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Abstract: 9 

Chromatin function in telomeres is poorly understood, but it is generally viewed as 10 

repressive. Yet, telomeric DNA sequences are transcribed into long non-coding RNAs 11 

named TERRA. As TERRA molecules mostly localize at telomeres, major research efforts 12 

have been made to understand their functions, and how TERRA transcription is regulated 13 

and affects telomere structure. This review describes the current state of knowledge about 14 

the nature of chromatin at telomeres, its functions, and the relation between chromatin 15 

structure and TERRA.  16 
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 29 

Introduction:  30 

Telomeres are specialized structures at the extremity of chromosomes. They ensure genome 31 

stability [1-3] by preventing the recognition of chromosome ends as genuine double strand 32 

breaks and consequently their aberrant repair [4-6]. In most species, telomeric DNA is 33 

composed of short tandem repeats. In mammals, telomeres can be up to 50 kb-long, and are 34 

composed of head-to-tail repeats of the 6bp motif 5’-(TTAGGG/CCCTAA)-3’. Telomeres 35 

usually terminate with a single-stranded TTAGGG 3’-overhang that is up to 500 nt-long. In 36 

the absence of any maintenance mechanism, telomeres will shorten with cell division [7, 8].  37 

Shelterin proteins are crucial telomere-binding proteins that are recruited through sequence-38 

specific association with telomeric DNA. In this complex in mammals, TRF1 and TRF2 39 

specifically bind to the double stranded TTAGGG sequence, while POT1 binds to the single-40 

stranded overhang [9]. Shelterin proteins have two major functions at telomeres. They recruit 41 

other proteins to keep the DNA damage response in check [2-6, 10], and they control 42 

telomere length by regulating the recruitment of the telomerase holoenzyme complex [11-14]. 43 

When telomeres become critically short, shelterin proteins cannot bind sufficiently, and 44 

telomeres are not efficiently protected any longer. This situation is almost comparable to the 45 

occurrence of an irreparable intra-chromosomal double-strand break, and ultimately triggers 46 

permanent cell cycle exit [15]. 47 

Like any other genomic region, yeast and mammalian telomeres assemble into chromatin 48 

and therefore bear nucleosomes. Telomeric DNA sequences intrinsically disfavour 49 

nucleosome positioning, and this might explain some of the unusual chromatin structures 50 

observed at telomeres [16, 17]. Nonetheless the presence of nucleosomes implies 51 

interactions with dedicated machineries that support chromatin transactions, such as ATP-52 

dependent chromatin remodellers and histone-modifying enzymes. As chromatin is a global 53 

determinant of eukaryotic DNA transactions, it should play an important role also at 54 

telomeres. In human cells, it has been reported that short telomeres have fewer 55 

nucleosomes than long telomeres, suggesting that telomere length is associated with distinct 56 



chromatin features, like nucleosomal density. Historically, telomeric chromatin is viewed as 57 

generally heterochromatic, a type of chromatin that hinders DNA transactions. Yet the picture 58 

is even more complex because transcription also occurs at telomeric regions, an unusual 59 

feature in heterochromatin. This transcription leads to the production of long non-coding 60 

RNAs (lncRNAs) named TElomere Repeat-containing RNA (TERRA) [18-22]. It has been 61 

suggested that TERRA plays a role in telomerase inhibition [23-25], but also in telomerase 62 

recruitment [26, 27]. TERRA metabolism also might influence telomere maintenance by 63 

recombination [28-32].This review will describe the current state of knowledge on telomeric 64 

chromatin regulation and the potential links with TERRA and its transcription. By analogy 65 

with the well-known function of non-coding RNAs (ncRNAs) at Schizosaccharomyces pombe 66 

centromeric regions, or the putative role of ncRNAs in recruiting chromatin regulators, 67 

TERRA molecules are viewed as important players in telomeric heterochromatin regulation 68 

[33-39]. Telomerase RNA component, another ncRNA, also is associated with telomeres and 69 

plays an essential role in telomere elongation by telomerase [40, 41]. Currently, this ncRNA 70 

is not considered to play a role in telomeric chromatin regulation, and therefore will not be 71 

discussed in this review. Another telomere-related small RNA was described in mouse (tel s-72 

RNA), but its function in telomere biology awaits further characterization [42].   73 

 74 

Telomeric chromatin  75 

For a long time, it was thought that telomeric regions assembled into heterochromatin 76 

because reporter genes placed near telomeres tend to be silenced. Moreover, silencing is 77 

positively influenced by the reporter gene proximity to telomeres and the telomere length. 78 

This phenomenon is known as Telomere Position Effect (TPE). TPE was extensively 79 

described in Saccharomyces cerevisiae [43] and then confirmed in Schizosaccharomyces 80 

pombe [44] and also in mammalian cell lines [45-47]. TPE is a classic ‘epigenetic’ metastable 81 

silencing phenomenon, and implies that telomere heterochromatinization is positively 82 

correlated with their length. Short telomeres are less heterochromatic, and in telomerase-83 

negative cells, this might favour telomere lengthening by homologous recombination [30]. 84 



