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The introduction of prismatic dislocation loops in the interface between a misfitting spherical particle and its semi-infinite matrix has been theoretically investigated. The equilibrium position of one isolated loop has been first determined from an energy variation calculation and a shifting effect on the dislocation position relative to the particle equatorial plane has been identified due to the matrix free-surface. The case of two dislocation loops lying in the particle-matrix interface has been then discussed.

Introduction

The control of the mechanical properties of nanostructured materials is a challenging problem that has been addressed in the last decade in the field of solid mechanics, materials science and metallurgy, because of the numerous applications of such materials in engineering. In case of core-shell nanostructures, the heterogeneity of the lattice parameters (or dilatation coefficients) between the two crystalline phases can produce misfit (thermal) stress that may generate crystalline defects and/or may modify their functional properties. Misfit dislocation loops have been for example identified in GaP-GaN [START_REF] Lin | Synthesis and characterization of core-shell GaP@GaN and GaN@GaP nanowires[END_REF] and Ge-Si core-shell nanowires [START_REF] Goldthorpe | Synthesis and strain relaxation of Ge-core/Si-shell nanowire arrays[END_REF], and threading dislocations in the core of AlN-GaN coaxial nanowires have been observed to reduce the photoluminescence of the devices [START_REF] Rigutti | Optical properties of GaN and GaN/AlN nanowires: the effect of doping and structural defects[END_REF]. Misfit defects have been also detected in core-shell nanoparticles (CSNPs). For example, high-resolution transmission electron microscopy observations have evidenced perfect misfit dislocations in Fe 3 Pt-Fe 2 O 3 CSNPs [START_REF] Liang | In situ study of Fe 3 Pt-Fe 2 O 3 core-shell nanoparticle formation[END_REF] and stacking fault, perfect and partial misfit dislocations in Au-Pd CSNPs [START_REF] Bhattarai | Strain-release mechanisms in bimetallic core-shell nanoparticles as revealed by Cs-corrected STEM[END_REF]. From the theoretical point of view, the formation in core-shell nanowires of different defects such as straight edge dislocations [START_REF] Gutkin | Misfit dislocations in wire composite solids[END_REF][START_REF] Raychaudhuri | Critical dimensions in coherently strained coaxial nanowire heterostructures[END_REF], screw dislocations [START_REF] Wang | New phenomena concerning a screw dislocation interacting with two imperfect interfaces[END_REF][START_REF] Fang | Misfit dislocations in an annular strained film grown on a cylindrical nanopore surface[END_REF][START_REF] Ahmadzadeh-Bakhshayesh | Surface/interface effects on the elastic behavior of a screw dislocation in an eccentric core-shell nanowire[END_REF] and dislocation loops (Ovid'ko and Sheinerman, 2004;[START_REF] Aifantis | Nucleation of misfit dislocations and plastic deformation in core/shell nanowires[END_REF][START_REF] Raychaudhuri | Critical dimensions in coherently strained coaxial nanowire heterostructures[END_REF][START_REF] Gutkin | Misfit stresses and relaxation mechanisms in a nanowire containing a coaxial cylindrical inclusion of finite height[END_REF] has been investigated and the different critical geometric and physical parameters for the defect nucleation have been identified among which one can cite the different radii of the cores and shells, the elastic coefficients of the materials and the misfit strains. In CSNPs, the possibility of formation of prismatic dislocation loops and cracks due to misfit stress has been first theoretically investigated by [START_REF] Trusov | Relaxation of elastic stresses in overlayed microcrystals[END_REF]. The critical conditions for the formation of the circular dislocation loops has been then discussed in details in bulk (Gutkin et al., 2014b;[START_REF] Krauchanka | Circular loops of misfit dislocations in decahedral core-shell nanoparticles[END_REF] and hollow (Gutkin et al., 2014a) CNSPs, where it has been found that the equatorial plane is the most favorable one. It is worth noting that the formation of rectangular dislocation loops has been also investigated in CNSPs and the different nucleation sites have been identified [START_REF] Gutkin | Generation of rectangular prismatic dislocation loops in shells and cores of composite nanoparticles[END_REF], 2015[START_REF] Colin | Generation of a dipole of misfit dislocations in an axisymmetrical precipitate embedded in a semi-infinite matrix[END_REF]. When the axisymmetrical core of a CNSP is truncated, the misfit stress has been computed (Kolesnikova et al., 2018a,b), and the possibility of formation of misfit dislocation loops has been recently analyzed [START_REF] Gutkin | Misfit stresses and their relaxation by misfit dislocation loops in core-shell nanoparticles with truncated spherical cores[END_REF]. In particular, it has been found that the optimal sites for the loops are located at a distance of 1/4 of the core radius from the core base.

