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Abstract 

A good comprehension of the mechanical properties of photovoltaic silicon wafers is crucial to 

maintain low breakage rates during solar cell manufacturing. As brittle material, silicon wafers are 

theoretically subject to a strength size effect. This study aims at determining whether this effect 

should be considered when comparing the strength of photovoltaic wafers. We derive a theoretical 

strength scaling law and perform an extensive experimental study on 240 diamond-wire sawn 

silicon wafers, which have the particularity of exhibiting an anisotropy in Weibull parameters. We 

compare test results from three different bending configurations and show that a size effect is only 

observable when loading the wafers perpendicular to the saw marks. Strength values obtained 

when loading the wafers in the direction of the wire yield identical results regardless of the size of 

the tested area. These findings can open up prospects for the standardization of testing methods 

for photovoltaic wafers. 
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1 Introduction 

Crystalline silicon-wafer based technology accounts for more than 90% of the production of 

photovoltaic (PV) solar cells [1]. With the advantages such as lower silicon material loss, higher 

process productivity and easier recycling, diamond wire sawing technology (DWS) has replaced 

the historical slurry sawing technology to process PV silicon wafers [2,3]. The wafering process 

remains a major cost driver for the PV industry, as it accounts for 52% of the module price [1]. In 

particular, the need to lower the silicon material waste implies sawing wafers that are both thinner 

and larger, which can lead to significantly higher breakage rates during the processing steps. 

Studying the mechanical strength of PV silicon wafers has therefore always been an important 

subject, with a recent focus on the influence of the DWS process [4,5].  

Of the various methods available to characterize brittle thin specimens such as silicon wafers, the 

four-line bending setup remains the most commonly used in literature, as it provides a constant 

stress distribution over a large area. Single crystalline silicon has a measured fracture toughness 

ranging between 1 and 2 MPa.m1/2 depending on crystallographic orientation [6] and can as such 

be considered a technical ceramic. Following this reasoning, several studies chose to design their 

four-line bending setup according to the guidelines of ASTM C1161 [7–10]. However, the 

recommendations are often not suited to the geometry of photovoltaic silicon wafers, in particular 

because of their high length-to-thickness ratio. The maximum plate deflection can reach several 

times the thickness value, thus making the use of the standard beam formula to evaluate wafer 

strength highly questionable. Working with rectangular samples of smaller dimensions is an option 

to minimize this effect, but it requires an extra dicing step [11–13]. An alternative method consists 

in knowingly choosing setup dimensions that do not respect the standard ASTM C1161, and to use 

a finite element model to evaluate stress at the time of failure [14]. To overcome this global issue, a 

standard test method for strength testing of photovoltaic wafers was recently developed [15]. It 

provides requirements to design a four-line bending setup suited for full-size silicon wafers and 

lookup tables to compute fracture stresses. However, given the recentness of this contribution, 

there are yet only very few studies relying on it [16]. 

Regardless of the test or sample dimensions chosen, nearly all studies agree that the large 

scattering of failure stress values obtained when testing silicon wafers requires statistical 

treatment. Because of its ability to evaluate both the level and scattering of strength values, 

Weibull probability function [17] is the most widely used to describe fracture behavior of PV silicon 

wafers. It is worth noting that Weibull theory for silicon wafers is usually used in its simplest form 

and without questioning its validity or limits. In particular, with a very few rare exceptions [18], the 

possible influence of a strength size effect is never considered, although it is known to be a major 

concern in the field of technical ceramics [19,20]. This omission is usually justified by the fact that 

each study uses a given sample geometry (typically a 156 x 156 mm wafer of thickness 180 µm) 

and identical test dimensions, so that the effective volume can be considered similar. While this 

holds true when comparing the results within each study, the literature review presented in the 

previous paragraph showed that there exists a large variety of setup and wafer dimensions (square 

or rectangular, 156 mm or 125 mm long). It is then legitimate to question whether the strength 

results obtained from different studies can be directly compared. 

The present study therefore aims at determining if silicon wafers do present a significant size effect 

and how it should be taken into account when comparing strength results from different studies. 

The investigation focuses here on diamond wire sawn monocrystalline silicon wafers, which are an 

ideal case study to evaluate the influence of the strength size effect. Indeed, DWS wafers are 

known to have an anisotropy in strength properties depending on whether the stress is applied 

parallel or perpendicular to saw marks left by the diamond wire [21,22]. Thus, while usually the 

influence of Weibull parameters on the size effect has to be studied numerically, typically via the 

use of Monte Carlo simulations [23,24], DWS wafers offer the possibility to experimentally verify 

the contribution of the size effect with changing Weibull parameters. 
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2 Applying Weibull size effect theory to silicon wafers 

Breakage stress values obtained for silicon wafers that are deemed identical will exhibit large 

scattering. This dispersion results from the brittle nature of silicon: the strength of a silicon wafer is 

ultimately controlled by the density, size and geometry of its defects, which can vary strongly even 

within a single series. These characteristics are random variables, and the failure stress of the 

wafer under a given applied load becomes a statistical variable. Failure is then a random event 

with a certain probability or likelihood of coming true under given circumstances. The mean stress 

value is therefore not sufficient to represent the strength of a set of wafers and the values require 

statistical treatment. 

There exist different statistical approaches to model brittle failure, which all aim at linking the 

characteristics of the defect population and the characteristics of the stress field to the material 

failure probability. As thoroughly detailed in the review from Danzer [25], these approaches are 

based on two main assumptions: (i) failure of brittle materials initiates at flaws (described as 

cracks) which are randomly distributed in the sample and (ii) if one crack becomes critical, failure 

of the specimen occurs. The second assumption is best known as the weakest link hypothesis, i.e. 

the survival probability of a specimen is the product of survival probabilities of each volume 

element within the specimen [26]. The mechanical strength of the entire specimen is therefore 

defined by its weakest defect. For a given volume, a sample with more defects is more likely to fail 

than a sample with less defects. Conversely, a sample of greater volume has a greater chance of 

having a critical defect than a smaller sample. This phenomenon is known as the size effect. 

