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Cedex F86962, France

Abstract

The introduction of prismatic dislocation loops in the interface between a misfitting
spherical particle and its semi-infinite matrix has been theoretically investigated. The equi-
librium position of one isolated loop has been first determined from an energy variation
calculation and a shifting effect on the dislocation position relative to the particle equatorial
plane has been identified due to the matrix free-surface. The case of two dislocation loops
lying in the particle-matrix interface has been then discussed.
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1. Introduction

The control of the mechanical properties of nanostructured materials is a challenging
problem that has been addressed in the last decade in the field of solid mechanics, ma-
terials science and metallurgy, because of the numerous applications of such materials in
engineering. In case of core-shell nanostructures, the heterogeneity of the lattice parameters
(or dilatation coefficients) between the two crystalline phases can produce misfit (thermal)
stress that may generate crystalline defects and/or may modify their functional properties.
Misfit dislocation loops have been for example identified in GaP-GaN (Lin et al., 2003) and
Ge-Si core-shell nanowires (Goldthorpe et al., 2008), and threading dislocations in the core
of AlN-GaN coaxial nanowires have been observed to reduce the photoluminescence of the
devices (Rigutti et al., 2010). Misfit defects have been also detected in core-shell nanoparti-
cles (CSNPs). For example, high-resolution transmission electron microscopy observations
have evidenced perfect misfit dislocations in Fe3Pt-Fe2O3 CSNPs (Liang et al., 2015) and
stacking fault, perfect and partial misfit dislocations in Au-Pd CSNPs (Bhattarai et al.,
2013). From the theoretical point of view, the formation in core-shell nanowires of differ-
ent defects such as straight edge dislocations (Gutkin et al., 2000; Raychaudhuri and Yu,
2006), screw dislocations (Wang et al., 2007; Fang et al., 2009; Ahmadzadeh-Bakhshayesh
et al., 2012) and dislocation loops (Ovid’ko and Sheinerman, 2004; Aifantis et al., 2007;
Raychaudhuri and Yu, 2006; Gutkin et al., 2011) has been investigated and the different
critical geometric and physical parameters for the defect nucleation have been identified
among which one can cite the different radii of the cores and shells, the elastic coefficients
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of the materials and the misfit strains. In CSNPs, the possibility of formation of prismatic
dislocation loops and cracks due to misfit stress has been first theoretically investigated by
Trusov et al. (1991). The critical conditions for the formation of the circular dislocation
loops has been then discussed in details in bulk (Gutkin et al., 2014b; Krauchanka et al.,
2019) and hollow (Gutkin et al., 2014a) CNSPs, where it has been found that the equatorial
plane is the most favorable one. It is worth noting that the formation of rectangular dis-
location loops has been also investigated in CNSPs and the different nucleation sites have
been identified (Gutkin and Smirnov, 2014, 2015, 2016). When the axisymmetrical core of
a CNSP is truncated, the misfit stress has been computed (Kolesnikova et al., 2018a,b), and
the possibility of formation of misfit dislocation loops has been recently analyzed (Gutkin
et al., 2020). In particular, it has been found that the optimal sites for the loops are located
at a distance of 1/4 of the core radius from the core base.

When a spherical precipitate is embedded in an infinite-size matrix, the critical misfit
stress for the nucleation of dislocation loops has been also determined (Jagannadham and
Ramachandran, 1974) and, later, the critical radius and critical eigenstrain for a spherical
and cylindrical inclusions have been determined and compared (Kolesnikova and Romanov,
2006), the case of cylindrical wires being also examined in details in other works (Fang
et al., 2008; Zhao et al., 2012; Shodja et al., 2015). Likewise, the degree of coherency of
the interface between a misfitting particle and an infinite-size matrix has been investigated
using a three-dimensional level set dislocation dynamics method (Quek et al., 2011). The
interaction between the particle and matrix dislocations has been thus studied and the
transition from a coherent to semi-coherent interface has been characterized.

