Simulation Program-FORTRAN (HSPF) is a lumped model for water 138 

quality and quantity modeling at catchment scale developed during the 1970s (Johanson and 139 

Davis, 1980). The steps used to build the HSPF model are summarized in Figure 2(a). We used 140 

BASINS 4.1 (Kinerson et al., 2009) software to prepare the input file for HSPF. This software 141 

pre-processes land use shapefiles, digital elevation models (DEM), and timeseries data of 142 

environmental variables such as precipitation, evapotranspiration, and temperature to prepare an 143 

input file for HSPF. Post processing steps were carried out on the input file and input data to 144 

incorporate the impact of changing land use, details of which are given in the Supplementary 145 

Information (Text S2). Furthermore, we performed Morris OAT (Morris, 1991) sensitivity 146 

analysis to find out the most sensitive parameters for the model. We chose 13 parameters for 147 

each of the four land uses present in the study area for sensitivity analysis (Table S1). Thus, the 148 

total number of parameters chosen for sensitivity analysis were 52. These 52 parameters are used 149 
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in equations which control the movement of water on pervious land segments in HSPF. Details 150 

on the implementation of the sensitivity analysis can be found in the Supplementary Information 151 

(Text S3). After sensitivity analysis, we calibrated the model by reducing the mean square error 152 

(MSE) between observed and predicted outflows, which was calculated using the following 153 

equation: 154 

                                                            ��� =
�∑ 
�� − �����

��� �

�
                                                              
1�  155 

where ��  and �� are simulated and observed data, respectively, and n represents the number of 156 

points in the data set. We used a truncated Newton algorithm (Nash, 1984) provided by the 157 

Python library ‘scipy’ (Jones et al., 2001) to minimize the loss function. 158 

2.3 Long Short-Term Memory (LSTM) 159 

Neural networks (NN) are a group of algorithms which work similar to how the human 160 

neural system is thought to work and are used to recognize patterns (Fukushima, 1980). They 161 

consist of a stack of layers of neurons where each neuron is associated with weights and 162 

activations. NNs can be calibrated to learn a non-linear function through backpropagation, in 163 

which the weights and biases in each layer of the NN are optimized by reducing the error/loss 164 

between observed and predicted output from the network (Rumelhart et al., 1988). The calibrated 165 

network, which is commonly known as a trained network, is then used to predict output from 166 

unseen data during validation (Rumelhart et al., 1988). Such models based on NNs are also 167 

considered as black-box models, where we only deal with input and output while the model itself 168 

finds relationships between the input and output data (Benítez et al., 1997). Recurrent Neural 169 

Networks (RNN) are a special kind of neural networks which are designed to work with time-170 
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series data because of their ability to capture long term temporal dependencies in data 171 

(Rumelhart et al., 1988). Simple RNNs suffer from the problem of vanishing gradient in deep 172 

neural networks where they fail to capture long range dependencies (Hochreiter, 1998).  173 

One solution to this problem is known as the Gated Recurrent Unit (GRU) and was 174 

proposed by Cho et al., (2014). They introduced the concept of gates which control the flow of 175 

information within the recurrent unit. Another solution to the problem of vanishing gradient was 176 

proposed by Hochreiter and Schmidhuber, (1997) which is known as long short-term memory 177 

(LSTM). LSTM uses three gates namely forget, update and output gates to control the flow of 178 

information. The current candidate cell state ��
��� depends on previous activation. The current 179 

cell state � 
��� is calculated using update and forget gate and then the output gate is used to 180 

decide the activations at current time step. 181 

 ��
��� = ����
��� ������, !���� " #�� (2) 

 $% = &
�%�'�����, !���� " #%� (3) 

 $( = &
�(�'�����, !���� " #(� (4) 

 $) = &
�)�'�����, !���� " #)�               (5) 

 '��� = $) ∗ ��
���  "  $%� ∗  '����� (6) 

 ���� = $(  ∗  ���� '���  (7) 

 182 

 In these equations, W and b are weights and biases whose values are calibrated when the 183 

model is trained. The model is fed with inputs x at time-step t and the activation at time-step t 184 

which is calculated using (Eq. 7) is taken as the output. In rainfall-runoff modeling, model output 185 

has strong time dependence. There is time delay in the stream response to precipitation (Talei 186 

and Chua, 2012) and this lag time depends on catchment features (Singh, 1988). LSTMs have the 187 
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ability to learn this behavior because of their ability to learn patterns in time-series data (lin Hsu 188 

et al., 1997). In this study, we developed two NN-based models. The steps to develop a simple 189 

LSTM model are briefly described in Figure 2(b) while the steps for a detailed, more complex, 190 

HRU-based LSTM model are summarized in Figure 2(c).   191 

 192 

2.3.1 Setup for simple LSTM model  193 

 The simple LSTM model (Figure 2(b)) consists of only a single LSTM layer. We chose 194 

the parameters to build this NN based on a trial and error procedure. This simple LSTM model is 195 

considered our baseline model and was used to compare the performance of the HRU-based 196 

LSTM model. The LSTM layer takes all input data and is calibrated to produce two outputs 197 

which are considered representative of surface and sub-surface flow (Figure 3). Although the 198 

same LSTM layer generates two outputs, it does not know which one is surface and which one is 199 

sub-surface flow. However, this distinction is made by comparing one (first) output of the model 200 

with observed surface flow and the second output of model with sub-surface flow. This 201 

comparison is done by calculating the MSE and then the model adjusts the weights and biases of 202 

the LSTM layer by back propagation in such a way that it tries to reduce the value of the MSE. 203 