From the two previous assumptions, we can obtain the most general expression for the probability 

of failure of a specimen [27]: ���, �� = 1 − exp �−����, ��� (1) 

where ����, �� is the mean number of critical flaws per specimen, which depends on the size and 

geometry of the specimen � and on the geometry and level of the stress field �. 

Weibull’s statistical theory of fracture [17,28], which was first introduced in 1939, can be 

considered as a special solution of equation (1). Weibull indeed showed that a wide variety of 

problems can be described if the critical flaw population follows an inverse power law: 

����, �� =  − ��� �� − ���� ��
 (2) 

where � is the Weibull modulus (shape parameter), �� is the characteristic strength value (scale 

parameter), and �� the threshold stress below which the specimen will not fail (location parameter). 

The last three parameters are associated with the material and are independent of size. �� is the 

chosen normalizing volume, which allows to adjust the dimension of the shape parameter. For a 

uniaxial homogeneous tensile stress state, Weibull therefore expresses the failure probability � of 

a specimen of volume � subjected to a uniaxial tensile stress � as: 

���, �� = 1 − exp �− ��� �� − ���� ��� (3) 

This famous strength distribution function is the most widely used to described fracture behavior of 

silicon wafers. In the specific case of wafers for PV applications, Weibull’s model is, to the best of 

our knowledge, the only implemented model. In most cases, for the sake of simplicity the threshold 

stress is assumed to be zero, and the Weibull distribution can be reduced to a simplified two-

parameter form: 

���, �� = 1 − exp �− ��� � ������ (4) 
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This simplification allows to obtain a conservative prediction, and the remaining two parameters 

are much simpler to estimate [29]. Several studies discussed the effect of assuming �� = 0 on the 

estimation of the Weibull parameters [30,31]. Lu et al. [30] proposed a simple quantitative 

procedure to highlight the effects of the threshold stress, and concluded that a compromise should 

be made between simplicity of the two-parameter Weibull distribution and applicability of the three-

parameter Weibull distribution as the threshold stress of the considered samples increases. 

Malzbender et al. [32] demonstrated that the three-parameter Weibull statistics is more appropriate 

for fracture characterization of thin ceramic components, but their observations were based on one 

experimental sample and it is not straightforward to extend their conclusions to other types of 

materials. More recently, Deng et al. [31] conducted an extensive examination based on Monte-

Carlo simulation and showed that the two-parameter Weibull function is sufficiently suitable for the 

description of the statistical variation of the measured strength sample, regardless of whether the 

strength follows a two-parameter or a three-parameter Weibull distribution. Since values of Weibull 

parameters obtained for diamond-wire sawn silicon wafers are within the examined range used in 

their simulations, we chose to rely on their conclusions and use a two-parameter Weibull 

distribution.  

It should be noted that this choice is made by almost all studies focusing on the strength 

distribution of silicon wafers. A notable exception can be found in the work of Saleh et al. [33], who 

used a three-parameter function to describe the size effect in polycrystalline silicon wafers. 

However, their investigations were performed on micro machined samples with extremely high 

strength values (in the order of 2-5 GPa), thus justifying the use of a threshold stress value, while 

failure stresses of DWS silicon wafers rarely exceed a few hundreds of MPa. 

In the case where a non-uniform stress state is applied on the specimen, each volume element has 

a different failure probability. The formulation of equation (4) becomes an integral over the entire 

specimen volume, which makes sense for a bending test: 

���, �� = 1 − exp �− 1�� � ����, �, ���� �� �� ! (5) 

Introducing the maximum stress ��"# and rearranging the terms of equation (5) yields:  

���, �� = 1 − exp �− 1�� ���"#�� �� � ����, �, ����"# �� �� ! (6) 

The formulation of equation (6) enables to reveal the effective volume parameter $eff , which is 

defined as the integral over the specimen volume of the ratio between the local stress value ���, �, �� and the maximum stress value ��"# : 

�eff = � ����, �, ����"# �� ��  (7) 

The effective volume can be interpreted as the size of an equivalent uniaxial tensile specimen that 

has the same failure probability as the specimen subjected to a non-uniform stress state. It 

accounts for the specimen geometry and the stress gradient and can be used to compare the 

failure probabilities of specimens of different sizes and subjected to different stress fields. Let 

indeed two samples consisting of the same material and of different effective volumes such that �eff,1 > �eff,2. The ratio of the stresses to apply on each of the samples for them to have the same 

failure probability P can be expressed by combining the two failure probabilities: 

�(�), �eff,1* = 1 − +�, -−  eff,1 . /010.2�3 and �(�4, �eff,2* = 1 − +�, -−  eff,2 . /050.2�3 (8) 

�4�) = 6�eff,1�eff,27 )�
 (9) 
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With a positive Weibull modulus and �eff,1 > �eff,2 , equation (9) leads to �) 8 �4, i.e. the specimen 

with smaller effective volume has a higher mechanical strength. It is worth noting that $eff  depends 

on the Weibull modulus of the sample considered. Specifically, the size effect increases with 

decreasing Weibull modulus, as demonstrated by equation (9). This means that materials with high 

defect dispersion are more sensitive to the size effect.   

The previous approach is based on the assumption that the critical defects are located in the 

volume of the material considered. However, if failure initiates mainly from surface micro-defects, it 

is more relevant to consider the effective surface 9eff [34,35]. The integration in equation (7) is then 

performed over the sample surface instead of the volume and the previously three-dimensional 

stress function ���, �, �� becomes two-dimensional. Fischer [35] alternatively proposed an effective 

shell model 9:eff , which is derived under the assumption that the critical defects are located in a 

thin shell layer. The thickness of the layer δ is determined by minimizing the scatter in strength 

values obtained experimentally. All models are valid and are usually chosen according to the 

specific defect population in order to improve the reliability of experimental results. 

