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Abstract  

Immunotherapy is poised to become an increasingly utilized therapy in the treatment of cancer. However, 

several abnormalities in the tumor microenvironment (TME) that can thwart the efficacy of 

immunotherapies have been established. Microenvironmental hypoxia is a determining factor in shaping 

aggressiveness, metastatic potential and treatment resistance of solid tumors. The characterization of this 

phenomenon could prove beneficial for determining a patient’s treatment path and for the introduction of 

novel targetable factors that can enhance therapeutic outcome. Indeed, the ablation of hypoxia has the 

potential to sensitize tumors to immunotherapy by metabolically remodeling their microenvironment. In 

this review, we discuss the intrinsic contributions of hypoxia to cellular plasticity, heterogeneity, 

stemness and genetic instability in the context of immune escape. In addition, we will shed light on how 

managing hypoxia can ameliorate response to immunotherapy and how integrating hypoxia gene 

signatures could play a role in this pursuit. 
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1. Introduction 

In the last two decades, immunotherapy has emerged as an evolutionary approach for reviving the 

immune response against tumors in cancer patients. The clinical application of immune checkpoint 

blockers (ICB) against T cell receptors CTLA-4 (cytotoxic T-lymphocyte antigen 4), PD-1 (programmed 

death receptor 1) or the ligand PD-L1 (programmed death-ligand 1), has reshaped the treatment path of 

multiple tumor types [1-4]. Unfortunately, only a subset of patients successfully responds in the majority 

of tested cancers [5]. A substantial amount of data supports the crucial role played by the tumor 

microenvironment (TME) in determining the efficacy of ICB [6-10]. A prevalent characteristic of the 

microenvironment of solid tumors is the presence of low oxygen levels, defining a hypoxic state [11]. 

This phenomenon is a main factor for tumor progression and both chemo- and radiotherapy resistance in 

cancer [12, 13]. In addition, tumor hypoxia has been shown to contribute to resistance to immunotherapy 

in preclinical models, and hence, could offer novel clinical biomarkers for guiding treatment strategies 

[11, 14-16]. 

Three basic immune profiles can be distinguished in the TME of cancer patients, namely immune 

inflamed (“hot”), immune excluded and immune desert (“cold”) tumors [17]. While hot tumors include 

swarms of immune cells in the tumor parenchyma, in particular, CD4 and CD8 expressing T cells, 

immune-excluded tumors exhibit immune T cells in the stroma only, at the tumor margins, but not in the 

core. Meanwhile, cold immune desert tumors have a non-inflamed TME characterized by a few T cells. 

Clinical responses to ICB are more likely to occur in hot tumors. However, this response is not always 

observed, indicating that the presence of immune-cell infiltration is not the sole factor for defining clinical 

benefit from anti-cancer therapy [17]. 

Hypoxia is an inherent feature of the TME that arises from a skew in the balance between oxygen supply 

and consumption [18]. It is a key player governing various cancer hallmarks, including metabolic 

reprogramming, extracellular matrix (ECM) remodeling, epithelial to mesenchymal transition (EMT), 

angiogenesis, invasion, metastasis, cancer stem cell maintenance, immune evasion and genetic instability 

[19, 20]. At the molecular level, the hypoxia-induced malignant chain of events is primarily executed by 

activating the master regulator of oxygen homeostasis, HIF-1. HIF-1 is a member of the HIF (hypoxia-

inducible factor) family of transcription factors, which also encompasses HIF-2, and HIF-3. The active 

HIF-1 functions as an α-β heterodimer composed of an oxygen-labile α-subunit (HIF-1α) and a stable β-

subunit (HIF-1β) [21, 22]. Under normal oxygen levels, the α-subunit is hydroxylated by HIF-specific 

prolyl-hydroxylases (PHDs), driving its Von Hippel Lindau tumor suppressor protein (pVHL)-mediated 

proteasomal degradation [22]. Under hypoxic conditions, HIF-1α is stabilized and interacts with HIF-1β. 

The resulting HIF-1 binds the hypoxia responsive element (HRE) of target genes, thus mediating the 



switch from oxygen-dependent to anaerobic metabolism [22]. With respect to its effect on tumor 

immunity, hypoxia has been reported to induce immune suppression and evasion through multiple 

mechanisms, including acidification of the TME, attraction of immunosuppressive cells and suppression 

of T-cell effector function [23, 24]. In addition, hypoxia promotes T-cell exclusion from the TME by 

stimulating the formation of leaky, malformed blood vessels [23-25].  Targeting hypoxia in conjunction 

with ICB has shown encouraging results in in vivo models of lung and breast cancer, melanoma, colon 

adenocarcinoma, as well as prostate cancer [14-16]. Moreover, hypoxia gene sets are enriched in 

melanoma tumors of non-responding patients to anti-PD-1 immunotherapy [26] 

The characterization of tumor hypoxia is beneficial for determining a patient’s treatment path and for the 

introduction of novel targetable factors that can enhance therapeutic outcome. The complex 

transcriptional response to hypoxia has been investigated in a myriad of studies. A fraction of these 

studies also reported a direct link between hypoxia gene signatures and patient prognosis, as well as 

response to hypoxia modifying therapy, in multiple tumor types [27-34]. Such studies have highlighted 

the clinical utility of hypoxia gene signatures by showing that the expression levels of genes within a 

signature could be combined to produce a hypoxic score, based on which the hypoxic state of a tumor is 

defined. By applying this direct and simplified approach, the patient’s tumor itself could guide cancer 

treatment decision-making. 