In this way, the model learns implicitly that its first output must correspond to surface flow and 204 

the second output has to correspond to sub-surface flow.  205 

2.3.2 Setup for HRU-based LSTM model  206 

The second structure of LSTM model is the HRU-based structure consisting of 36 207 

parallel NNs (Figure 4). Each of these parallel networks is similar to a simple LSTM structure, 208 

however, it represents one hydrological response unit (HRU) instead of the whole catchment. 209 
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Each parallel NN consists of layered LSTM cells with 128 hidden units. We chose the number of 210 

hidden units based upon hyper-parameter optimization results. The input to LSTM at each time step 211 

consists of a 2-dimensional array of shape (sequence length, input features). The sequence length and 212 

input features are given in Table 1. The output from LSTM at each time step is equal to the number of 213 

hidden units. A fully connected layer was used to convert the output from LSTM into the specific 214 

dimension. However, the multiple fully connected layer can increase computation time as well as the 215 

model complexity. In order to avoid this, we used a single fully connected layer instead of a deep neural 216 

network after LSTM. Several studies also showed a single fully connected layers for developing 217 

hydrological models (Kratzert et al., 2018; Zhang et al., 2018; Kratzert et al., 2019; Kratzert et al., 2019b; 218 

Li et al., 2020). The fully connected layer in this study generates two outputs: surface runoff and sub-219 

surface flow (Figure 3) within an HRU. The number of layers in each of the parallel NN and the 220 

number of hidden units were decided by hyper-parameter optimization and are given in Table 1.  221 

An HRU is defined here as a distinguished land use in a distinguished sub-basin. This 222 

means land uses present in different sub-basins were considered as separate HRUs. This is 223 

different from HSPF where similar land uses in different sub-basis are considered are merged 224 

into one HRU. Thus, if a land use type, e.g. grass, is present in a catchment with 9 sub-basins 225 

and all the sub-basins have this type of land use, we will have 9 HRUs for this land use and nine 226 

separate NNs are assigned to simulate processes in these HRUs. Similarly, if a ‘forest’ land use 227 

is present in 5 sub-basins in the catchment, this will result in 5 other HRUs in the model. This is 228 

further illustrated in Figure S2 where a catchment consists of 5 sub-basins (A, B, C, D, E) and 229 

four land use types (i, ii, iii, iv) and 15 HRUs.  230 

Each of the parallel NNs in Figure 4 shares HRU-invariant input data such as solar 231 

radiation, air temperature, etc. The HRU-specific input data, such as precipitation received by 232 
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each HRU, was also prepared and was fed only to the corresponding NNs. The environmental 233 

data, such as air temperature and solar radiation, is experienced equally by the whole area of the 234 

catchment. Thus, all NNs share this environmental data. On the other hand, parameters which 235 

depend on HRU characteristics, such as its area and distance to the outlet, were calculated for 236 

each HRU. These HRU-specific parameters were only fed to the NNs representing the 237 

corresponding HRUs in the model. Precipitation data was measured for the whole catchment, 238 

and then precipitation received by each HRU was calculated based on the area of that HRU. This 239 

HRU-specific data can be viewed in Figure S7 and Figure S8.  240 

As the land use in the study area varies with time, this implies that the locations of HRUs 241 

also vary with time. Thus, all the HRU-specific data, i.e., distance to outlet, area, and volume of 242 

precipitation received, was also calculated accordingly. This time-varying HRU-specific data can 243 

be viewed in Figure S7 and Figure S8. One implication of this is that we considered all possible 244 

HRUs in the study area. For example, if the land use ‘grass’ is not present in sub-basin 1 in year 245 

2011, it may appear in 2012 and then disappear again. Thus, we considered the HRU ‘grass in 246 

sub-basin 1’ for the whole simulation period, though the input values for year 2011 and 2013 247 

will be zeros in this case. 248 

The catchment area consisted of 9 sub-basins and 4 types of land uses, thus implying 36 249 

possible HRUs. As the land use inside a sub-basin is distributed and no specific distance from an 250 

HRU to the catchment outlet can be measured, we used the distance of the sub-basin from the 251 

outlet as representative of all land uses inside that sub-basin. This means all the land uses/HRUs 252 

inside a sub-basin were considered to have the same distance from the outlet as that sub-basin. 253 
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This generalization results in certain HRUs having the same distance from the outlet, however, it 254 

still maintains HRU-specific information.  255 

Each of the parallel NNs in Figure 4 produces two outputs which are considered as 256 

representative of HRU-specific surface and sub-surface flow. Corresponding values of surface 257 

and sub-surface flow are added in cumulative order. This order of addition is the same as the 258 

stream filling order in the catchment. This cumulative and ordered filling of outputs is similar to 259 

realistic stream routing. The final values of surface and sub-surface flow are considered as model 260 

outputs and are compared with observed values to calculate the mean square error using 261 

Equation 1.   262 

This structure allows us to build a detailed model of the catchment, where outflow from 263 

each land use is simulated separately and instead of one value of total streamflow, the surface 264 

and subsurface outflow from the catchment are simulated. More details on the implementation of 265 

this NN in the computer program are given in Text S4 of the Supplementary Information. The 266 

motivation for HRU-based LSTM model was drawn from physically based models such as 267 

SWAT or HSPF where the study area is discretized into smaller HRUs. All processes are 268 

modeled at HRU level in these models. In order to compare results of LSTM-based model with 269 

HSPF, the study area was discretized into HRUs. Another purpose of discretizing study area for 270 