The identification of a specific defect population responsible for silicon wafer failure is not 

straightforward. While it is generally accepted that the most critical damage regarding wafer 

fracture strength is created during the sawing process, the nature of this damage is however 

complex and multiple. In diamond-wire sawing, material removal occurs via the combined 

scratching and indenting actions of the diamond particles on the silicon surface, thus generating 

long parallel grooves oriented in the direction of the wire, as well as randomly distributed 

indentation pits [36,37]. These features can be considered as surface defects (Fig. 1.a). But the 

abrasion mechanism also damages the wafer deeper under the surface, through the formation of 

microcracks with length varying from a few tenths up to several tens of microns [38–40] depending 

on the sawing parameters (Fig. 1.b). These microcracks are then designated as subsurface 

defects. Finally, the slicing process can also induce some micrometer scale chipping at the wafer 

sides [5], thus creating edge defects (Fig. 1.c).  

 

Fig. 1 Examples of silicon wafer characteristic defects (a) Indentation pits at the wafer surface [36] (b) 
Microcracks at the wafer subsurface [38] (c) Chipping defects at the wafer edges 

It has furthermore never been proven that initial bulk defects play no role in the mechanical 

properties of silicon wafers. On the contrary, some studies have even shown that intrinsic factors 

such as non-uniform residual stress caused by solidification [41] or bulk defects in the form of 

dislocations or inclusions [42,43] can influence the mechanical strength of wafers after the sawing 

process. 

Although many types of defect population co-exist in a silicon wafer, one could theoretically identify 

the critical flaw size using the Griffith criterion, i.e. brittle failure occurs if the stress intensity factor ; of the critical flaw exceeds the fracture toughness ;<. The most general expression for the 

stress intensity factor is given by [44]: 

; = �=√?@ (10) 
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where � is the nominal stress in the specimen, @ is the crack length and = is a dimensionless 

geometric factor. From equation (10), we can defined the critical Griffith crack length, i.e. the crack 

length for which the stress intensity factor is higher than the fracture toughness (; A ;<): 

@� = 1? ∙ �;�=��4
 (11) 

For a very small penny shaped volume crack, = is 2 ?C  [45]. If we consider the fracture strength of a 

silicon wafer to be � = 250 MPa (this value is based on previous findings from the authors [46]) 

and a fracture toughness ;� = 1 MPa.m1/2 , the critical radius of a volume defect is therefore @� = 5 µm, i.e. 10 µm diameter. It is very unlikely that volume defects of such size exist in a silicon 

wafer, and it could therefore be reasonable to neglect the influence of volume defects. 

Nevertheless, one could theoretically derive four different types of models to study the strength 

size effect in silicon wafers: 

• A model based on an effective volume $eff  which would assume that the critical defects are 

equally distributed throughout the entire wafer volume 

• A model based on an effective surface 9eff , which would assume that the critical defects 

are located at the surface of the wafer 

• A model based on an effective shell layer 9:eff  which assumes the critical defects are 

located close under the surface in a thin layer of thickness e 

• A model based on an effective length Deff  which assumes that the critical defects are 

located on the edges of the wafer 

However, deriving these models for silicon wafers submitted to a four-line bending setup will lead 

to the same strength scaling law. In other words, regardless of the assumption made on defect 

population, the expressions for strength ratio from one flexure configuration to another will be 

identical. This scaling equivalence has already been highlighted by several studies over the past: 

Quinn showed that the ratio of strength from any two flexure configurations (three or four-point 

bending for example) is identical for volume or surface scaling, provided the beam geometries 

have constant cross-sectional size and shape [20]. More recently, Bhushan demonstrated that this 

independence holds for bi-modular cylindrical ceramic specimens [47]. 

In the following sections, we will show that the scaling equivalency also applies to the geometry of 

our samples, by deriving the expressions for a typical silicon photovoltaic wafer, with 156 x 156 

mm square shape and thickness ranging from 100 to 200 µm, tested in a four-line bending setup. 

The geometry and parameters used for the equations are shown in Fig. 2.  

 

Fig. 2 Geometry and coordinate system used to derive the size effect equation 

In Weibull theory, effective volumes are only determined for positive stress values. Tensile 

stresses are indeed more critical for brittle materials such as silicon than compressive stresses, 

which inhibit the phenomenon of defect propagation. In a compressive stress field, the effective 

volume will therefore always be zero.  

In the case of a four-line bending test, the upper part of the wafer above the neutral axis is 

subjected to compressive stresses so the failure probability is zero. The size effect equation is 

therefore integrated only over the area submitted to tensile stresses, i.e. in the lower part of the 

samples below the neutral axis and between the lower supports. 
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Because the thickness of silicon wafers is extremely small compared to the side dimensions 

(E FC ~ 10H), the area of lateral vertical surfaces of the plate (at � = − E 2C  and � = I E 2C ) can  be 

neglected compared to the size of the lower horizontal surface. Therefore, contrary to what is done 

in Fischer’s work [8], the expression for the effective surface �eff is only integrated from 0 to L along 

the � axis and from 0 to b along the � axis. The similar approximation is done for the expression of 

surface shell layer. The expressions and corresponding volumes, surfaces and lengths used to 

integrate the models are summarized in Fig. 3. 