When a spherical precipitate is embedded in an infinite-size matrix, the critical misfit stress for the nucleation of dislocation loops has been also determined [START_REF] Jagannadham | Critical misfit for generation of dislocations at second-phase particles[END_REF] and, later, the critical radius and critical eigenstrain for a spherical and cylindrical inclusions have been determined and compared [START_REF] Kolesnikova | Misfit dislocation loops and critical parameters of quantum dots and wires[END_REF], the case of cylindrical wires being also examined in details in other works [START_REF] Fang | Misfit dislocation dipoles and critical parameters of buried strained nanoscale inhomogeneity[END_REF][START_REF] Zhao | Edge misfit dislocation formation at the interface of a nanopore and infinite substrate with surface/interface effects[END_REF][START_REF] Shodja | Interface effect on the formation of a dipole of screw misfit dislocations in an embedded nanowire with uniform shear eigenstrain field[END_REF]. Likewise, the degree of coherency of the interface between a misfitting particle and an infinite-size matrix has been investigated using a three-dimensional level set dislocation dynamics method [START_REF] Quek | Loss of interface coherency around a misfitting spherical inclusion[END_REF]. The interaction between the particle and matrix dislocations has been thus studied and the transition from a coherent to semi-coherent interface has been characterized.

In case of a semi-infinite matrix with a planar free-surface, the formation of misfit dislocations in the interfaces of nanowires of rectangular [START_REF] Gutkin | Misfit dislocations in composites with nanowires[END_REF] and cylindrical [START_REF] Colin | Generation of a dipole of misfit dislocations in an axisymmetrical precipitate embedded in a semi-infinite matrix[END_REF] cross sections has been considered and the effect of the surfaces has been analyzed. Recently, the formation of a dipole of edge dislocations into the interfaces of a misfitting long parallelepipedal nanowire embedded in a thin slab with two horizontal freesurfaces has been investigated. The energy barriers for the dislocation nucleation and the equilibrium positions of the dislocations have been determined [START_REF] Mikaelyan | Dislocation emission from the edge of a misfitting nanowire embedded in a free-standing nanolayer[END_REF].

In this framework, the formation of prismatic dislocation loops in the interface between a misfitting spherical inclusion and a semi-infinite matrix has been investigated in this work from an energy variation calculation. Assuming the elastic coefficients are equal in the matrix and the inclusion, the equilibrium positions of one and two loops have been determined and the free-surface effect on the dislocation positions has been characterized.

Modeling and Discussion

A spherical particle of radius R is lying in a semi-infinite matrix whose center is located at a distance h from the free-surface (see Fig. 1 for axes). It is assumed in the following that the shear modulus µ and Poisson ratio ν are constant and equal in both phases, with ν = 0.3. Due to the lattice mismatch between the particle and the matrix, an eigenstrain strain * xx = * yy = * zz = * = 2(a p -a m )/(a p + a m ) has been considered into the particle, where a m and a p are the lattice parameters of the matrix and the precipitate, respectively [START_REF] Mura | Misfit dislocation loops in composite nanowires[END_REF]. In the following, it is assumed without lack of generality that a p > a m . The first step of this work has been to determine the resulting misfit strain in the framework of the linear and isotropic theory of elasticity [START_REF] Timoshenko | Theory of Elasticity[END_REF]. The wellknown elastic displacement field in the case of a particle embedded in an infinite-size matrix has been first expressed using the spherical coordinate system (r, θ, ϕ), whose origin O is the particle center [START_REF] Teodosiu | Elastic Models of Crystal defects[END_REF][START_REF] Kolesnikova | Misfit dislocation loops and critical parameters of quantum dots and wires[END_REF]. Since, for symmetry reason, the elastic field u i,0 = (u i,0 r , u i,0 θ , u i,0 ϕ ) is independent of θ and ϕ variables, it yields:

u p,0 r (r) = B 0 p r, u p,0 θ (r) = u p,0 ϕ (r) = 0, (1) 
in the particle (i = p) and