HRU-based LSTM was to assess the impact of increase in spatial resolution on model 271 

performance. 272 

2.3.3 Hyper-parameter optimization (HPO) based on window size 273 

The performance of a NN model is mainly governed by a set of parameters, which are 274 

used to build the NN, such as length of input data fed to it at each time-step, and number of 275 
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nodes in a layer (Hutter et al., 2015). These parameters are called hyper-parameters and their 276 

description and possible ranges are presented in Table S3. To achieve the best performance with 277 

calibration, we need to optimize these parameters, because a slight change in any of these 278 

parameters can worsen or improve the performance of the model. Different derivative free 279 

optimization algorithms are those which aim to solve problems given as black box (Lakhmiri et 280 

al., 2019). Direct search and Bayesian are one of such methods. Direct search is an ‘a priori’ 281 

method where the decision maker articulates preferences before optimization. Bayesian 282 

optimization is one of ‘a posteriori’ methods which aims to generate a representative set of 283 

pareto optimal solutions and then the best among them is chosen (Chen and Li, 2018). We 284 

selected Bayesian optimization approach because of it being a popular approach to optimize 285 

hyper-parameters in machine learning models (Shahriari et al., 2015; Snoek et al., 2015; Frazier, 286 

2018). The details about implementation of Bayesian optimization are given in Text S5.  287 

Several open source libraries are available for implementing Bayesian optimization 288 

method in Python programming language such as Hyperopt (Bergstra et al., 2015) and scikit-289 

optimize (Kumar and Head, 2017). We used scikit-optimize library because it allows the use of 290 

Gaussian Processes as surrogate function. Implementation of Bayesian in Hyperopt can be done 291 

by making use of Tree Parzen Estimator (Bergstra et al., 2011). The advantage of Gaussian 292 

Processes is that it can consider the interaction between hyper-parameters during the 293 

optimization (Dewancker et al., 2015). The surrogate function is the probability model of 294 

objection function and it calculates the probability of loss with respect of input values. In 295 

Bayesian optimization method, this surrogate function is optimized instead of actual objective 296 

function. The methodology of selecting the new parameter from parameter space was ‘Expected 297 

Improvement’ to the surrogate function. The expected improvement algorithm (Mockus,1975; 298 
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Jones et al., 1998) considers the size of the improvement. We used default parameters used by 299 

scikit-optimize (Kumar and Head, 2017) library in using Gaussian Processes. These parameters 300 

include ‘optimizer’, ‘kaapa’ and ‘xi’ and are described in following sentences. The ‘optimizer’ 301 

minimizes the acquisition function. We used Limited-Memory Broyden-Fletcher-Goldfarb-302 

Shanno (Andrew and Gao, 2002) as optimizer. The parameter ‘kappa’ controls variance in 303 

predicted values and was set to 1.96. The parameter ‘xi’, determines how much improvement 304 

should be taken into consideration over previous best values and was set to 0.01.  305 

The computation time of HPO depends upon the number of epochs to train a single model and the 306 

number of iterations used for optimization. Furthermore, it also depends upon the complexity of model 307 

being built at a specific iteration. The computation time, in general, increased by increasing the sequence 308 

length. We performed 50 iterations for each sequence length (Figure S5). The model was trained for 100 309 

epochs during each of these iterations. The computation time taken for optimizing hyper-parameters was 310 

15, 19, 25, 40 and 45 hours for sequence lengths of 20, 30, 40, 50 and 60, respectively. Although HPO 311 

needs considerable computation power, this method can improve the model performance by finding the 312 

optimal hyperparameter set. The model performance depending on the iteration is showed in Figure S5.    313 

2.4 Performance metrics and data splitting 314 

The performance of each model was evaluated using Nash-Sutcliffe Efficiency (NSE), 315 

mean squared error (MSE) and percentage bias (PBIAS). The MSE was calculated according to 316 

equation 1 and the equation used to calculate NSE and PBIAS are: 317 

                                                         NSE = 1 −
∑
�� − ����  

∑
�� − �̅��  
                                                               
8�  318 

                                                        PBIAS =
∑ 8�

�
���  −  ��

∑ 8�
�
���

 ! 100                                                        
9�  319 
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where ��  is simulated data, �� is observed data, and n is the number of points in the data 320 

set. Values of MSE indicate how closely the predictions follow the observed values. In model 321 

training, 70% of the input data corresponding from January 2011 to January 2013 was applied. 322 

15% of the data were used as validation and test, respectively. All three models produced two 323 

outputs—surface and sub-surface flow—and during optimization of parameters, an average error 324 

of the surface and sub-surface flow was calculated. This averaged error was then considered as 325 

the objective function which each model tries to minimize. Predicted total discharge is thus the 326 

sum of surface and sub-surface flows in each case. 327 

In order to avoid overfitting in LSTM based models, we used a mild regularization 328 

technique, namely early stopping (Goodfellow et al., 2016). We checked the performance of the 329 

models after each epoch on validation data. The model had not processed this data during 330 

calibration. We stopped calibrating the model when validation loss reached a plateau even if 331 

calibration loss kept on decreasing. 332 

3. Results 333 

3.1 HSPF Results 334 

3.1.1 Sensitivity Analysis 335 

We carried out sensitivity analysis for sub-surface flow and total discharge separately. 336 

Based on the results of sensitivity analysis, we selected 12 parameters for baseflow and for total 337 

discharge which had the strongest impact on these outflows for calibration. Not all parameters 338 

for baseflow and total discharge are different, rather there are some common parameters which 339 

had a strong impact on both sub-surface flow and total discharge (Table 2). Both sub-surface 340 
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flow and total discharge were highly sensitive to INFILT, which describes infiltration capacity 341 

(Bicknell et al., 2001), while only sub-surface flow was sensitive to AGWETP, BASETP, and 342 

DEEPFR.  343 

The parameters AGWETP and BASETP control the amount of evapotranspiration that 344 

can be taken from active groundwater storage and baseflow, respectively (Bicknell et al., 2001). 345 

As the definitions of these two variables suggest, they are closely associated with baseflow. Thus, 346 

sensitivity analysis showed these parameters to be more important for sub-surface flow, which is 347 

the sum of groundwater flow and interflow. These results are consistent with the similar studies  348 