 

Fig. 3 Integration expressions and geometries used to derive the size effect equations of (a) the effective 
volume (b) the effective surface (c) the effective shell layer and (d) the effective length for a wafer tested in a 

four-line bending set up (the length L is the distance between the lower supports) 

The development of the formulae is exemplary shown for the effective shell layer �Jeff in the 

following section. The position and orientation of the coordinate system used for the integration is 

as illustrated in Fig. 2. Considering the double symmetry of the setup with respect to the (xz) and 

(yz) planes, the expression for the effective shell layer can be written as: 

�Jeff = 4 L � � � 6���, �, ����"# 7�M4
�

N/4
N4PQ ������R/4

�  (12) 

The stress function ���, �, �� is given by:  

S ���, �, �� = 6U��EFH      VWX 0 8 � 8 YZ
���, �, �� = 6UYZ�EFH    VWX YZ 8 � 8  Z2 (13) 

And the maximum stress ��"# occurs between the loading rollers and for � =  F 2C : 

��"#  = 3UYZEF4  (14) 

Introducing equations (13) and (14) in the expression for the effective shell layers yields: 

�Jeff       = 2E L \� � �2��FYZ��N4N4PQ ���� I � � �2�F ��N4N4PQ ����R:4
^R

^R
� _ 

= ZE L F�`) − �F − 2+��`)F��� I 1�4 L �� I 1 − 2Y�� (15) 
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The equations for the three other size effect models are derived similarly based on the expressions 

from Fig. 3. The corresponding expressions are given in Table 1.  

Table 1 Size effect equations for the four models considered 

Size effect model Equation 

Effective volume �eff EFZ2 L � I 1 − 2Y��� I 1�4  

Effective surface �eff EZ L � I 1 − 2Y�� I 1  

Effective shell �Jeff ZE L F�`) − �F − 2+��`)F��� I 1�4 L �� I 1 − 2Y�� 

Effective length Zeff 2Z L � I 1 − 2Y�� I 1  

Considering two different four-line bending setups with parameters �Z), Y)� and �Z4, Y4�, the 

strength scaling equation (9) can be applied to the expressions in Table 1 to compare the strengths �) and �4 measured with the two configurations. We consider here that the subsurface damage 

layer is the same for all samples ( +) = +4). In the special case where the cross-sectional size of 

the bending bars is the same, i.e. E) = E4 and F) = F4, the following equation holds true: 

�4�) = 6�eff,1�eff,27 )� =  6�eff,1�eff,27 )� = 6�Jeff,1�Jeff,27 )� = 6Zeff,1Zeff,27 )� = Z)Z4 L � I 1 − 2Y)�� I 1 − 2Y4� (16) 

Equation (16) confirms that all models are equivalent and that the ratio of stresses is therefore 

independent of the assumption made for flaw distribution. The strength size effect depends only on 

the four-line bending setup parameters �Z, Y� and the Weibull modulus �. For simplicity’s sake, in 

the following experimental part of this work, we will therefore only consider the expression for the 

effective length Zeff. 
3 Experimental approach 

3.1 Samples 

The wafers used for this study were obtained from a <100> oriented monocrystalline silicon ingot 

grown by the Czochralski process which was then shaped into a pseudo-square brick with <100> 

oriented sides. The brick was sawn using a wire of 80 μm core diameter with 8–16 μm diamond 

particles with a fixed nominal wafer thickness of 180 µm. Due to the cubic symmetric of the crystal 

lattice, monocrystalline silicon exhibits an anisotropic elastic behavior, which can be described by 

the fourth-order stiffness tensor a owning three independent parameters: b)) = 165.7 GPa b)4 = 63.9 GPa bgg = 79.6 GPa 

The theoretical Young’s modulus of the wafers is therefore 130 GPa, which corresponds to the 

value along the [100] direction. A total of 240 neighboring wafers were collected directly after the 

sawing process. No chemical or mechanical polishing was applied to the samples. All wafers thus 

exhibit the characteristic saw marks caused by the back-and-forth movement of the wire (Fig. 4). 

The as-cut thickness and total thickness variation (TTV) of all wafers were measured using a multi-

sensor capacitive system. This technology uses capacitive sensors to measure the local thickness 

at 45 points evenly distributed on the wafer surface. The as-cut thickness of the entire wafer is then 

calculated as the average of the 45 values, and the TTV as the difference between the largest and 

smallest values. The mean value and standard deviation are given in Table 2. 
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Table 2 Mean thickness and TTV of the tested series of wafers 

Mean thickness ± standard deviation (µm) Mean TTV ± standard deviation (µm) 

179.0 ± 0.9 6.9 ± 2.0 

 

Fig. 4 Scanning image of a diamond-wire sawn as-cut monocrystalline silicon wafer 

3.2 Test setup 

The four-line bending setup used in this investigation is mounted on a universal testing machine 

(INSTRON 5965). The support and loading devices are steel cylindrical rollers with a diameter of 

8 mm. The displacement of the loading rollers is imposed, and both the force F and displacement δ 

are recorded during the test. The distance between the rollers, which is manually adjustable, is the 

parameter that allows to modify the effective volumes (or surfaces and lengths) and therefore to 

create a strength size effect.  

The adjustment of the inner and outer spans is however limited by the geometry of the wafers. 

Indeed, because of the aforementioned high length-to-thickness ratio (≈ 103), the samples are 

extremely flexible and the deflection values reached before failure can be very high (up to 30 mm). 

Now, in a four-line bending setup, the maximum stress value that can be reached during a test is 

limited. Indeed, as the displacement δ of the loading rollers increases, the bending radius ρ 

decreases until it reaches a geometrical limit. If we assume that the plate undergoes pure bending, 

this geometrical limit can be seen as the moment where the bending radius equals half the outer 

span L of the four-line bending test. Fig. 5 schematically illustrates this by showing four different 

bending positions corresponding to different bending radius values. The last position for which h =Z 2C  is the maximum bending position that the plate can reach. If further displacement is applied, 

the sample does not bend further, it simply slides downwards while keeping the same bending 

radius, and the stress remains constant.  

  

Fig. 5 Schematic illustration of the decrease of the bending radius during a four-line bending test 

Reaching the maximum bending position during a test should of course be avoided, as it would 

mean that the maximum wafer fracture stress has not been reached and either the wafer won’t 

break at all, or it will break when it comes into contact with the lower part of the setup. In either 

case, the stress results will be biased. This limitation essentially means that it is not possible to 



10 

 

choose an extremely large span distance for the four line bending test, because the tested 

specimen will very likely “fall” from the setup before it reaches failure. 