Whereas long telomeres favour DNA looping to install heterochromatin on distal region from 85 

telomeres and repress gene expression [48]. Nevertheless, yeast and mammalian telomeres 86 

rely on a specific DNA sequence for capping functions and thus, are not defined by an 87 

epigenetic phenomenon, as opposed to other repeated regions such as centromeres. In fact 88 

perturbing specific epigenetic regulators destroys centromere function, while this has not 89 

been observed at telomeres. Therefore, chromatin might not be directly linked to telomere 90 

capping function and must be playing distinct roles.  91 

 92 

S. cerevisiae telomeres are 250bp-long and are essentially nucleosome-free [16]. 93 

Subtelomeric regions, which are also made of distinct repeated DNA, are assembled into 94 

nucleosomes. However, the heterochromatin that forms and spreads along the subtelomeric 95 

regions depends on the binding of Rap1 (a shelterin protein) to its specific DNA motif 96 

essentially present on telomeres (Figure 1A) [49]. Rap1 then interacts with the Silence 97 

Information Regulation 4 (Sir4) protein that in turn recruits Sir3 and Sir2 to telomeres [49, 98 

50]. Sir2 catalyses the removal of acetyl groups from lysine 16 of histone H4 (H4K16Ac), and 99 

leads to a hypoacetylated and repressive chromatin conformation [51, 52]. Hypoacetylation 100 

creates a binding site for Sir3 and Sir4 [53, 54] that then recruit more Sir2, providing a simple 101 

molecular explanation for hypoacetylation spreading to sub-telomeric regions and TPE 102 

enforcement in this species. Loss of Sir4 disrupts heterochromatinization and at the same 103 

time promotes telomere shortening. This is because Sir4, in addition to its hypoacetyation 104 

role, facilitates telomerase recruitment at telomeres with the help of Ku proteins [55]. Thus, 105 

S. cerevisiae heterochromatin partly promotes telomerase recruitment, and is at least not 106 

inhibitory to lengthening. 107 

Similarly, in S. pombe, telomeres are nucleosome-free and able of TPE [44]. However, S. 108 

pombe heterochromatin resembles more to metazoan than to S. cerevisiae heterochromatin. 109 

For instance, S. pombe sub-telomeres harbour constitutive heterochromatin marks [56] and 110 

proteins, such as heterochromatin protein 1 (HP1), the histone methyltransferase (HMTase) 111 



Clr4 (orthologue of the mammalian SUV39H HMTases) and the histone H9 lysine 3 112 

trimethylation (H3K9me3) mark, all absent in S. cerevisiae. 113 

In S. pombe, telomeric heterochromatinization also depends on a shelterin factor named 114 

Taz1 (Figure 1B). Taz1 tethers the SET domain-containing Clr4 to telomeres, and then Clr4 115 

catalyses H3K9me3 deposition to neighbouring nucleosomes [57]. This histone mark in turn 116 

creates a binding site for Swi6 (an orthologue of HP1) on telomeres [58, 59]. The histone 117 

deacetylase Snf2/Hdac-containing Repressor Complex (SHREC) also is recruited by Taz1 118 

and Swi6 to telomeres [60], and its Clr3-subunits deacetylates lysine 14 of histone H3. This 119 

contributes to the formation of repressive chromatin that spreads to sub-telomeric regions 120 

[60]. In S. pombe, the formation of sub-telomeric heterochromatin is promoted by the RNA 121 

interference (RNAi) machinery, as observed at centromeres [61]. Specifically, Dcr1, a subunit 122 

of the RNAi machinery, recruits Swi6 and the SHREC complex to telomeres [62]. Intriguingly, 123 

the direct involvement of the RNAi machinery in heterochromatin formation at telomeres 124 

seems to be specific to fission yeast, and is not observed at mammalian telomeres. 125 

Consistently, we never detected any RNAi pathway protein at heterochromatin purified from 126 

mammalian somatic cells [63-65].  127 

In mammals (mouse and human cells, Figure 1C), the nature and function of telomeric 128 

chromatin remain unclear, and in our view, constitute a very controversial topic. Some 129 

groups reported that telomeres harbour marks of constitutive heterochromatin [38, 66-69] like 130 

most tandem repeats in the genome and consistent with TPE features [45, 47]. A more 131 

recent study showed that telomeres from most human cell lines are not heterochromatic [70] 132 

and that the heterochromatic mark H3K9me3 is enriched at telomeres only in cell lines that 133 

have activated the alternative lengthening of telomere (ALT) pathway, a recombination-134 

based telomere lengthening mode [65, 70].  135 

On the basis of the hypothesis that telomeres, as a source of TPE, should be 136 

heterochromatinized, it was initially proposed that telomeric heterochromatin assembly in 137 

mammalian cells is regulated by Suppressor of Variegation 3-9 homologues 1 and 2 138 