(Xie and Lian, 2013; Baek et al., 2017; Diaz-Ramirez et al., 2013), which also demonstrated that 349 

INTFW, IFILT, DEEPFR, and AGWETP are among the most important parameters for 350 

streamflow.  351 

3.1.2 Estimation of surface and sub-surface flow using HSPF 352 

Figure 5 and Figure 6 shows predictions from the HSPF model for the calibration, 353 

validation and test periods. We evaluated the performance of the model by measuring the MSE 354 

and NSE for the calibration and test periods separately. Values of these errors for surface, sub-355 

surface, and total flow are given in Table 3. The predicted sub-surface flow in Figure 5 and 356 

Figure 6  is often underestimated, while the surface flow simulated by HSPF is mostly 357 

overestimated. This is the reason there is large positive PBIAS for surface flow and large 358 

negative PBIAS for sub-surface flow (Table 3). Although the predicted sub-surface flow is very 359 

low, the predicted total discharge is higher. The predicted total discharge is higher because of the 360 

large amount of input in the form of surface runoff. Overestimation of surface flow and under-361 

estimation of sub-surface flow was also observed by Hoang et al., (2014) after the application of 362 
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the SWAT model to a watershed in Denmark. This research attributed this behavior to the 363 

inadequacy of the model structure for simulating these processes.  364 

UZSN represents the storage capacity of the upper zone in the HSPF model (Bicknell et 365 

al., 2001), which is a soil zone (Table 2). A higher value of UZSN means that the soil has a 366 

higher storage capacity and thus more water will be retained in the upper zone which becomes 367 

available for evapotranspiration (Bicknell et al., 2001). Our calibrated UZSN values are closer to 368 

the upper limits, which means more water is being retained in the soil zone, eventually leading to 369 

higher evapotranspiration. In other words, this means more water is available for 370 

evapotranspiration from upper zone. 371 

We observed that predicted sub-surface flow was higher in 2013 as compared to 2011, 372 

while it was the lowest in 2012. We observed this trend because of changes in land use during 373 

these years (Figure S9). The rise of sub-surface flow in 2013 can be attributed to an increase in 374 

fallow land use and a decrease in annual crop land use in 2013. A recent study by Ribolzi et al., 375 

(2017) found a correlation between higher sub-surface flow and the increase in teak plantations 376 

in this catchments. Although teak and annual crop land use result in higher surface flow, the joint 377 

contribution of teak and annual crop decreased in 2013 and the contribution of fallow land use 378 

increased. The smaller sub-surface flow observed during 2012 could be due to the relatively 379 

higher teak and annual crop land use during this year as compared to other years.  380 

3.2 Estimation of surface and sub-surface flow using deep learning 381 

3.2.1 Simple LSTM 382 

The simple LSTM model consisted of a single LSTM layer and was built using the 383 

hyper-parameters given in Table 1. We then used the model calibrated with these hyper-384 
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parameters for evaluation during the test period. The performance of the model during 385 

calibration and test for surface, sub-surface, and total flow can be seen in Figure 7, Figure 8 and 386 

Table 3.  387 

The NSE values for surface runoff prediction during calibration and test were 0.43 and 388 

0.64, respectively. These NSE values categorize the model performance ‘unsatisfactory’ and 389 

‘satisfactory’ according to Moriasi et al., (2015). However, PBIAS, which measures average 390 

tendency of model to predict flow larger or smaller than observed is mostly between ‘very good’ 391 

(-3.2) and ‘good (-5.6) (Table 3). Despite this, the model captured most of the peaks in surface 392 

runoff during both the calibration and test periods. However, the predicted peaks are mostly 393 

lower than the observed peaks. This discrepancy can be attributed to the use of MSE for model 394 

calibration because MSE focused to reduce the average error between observation and simulation. 395 

The inability of model to capture peaks is also evident from flow duration curves for surface, 396 

sub-surface and total discharge (Figure S13). The percentage exceedance of predicted flows is 397 

below the observed in areas of high flows (Figure S13). For sub-surface flow, this model 398 

predicted almost all the peaks yet failed to follow the trend of rising and falling limbs, which 399 

resulted in lower NSE values. Another important aspect of simple LSTM model is its ability to 400 

perform better for surface runoff as compared to sub-surface runoff. This is evident from Table 3, 401 

which shows all performance metrics for surface runoff better than those of sub-surface flow. 402 

3.2.2 HRU-based LSTM model 403 

We built the HRU-based LSTM model using information obtained from HPO. We used 404 

information about the activation function, normalization, and loss calculation methods and cell 405 

type from HPO. The choice of activation function affects the kind of non-linearity applied. 406 

Options for the loss calculation method were ‘normal’ or ‘weighted’. In the weighted loss 407 



20 

 

calculation method, the loss value is more sensitive to peak flows. The choices for cell type, in 408 

order to build NN, were GRU and LSTM. The HPO was then allowed to decide which of these 409 

two cells perform best. The HPO algorithm varied the values of these hyper-parameters during 410 

the optimization process until it found the best combination of hyper-parameters. This 411 

optimization was performed for five different sequence lengths. Figure S5 shows the results of 412 

optimization, where the plot for each sequence length indicates how the loss value was reduced. 413 