With these limitations in mind and with the help of some preliminary tests, we chose three different 

span configurations to evaluate the size effect of the silicon wafers, thereafter referred to by their 

outer and inner span: 60-32 mm, 80-48 mm and 100-70 mm (Fig. 6). The corresponding necessary 

parameters �Z, Y� for the strength scaling equation are given in Table 3. 

Table 3 Setup parameters for the three chosen four-line bending configurations 

 Outer span Z [mm] Inner span l [mm] Y = Z − i2Z  

Configuration 1 60 32 7 30C  

Configuration 2 80 48 1 5C  

Configuration 3 100 70 3 20C  

It should be noted here that the third configuration (100-70 mm) is fairly close to the geometrical 

limits explained in the previous paragraph. Indeed, as can be seen in Fig. 6.c, because of the very 

large bending radius imposed by the dimensions of the setup, the wafer will “fall” from the supports 

before reaching its maximum bending position. The authors thus remind that this configuration 

should never be used for accurate silicon wafer strength evaluation and that it was only chosen in 

this study for the purpose(s) of illustrating the strength size effect. 

(a) 60-32 mm 
configuration 

 

(b) 80-48 mm configuration 

 

(c) 100-70 mm configuration 

 

Fig. 6 The three configurations used for the four-line bending tests 

The 240 wafers were alternately sampled in three series of 80 wafers for each configuration. 

Furthermore, to account for the surface anisotropy of the diamond-wire sawn wafers [36], each set 

was divided into two subsets to be tested either with the saw marks parallel or perpendicular to the 

loading rollers (thereafter referred to as wire direction and cut direction, as illustrated in Fig. 7).  

 

Fig. 7 Testing configuration depending on the orientation of the loading rollers with respect to saw marks 

For a given setup configuration, 40 wafers per direction were tested until fracture. A low crosshead 

speed rate of 10 mm/min is used, which corresponds to a strain rate in the order of 10-5 s-1 and 

thus ensures a quasi-static loading condition. It is worth noting that this speed is in agreement with 

the recommendations of [15]. In order to relieve frictional constraints and according to the 

recommendations of [7], the loading and support rollers are free to rotate about their axis. 
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Moreover, the upper loading rollers can independently articulate to match the wafer top surface, 

and only one of the two support rollers can articulate while the other is fixed. An initial 1 N preload 

is imposed in order to remove slack from the load string while the rollers articulate and to facilitate 

the processing and comparison of the load-deflection curves, which are the main raw results (Fig. 

9).  

 

Fig. 8. Schematic figure of a fully-articulated bending fixture according to [7]. The two loading rollers are free 
to roll and they can independently articulate to match the wafer top surface. The two loading rollers are free 

to roll, and one can articulate to match the wafer bottom surface. 

As expected, Fig. 9 reveals that the mean slope of the load-deflection curves is the highest for the 

60-32 mm configuration and the lowest for the 100-70 mm configuration. A comparison of the 

curves obtained in cut and wire direction (Fig. 9 (a) and (b), respectively) confirms the well-known 

dependency of the mechanical properties of diamond-sawn wafers with respect to the orientation 

of the saw marks: the maximum deflection values and fracture loads reached in wire direction are 

much lower than in cut direction.  

It can also be pointed out that the curves obtained from 100-70 mm configuration in cut direction 

exhibit some irregular oscillations, especially for deflections higher than 10 mm. These oscillations 

are the result of a “stick-slip” phenomenon between the wafers’ lower surface and the lower 

supports, which is very likely due to the aforementioned geometrical limits of this configuration.  

 

Fig. 9 Load-deflection curves obtained for the three testing configurations in (a) wire direction and (b) cut 
direction (40 wafers of average thickness 179 µm per series) 

3.3 Finite element modeling  

The curves from Fig. 9 also illustrate that beyond a certain deflection value, the relationship 

between load and displacement stops being linear and the force measured by the cell decreases. 

The reason for this is that with increasing crosshead displacement, the contact surface between 

wafer and roller, which was initially horizontal, becomes slanted and even near-vertical. The 
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vertical component of the load measured by the load cell thus decreases in favor of the horizontal 

component. This effect is particularly significant for the 80-48 mm and 100-70 mm configurations. 

Because of this non-linearity, the analytical formulas expressing stress as a function of 

displacement cannot be considered as valid to evaluate the stresses in the moment of failure. 

Finite element (FE) models of the experimental setups were therefore developed on ANSYS 

software in order to obtain the stress distribution in the samples at the time of fracture. 

One model was built for each configuration. In all cases, the double-symmetry of the setup was 

used to simplify the calculation and only a quarter of the geometry was modeled in 3D (Fig. 10). 

The silicon wafer is meshed with quadratic cubic elements with four layers along the thickness. 

Because the mesh was refined in the contact areas, whose dimensions slightly differ between the 

configurations, the total number of elements for the wafer is not the same for the three models 

(Table 4).  

The loading rollers are considered as semi-cylindrical rigid surfaces. The support rollers are fixed 

in all degrees of freedom and a displacement is imposed on the loading rollers. Based on the 

maximum failure deflection values j�"# reached experimentally, a different total displacement was 

imposed for each configuration (Table 4). The frictional contact between rollers and wafer surface 

is computed with a friction coefficient of f = 0.12, which showed the best agreement between the 

numerical and experimental load-deflection curves. Because silicon is a brittle material, the failure 

criterion used to determine the fracture stress is the maximum principal stress. 