(SUV39H1/H2) through H3K9me3 deposition on telomeres [68]. H3K9me3 acts as a landing 139 



site for HP1α that recruits the Suppressor of Variegation 4-20 homologue 2 (SUV420H2) 140 

enzyme. SUV420H2 catalyses histone 4 lysine 20 trimethylation (H4K20me3), another mark 141 

of heterochromatin [71] with unclear functions. It was proposed that this pathway, which is 142 

very similar to what was described at pericentromeric regions, controls telomerase 143 

recruitment at telomeres, and controls the activation of telomerase-independent ALT [68, 71]. 144 

In this classical model, heterochromatin thus negatively regulates telomere lengthening. DNA 145 

methyltransferases (DNMTs) also are involved in telomere length control in mammals [72]. 146 

DNA methylation only occurs at subtelomeric regions because CpG sequences are not 147 

present in the telomere repeat motif [72-74]. As subtelomeric DNA is usually 148 

hypermethylated, it was suggested that in the mouse, this high level of DNA methylation 149 

somehow ‘compacts’ the telomeric fibre, rendering it less prone to damage and lengthening 150 

by recombination [72]. Intriguingly in human cells, loss of DNA methylation seems to have 151 

the opposite effect on telomere length compared with mouse cells [74-77]. In fact, 152 

subtelomeric chromatin is hypomethylated and telomeres are abnormally short in cells 153 

derived from patients with Immunodeficiency Centromeric instability and Facial anomalies 154 

(ICF) syndrome [75-77], who carry an inactivating mutation in DNMT3B. This shortening 155 

could be the consequence of defective telomere replication [76]. The different phenotypes 156 

observed in mouse and human cell lines might be due to the different average telomere 157 

length between the two models. 158 

We recently analysed histone modifications at telomeres in mouse embryonic stem (ES) cells 159 

and fibroblasts [65]. We found low levels of H3K9me3 at telomeres in mouse ES cells and 160 

virtually no H3K9me3 in fibroblasts. H3K9me3 deposition mostly relies on Set domain 161 

bifurcated protein 1 (SETDB1) recruitment [65], and this heterochromatin mark is important 162 

for stimulating local nucleosome exchange, which in turn favours transcriptional processivity 163 

and recombination. Therefore, in mouse ES cells, heterochromatin indirectly promotes 164 

telomere recombination and transcription, in disagreement with the SUV39H model 165 

described above. 166 



More recently, it has been proposed that Polycomb activities also regulate telomere biology. 167 

The Polycomb group protein EZH2 has been suggested to bind telomeres where it is able to 168 

catalyse histone H3 lysine 27 trimethylation (H3K27me3) and this is required to stabilize 169 

H3K9me3, H4K20me3 and HP1 telomeric enrichment [36]. While it has been suggested that 170 

H3K27me2/3 and H3K9me2/3 can coexist on the same native nucleosome [78], ChIP-171 

sequencing approaches have found that H3K27me3 is largely non-overlapping with 172 

H3K9me3 throughout the genome, including at repeated DNA sequences [79-88]. The 173 

synergy between Polycomb activities and H3K9me3/HP1 [36, 89] is highly unusual, 174 

especially given that genetic screens aiming at identifying Polycomb regulators or 175 

constitutive heterochromatin activities usually retrieve distinct group of genes [79-81, 84-86]. 176 

Moreover, the role of Polycomb genes in telomere regulation remains unclear in the absence 177 

of described telomere phenotypes in Polycomb mutants. Using unbiased telomere chromatin 178 

proteomics, we failed to detect significant EZH2 binding or activity at telomeres in mouse ES 179 

cells [65]. This discrepancy might be explained by species- or tissue- specific differences, or 180 

different technical approaches, measuring relative versus absolute amounts of histone 181 

modifications. 182 

Regardless of its nature at telomeres, heterochromatin is viewed as an important regulator of 183 

telomere length regulation. According to the classical view, telomeric heterochromatin is in a 184 

closed/condensed state that does not allow recombination and telomerase recruitment. Our 185 

recent results indicate that heterochromatin does not form on telomeres in all mouse cell 186 

types [65] , consistent with the study on human cell lines [70]. However, when 187 

heterochromatin forms at telomeres (like in mouse ES and in ALT cells), it promotes rather 188 

that inhibits telomere recombination and lengthening [65], a trend globally comparable, albeit 189 

mechanistically different, to what happens in S. cerevisiae. As heterochromatin formation is 190 

often linked to the presence of ncRNAs, we discuss below TERRA production and the 191 

possible links between TERRA and local chromatin regulation.  192 

 193 

 194 



TERRA biogenesis 195 

The biological function of ncRNAs is very difficult to characterize experimentally. In the 196 