It shows how the optimization algorithm attempted to obtain the best hyper-parameters for a 414 

specific sequence length. Table 4 enlists configuration of models which resulted in maximum 415 

reduction in loss value for each sequence length. It can be seen that the best HPO results were 416 

mostly obtained using a rectified linear unit (ReLu), performing normalization of input data 417 

before using it, using an LSTM cell instead of a GRU cell, and using the weighted loss 418 

calculation method (Table 4). The values of sequence length and batch size were not optimized 419 

using HPO because increasing them is equivalent to increasing the amount of input data being 420 

fed to the NN. This exponentially increases the amount of computation, which requires greater 421 

processing and memory resources. In this regard, we used a trial and error method to obtain 422 

better optimum values for other hyper-parameters such as sequence length, batch size, etc. The 423 

optimized set of hyper-parameters which were used to build the HRU-based LSTM model are 424 

given in Table 1.  425 

Plots for surface, sub-surface, and total flow for calibration, validation and test data are 426 

shown in Figure 9 and Figure 10 respectively. The performance metrics obtained for this model 427 

are given in Table 3. We observed underestimation of surface runoff, which is similar to what 428 

we observed in predicted surface runoff from the simple LSTM model. However, in this case 429 

there was more under estimation as compared to the simple LSTM. This is the reason that the 430 
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MSE value, which is the average error for the whole simulation range, was higher during 431 

calibration and test as compared to the MSE value of the simple LSTM model. The NSE values, 432 

which measure the accuracy of prediction, were 0.66 and 0.63 for calibration and test of sub-433 

surface flow, respectively, which makes the model performance ‘satisfactory’ (Moriasi et al., 434 

2015).   435 

4. Discussion 436 

4.1 Overall comparison of three models 437 

By comparing the MSE and NSE values of all three models from Table 3, we can 438 

conclude that the simple model performed better for surface flow prediction. The simple LSTM 439 

model showed an NSE value of 0.64 and MSE value of 8.3-5 m3s-1  for surface runoff prediction, 440 

which are the best values obtained among all three models. Although the simple LSTM model 441 

was meant to serve as a baseline model, the more complex HRU-based LSTM model could not 442 

perform better for surface flow prediction. It is interesting to note that in this case, increasing 443 

model complexity has not resulted in improved model performance. It has already been reported 444 

that adding complexity to an NN does not necessarily imply that it will outperform its simpler 445 

counterpart (Makridakis et al., 2018).  446 

Overall performance of all models range from satisfactory to not-satisfactory as per 447 

criteria set by Moriasi et al., (2015).  One of reasons for this lower accuracy can be attributed to a 448 

finer time-step of simulation. Indeed, several studies have reported deterioration in model 449 

performance for streamflow estimation with increase in simulation time-step (Stern et al., 2016; 450 

Gassman et al., 2007), especially in smaller catchments (Spruill et al., 2000). In an extensive 451 

review of over 100 SWAT applications in Brazil. Bressiani et al., (2015) found that only 6% of 452 
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studies with monthly simulations resulted in NSE values of less than 0.5. On the other hand, 453 

when daily time-step was used, 25% of studies rendered NSE value below 0.5. Boithias et al., 454 

(2017) reported degradation of validation NSE from 0.66 to 0.49 when streamflow was first 455 

simulated at a daily time-step and then at an hourly time-step. The reason for lower accuracy at 456 

shorter time-steps can be the use of sparsely distributed rainfall gauges which are unable to 457 

capture the spatial details of rainfall inputs (Gassman et al., 2007). Similarly, another explanation 458 

for higher model accuracy when using longer time-steps is that longer time-steps integrate the 459 

variability at smaller time-steps (Boithias et al., 2017). 460 

For sub-surface flow, although the HSPF model performed best in terms of NSE, the 461 

predicted sub-surface flow was much lower than the observed sub-surface flow. The sub-surface 462 

flow predicted by HSPF in Figure 5 and Figure 6 , is much lower than the observed flow. This 463 

is the reason we see large negative values of PBIAS from the flow duration curves for predicted 464 

sub-surface flow is much below the observed (Figure S12).  The simple LSTM model was able 465 

to predict most of the peaks for sub-surface flow, however the value of NSE is lower as 466 

compared to that of the HRU-based LSTM model. The better values of NSE for sub-surface flow 467 

from the HRU-based LSTM model can be attributed to the better prediction of recession in peaks. 468 

The slopes in the falling limbs of predicted peaks from the HRU-based LSTM model in Figure 469 

S10, which are absent in the peaks predicted by the simple LSTM model. If we consider MSE 470 

values, the HRU-based LSTM model outperformed HSPF for both surface flow as well as sub-471 

surface flow during calibration period.  472 

In all models, the predicted flow peaks were lower than the observed peaks for both 473 

surface and sub-surface flow, except the predicted surface flow from HSPF. However, in HSPF, 474 
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the number of predicted storm events were much more than the observed, which resulted in a 475 

negative NSE value. In the case of the HRU-based LSTM model, although it predicted most of 476 

the storm events, it still under-predicted surface flow.  477 

The discrepancy between train and test MSE was caused by the difference in data 478 

distribution during these periods. The train data set had larger standard deviation than the 479 

validation and test data set (Table S4). The dataset with larger variance can have large MSE 480 

(Munna et al., 2015; Grams et al., 2002). If the training performance of a model is significantly 481 

larger than that of test data, this indicates overfitting. On the other hand, better performance for 482 

test data set in our case indicates different distribution of training and test data sets. 483 

 484 

4.2 Advantages and Limitations of HSPF 485 

As the HSPF is a process driven model, thus simulations resulting from it give insights 486 

about behavior and condition of catchment. The higher values of a variable such as UZSN 487 

translate into large storage potential in upper zone of soil. However, simulation results from 488 