Table 4 Number of mesh elements and maximum displacement imposed in the numerical model depending 
on configuration 

Configuration Number of elements in wafer mesh Maximum displacement imposed j�"# 

60-32 mm 29 520 7 mm 

80-48 mm 25 200 12 mm 

100-70 mm 29 760 15 mm 

 

Fig. 10 Global mesh used for the FE model of the 60-32 mm configuration and zoom on the lower contact 
area 

Fig. 11 shows the distribution of the normalized maximum principal stress at the bottom surface 

and along the wafer length for the three configurations, for a given wafer thickness (180 µm) and 

displacement values ranging from 
j�"# 4C  to j�"#. For all configurations, the stress is zero outside 

the supports rollers and maximal between the loading rollers. It is worth noting that the stress field 

is not strictly constant along the wafer length but instead slightly increases from the wafer center to 

the area under the upper (central) rollers. Moreover, this inhomogeneity increases with increasing 

wafer deflection. For the 80-48 mm and 60-32 mm configurations, the differences remain 

respectively below 6% and 4% at the maximum displacement values and can be considered 

negligible. For the 100-70 mm configuration however, the difference between the stress at the 

center and the stress below the upper (central) rollers is already around 10% for 
j�"# 2C  and over 
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18% for the maximum displacement. This is a result of the high span ratio chosen for this 

configuration (i ZC = 0.7).  

Indeed, the problem of the stress increasing towards the end of the pure bending section in a four-

line bending setup is not new and has already been highlighted by several studies [48,49]. This 

effect, often designated as wedging stress, arises from load application on the surface of the 

specimen and not over the cross section [50]. For a given outer span Z, increasing the inner span i 
will increase the wedging stress and therefore lead to inhomogeneous stress fields [15,49]. 

However, choosing a high span ratio was necessary in this study in order to obtain significant 

differences in effective volumes between the configurations.  

 

Fig. 11 Normalized maximum principal stress at the bottom surface and along the wafer length obtained by 
FE simulations for a given thickness (180 µm) and different displacement values for the configurations (a) 

60-32 mm (b) 80-48mm (c) 100-70 mm 

In order to reduce calculation time, only five thicknesses within the measured range of the series 

were simulated for each configuration to obtain the relation between maximum stress and 

displacement, and the results for the other thicknesses were interpolated. 

3.4 Weibull parameters estimation 

The stress values obtained by FE calculation for each series are rearranged in ascending order so 

as to be displayed graphically. Since it is impossible to know the true value of the corresponding 

probability �k for each measured �k from the experiments, a prescribed function should be 

employed to calculate the �k-value. Such a prescribed function is called the probability index. 

Different forms of probability indexes have been proposed, which usually start from the following 

general form: 

���k� = l − m� I n (17) 

where � is he total number of samples per series. Several studies have been reported aiming to 

find suitable values for the parameters m and n that minimize the bias of the estimated Weibull 

modulus � [51–53]. This biased estimation is however only an issue if the Weibull modulus is 

estimated via the least square regression method [54]. In this study, we choose to estimate the 

Weibull parameters by the maximum likelihood method, which does not require the use of 

probability indexes. The probability index is therefore only used for graphical representation 

(experimental scatterplot of �k vs �k). We choose to compute the failure probability �k via Bénard’s 

approximation for median ranks: 

���k� = l − 0.3� I 0.4 (18) 

Where N is the total number of samples per series. As introduced in the theoretical part, we chose 

to fit the stress values �k to a two-parameter Weibull distribution, in which the probability of failure �o at an applied stress � is defined as: 
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�o��� = 1 − +�, p− � ��q��r (19) 

Where �q is the characteristic fracture strength, which is dependent on the size of the sample and � is the Weibull modulus, which is a material constant and should therefore remain constant 

whatever the configuration used. The Weibull parameters were estimated with their confidence 

bounds and the corresponding contour plots were calculated using the likelihood ratio method for a 

confidence level of 90%. 

4 Results and discussion 

4.1 Weibull parameters 

The Weibull parameters estimated for the three configurations in both testing directions are given 

in Table 5 and depicted as probability plots in Fig. 12. Moreover, in order to better visualize the 

statistical significance of the obtained values, Fig. 13 shows the 90% confidence contour plots for 

the estimated Weibull parameters. Several observations can be drawn from the values and 

corresponding graphs obtained. Firstly and as expected, for a given configuration and testing 

direction, silicon wafers exhibit characteristic strength values that are in average two times higher 

in cut direction than in wire direction. This difference in strength is accompanied by a difference in 

the scattering of the results, with a calculated Weibull modulus in wire direction on average twice 

the one from wafers tested in cut direction. This observation is valid for all three configurations and 

is a characteristic property of DWS wafers. An interpretation of this double anisotropy in strength 

and modulus, based on the orientation of the stress with respect to the characteristic defects, can 

be found in a previous study [46] and will not be further detailed here.  

Table 5 Weibull parameters of strength with 90% confidence bounds for the three different configurations in 
wire and cut direction 

Configuration Testing direction 
Characteristic fracture strength �q [MPa] 

Weibull modulus � [-] 

60-32 mm 
Wire  123 (121 … 125) 16.5 (13.3 … 20.0) 

Cut 285 (276 … 294) 8.6 (6.9 … 10.6) 

80-48 mm 
Wire 122 (120 … 124) 16.5 (13.2 … 20.2) 

Cut 267 (258 … 275) 8.6 (6.9 … 10.6) 

100-70 mm 
Wire 119 (117 … 121) 16.1 (13.0 … 19.4) 

Cut 242 (231 … 253) 6.2 (4.9 … 7.6) 

An important finding is however that regardless of the inner and outer span of the four-line bending 

setup, the Weibull modulus estimated stays constant for a given testing direction. This indicates 

this parameter is indeed a constant representative of the critical defect distribution in the wafer, 

which only depends on the testing direction and not on the size of the tested sample. Although its 

value remains within the 90% confidence bounds (Fig. 13), one might argue that the estimated 