absence of any identifiable coding function, such RNAs could have a structural (e.g., 197 

ribosomal RNAs), catalytic (e.g., telomerase RNA), sequence-specific recruiting, or local 198 

protecting role. In addition, one important aspect of ncRNA function is whether it acts locally, 199 

in which case its function as a ncRNA is difficult to separate from molecular events leading to 200 

its production; or whether it acts “in trans” at long distances from its production site. ncRNA 201 

production, which involves chromatin remodelling, could have a major “in cis” function in the 202 

local chromatin regulation, regardless of the RNA that is made. Hence, we first detail below 203 

what is TERRA and how it is produced. 204 

The first evidence that telomere sequences are transcribed came from a work performed in 205 

Trypanosoma brucei [90]. Since then, telomere transcription has been observed in different 206 

organisms, such as yeast [21, 22, 25], mouse [18] and humans [20], which indicates 207 

conservation during evolution, an indirect sign of functional importance. 208 

TERRA is a single-stranded lncRNA originating from the transcription of the C-rich telomeric 209 

DNA strand. Thus, TERRA is a G-rich RNA containing 5’-UUAGGG-3’ repeats [18, 20-22, 210 

25]. TERRA length ranges from 100bp to more than 9kb in mammals [20, 91] and by 211 

consequence long TERRA transcripts are difficult to be detect by common Northern-Blot. In 212 

Yeast, TERRA range is about 400bp in yeast [22, 25] . TERRA levels are cell-cycle regulated 213 

[29, 69, 91]. Indeed, TERRA levels peak in early G1, and decrease in late G1, reaching the 214 

lowest level in late S phase, a time that roughly corresponds to telomere replication. After the 215 

G2/M phase, TERRA levels start to increase again. RNA polymerase II catalyses 216 

transcription at telomeres [18, 25, 73, 91, 92]. Subunits of the RNA polymerase I and III 217 

complexes also have been identified during the purification of telomeric chromatin [64]; 218 

however, the biological significance of these associations is unclear and might not be linked 219 

to telomere transcription. 220 

In all species studied so far, TERRA transcription starts in the subtelomeric region and 221 

proceeds from the centromere toward the telomere direction [20, 22, 25, 73, 92]. In S. 222 



pombe, other telomeric lncRNAs have been identified in both sense (αARRET) and 223 

antisense directions (ARIA and ARRET) (Figure 2A) [21]. Some of these anti-sense 224 

telomeric RNAs are also present in plants [93] and in human and mouse cells [18, 20], albeit 225 

at a much lower level than TERRA. Their functions are unknown. As telomere and 226 

subtelomeric sequences are made of repetitive DNA, the mechanisms involved in RNA 227 

transcription initiation, elongation and termination are difficult to address, and the 228 

characterization of TERRA species also has led to controversial findings and models. We 229 

detail below the state of knowledge about TERRA biogenesis because it is likely that the 230 

mechanisms presiding to TERRA synthesis are linked with TERRA functions.  231 

As TERRA is transcribed by RNA polymerase II, it contains a methyl-cap at the 5’ end and a 232 

poly-A tail at the 3’ end, like most mRNA species [18, 25, 91]. In yeast and human cells, all 233 

TERRA species are capped. In S.cerevisiae, almost all TERRA RNAs also have a poly-A tail 234 

(Figure 2B). In contrast, only 7% of human TERRA RNAs have a poly-A tail (Figure 2C) like 235 

TERRA in S.Pombe [27, 91], whereas this fraction has not been quantified in mouse cells 236 

[18]. In S. cerevisiae, poly-adenylation seems to require the action of the canonical poly-A 237 

polymerase (PAP1), but the precise molecular mechanisms of termination remain unclear 238 

because TERRA does not have the canonical poly-A signal (5’-AAUAAA-3’) normally found 239 

at the 3’ of most class II genes [25]. Indeed, in human cell lines, TERRA-poly-A(-) terminates 240 

preferentially with the 5’-UUAGG-3’ sequence, whereas TERRA-poly-A(+) terminates with 5’-241 

UUAGGG-3’ [91], a finding which supports the idea of regulated 3’ end TERRA processing. 242 

Moreover, as the TERRA DNA template strand mostly ends with the ATC-5’ sequence [94], 243 

TERRA transcription might not process until the end of the telomere 244 

As is the case for most mRNA, the poly-A tail stabilizes TERRA both in yeast and in human 245 

[25, 91]. It also correlates with TERRA sub-nuclear distribution in human cells: 60% of 246 

TERRA-poly-A(-) is in the nucleoplasm, while the remaining 40% is chromatin-associated. 247 

Conversely, TERRA-poly-A(+) molecules are mostly in the nucleoplasm [91]. This suggests 248 

that chromatin-associated TERRA is not poly-adenylated, and that TERRA-poly-A(+) and 249 