In case of a semi-infinite matrix with a planar free-surface, the formation of misfit dis-
locations in the interfaces of nanowires of rectangular (Gutkin et al., 2003) and cylindrical
(Colin, 2016) cross sections has been considered and the effect of the surfaces has been
analyzed. Recently, the formation of a dipole of edge dislocations into the interfaces of a
misfitting long parallelepipedal nanowire embedded in a thin slab with two horizontal free-
surfaces has been investigated. The energy barriers for the dislocation nucleation and the
equilibrium positions of the dislocations have been determined (Mikaelyan et al., 2019).

In this framework, the formation of prismatic dislocation loops in the interface between
a misfitting spherical inclusion and a semi-infinite matrix has been investigated in this work
from an energy variation calculation. Assuming the elastic coefficients are equal in the matrix
and the inclusion, the equilibrium positions of one and two loops have been determined and
the free-surface effect on the dislocation positions has been characterized.

2. Modeling and Discussion

A spherical particle of radius R is lying in a semi-infinite matrix whose center is located
at a distance h from the free-surface (see Fig. 1 for axes). It is assumed in the following
that the shear modulus µ and Poisson ratio ν are constant and equal in both phases, with
ν = 0.3. Due to the lattice mismatch between the particle and the matrix, an eigenstrain
strain ε∗xx = ε∗yy = ε∗zz = ε∗ = 2(ap − am)/(ap + am) has been considered into the particle,
where am and ap are the lattice parameters of the matrix and the precipitate, respectively
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(Mura, 1987). In the following, it is assumed without lack of generality that ap > am. The
first step of this work has been to determine the resulting misfit strain in the framework
of the linear and isotropic theory of elasticity (Timoshenko and Goodier, 1951). The well-
known elastic displacement field in the case of a particle embedded in an infinite-size matrix
has been first expressed using the spherical coordinate system (r, θ, ϕ), whose origin O′ is
the particle center (Teodosiu, 1982; Kolesnikova and Romanov, 2006). Since, for symmetry
reason, the elastic field ui,0 = (ui,0r , u

i,0
θ , u

i,0
ϕ ) is independent of θ and ϕ variables, it yields:

up,0r (r) = B0
pr, u

p,0
θ (r) = up,0ϕ (r) = 0, (1)

in the particle (i = p) and

um,0r (r) =
A0
m

r2
, um,0θ (r) = um,0ϕ (r) = 0, (2)

in the matrix (i = m). The corresponding elastic strain ¯̄εi,0 = (εi,0kl ) and stress ¯̄σi,0 = (σi,0kl )
tensors have been then expressed using the classical law of the elasticity theory (Timoshenko
and Goodier, 1951), with i = p,m and k, l = r, θ, ϕ. The total strain is thus εp,0kl + ε∗δkl in
the precipitate and εm,0kl in the matrix, with δkl the Kronecker delta. The two constants A0

m

and B0
p have been determined assuming at the interface the total displacement is continuous

and the mechanical equilibrium of forces is satisfied (Mura, 1987):

ε∗R + up,0r (R) = um,0r (R), (3)

σp,0rr (R) = σm,0rr (R). (4)

Solving the above system of Eqs., it yields:

A0
m =

R3

3

1 + ν

1− ν
ε∗, B

0
p = −2

3

1− 2ν

1− ν
ε∗. (5)