HSPF are greatly influenced by calculated potential evapotranspiration which itself can vary 489 

based on the method of evapotranspiration calculation used. Our HSPF results showed that major 490 

portion of the rainfall is evapotranspirated. In the HSPF model, the amount of actual 491 

evapotranspiration is increased until the requirement created by the potential evapotranspiration 492 

is satisfied. If potential evapotranspiration is very high, the model allows more available water 493 

from storage to return to the environment as actual evapotranspiration. In our simulations, lower 494 

predicted flows from the HSPF model may also be due to the overestimation of potential 495 

evapotranspiration (Table S2) as has been the case in the studies of  Yeh, (2017) and 496 
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Prudhomme and Williamson, (2013). In this study, we calculated daily evapotranspiration and 497 

then distributed to 6 min by calculating daily sunshine hours. This interpolation of daily 498 

evapotranspiration to 6-min time-step can also be a reason of poor HSPF performance. There 499 

have been several studies showing that using evapotranspiration values calculated at a higher 500 

temporal resolution results in better model performance (Debele et al., 2009)). The conceptual 501 

physically-based models can render poor performance if one of the model variable is incorrectly 502 

calculated. Ouellet‐Proulx et al., (2019) compared the performance of five different ET and 503 

evaporation models for rainfall-runoff modeling and showed that the choice of ET model affects 504 

streamflow by 3 to 24 percent. On the other hand, the deep learning models are less likely to 505 

suffer from these errors because they are not explicitly process driven. 506 

4.3 Advantages of LSTM model 507 

One of the key characteristics in surface runoff simulations is the lag time between 508 

rainfall and surface runoff (Talei and Chua, 2012). The lag time between observed surface runoff 509 

and incoming rainfall for two storm events of September 2013 can be seen in Figure S11. This 510 

figure also compares the results of lag time for all three models. These storm events are in the 511 

test period; thus this figure is a good representation of the ability of models to simulate lag time. 512 

It can be observed in the figure that HSPF predicts surface runoff as soon as there is a rainfall 513 

event while both our NN models show a lag time. Although the peaks predicted by the HRU-514 

based LSTM model are lower than those predicted by the other models, the model showed 515 

responses to both storm events with lag time. 516 

The simple LSTM model takes much less computing time as compared to the HRU-based 517 

LSTM model. This is self-evident because the HRU-based LSTM model has 36 times more 518 
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parameters to calibrate as compared to the simple model. The number of calibration parameters 519 

for each NN model can be calculated from the hyper-parameters given in Table 1. For the simple 520 

LSTM model there were 258 parameters to calibrate (128 weights and biases for an LSTM with 521 

128 hidden units and one weight and bias for the fully connected layer). Similarly, the number of 522 

parameters calibrated by the HRU-based LSTM model were 9,288. The computation time of 523 

HRU-based LSTM model did not scale with number of parameters. We observed an average 524 

time of 4 minutes per epoch for HRU-based LSTM while 0.5 minutes per epoch for simple 525 

LSTM model. We used Intel® Core™ i7-8700 processor with graphic card of NVIDIA GeForce 526 

GTX 1060 having 6 Gigabytes of dedicated GPU memory along with 32 Gigabytes of Random-527 

Access Memory. The parallel computing power of Tensorflow (Abadi et al., 2016) prevented the 528 

scaling of training time with model parameters (Adie et al. (2018)). The total training time 529 

however depends upon the number of training epochs used. The HRU-based LSTM model took 530 

262 minutes for 66 epochs while it took approximately 100 minutes for simple LSTM to train for 531 

214 epochs. 532 

The results of the LSTM-based models show that total streamflow was mainly governed 533 

by sub-surface flow while the surface flow only contributed to flood peaks during rainfall events. 534 

It can be observed that the predicted flow patterns for sub-surface flow and total discharge are 535 

the same, except for peak heights (Figure 7 to Figure 10). The peaks are higher in total 536 

discharge, which means that surface flow only contributes to increases in peak heights. This can 537 

also be seen in flow duration curves for all three models (Figure S12, S13 and S14) where the 538 

predicted flow duration curve is always below observed in high flow regions. This result is 539 

consistent with a previous study within Houay Pano catchment that showed the larger 540 

contribution of baseflow to streamflow during floods (Ribolzi et al., 2018). In our study, the total 541 
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surface and sub-surface flow from simple LSTM model was 78 and 2,160 mm. Similarly, the 542 

HRU-based LSTM model also showed dominance of sub-surface flow in the catchment. The 543 

total simulated surface and sub-surface flow for three years using HRU-based LSTM model was 544 

32 and 1,913 mm respectively. The large gap between two values is because of absence of 545 

surface runoff during most of the days in year when there is no rainfall. 546 

Under-estimation of peak flows using lumped, physically-based models is a frequent 547 

drawback, which has been observed in several studies  (Boithias et al., 2014; Bieger et al., 2014;  548 

Fohrer et al., 2014; Loukas and Vasiliades, 2014). We observed a similar trend in sub-surface 549 

flow predicted by HSPF. However, in our LSTM-based models, this problem is partially solved. 550 

We can observe large gap between predicted and observed flow duration curve in Figure S12 551 

while this gap is smaller for LSTM-based models (Figure S13, Figure S14). The simple LSTM 552 

model captured peaks in surface runoff more accurately as compared to those predicted by the 553 

HRU-based LSTM model. This trend was also found in the total estimated discharge from each 554 

model. When peaks in surface runoff are underestimated, peaks in total discharge are also 555 

underestimated (Figure 9 and Figure 10 ), and when peaks in surface runoff are better estimated, 556 

peaks in total discharge are also better estimated (Figure 7 and Figure 8). This means that the 557 

predicted surface runoff mainly contributes to peaks in streamflow while the sub-surface flow 558 

makes up the baseflow portion. This makes our LSTM-based models closer to real observations.  559 