TERRA-poly-A(-) might underlie distinct functions.  250 



TERRA might also be regulated at the initiation step in the subtelomeric region. While 251 

globally heterochromatic, subtelomeres can locally bear euchromatin marks, with an 252 

enrichment in histone H3 lysine 4 trimethylation (H3K4me3) [92, 95, 96], deposited by the  253 

Mixed Lineage Leukemia protein (MLL) [97], and histone H3 lysine 27 acetylation (H3K27Ac) 254 

enrichment [95] and RNA polymerase II binding [92, 95, 96], indicative of transcriptional 255 

initiation. However, many aspects regarding the initiation mechanisms remain unclear 256 

because TERRA initiation sites lack canonical promoter sequences.  257 

In yeast, the subtelomere sequence is made of X-elements and Y’-elements, bound by the 258 

Sir silencing complex and also Rif 1 and Rif2 (Figure 2B). While X-element sequences are 259 

strongly repressed by the Sir silencing complex and Rif1 and Rif2, the Y’ elements are 260 

weakly repressed, only by Rif 1 and Rif 2. Y’ element are enriched in H4K16Ac and harbor 261 

transcribed open reading frames and and TERRA initiation sites [19, 98].  262 

In mammals, several groups identified TERRA production at many (if not all) telomeres [20, 263 

33, 73, 74, 92, 99], whereas others suggested that the bulk of TERRA is produced only from 264 

one or a very limited number of (sub)telomeric regions [100-102]. These two models have 265 

fundamentally different implication on the function of TERRA. The seminal study on TERRA 266 

showed transcription from several human telomeres [20], suggesting the presence of a 267 

transcription start site (TSS) on each of them. RNA fluorescent in situ hybridization indicates 268 

that most telomeres can be found associated with TERRA but this does not prove that 269 

TERRA is transcribed from each telomere, as TERRA could be made from a limited number 270 

of loci then addressed to other telomeres. Transcription from multiple telomeres was also 271 

demonstrated by the same group [74, 99]. Two subtelomeric promoter types,Type-I and 272 

Type-II, were identified at 1Kb and 5-10 Kb from the subtelomere-telomere boundary, 273 

respectively (Figures 2C and 2D) [33, 73, 92]. Both promoter types include CCCTC-binding 274 

factor (CTCF) binding sites and CpG island elements [73, 92]. At type I promoters, CpG 275 

islands are composed of three distinct repetitive tracts of 61bp, 29bp and 37bp in 276 

length.  These elements are referred as “61-29-37 repeats” and are present at 13 distinct 277 

human chromosome ends [73]. These 61-29-37 repeats are bound by RNA polymerase II 278 



and have intrinsic promoter activity [73, 92, 95]. Moreover, the 61-29-37 repeats have high 279 

CpG content and are methylated by DNMT3B and DNMT1, unlike most CpG islands 280 

elsewhere in the genome, which usually escape DNA methylation. In fact, TERRA initiation 281 

at these elements is controlled by DNA methylation [73, 76]. In addition, two tandem DNA 282 

binding motifs are present upstream of the 61-26-37 repeats. They are bound by CTCF and 283 

Cohesin (Rad21) [73, 92, 96]. These two chromatin-organizing factors cooperate to promote 284 

TERRA correct orientation [96]. Type-II promoters were identified by RNA-seq analysis on 285 

ten other chromosomes, and are located 5-10 kb upstream of the telomere tracts. TERRA 286 

production at different telomeres has been measured also in mouse embryonic fibroblasts 287 

and during early developmental stages [33].  288 

The other model proposes that TERRA molecules are produced at a single or a limited 289 

number of telomeres [100-102]. Then, TERRA molecules can travel (via uncharacterized 290 

mechanisms) through the nucleus to other telomeres and also to a subset of genes to 291 

regulate the local expression and chromatin composition. One implication of this model is 292 

that telomere transcription, and therefore the inherent local chromatin remodelling, plays a 293 

limited role in telomere biology, while TERRA molecules are important. The other implication 294 

is that the status of one telomere has the potential to govern that of all the other telomeres. It 295 

was proposed that in U2OS human cancer cell lines, which maintain their telomeres with 296 

ALT, chromosomes 20 and X are the only TERRA producers [102]. U2OS ALT telomeres 297 

harbor heterochromatin features [65, 70] and non-physiological TERRA expression [24]. 298 

Moreover these observations were not made in telomerase-positive cell lines [20]. Similarly, 299 

in mouse ES cells, the TERRA FISH signal forms two main dots that co-localize with the X 300 

chromosomes, and drive X chromosome pairing during X inactivation [101]. In Mouse 301 

Embryonic Fibroblasts (MEFs), the chromosome 18 telomere is the main source of TERRA 302 

[100]. In both cell types, TERRA signals are also found associated with other telomeres by 303 