Weibull modulus is slightly lower for the 100-70 mm configuration in cut direction. This could be 

explained by the inhomogeneous stress field generated at the wafer surface for this configuration, 

which can increase the scattering of the results and therefore decrease the estimated Weibull 

modulus. Indeed, the 100-70 mm configuration is not only the setup which exhibits the most 

inhomogeneous stress field, but also the setup for which the highest deflections are reached. More 

than one quarter of the wafers fail at displacement values higher than 12 mm, at which the 

difference in stress at the wafer center exceeds 18%.  
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Fig. 12 Weibull probability failure plots for the three setup configurations in wire and cut direction 

The strength values then confirm that DWS wafers do exhibit a significant size effect. Indeed, when 

testing the wafers perpendicular to the saw mark (cut direction) the estimated characteristic 

strength σθ is respectively 10% and 18% higher for the 80-48 mm and 60-32 mm configurations 

than for the 100-70 mm configuration. In the wire direction however, the observed size effect is 

much weaker or even nonexistent when considering the 90% confidence bounds. The reason for 

this is a direct consequence of the anisotropy in Weibull modulus depending on the testing 

direction. Indeed, as recalled by the strength scaling equation developed in the previous part, size 

effect depends on the effective length of the chosen setup and on Weibull modulus value m: 

�q4�q) = 6Zeff,1Zeff,27 )�
 (20) 

The strength size effect is thus much stronger in cut direction because the Weibull modulus is 

lower, i.e. because the characteristic defects in this direction have a stronger dispersion. Reducing 

the size of the tested sample decreases the probability of finding a highly critical defect and thus 

increases the characteristic strength. 
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(a) Wire direction 

 

(b) Cut direction 

 

Fig. 13 Weibull 90% confidence contour plots for the three configurations in (a) wire direction and (b) cut 
direction 

4.2 Validity of the strength scaling law for silicon wafers 

The goal of this section is to check whether the strength scaling law from equation (20) can 

accurately describe the strength size effect observed when testing DWS silicon wafers. As a first 

step, we compute the effective length of each configuration, which as demonstrated in the 

introduction, depends on the four-line bending setup parameters �Z, Y� and the Weibull modulus �: 

Zstt = 2Z L � I 1 − 2Y�� I 1  (21) 

Based on the estimation method of the Weibull modulus, we can define 90% confidence bounds 

for the effective length parameter. The lower bound for Zstt is calculated using the 90% upper 

bound of Weibull modulus in equation (21) and vice versa. The calculated values for Zstt and 

corresponding confidence bounds are given in Table 6. 

Table 6 Effective length and corresponding 90% confidence bounds estimated from Weibull moduli for the 
three configurations and two testing directions 

Testing 
direction 

Configuration Weibull modulus [-] Zstt [mm] 

Cut 

100-70 mm  6.2 (5.0 … 7.6) 20.7 (17.0 … 25.0) 

80-48 mm 8.6 (7.0 … 10.7) 10.6 (8.6 … 13.1) 

60-32 mm 8.6 (7.0 … 10.7) 7.2 (5.9 … 8.9) 

Wire 

100-70 mm  16.1 (13.2 … 19.6) 8.4 (6.9 … 10.2) 

80-48 mm 16.5 (13.3 … 20.4) 5.7 (4.6 … 7.0) 

60-32 mm 16.5 (13.5 … 20.2) 3.8 (3.1 … 4.7) 

The validity of the strength scaling equation can then be evaluated by two methods: first by 

comparing its accuracy in describing the “mean Weibull modulus” of the series of wafers, and 

second by its ability to predict the evolution of the strength from one setup configuration to another. 

1) Mean Weibull modulus of the strength scaling equation 

In this first analysis, we plot the effective length Zstt as a function of the characteristic strength σθ 

on a double-logarithmic scale for both testing directions, as illustrated in Fig. 14. Indeed, we can 

rearrange equation (20) to get: 

iY 6Zeff,1Zeff,27 = −� L iY ��q)�q4� (22) 
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This expression shows that the logarithm of the effective length iY�Zeff� should decrease linearly 

with the logarithm of the characteristic strength iY��q�. The slope of the obtained curve is equal to �, which corresponds to the “mean Weibull modulus” [35,55] of the tested silicon wafers, a 

parameter that remains constant regardless of the effective length. This slope was evaluated by 

the least square method for each testing direction. The values obtained, thereafter referred to as �u��v and  �uwkxQ, are indicated on the graph from Fig. 14 along with the coefficient of determination y4, which is an indicator of the goodness of fit of the strength scaling equation to our experimental 

data. Moreover, if the size effect equation (22) is correct, then the values �u��v and  �uwkxQ should 

be close to the arithmetic means of the three estimated individual moduli, i.e. for each direction: 

���v = 6.2 I 8.6 I 8.63 = 7.8 

�wkxQ = 16.1 I 16.5 I 16.53 = 16.3 

(23) 

 

Fig. 14 Correlation between characteristic strength and effective length and evaluation of the mean Weibull 
modulus for each testing direction (least square method) 

It can be seen that in cut direction, the regression curve fits the experimental points very well, but 

the mean value �u��v of 6.5 obtained is lower than the arithmetic mean ���v of 7.8. This deviation 

is not a result of the lower Weibull modulus obtained for the 100-70 mm configuration, because if 

we were to compute the regression curve with only the experimental values from the 80-48 mm 

and 60-32 mm configuration, the calculated mean value �u��v would be of 5.9. In other words, the 

stress values obtained for the three configurations would normally imply a lower Weibull modulus 

than the one obtained by the maximum likelihood method estimation from 40 samples.  

In wire direction, the regression curve does not fit the experimental points as well as in cut 

direction, as indicated by lower value of y4. More specifically, the mean value �uwkxQ of 20.3 

obtained by the least square method is overestimated compared to the arithmetic average of 16.3. 

The effect is therefore the exact opposite of what is observable in cut direction: the measured 

experimental strength values in wire direction show almost no dependence on the size effect, 

which should normally imply a higher Weibull modulus value than the one obtained by the 

maximum likelihood method estimation from 40 samples.  