When the matrix-free surface is now considered, the correction to the elastic field can be
determined taking advantage of the axial symmetry of the composite structure, this problem
being already addressed in case of a spherical center of dilatation in a semi-infinite solid
(Mindlin and Cheng, 1950). Using now the cylindrical coordinate system (ρ, θ, z) with an
origin O located on the matrix free-surface, the previously determined elastic displacement
(independent of θ) in the infinite-size matrix has been first rewritten as:

um,0ρ (ρ, z) =
1 + ν

1− ν
R3

3
ε∗

ρ

(ρ2 + (z + h)2)3/2
, um,0z (ρ, z) =

1 + ν

1− ν
R3

3
ε∗

z + h

(ρ2 + (z + h)2)3/2
, (6)

in the matrix and

up,0ρ (ρ, z) = −2

3

1− 2ν

1− ν
ε∗ρ, u

p,0
z (ρ, z) = −2

3

1− 2ν

1− ν
ε∗(z + h), (7)
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in the particle. To satisfy the mechanical equilibrium conditions at the free-surface, a relax-
ation stress ¯̄σrel = (σrelkl ) has been then introduced in the particle and the matrix, in such a
way that the mechanical equilibrium of forces is satisfied onto the free-surface:

σm,0zz (ρ, 0) + σrelzz (ρ, 0) = 0, (8)

σm,0ρz (ρ, 0) + σrelρz (ρ, 0) = 0. (9)

This stress tensor ¯̄σrel can be derived from a stress function Ψrel whose general expression
has been expressed using the Hankel transformation as (Sneddon, 1951; Kroupa, 1960):

Ψrel(ρ, z) =

∫ ∞
0

kGrel(k, z)J0(kρ) dk, (10)

where Grel is a function whose general expression is given by:

Grel(k, z) = (A1 +B1z) exp(kz), (11)

with A1 and B1 two constants to be determined and J0 the Bessel function of the first kind
and zeroth order. For example, the two components σrelzz and σrelρz present in Eqs. (8) and
(9) are given by (Sneddon, 1951; Kroupa, 1960):

σrelzz (ρ, z) =

∫ ∞
0

k
[( 2µν

1− 2ν
+ 2µ

)∂3Grel

∂z3
−
( 6µν

1− 2ν
+ 4µ

)
k2
∂Grel

∂z

]
J0(kρ)dk, (12)

σrelρz (ρ, z) =

∫ ∞
0

k2
[ 2µν

1− 2ν

∂2Grel

∂z2
+
( 2µν

1− 2ν
+ 2µ

)
k2Grel

]
J1(kρ)dk, (13)

with J1 the Bessel function of the first kind and first order. Solving thus the system of Eqs.
(8) and (9) with the help of the expressions of the stress components given in Eqs. (12) and
(13), the A1 and B1 constants have been determined to be:

A1 = (1− 2ν)(1− 4ν)
1 + ν

1− ν
ε∗R

3

3k2
e−kh, (14)

B1 = (1− 2ν)
1 + ν

1− ν
2ε∗R

3

3k
e−kh, (15)

and the Grel function has been found to be:

Grel(k, z) =
(1 + ν)(1− 2ν)

1− ν
(1− 4ν + 2kz)

ε∗R
3

3k2
exp(k(z − h)). (16)

The complete misfit stress is finally defined as ¯̄σmis,i0 = ¯̄σi0+ ¯̄σrel, with i = p,m. The problem
of the determination of the stress tensor generated by a prismatic dislocation loop of radius
rd, Burgers vector bez, whose center is located at (0,−d) in a homogeneous semi-infinite
solid has been also addressed, in the framework of the stress function formalism (Kroupa,
1960). This calculation has already been performed in the more general case where the
circular prismatic dislocation loop is located near an interface between two heterogeneous
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solids (Dundurs and Salamon, 1972). The stress tensor ¯̄σd0 = (σd,0pq ) of the loop, when it is
embedded in an infinite-size matrix at (0,−d), is well-known (Kroupa, 1960; Mura, 1987).
For example, the two stress components σd,0ρz and σd,0zz write in the cylindrical coordinate
system (ρ, θ, z):

σd,0ρz (ρ, z, d) =
µbρd

2(1− ν)

∫ ∞
0

(z + d)k2J1(kρd) exp(−k|z + d|) dk, (17)

σd,0zz (ρ, z, d) =
µbρd

2(1− ν)

∫ ∞
0

k(1 + |z + d|)J1(kρd) exp(−k|z + d|) dk. (18)