FISH and with non-telomeric regions by CHIRT-seq [37, 103], suggesting a function in trans. 304 

Like the X telomere transcript in mouse ES cells, the chromosome 18 TERRA seems thus to 305 

travel to other genomic regions. It was proposed that in these cells, this interaction in trans 306 



protects telomeres from the DNA damage response [100], therefore, presumably supporting 307 

an entirely different function from X chromosome pairing described in mouse ES cells [101]. 308 

Live-cell imaging in a human cancer cell line, using MS2 knock-ins to track endogenous 309 

TERRA from one telomere, shows TERRA molecules diffusing into the nucleus [104], 310 

sometimes co-localizing as a cluster with one telomere. This result could reflect TERRA 311 

binding to another telomere in trans, or it could reflect the actual TERRA production from the 312 

modified telomere. Similar to the mouse situation, disrupting this single telomere TERRA 313 

transcript leads to the activation of the DNA damage response throughout the genome. 314 

In a model of a single telomere-producing TERRA [100-102], addressing TERRA function by 315 

disrupting the unique TERRA promoter should be straightforward. This was attempted, but 316 

TERRA RNA production was not entirely abrogated [100, 102], complicating the 317 

interpretation and clear conclusions about TERRA roles in trans.  318 

The distinction between the two models is critical to understand TERRA in cis and/or in trans 319 

functions. As there is currently no clear explanation about the discrepancies between 320 

laboratories, more quantitative approaches might be required to clarify this important 321 

question.  322 

 323 

TERRA RNA functions:   324 

It has been proposed that lncRNAs regulate genome functions [105]. Specifically, they work 325 

by interacting with chromatin-modifying enzymes and nucleosome-remodelling factors to 326 

modulate chromatin structure. For this, they might recruit chromatin factors to specific 327 

genomic regions, or they might anchor chromatin factors away from target regions. LncRNAs 328 

could also act as scaffolds to build chromatin-modifying complexes, without necessarily 329 

targeting them to specific loci. As the lncRNA TERRA is associated with telomeres, it might 330 

play an important function in telomeric chromatin regulation. TERRA cannot be genetically 331 

inactivated easily, and consequently its physiological functions remain largely unknown. 332 

Several proteins that interact with this lncRNA were identified in vitro by affinity pull-downs 333 

[37, 38, 106, 107], including TRF1 and TRF2, HP1, the Origin Recognition Complex (ORC) 334 



[38], several heterogeneous nuclear ribonucleoproteins (HnRNPs) [107], and also various 335 

interactors that need to be further characterized to determine whether TERRA acts as a local 336 

recruiter of biologically relevant activities. Since many relevant chromatin proteins 337 

promiscuously interact with long RNA in vitro, it will be important to determine whether in 338 

vitro interactors are recruited, and if the case, whether TERRA targets specific chromatin 339 

functions to telomeres. Nevertheless, some TERRA-related regulations are starting to 340 

emerge.  341 

In S. cerevisiae, forced TERRA expression from one telomere induces exonuclease 1-342 

mediated shortening of that telomere without any measurable change in the length of the 343 

other telomeres [108, 109]. This key observation suggests that at least in this artificial setting, 344 

TERRA or the process of telomere transcription mostly has an effect in cis, and that an 345 

appropriate level of TERRA or transcription is required for telomere integrity.   346 

Telomeric transcription has the potential to generate local TERRA-telomere DNA hybrids that 347 

create R-loop structures and a displaced single-stranded G-rich telomeric DNA. As these 348 

structures generate replication stress, TERRA must be cleared from telomeres during S 349 

phase to ensure complete telomere replication [29, 110] (Figure 3A). R-loop clearance is 350 

ensured by an RNase H activity. In human ALT-positive cells, RNase H1 is highly enriched at 351 

telomeres and prevents RNA-DNA hybrid accumulation, which would otherwise promote 352 

increased homologous recombination (Figure 2C) [28]. In telomerase-negative yeast, RNase 353 

H1 and RNase H2 also act to limit RNA-DNA hybrid accumulation at telomeres (Figure 2B), 354 

thus controlling their elongation through homologous recombination (Figure 3A), [29, 30]. In 355 

yeast, RNA-DNA hybrid accumulation is regulated also by the THO complex, which is 356 

normally involved in mRNA export. Indeed, inactivation of Tho2p (a THO complex subunit) 357 

leads to RNA-DNA hybrid accumulation (Figure 2C) [30-32] and exonuclease 1-dependent 358 

telomere shortening [30]. These findings indicate that two different RNA processing 359 

pathways regulate telomere RNA-DNA hybrid levels [30, 32], with an apparently stronger 360 

action for RNaseH [32], but the connection between the two pathways are not known. In 361 

human ALT-positive cells, FANCM was identified has a new regulator of telomeric R-loops 362 