u m,0 r (r) = A 0 m r 2 , u m,0 θ (r) = u m,0 ϕ (r) = 0, (2) 
in the matrix (i = m). The corresponding elastic strain ¯ i,0 = ( i,0 kl ) and stress σi,0 = (σ i,0 kl ) tensors have been then expressed using the classical law of the elasticity theory [START_REF] Timoshenko | Theory of Elasticity[END_REF], with i = p, m and k, l = r, θ, ϕ. The total strain is thus p,0 kl + * δ kl in the precipitate and m,0 kl in the matrix, with δ kl the Kronecker delta. The two constants A 0 m and B 0 p have been determined assuming at the interface the total displacement is continuous and the mechanical equilibrium of forces is satisfied [START_REF] Mura | Misfit dislocation loops in composite nanowires[END_REF]

: * R + u p,0 r (R) = u m,0 r (R), (3) σ p,0 rr (R) = σ m,0 rr (R). ( 4 
)
Solving the above system of Eqs., it yields:

A 0 m = R 3 3 1 + ν 1 -ν * , B 0 p = - 2 3 1 -2ν 1 -ν * . (5) 
When the matrix-free surface is now considered, the correction to the elastic field can be determined taking advantage of the axial symmetry of the composite structure, this problem being already addressed in case of a spherical center of dilatation in a semi-infinite solid [START_REF] Mindlin | Thermoelastic stress in the semi-infinite solid[END_REF]. Using now the cylindrical coordinate system (ρ, θ, z) with an origin O located on the matrix free-surface, the previously determined elastic displacement (independent of θ) in the infinite-size matrix has been first rewritten as:

u m,0 ρ (ρ, z) = 1 + ν 1 -ν R 3 3 * ρ (ρ 2 + (z + h) 2 ) 3/2 , u m,0 z (ρ, z) = 1 + ν 1 -ν R 3 3 * z + h (ρ 2 + (z + h) 2 ) 3/2 , (6)
in the matrix and

u p,0 ρ (ρ, z) = - 2 3 1 -2ν 1 -ν * ρ, u p,0 z (ρ, z) = - 2 3 1 -2ν 1 -ν * (z + h), (7) 
in the particle. To satisfy the mechanical equilibrium conditions at the free-surface, a relaxation stress σrel = (σ rel kl ) has been then introduced in the particle and the matrix, in such a way that the mechanical equilibrium of forces is satisfied onto the free-surface:

σ m,0 zz (ρ, 0) + σ rel zz (ρ, 0) = 0, (8) σ m,0 ρz (ρ, 0) + σ rel ρz (ρ, 0) = 0. ( 9 
)
This stress tensor σrel can be derived from a stress function Ψ rel whose general expression has been expressed using the Hankel transformation as [START_REF] Sneddon | Fourier Transforms[END_REF][START_REF] Kroupa | Circular edge dislocation loop[END_REF]:

Ψ rel (ρ, z) = ∞ 0 kG rel (k, z)J 0 (kρ) dk, (10) 
where G rel is a function whose general expression is given by:

G rel (k, z) = (A 1 + B 1 z) exp(kz), (11) 
with A 1 and B 1 two constants to be determined and J 0 the Bessel function of the first kind and zeroth order. For example, the two components σ rel zz and σ rel ρz present in Eqs. ( 8) and ( 9) are given by [START_REF] Sneddon | Fourier Transforms[END_REF][START_REF] Kroupa | Circular edge dislocation loop[END_REF]:

σ rel zz (ρ, z) = ∞ 0 k 2µν 1 -2ν + 2µ ∂ 3 G rel ∂z 3 - 6µν 1 -2ν + 4µ k 2 ∂G rel ∂z J 0 (kρ)dk, ( 12 
)
σ rel ρz (ρ, z) = ∞ 0 k 2 2µν 1 -2ν ∂ 2 G rel ∂z 2 + 2µν 1 -2ν + 2µ k 2 G rel J 1 (kρ)dk, ( 13 
)
with J 1 the Bessel function of the first kind and first order. Solving thus the system of Eqs. ( 8) and ( 9) with the help of the expressions of the stress components given in Eqs. ( 12) and (13), the A 1 and B 1 constants have been determined to be:

A 1 = (1 -2ν)(1 -4ν) 1 + ν 1 -ν * R 3 3k 2 e -kh , (14) 
B 1 = (1 -2ν) 1 + ν 1 -ν 2 * R 3 3k e -kh , (15) 
and the G rel function has been found to be:

G rel (k, z) = (1 + ν)(1 -2ν) 1 -ν (1 -4ν + 2kz) * R 3 3k 2 exp(k(z -h)). ( 16 
)
The complete misfit stress is finally defined as σmis,i 0 = σi 0 + σrel , with i = p, m. The problem of the determination of the stress tensor generated by a prismatic dislocation loop of radius r d , Burgers vector be z , whose center is located at (0, -d) in a homogeneous semi-infinite solid has been also addressed, in the framework of the stress function formalism [START_REF] Kroupa | Circular edge dislocation loop[END_REF]. This calculation has already been performed in the more general case where the circular prismatic dislocation loop is located near an interface between two heterogeneous solids [START_REF] Dundurs | Circular prismatic dislocation loop in a two-phase material[END_REF]. The stress tensor σd 0 = (σ d,0 pq ) of the loop, when it is embedded in an infinite-size matrix at (0, -d), is well-known [START_REF] Kroupa | Circular edge dislocation loop[END_REF][START_REF] Mura | Misfit dislocation loops in composite nanowires[END_REF]. For example, the two stress components σ d,0 ρz and σ d,0 zz write in the cylindrical coordinate system (ρ, θ, z):

σ d,0 ρz (ρ, z, d) = µbρ d 2(1 -ν) ∞ 0 (z + d)k 2 J 1 (kρ d ) exp(-k|z + d|) dk, (17) 
σ d,0 zz (ρ, z, d) = µbρ d 2(1 -ν) ∞ 0 k(1 + |z + d|)J 1 (kρ d ) exp(-k|z + d|) dk. ( 18 
)
To satisfy the mechanical equilibrium on the free-surface when the prismatic dislocation loop is now introduced at (0, -d) in the semi-infinite matrix, an image dislocation loop located at (0, d) and of Burgers vector -be z has been first considered [START_REF] Hirth | Theory of dislocations[END_REF]. Since at the surface (z = 0):

σ d,0 zz (ρ, 0, d) -σ d,0 zz (ρ, 0, -d) = 0, (19) 
a supplementary stress function φ sup generating the stress tensor σsup = (σ sup kl ) has been thus considered such that:

σ d,0 ρz (ρ, 0, d) -σ d,0 ρz (ρ, 0, -d) + σ sup ρz (ρ, 0) = 0, (20) σ sup zz (ρ, 0) = 0. (21) 
The corresponding stress function φ sup has been again defined using the Hankel transformation [START_REF] Sneddon | Fourier Transforms[END_REF][START_REF] Kroupa | Circular edge dislocation loop[END_REF]:

φ sup (ρ, z) = ∞ 0 kG sup (k, ρ)J 0 (kρ) dk, (22) 
with:

G sup (k, z) = (A sup + B sup z) exp(kz), (23) 
and A sup and B sup two constants to be determined. The stress components σ sup zz and σ sup ρz are determined from formulae equivalent to the ones displayed in Eqs.( 12) and ( 13), and from Eqs. ( 20) and ( 21), it yields:

A sup = - (1 -2ν) 2 2(1 -ν) bdr d k 2 J 1 (kr d ) exp(-dk), (24) 
B sup = - (1 -2ν) 2(1 -ν) bdr d k J 1 (kr d ) exp(-dk). ( 25 
)
The components of the complete stress tensor generated by the prismatic dislocation loop are finally given by: σ d kl (ρ, z) = σ d,0 kl (ρ, z, d) -σ d,0 kl (ρ, z, -d) + σ sup kl (ρ, z), with k, l = ρ, θ, z. Once the stress tensors of the misfit and the loop are known, the problem of the dislocation formation in the particle-matrix interface to release the misfit strain can be addressed from an energy variation calculation. The elastic energy variation of the composite structure ∆E d el associated with the formation of a loop located at a vertical position z d = -d, from the center of the particle to the interface, can be expressed as [START_REF] Hirth | Theory of dislocations[END_REF][START_REF] Mura | Misfit dislocation loops in composite nanowires[END_REF]:

∆E d el = πb ρ d -a 0 0 σ d zz (ρ, -d) ρdρ + 2πb ρ d 0 σ mis zz (ρ, -d) ρdρ, (26) 
with a 0 the cut-off radius taken to be equal to b without lack of generality [START_REF] Hirth | Theory of dislocations[END_REF]. Introducing the functions:

I 0 (α, ζ) = α 1/2 u 2 -u 2 2 K(u) -E(u) , (27) 
I 1 (α, ζ) = ∂ ∂ζ I 0 (α, ζ), (28) 
I 2 (α, ζ) = ∂ 2 ∂ζ 2 I 0 (α, ζ), (29) 
with

u 2 = 4α (1 + α) 2 + ζ 2 , ( 30 
)
and K and E the complete elliptic integrals of the first and second kind respectively defined as:

K(u) = π 2 0 dφ (1 -u 2 sin 2 φ) 1/2 , E(u) = π 2 0 (1 -u 2 sin 2 φ) 1/2 dφ, (31) 
the analytic expression of ∆E el has been found to be:

∆E d el = µb 2 1 -ν ρ d K 1 - a 0 ρ d -E 1 - a 0 ρ d -I 0 1 - a 0 ρ d , 2d ρ d + 2d ρ d I 1 1 - a 0 ρ d , 2d ρ d - 2d 2 ρ 2 d I 2 1 - a 0 ρ d , 2d ρ d - 4πµb * 3 1 + ν 1 -ν ρ 2 d 1 -R 3 7d 2 + 8dh + h 2 + ρ 2 d (d 2 + 2dh + h 2 + ρ 2 d ) 5/2 . ( 32 
)
Considering also a core energy ∆E d co as [START_REF] Kroupa | Circular edge dislocation loop[END_REF]:

∆E d co = µb 2 2(1 -ν) ρ d , (33) 
the total energy variation ∆E d tot due to the formation of the prismatic dislocation loop writes:

∆E d tot = ∆E d el + ∆E d co . ( 34 
)
Since the loop is lying in the particle-matrix interface, its radius ρ d can be expressed as 2), the reduced total energy variation ∆ Ẽd tot has been plotted versus d for different values of the eigenstrain * , with R = 50 and h = 100. It is observed that as * increases, the energy minimum obtained at a particular value of d decreases and becomes negative beyond a critical value c * = 0.0093, this selected distance being thus considered as an equilibrium position deq for the dislocation loop. To characterize the free-surface effect on this equilibrium position, the quantity ∆ deq = deqh which characterizes the position shift with respect to the equatorial plane of the precipitate has been plotted versus * in Fig. (3). When the particle is not to close to the surface ( h = 160) such that the relaxation of the misfit strain is moderate, the dislocation loop can be attracted by the surface when the eigenstrain is sufficiently low ( * < 0.01) and deq < h. As the particle gets closer to the surface and the eigenstrain increases, the elastic relaxation in the upper part of the particle increases and the dislocation is repealed inside the lower part of the particle, deq > h, where the misfit strain to be released is more important. It is also underlined that when h → ∞, then ∆ deq → 0 and the equilibrium position of the dislocation loop tends to the equatorial plane, as expected for a particle embedded in an infinite-size matrix. Finally, the critical radius Rc of the particle beyond which the formation of the prismatic dislocation loop is favorable has been displayed in Fig. ( 4) versus h for different values of * . Discarding the region 3 which is not geometrically acceptable ( Rc > h), each (blue) curve delimits two other regions. In region 1, the formation of the loop is energetically favorable, while the region 2 corresponds to the configuration where the particle is dislocation-free. The case of the formation of two prismatic dislocation loops of the same Burgers vector be z and located inside the particle at z d 1 = -d 1 and z d 2 = -d 2 has been also investigated. The interaction energy E d 1 -d 2 int between the two loops, whose general expression is given by [START_REF] Hirth | Theory of dislocations[END_REF][START_REF] Mura | Misfit dislocation loops in composite nanowires[END_REF]:

ρ d = R 2 -(h -d) 2 , with h -R < d < h + R,
E d 1 -d 2 int = 2πb d 2 0 σ d 1 zz (ρ, -d 2 ) ρdρ, (35) 
has been found to be:

E d 1 -d 2 int = µb 2 1 -ν 2ρ d 1 I 0 ρ d 2 ρ d 1 , |d 2 -d 1 | ρ d 1 -I 0 ρ d 2 ρ d 1 , d 2 + d 1 ρ d 1 - |d 2 -d 1 | ρ d 1 I 1 ρ d 2 ρ d 1 , |d 2 -d 1 | ρ d 1 + d 2 + d 1 ρ d 1 I 1 ρ d 2 ρ d 1 , d 2 + d 1 ρ d 1 - d 1 d 2 ρ 2 d 1 I 2 ρ d 2 ρ d 1 , d 2 + d 1 ρ d 1 . ( 36 
)
The total energy variation ∆E d 1 -d 2 tot associated with the formation of the two prismatic dislocation loops has been then expressed as:

∆E d 1 -d 2 tot = ∆E d 1 tot + ∆E d 2 tot + E d 1 -d 2 int , (37) 
where ∆E d 1 tot and ∆E d 2 tot are the energy variations deduced from Eq. ( 34) resulting from the formation of the dislocations 1 and 2, respectively. Discarding the region | d2 -d1 | ≤ 1, the contourplot of the reduced total energy variation ∆E d 1 -d 2 tot has been displayed in Fig. ( 5) versus d1 and d2 , with h = 100, R = 75 and * = 0.02. It is found that for this level of eigenstrain, there exists two regions in the ( d1 , d2 ) space, where ∆E d 1 -d 2 tot is negative and the formation of the two loops is favorable, these two regions being symmetric with respect to the first diagonal in the ( d1 , d2 ) plane. The optimal configuration ( deq 1 , deq 2 ) for which the energy variation is minimum has been then determined assuming deq 2 > deq 1 and the dislocation position shifts with respect to the particle center ∆ di eq = di eq -h have been plotted versus * in Fig. ( 6) for h = 100 and R = 75, with i = 1, 2. It is found that for * ≤ 0.011, the loops are positioned on both sides of the horizontal plane containing the particle center and when * > 0.011, the loops are again located below this plane. As the eigenstrain increases, the two dislocation loops get closer to each other in the lower part of the particle. This position shift of the loops is again attributed to the relaxation effect of the free-surface on the misfit strain, the dislocation being nucleated in the region of higher misfit strain, i.e. in the lower part of the precipitate. Finally, the critical radii Rc of the particle required for the nucleation of one and two dislocation loops have been displayed in Fig. ( 7) versus * , with h = 100. In region 1, the formation of the two loops is favorable, in region 2, only one loop can be nucleated and, in region 3, the interface is dislocation-free. It is observed that at constant eigenstrain, the critical radius for the nucleation of two loops is greater than the one required for the formation of only one loop.

Conclusion

The formation of one and then two prismatic dislocation loops in the interface between a strained spherical particle and a semi-infinite matrix has been studied from an energy variation calculation. Depending on the misfit strain, it has been found in both cases that the formation of dislocation loops can be energetically favorable. It is also observed that due to the relaxation effect of the free-surface on the misfit strain, the loops are positioned preferentially in the lower part of the particle, when the eigenstrain is sufficiently high. The problem of the nucleation of the loops should be now considered at the microscopic scale using molecular dynamics simulations for example to determine if the dislocations are preferentially nucleated into the particle or at the matrix free-surface. The dislocation pileup should also be considered in the interface to determine the number (when it is greater than two) and positions of the different dislocations positioned at the interface to release the misfit strain. In region 1, the formation of the loop is favorable, in region 2, the interface is dislocation-free. The region 3 is not geometrically acceptable since Rc > h. In region 1, the formation of the two loops is favorable, in region 2, only one loop can be nucleated. In region 3, the interface is dislocation free.

  and the following dimensionless quantities have been introduced, h = h/b, d = d/b, R = R/b and ∆ Ẽd tot = ∆E d tot /E 0 , with E 0 = µb 3 /(1 -ν). In Fig. (
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 1234 Figure1: Schematic in the (Oxz) plane of a spherical particle of radius R embedded in a semi-infinite matrix at a distance h from the free-surface. A prismatic dislocation loop of Burgers vector bu z is lying in the interface at a distance d from the free-surface.
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 56 Figure 5: Contourplot of the reduced total energy variation ∆E d1-d2 tot versus d1 and d2 , with h = 100, R = 75 and * = 0.02.
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 7 Figure7: Critical radii Rc of the particle for the nucleation of one and two dislocation loops versus * , with h = 100. In region 1, the formation of the two loops is favorable, in region 2, only one loop can be nucleated. In region 3, the interface is dislocation free.