These results indicate that the Weibull modulus estimated by the maximum likelihood method 

based on the results from one testing configuration could be biased. On the one hand, in the case 

where the value is relatively low, such as in cut direction, the number of samples is probably too 

small to obtain a reliable value and the Weibull modulus can change depending on the testing 

configuration. In wire direction, where the Weibull modulus is on the other hand quite high, the 

value might be underestimated. A more precise way to determine this parameter as an actual 

material constant independent of the tested size, would be to perform tests with different setup 
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configurations, and to determine the mean Weibull modulus �u , as was done in this section. The 

value obtained with this procedure would have a more physical meaning. It should however be 

noted that for strength evaluation of PV silicon wafers, the parameter of highest importance is 

usually rather the reference strength �q. 

2) Predicting strength as a function of effective length 

An alternative way to check whether the strength scaling law accurately describes the size effect 

observed for the three configurations is to compare the size effect prediction based on each 

configuration. Indeed, from the estimated Weibull parameters �q and � from Table 5 and the 

calculated effective length from Table 6, it is possible to derive, for each configuration, the 

expression predicting the characteristic reference strength �� of a sample as a function of its 

effective length Z�. For example, the expression predicting the characteristic reference strength in 

cut direction based on the results from configuration 100-70 mm is as follows: 

��,��v =  �q,��v,)��P{��� L �ZQoo,��v,)��P{���Z� � )�|}~,1..��.��
 (24) 

Following this reasoning, we can derive the strength scaling expressions for each testing direction 

of the three configurations, and compare them by showing the evolution of the reference strength �� as a function of reference length Z�. This is illustrated in Fig. 15 for values of Z� between 1 and 

500 mm. The uncertainty bars in the graphs are obtained by computing the reference strength 

value �� with either the upper or lower bound for ZQoo (as given in Table 6). 

Fig. 15.a highlights that in wire direction, the three scaling equations overlap for the considered 

values, thus meaning that the strength scaling law derived in the introduction predicts the stress 

distribution correctly for the three configurations. This result could of course be expected since the 

stress distribution values barely change from one configuration to another. 

In cut direction however, the strength scaling laws obtained from the results for configuration 60-

32 mm and 80-48 mm almost perfectly overlap for a range of values between 1 and 500 mm. The 

evolution of strength estimated by the results from configuration 100-700 mm is however shifted 

towards lower values. This implies two things:    

(i) If we were to predict the stress distribution values for the 100-70 mm configuration based 

on the results from the two other configurations, the estimated values would be 

overestimated in comparison with the experimental ones. 

(ii) If we were to predict the stress distribution values for the 80-48 mm configuration (or the 

60-32 mm configuration) based on the results from the 100-70 mm configuration, the 

estimated values would be underestimated in comparison with the experimental ones. 

These two observations are naturally correlated and reflect the fact that the stress distribution 

obtained with the 100-70 mm in cut direction does not fit the strength scaling equation, while the 

two other configurations do. The main hypothesis to explain why this is only observable in cut 

direction and not in wire direction is that, as mentioned in previously, the inhomogeneity of the 

stress field increases with wafer deflection. When testing the wafers in wire direction, the failure 

deflection values remain below 5 mm for all configurations and the influence of an inhomogeneous 

stress field can be avoided. This finding thus sets first limits to the applicability of the strength 

scaling equations for silicon wafers: the testing conditions need to ensure a homogeneous stress 

field along with relatively small deflection at failure.  
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(a) 

 

(b) 

 

Fig. 15. Strength scaling laws predicting the evolution of reference strength �0 as a function of reference 

length Z0 in (a) wire direction and (b) cut direction based on results obtained with the three configurations 

5 Conclusions and prospects 

The main goal of this study was to shed some light on the existence of a Weibull strength size 

effect when testing diamond wire sawn silicon wafers. We first derived an analytical strength 

scaling law based on the specific geometry of thin silicon wafers tested in a four-line bending 

setup, and showed that the expression was identical regardless of the assumption made on the 

type of defect population and depended only on the dimensions of the setup and the Weibull 

modulus of the stress population. The validity of this scaling law was then investigated 

experimentally, by comparing the Weibull stress distribution results of monocrystalline silicon 

wafers obtained for three configurations of bending setups.  

The main finding of this experimental study is that DWS wafers exhibit an anisotropic behavior with 

respect to Weibull strength size effect: when bent in cut direction, the fracture strength values 

increase with decreasing effective length. When bent in wire direction however, the stress 

distribution remains the same regardless of the setup configuration. This result is an experimental 

validation that the strength size effect depends on the scattering of the defect population, i.e. on 

the Weibull modulus. The theoretical scaling law developed was found to accurately describe the 

strength size effect for two of the setup configurations but was inadequate for the configuration with 

span configuration 70-100 mm, mainly because of the highly inhomogeneous stress field 

generated in the wafer at high deflection values.  

These findings open up prospects for further standardization of wafer strength evaluation for the 

PV industry, more specifically for diamond-wire sawn wafers, which now account for all of the 
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monocrystalline-based solar cells. Indeed, we highlighted that it is inaccurate to directly compare 

strength parameters obtained from different setup dimensions when testing wafers perpendicular 

to the diamond saw marks. One could recommend using the Weibull strength scaling law 

developed in this study to compute reference strengths that would then be comparable. We 

showed however that in cases where very high wafer deflections values are reached before failure, 

the inhomogeneous generated stress field may lead to bias assessment of the strength scaling 

law.  

The best recommendation to obtain directly comparable wafer strength values would therefore be 

to limit the results to bending tests performed parallel to the wire saw marks. Indeed, results show 

that failure stress values obtained when bending wafers in the wire direction should not vary with 

the setup dimensions. This recommendation is also of practical value, since this loading direction is 

precisely the most critical one for DWS wafers. This points to the possibility of developing a 

standard for strength testing of DWS photovoltaic wafers, which would recommend testing the 

samples only in the direction of the saw marks.  
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