[111, 112], by limiting R-loop accumulation to control replicative stress (Figure 2C), 363 

representing another indication that TERRA processing is a highly regulated process.  364 

In addition to forming potentially toxic local R-loop structures, TERRA might also fold into G-365 

quadruplex structures (G4) [113, 114] which can be bound by TRF2. It seems that TRF2 is 366 

able to simultaneously bind to TERRA-RNA-G4 and to telomere-DNA-G4, forming a tri-367 

complex, and helping TERRA association with telomeric DNA [115] (Figure 3C), providing a 368 

potential mechanism for TERRA recruitment to telomeres in trans.  369 

Another potentially relevant TERRA function is the ability to associate with the RNA 370 

component of the telomerase holoenzyme (Figure3B). TERRA could inhibit telomerase 371 

activity by competing for binding to the single-stranded telomeric DNA overhang, which is the 372 

normal substrate for this enzyme. This inhibition was observed in vitro [23]. Conversely, in 373 

yeast, TERRA seems to stimulate telomerase (Figure3B) [26, 27]. It could be that TERRA 374 

positively regulates telomerase accessibility to telomeres by displacing inhibitory proteins 375 

from telomeres [116]. TERRA can also anchor hnRNPA1 proteins away from the telomere to 376 

allow proper telomere replication [35, 117]. 377 

TERRA might also regulate heterochromatin formation at telomeres because TERRA 378 

downregulation correlates with reduced heterochromatin marks at telomeres [36, 38], 379 

whereas higher TERRA levels, as in G1 phase [69], or longer TERRA correlates with 380 

enrichment of these marks [33, 69]. TERRA has been shown to bind HP1α [38, 118], 381 

suggesting a role in heterochromatin formation. This might seem counterintuitive because 382 

heterochromatin generally correlates with transcriptional silencing. The mechanisms by 383 

which TERRA correlates with heterochromatin is poorly understood, but TERRA, like several 384 

other lncRNAs, can also directly interact with different enzymes involved in heterochromatin 385 

formation [33, 34, 119-121] (Figure 3D). However, it must be noted that this interaction 386 

generally appears to be RNA sequence-independent, suggesting that locus-specific 387 

recruitment might depend on other factors or on the ability of the heterochromatin factor to 388 

identify nascent RNA and associate with it. Upon telomere deprotection, increased TERRA 389 



production induces the recruitment of SUV39H1 to human telomeres and triggers local 390 

H3K9me3 deposition [33]. SUV39H1 N-terminus contains a chromodomain that directly 391 

interacts with TERRA [33], providing a molecular mechanism for SUV39H1 presence at 392 

deprotected telomeres. Along this line, SUV39H1 recruitment to pericentromeric regions is 393 

stabilized by interaction with local nascent RNA [122, 123], suggesting that RNA interaction 394 

might be a recruiter of molecules involved in heterochromatin activities [123], or might at 395 

least contribute to their function by stabilizing enzyme binding to chromatin [122]. Upon 396 

telomere deprotection, TERRA also promotes the recruitment of the histone demethylase 397 

LSD1 and G-quadruplex RNA binding [39, 121]. The consequence of LSD1 presence at 398 

telomeric nucleosomes was not fully explored, but it was shown that LSD1 recruitment 399 

promotes 3’ telomere overhang processing though stimulation of the double-strand break 400 

repair protein MRE11 [39].  401 

Moreover, a protein named translocated in liposarcoma (TLS/FUS) binds to TERRA-RNA-G4 402 

structures and to telomeric DNA, and forms a ternary complex proposed to anchor TERRA to 403 

telomeres [48, 119, 124]. Tethered TLS/FUS in turn promotes H3K9me3 deposition at 404 

telomeres by an unknown mechanism [48, 119].  405 

Finally, on the basis of TERRA interaction with Polycomb repressive complex 2 (PRC2) 406 

subunits in vitro [120], it was proposed that TERRA recruit Polycomb activities to telomeres 407 

[36]. It should be noted that in some cases the interaction between a chromatin enzyme and 408 

RNA inhibits the enzymatic activity. This is true for LSD1 [121], and EZH2 [125], suggesting 409 

that a simple model where TERRA mediates the recruitment of enzymes such as EZH2 to 410 

work at telomeres is probably incomplete.  411 

It was also suggested that TERRA modulates the telomeric chromatin structure through 412 

ATRX eviction from telomeres after a direct interaction with this chromatin remodelling 413 

enzyme [37]. ATRX associates with G-rich DNA sequences [126, 127], interacts with the 414 

DAXX histone chaperone [128], and promotes heterochromatin formation [129]. While the 415 

potential mechanisms were not explored, the same authors reported that TERRA knock-416 

down led to telomerase stimulation and, counterintuitively, to telomere damage [37]. Using 417 



the same mouse ES cell line, we found that ATRX recruitment to telomeres largely depends 418 

on SETDB1 and does not seem to correlate negatively with TERRA [65]. The loss of ATRX 419 

in the context of heterochromatinized telomeres stimulates telomere recombination, while the 420 

loss of ATRX in the absence of heterochromatin at telomeres has no measurable impact. 421 