To satisfy the mechanical equilibrium on the free-surface when the prismatic dislocation loop
is now introduced at (0,−d) in the semi-infinite matrix, an image dislocation loop located at
(0, d) and of Burgers vector −bez has been first considered (Hirth and Lothe, 1982). Since
at the surface (z = 0):

σd,0zz (ρ, 0, d)− σd,0zz (ρ, 0,−d) = 0, (19)

a supplementary stress function φsup generating the stress tensor ¯̄σsup = (σsupkl ) has been
thus considered such that:

σd,0ρz (ρ, 0, d)− σd,0ρz (ρ, 0,−d) + σsupρz (ρ, 0) = 0, (20)

σsupzz (ρ, 0) = 0. (21)

The corresponding stress function φsup has been again defined using the Hankel transforma-
tion (Sneddon, 1951; Kroupa, 1960):

φsup(ρ, z) =

∫ ∞
0

kGsup(k, ρ)J0(kρ) dk, (22)

with:

Gsup(k, z) = (Asup +Bsupz) exp(kz), (23)

and Asup and Bsup two constants to be determined. The stress components σsupzz and σsupρz

are determined from formulae equivalent to the ones displayed in Eqs.(12) and (13), and
from Eqs. (20) and (21), it yields:

Asup = −(1− 2ν)2

2(1− ν)

bdrd
k2

J1(krd) exp(−dk), (24)

Bsup = −(1− 2ν)

2(1− ν)

bdrd
k
J1(krd) exp(−dk). (25)

The components of the complete stress tensor generated by the prismatic dislocation loop
are finally given by: σdkl(ρ, z) = σd,0kl (ρ, z, d) − σd,0kl (ρ, z,−d) + σsupkl (ρ, z), with k, l = ρ, θ, z.
Once the stress tensors of the misfit and the loop are known, the problem of the dislocation
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formation in the particle-matrix interface to release the misfit strain can be addressed from
an energy variation calculation. The elastic energy variation of the composite structure
∆Ed

el associated with the formation of a loop located at a vertical position zd = −d, from
the center of the particle to the interface, can be expressed as (Hirth and Lothe, 1982; Mura,
1987):

∆Ed
el = πb

∫ ρd−a0

0

σdzz(ρ,−d) ρdρ+ 2πb

∫ ρd

0

σmiszz (ρ,−d) ρdρ, (26)

with a0 the cut-off radius taken to be equal to b without lack of generality (Hirth and Lothe,
1982). Introducing the functions:

I0(α, ζ) =
α1/2

u

[2− u2

2
K(u)− E(u)

]
, (27)

I1(α, ζ) =
∂

∂ζ
I0(α, ζ), (28)

I2(α, ζ) =
∂2

∂ζ2
I0(α, ζ), (29)

with

u2 =
4α

(1 + α)2 + ζ2
, (30)

and K and E the complete elliptic integrals of the first and second kind respectively defined
as:

K(u) =

∫ π
2

0

dφ

(1− u2 sin2 φ)1/2
, E(u) =

∫ π
2

0

(1− u2 sin2 φ)1/2 dφ, (31)

the analytic expression of ∆Eel has been found to be:

∆Ed
el =

µb2

1− ν
ρd

[
K
(

1− a0
ρd

)
− E

(
1− a0

ρd

)
− I0

(
1− a0

ρd
,
2d

ρd

)
+

2d

ρd
I1

(
1− a0

ρd
,
2d

ρd

)
− 2d2

ρ2d
I2

(
1− a0

ρd
,
2d

ρd

)]
− 4πµbε∗

3

1 + ν

1− ν
ρ2d

[
1−R3 7d2 + 8dh+ h2 + ρ2d

(d2 + 2dh+ h2 + ρ2d)
5/2

]
. (32)

Considering also a core energy ∆Ed
co as (Kroupa, 1960):