4.4 Challenges and limitations of LSTM models 560 

Calibrating NN for surface flow is extremely challenging. The reason for this is that 96% 561 

of the surface flow data consists of zeros because discernable surface runoff only happens during 562 

rainfall events. This problem is similar to anomaly detection or rare event detection where less 563 
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than 5–10% of the total data is positively labeled. We observed during HPO iterations that total 564 

surface flow did not change once it became zero upon further calibration of model. It can be 565 

argued that as 96% of surface flow has one unique value, i.e., zero, the network learns to predict 566 

zeros. The matching of the surface flow curve became more challenging because surface flow 567 

does not always coincide with rainfall events. Indeed, during the hot and dry season (generally 568 

from January to April), the soil is dry and evapotranspiration is high. Indeed, the potential 569 

evapotranspiration is higher than rainfall during this period (Table S2). For small rainfall events 570 

during this hot and dry season, rainfall is either evapotranspirated or infiltrated, however, it is not 571 

transferred to the stream by surface runoff. Precipitation absorbed by the soil may later become 572 

part of sub-surface flow. Calibrating a NN to learn this behavior is the most difficult part, and if 573 

hyper-parameters are not chosen appropriately, the model fails to generalize the surface flow 574 

patterns.  575 

Surface and sub-surface flows obtained for each of the 36 HRUs using HRU-based 576 

LSTM model are plotted in Figure S6. By comparing these HRU-specific surface and sub-577 

surface responses with the HRU-specific input data (Figure S7 and S8), we cannot draw a one to 578 

one correspondence between HRU-specific input data and the corresponding output. In certain 579 

cases, an LSTM produces no outflow even when it receives precipitation; thus, all LSTMs in our 580 

HRU-specific model are not necessarily representative of HRU-specific inputs. This can be 581 

because NNs act as black-box models, and the inner workings of these networks are random 582 

(Karpatne et al., 2017). Thus we cannot draw a simple link between the weights of a NN and the 583 

function being approximated. Another reason for these unpredictable HRU-specific outputs 584 

could be that we used separate NN for each HRU. This means that each of these NNs have 585 

separate weights and biases; thus, if one network gets higher input values of curve number or 586 
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precipitation, it is completely independent of what the other networks receive as input. Thus, 587 

each network forms its own ‘context’ when it calibrates its weights and biases by looking at the 588 

total output of the whole model. 589 

The interest of model interpretability has increased in the field of machine learning 590 

(Samek, W. 2019). Several studies have proposed the ways to incorporate scientific knowledge 591 

into deep learning (Karpatne et al., 2017; Karpatne et al., 2017b; Wang et al., 2020). The 592 

suggested method in our study, the neural network down into sub-models for each HRU, would 593 

be a way to introduce more interpretability into a data-driven models in that this approach can 594 

analyze sub-models in the neural network.  595 

5. Conclusions 596 

In this study, we modeled the surface and sub-surface flow using three models: one 597 

lumped model called HSPF and two deep learning models. One deep learning model consisted of 598 

a single LSTM representing the whole catchment, whereas the second model consisted of 599 

LSTMs representing each HRU. All three models predicted total flow, surface and sub-surface 600 

flow separately. The following conclusions were then derived from the results: 601 

• By replacing the constant values of the area factors in the HSPF model with time series 602 

values, we were able to model land use changes in a catchment. 603 

• Although HSPF was able to estimate surface and sub-surface flow simultaneously, it 604 

over-estimated surface runoff and under-estimated sub-surface flow. Contrary to this, our 605 

deep learning models were more consistent in predicting surface and sub-surface flow. 606 

Therefore, deep learning models are more suitable when prediction of both surface and 607 

sub-surface flow is required simultaneously. 608 
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• The simple LSTM model, where one LSTM layer is used to represent the whole 609 

catchment, performed best for surface runoff prediction during both calibration and test 610 

period.  611 

• The HRU-based LSTM model performed better than simple LSTM model for sub-surface 612 

flow prediction during both test and calibration period. It has the best performance for 613 

total streamflow simulation during test period. 614 

Understanding the combined impact of climate change and land use changes on the 615 

catchment by modeling surface and sub-surface flows at a very high temporal resolution of 6 min 616 

can help assessing extreme low and extreme high discharge, and improve water resource 617 

management. This would allow more accurate modeling of pollutants (e.g. fecal bacteria) whose 618 

concentrations vary exponentially with time. This study presents a methodology for 619 

incorporating land use changes into hydrological models of surface and sub-surface flow at 620 

catchment scale. This study also demonstrates that deep learning can be an alternative to 621 

physically based or conceptual models by taking in account model complexity at spatial and 622 

temporal scales. 623 
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Figure 1. Location of the Houay Pano catchment in northern Lao P.D.R. and the observation 

stations. Topographic map is taken from Google Earth (19°51′29.49″ N, 102°10′21.51″ E) 

(Google, 2014).  



 

Figure 2. Framework for developing (a) HSPF, (b) Simple LSTM Model, and (c) HRU-based 

LSTM Model. The simple LSTM model consists of one Long Short-Term Memory (LSTM) 

layer representing the whole catchment, while the HRU-based LSTM model consists of separate 

LSTMs for each hydrological response unit (HRU). LSTMs are a special kind of neural network 

specialized for learning patterns in time dependent data. An HRU in the HRU-based model is 

defined as ‘a distinct land use in a distinct sub-basin’. The output from each of these LSTMs is 

added in a cumulative manner.  



 

 

Figure 3. Structure of a simple LSTM consisting of an LSTM layer followed by a fully connected layer which generates two outputs. 

The two outputs are supposed to be representative of surface and sub-surface flow. The LSTM layer consists of LSTM cells, each of 

which take input at a particular time-step. The diagram represents the working of an NN at time-step ‘��’ to produce output at ���� 

using a window size of 10. 



 

 

Figure 4. Structure of HRU-based LSTM model consisting of 36 parallel layers. Each layer 

represents one HRU in the catchment. Every LSTM is followed by a dense layer which produces 

two outputs. These two outputs represent surface and sub-surface flow from one HRU. Finally, 

surface and sub-surface flow are summed together to get total surface runoff and sub-surface 

flow.   