These effects occur without any strong change in TERRA levels, suggesting that TERRA 422 

functions are unlikely to be strictly linked to heterochromatin formation at telomeres in ES 423 

cells. However, detailed insights await more mechanistic characterizations. 424 

 425 

Conclusions:   426 

Telomeric chromatin features and telomeric transcripts actively participate in telomere 427 

stability that is required for ensuring genome stability. From yeast to human cells, telomeric 428 

chromatin has been defined as silent heterochromatin, due to TPE. Typical constitutive 429 

heterochromatin marks are enriched at chromosome ends: Sir4-Sir3-Sir2 in S. cerevisiae 430 

[49, 51, 52, 54], and H3K9me3 and Swi6/HP1 in S. pombe and mammals [57, 58, 65]. 431 

However, in most cells, telomeres are nucleosome-poor or have poorly positioned 432 

nucleosomes, a situation which generally disfavours constitutive heterochromatin formation. 433 

The organization of telomeric heterochromatin remains unclear and controversial, which is 434 

why its function is difficult to define. Mechanisms of TERRA mediated functions is 435 

challenging to address due to the telomeric RNA repeated sequence and the different 436 

producing genomic loci, and therefore we are facing major technical challenges. Moreover, in 437 

order to fully understand the interplay between TERRA and chromatin regulation, measuring 438 

TERRA steady-state levels will not be sufficient. We will need to detail the TERRA 439 

transcription mechanisms with more dedicated methods such as nuclear run-on, studying the 440 

RNA polymerase II phosphorylation state and common mechanisms linked to transcriptional 441 

elongation and termination, which are determined by chromatin. Discovering a significant 442 

function for TERRA in regulating telomeric chromatin will thus require robust and quantitative 443 

tools that await further development. 444 
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 Figures:  778 

Figure 1: Telomeric heterochromatin establishment and players involved. (A) In 779 

S.cerevisiae, the shelterin component Rap1 recruits Sir4, Sir3, and Sir2. Sir2 780 



deacetylates H4K16, promoting more Sir4, Sir3, and Sir2 binding and spreading of 781 

repressive chromatin to the subtelomeric region. (B) In S. pombe, the shelterin factor 782 

Taz1 interacts with the histone methyltransferase Clr4 that trimethylates H3K9 and 783 

creates binding sites for Swi6. Swi6 recruits SHREC that deacetylates H3K14. 784 

Moreover, the RNAi machinery also contributes to Swi6 and SHREC recruitment, 785 

contributing to heterochromatin formation. (C) In mouse embryonic stem (ES) cells, 786 

SETDB1 trimethylates H3K9. This creates a binding site for HP1 and promotes 787 

recruitment of other heterochromatin factors, such as ATRX and DNA 788 

methyltransferases (DNMTs). Telomeric heterochromatin is also present at 789 

subtelomeres, where DNMTs methylate CpG motifs.       790 

 Figure 2: Telomere transcription. (A) The telomere transcriptome of S. pombe. G-rich 791 

RNAs include telomeric TERRA RNAs and sub-telomeric ARRET RNAs. C-rich RNAs 792 

include telomeric ARIA RNAs. αARRET are sub-telomeric RNAs complementary to the 793 

ARRET RNAs. (B) S. cerevisiae telomeres are transcribed into TERRA RNAs. 794 

Transcription starts from the Y’-element in the sub-telomeric region. RNase H and the 795 

THO complex destabilize RNA-DNA hybrids. (C) In human cells, telomere DNA is 796 

transcribed into TERRA RNAs. Transcription starts from Type-I or Type-II promoters. 797 

RNase H and FANCM prevents aberrant accumulation of RNA-DNA hybrids on 798 

telomeres. (D) Type-I and Type-II promoters include CTCF binding sites and CpG island 799 

promoter elements. CpG island of Type-I promoter are composed of repetitive “61-29-37 800 

repeats” and repressed by DNMTs.         801 

Figure 3: TERRA hypothetic functions (A) TERRA regulates telomere length. TERRA 802 

forms co-transcriptional RNA-DNA hybrids that can lead to telomere shortening by 803 

interfering with the replication machinery, or to telomere elongation, through 804 

homologous recombination. (B) TERRA controls telomerase activity either by inhibiting 805 

or by stimulating its recruitment to telomeres. (C) TERRA RNAs promote telomere 806 

integrity. TERRA is associated with telomeres, through TRF2 binding, and prevents the 807 



DNA damage repair pathway activation and telomere degradation. (D) TERRA regulates 808 

heterochromatin formation at telomeres. TERRA interacts with different heterochromatin 809 

factors and tethers them to telomeres.        810 
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