∆Ed
co =

µb2

2(1− ν)
ρd, (33)

the total energy variation ∆Ed
tot due to the formation of the prismatic dislocation loop writes:

∆Ed
tot = ∆Ed

el + ∆Ed
co. (34)
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Since the loop is lying in the particle-matrix interface, its radius ρd can be expressed as
ρd =

√
R2 − (h− d)2, with h− R < d < h + R, and the following dimensionless quantities

have been introduced, h̃ = h/b, d̃ = d/b, R̃ = R/b and ∆Ẽd
tot = ∆Ed

tot/E0, with E0 =
µb3/(1 − ν). In Fig. (2), the reduced total energy variation ∆Ẽd

tot has been plotted versus
d̃ for different values of the eigenstrain ε∗, with R̃ = 50 and h̃ = 100. It is observed that as
ε∗ increases, the energy minimum obtained at a particular value of d̃ decreases and becomes
negative beyond a critical value εc∗ = 0.0093, this selected distance being thus considered as
an equilibrium position d̃eq for the dislocation loop. To characterize the free-surface effect
on this equilibrium position, the quantity ∆d̃eq = d̃eq − h̃ which characterizes the position
shift with respect to the equatorial plane of the precipitate has been plotted versus ε∗ in
Fig. (3). When the particle is not to close to the surface (h̃ = 160) such that the relaxation
of the misfit strain is moderate, the dislocation loop can be attracted by the surface when
the eigenstrain is sufficiently low (ε∗ < 0.01) and d̃eq < h̃. As the particle gets closer to the
surface and the eigenstrain increases, the elastic relaxation in the upper part of the particle
increases and the dislocation is repealed inside the lower part of the particle, d̃eq > h̃, where
the misfit strain to be released is more important. It is also underlined that when h̃→∞,
then ∆d̃eq → 0 and the equilibrium position of the dislocation loop tends to the equatorial
plane, as expected for a particle embedded in an infinite-size matrix. Finally, the critical
radius R̃c of the particle beyond which the formation of the prismatic dislocation loop is
favorable has been displayed in Fig. (4) versus h̃ for different values of ε∗. Discarding the
region 3 which is not geometrically acceptable (R̃c > h̃), each (blue) curve delimits two
other regions. In region 1, the formation of the loop is energetically favorable, while the
region 2 corresponds to the configuration where the particle is dislocation-free. The case of
the formation of two prismatic dislocation loops of the same Burgers vector bez and located
inside the particle at zd1 = −d1 and zd2 = −d2 has been also investigated. The interaction
energy Ed1−d2

int between the two loops, whose general expression is given by (Hirth and Lothe,
1982; Mura, 1987):

Ed1−d2
int = 2πb

∫ d2

0

σd1zz(ρ,−d2) ρdρ, (35)

has been found to be:

Ed1−d2
int =

µb2

1− ν
2ρd1

[
I0

(ρd2
ρd1

,
|d2 − d1|
ρd1

)
− I0

(ρd2
ρd1

,
d2 + d1
ρd1

)
− |d2 − d1|

ρd1
I1

(ρd2
ρd1

,
|d2 − d1|
ρd1

)
+

d2 + d1
ρd1

I1

(ρd2
ρd1

,
d2 + d1
ρd1

)
− d1d2

ρ2d1
I2

(ρd2
ρd1

,
d2 + d1
ρd1

)]
. (36)

The total energy variation ∆Ed1−d2
tot associated with the formation of the two prismatic

dislocation loops has been then expressed as:

∆Ed1−d2
tot = ∆Ed1

tot + ∆Ed2
tot + Ed1−d2

int , (37)

where ∆Ed1
tot and ∆Ed2

tot are the energy variations deduced from Eq. (34) resulting from the
formation of the dislocations 1 and 2, respectively. Discarding the region |d̃2 − d̃1| ≤ 1, the
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contourplot of the reduced total energy variation ∆Ed1−d2
tot has been displayed in Fig. (5)

versus d̃1 and d̃2, with h̃ = 100, R̃ = 75 and ε∗ = 0.02. It is found that for this level of
eigenstrain, there exists two regions in the (d̃1, d̃2) space, where ∆Ed1−d2

tot is negative and
the formation of the two loops is favorable, these two regions being symmetric with respect
to the first diagonal in the (d̃1, d̃2) plane. The optimal configuration (d̃eq1 , d̃

eq
2 ) for which

the energy variation is minimum has been then determined assuming d̃eq2 > d̃eq1 and the
dislocation position shifts with respect to the particle center ∆d̃ieq = d̃ieq − h̃ have been

plotted versus ε∗ in Fig. (6) for h̃ = 100 and R̃ = 75, with i = 1, 2. It is found that for
ε∗ ≤ 0.011, the loops are positioned on both sides of the horizontal plane containing the
particle center and when ε∗ > 0.011, the loops are again located below this plane. As the
eigenstrain increases, the two dislocation loops get closer to each other in the lower part of
the particle. This position shift of the loops is again attributed to the relaxation effect of
the free-surface on the misfit strain, the dislocation being nucleated in the region of higher
misfit strain, i.e. in the lower part of the precipitate. Finally, the critical radii R̃c of the
particle required for the nucleation of one and two dislocation loops have been displayed in
Fig. (7) versus ε∗, with h̃ = 100. In region 1, the formation of the two loops is favorable, in
region 2, only one loop can be nucleated and, in region 3, the interface is dislocation-free.
It is observed that at constant eigenstrain, the critical radius for the nucleation of two loops
is greater than the one required for the formation of only one loop.

3. Conclusion

The formation of one and then two prismatic dislocation loops in the interface between
a strained spherical particle and a semi-infinite matrix has been studied from an energy
variation calculation. Depending on the misfit strain, it has been found in both cases that
the formation of dislocation loops can be energetically favorable. It is also observed that
due to the relaxation effect of the free-surface on the misfit strain, the loops are positioned
preferentially in the lower part of the particle, when the eigenstrain is sufficiently high.
The problem of the nucleation of the loops should be now considered at the microscopic
scale using molecular dynamics simulations for example to determine if the dislocations are
preferentially nucleated into the particle or at the matrix free-surface. The dislocation pile-
up should also be considered in the interface to determine the number (when it is greater
than two) and positions of the different dislocations positioned at the interface to release
the misfit strain.
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Figure 1: Schematic in the (Oxz) plane of a spherical particle of radius R embedded in a semi-infinite
matrix at a distance h from the free-surface. A prismatic dislocation loop of Burgers vector buz is lying in
the interface at a distance d from the free-surface.
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Figure 2: Reduced total energy variation ∆Ẽd
tot versus d̃ for different values of ε∗, with R̃ = 50, and h̃ = 100.
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Figure 3: Dislocation position shifts with respect to the particle center ∆d̃eq = d̃eq− h̃ versus ε∗ for different

values of h̃, with R̃ = 75.
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Figure 4: Critical radius R̃c of the particle for the nucleation of one dislocation loop versus ε∗ for different
values of h̃. Each blue curve delimits two regions. In region 1, the formation of the loop is favorable, in
region 2, the interface is dislocation-free. The region 3 is not geometrically acceptable since R̃c > h̃.
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Figure 5: Contourplot of the reduced total energy variation ∆Ed1−d2
tot versus d̃1 and d̃2, with h̃ = 100, R̃ = 75

and ε∗ = 0.02.
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Figure 6: Dislocation position shifts with respect to the particle center ∆d̃ieq = d̃ieq− h̃ versus ε∗ for h̃ = 100

and R̃ = 75, with i = 1, 2.
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Figure 7: Critical radii R̃c of the particle for the nucleation of one and two dislocation loops versus ε∗, with
h̃ = 100. In region 1, the formation of the two loops is favorable, in region 2, only one loop can be nucleated.
In region 3, the interface is dislocation free.
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