 

Figure 5. Calibration of surface runoff (m3s-1), sub-surface flow (m3s-1), and total discharge 

(m3s-1) using HSPF model. 

  



 

 

Figure 6. Prediction of surface runoff (m3s-1
 ), sub-surface flow (m3s-1

 ), and total discharge 

(m3s-1
 ) using calibrated HSPF model. 

  



 

 

 

Figure 7 Calibration of surface runoff (m3s-1
 ), sub-surface flow (m3s-1

 ), and total discharge 

(m3s-1
 ) using simple LSTM model. 

  



 

 

Figure 8 Prediction surface runoff (m3s-1
 ), sub-surface flow (m3s-1

 ), and total discharge (m3s-1
 ) 

using calibrated simple LSTM model. 

  



 

 

 

Figure 9 Calibration of surface runoff (m3s-1), sub-surface flow (m3s-1
 ), and total discharge 

(m3s-1
 ) using HRU-based LSTM model. 

  



 

 

Figure 10 Prediction of surface runoff (m3s-1), sub-surface flow (m3s-1), and total discharge (m3s-

1) using calibrated HRU-based LSTM model. 

 

 



Table 1 Hyper-parameters used for building simple and HRU-based LSTM models. 

Parameter Value for simple model Values for HRU-based model 

Activation 

function 

Rectified Linear Unit Rectified Linear Unit 

Batch size 64 64 

Learning rate 1e-5 1e-5 

Sequence length 13 h 80 h 

Hidden units 128 128 

Input data Precipitation moving average, air 

temperature, precipitation, wind speed, 

solar radiation 

Precipitation moving average, 

air temperature, precipitation, 

wind speed, solar radiation, 

potential evapotranspiration 

HRU specific data None Rainfall, distance to outlet, 

curve number 

Calibration epochs 214 66 

  



Table 2 Results of sensitivity analysis of parameters for sub-surface flow and total discharge. 

Sub-surface Flow Total Discharge 

Parameters Land use Sensitivity 

Rank 

Calibrated 

values 

Parameters Land use Sensitivity 

Rank 

Calibrated 

values 

AGWETP Fallow 1 0.066 UZSN Forest 1 2.0 

AGWETP Teak 2 0.0 UZSN Fallow 2 0.05 

AGWETP Annual 

crops 

3 0.2 INTFW Forest 3 10.0 

AGWETP Forest 4 0.133 INTFW Fallow 4 10.0 

INFILT Fallow 5 0.5 UZSN Teak 5 1.35 

INFILT Forest 6 0.336 INFILT Forest 6 0.336 

INFILT Annual 

crops 

7 0.5 INFILT Fallow 7 0.5 

INFILT Teak 8 0.336 INTFW Teak 8 4.0 

BASETP Forest 9 0.066 UZSN Annual 

crops 

9 2.0 

BASETP Annual 

crops 

10 0.0 INFILT Teak 10 0.336 

DEEPFR Fallow 11 0.16 INTFW Annual 

crops 

11 7.0 

DEEPFR Teak 12 0.0 INFILT Annual 

crops 

12 0.5 

  



 

Table 3. Performance matrix of HSPF, simple NN, and HRU-based LSTM model. Bold numbers 

represent values that fall under the category of ‘satisfactory’ after Moriasi et al., (2015). MSE is 

measured in units of meter cube per second (m3s-1). 

Model Type Flow Type Training Validation Test 

  MSE NSE PBIAS MSE NSE PBIAS MSE NSE PBIAS 

HSPF Surface runoff 1.6e-4 -0.27 45.8 4.7e-5 -0.31 69 1.3e-4 0.03 26 

Sub-surface flow 5.4e-4 0.35 -70.8 9.2e-5 0.56 -54 2.9e-4 0.57 -55 

Total discharge 5.7e-4 0.39 -66 1.4e-4 0.56 -47 3.9e-4 0.60 -52 

Simple 

LSTM 

Surface runoff 8.3e-5 0.43 -5.6 3.5e-5 0.13 -53 5.3e-5 0.65 -3.2 

Sub-surface flow 5.1e-4 0.47 -14 2.6e-4 -0.12 64 4.9e-4 0.34 -16 

Total discharge 6.0e-4 0.56 -14.4 3.3e-5 0.08 57 5.4e-5 0.51 -15 

HRU-based 

LSTM 

Surface runoff 1.2e-4 0.18 -63 4.3e-5 -0.06 54 1.4e-4 0.06 -67 

Sub-surface 3.3e-4 0.66 -22 1.7e-4 0.33 10 2.8e-4 0.63 17 

Total 5.5e-4 0.59 -23 2.7e-4 0.29 7 4.8e-4 0.56 -19 

 

 

  



Table 4 Hyper-parameters and their optimization. The optimization of these parameters was 

carried out for 5 scenarios. During optimization, parameters such as learning rate, hidden units, 

and NN layers were varied in the ranges given Table S3. Validation MSE represents the MSE 

value to which the algorithm converged for each sequence length. 

Sequence 

length 

Learning 

rate 

Hidden 

units 

NN 

layers 

Normalization Loss 

calculation 

method 

Type of 

NN cell 

 

Activation 

function 

Validation 

MSE (m3s-1) 

20 1.164e-6 128 4 True Weighted LSTM ReLu 6.3e-3 

30 3.07e-4 128 3 True Normal LSTM ReLu 6.0e-3 

40 1.123e-5 128 1 True Weighted LSTM ReLu 6.2e-3 

50 1.s2-5 128 1 True Weighted LSTM Tanh 6.5e-3 

60 5.441e-5 128 4 True Normal LSTM ReLu 6.4e-3 

 