Herein, we discuss the intrinsic features of a hypoxic TME as it pertains to cellular plasticity, 

heterogeneity, stemness and genetic instability. In addition, we will be shedding light on how managing 

hypoxia can ameliorate response to ICB and the advantage of integrating hypoxia gene signatures in this 

endeavor. 

2. Hypoxia in the Tumor Microenvironment 

 

a. Hypoxia, tumor plasticity and heterogeneity 

Tumor heterogeneity exists in most tumors with inherent effects on both their temporal evolution, and 

response to treatments [35-38]. It should be noted that both heterogeneity in the tumor, as well as, in the 

TME can greatly influence treatment responses. For instance, the immune content in the TME may dictate 

response/resistance to immunotherapies [39, 40]. On the other hand, cancer cells can undergo molecular 

and phenotypic changes referred to as cellular plasticity, which contribute to tumor heterogeneity, thus 

impacting both tumor progression and response/resistance to anticancer treatments, including 

immunotherapies [41-44]. 



A well-known example of such changes is reflected by the EMT program, which is a transdifferentiation 

program that governs changes of cellular states along the epithelial - mesenchymal spectrum [45-47]. The 

latter program is accompanied by epigenetic and transcriptional rewiring while conferring cells the 

capacity to switch between epithelial and mesenchymal states during tumor evolution, at least to a certain 

extent [41, 45, 48]. This EMT results in the acquisition of resistance to therapy [49-51]. 

A critical factor to consider is hypoxic stress, which is generated by insufficient concentration of oxygen, 

leading to phenotypic, metabolic, and epigenetics reprogramming of a cell, or a group of cells, thus 

acquiring a novel cellular state affecting their functions, as well as, interactions with neighboring cells 

[23, 52]. Hypoxia is to be considered a potent inducer of cellular plasticity in that it can promote the 

ability of a cell to shift from its original cellular state to a novel one. Evidence exists of a link between 

hypoxic stress and EMT in human carcinomas [53, 54]. Figure 1 represents a snapshot of the 

transformative impact of hypoxia in the TME on tumor plasticity, heterogeneity and immune resistance, 

in which the drop in oxygen levels (hypoxia) gives rise to a cascade of phenotypic changes resulting in 

increased tumor plasticity and heterogeneity. A subset of transformed cancer cells takes on mesenchymal 

features, reflected by a high EMT score resulting in their increased resistance to immune cell attacks and 

an increase in the recruitment of immune suppressive cells. 

As it is now demonstrated by numerous experimental paradigms, both tumor plasticity and heterogeneity 

are major determinants in the emergence of therapy resistance [37, 55-57]. In this regard, numerous 

mechanisms associated with EMT of carcinoma cells are proposed to explain tumor immune escape [57-

59]. First, EMT can render cancer clones poorly immunogenic. In human and mouse cancer systems, the 

acquisition of a more mesenchymal phenotype by cancer cells has been associated with deficiencies in 

MHC class I antigen presentation [60-62]. In human lung cancer tissues, reduced amounts of 

immunoproteasome components were reported [63]. Second, in various models, a more mesenchymal 

phenotype has been linked to reduced recognition by immune cells following loss of adhesion molecules 

such as intercellular adhesion molecule 1 (ICAM-1) [64, 65]; or associated with defects in the 

establishment of immunological synapses. This could be explained in part by altered actin network [66], 

or tyrosine phosphorylation signaling in the vicinity of the cell-cell contacts [54]. 

On the other hand, one should consider the possibility that in certain cellular contexts EMT induction 

could increase cancer cell susceptibility to natural killer (NK) cells, especially when EMT is associated 

with up-regulation of natural killer group 2D (NKG2D) ligands or cell adhesion molecule 1 (CADM1), as 

well as modulation of MHC class I and E-cadherin amounts [67, 68]. Additionally, mechanistic studies 

showed that the resistance of tumor cells with overexpression of brachyury (a transcription factor 



associated with tumor EMT) is due to inefficient caspase-dependent apoptosis [69]. EMT-associated 

autophagy was also described as a tumor resistance mechanism [50] in conjunction with various 

molecular perturbations identified in resistance to T-cell-mediated killing of tumor cells [69-72]. 

Moreover, tumor resistance mechanisms directly involving HIF-1α have been reported. Zhang and 

colleagues [73] found that HIF-1α stimulates CD47 expression. CD47 is a significant player in cellular 

plasticity, that additionally aids in the avoidance of phagocytosis in breast cancer cells [74]. This is 

achieved by hampering the “eat me signal” on cancer cells through the interaction of CD47 with the 

signal regulatory protein (SIRP) on macrophages, thereby impairing phagocytosis. Noman and colleagues 

[75] have demonstrated that EMT-dependent up-regulation of CD47 inhibited phagocytosis of EMT-

activated mesenchymal cancer cells. Taken together, these data provide insight into how cancer cell 

plasticity and HIF-1α may drive multi-resistant phenotypes including resistance to radiotherapy, 

chemotherapy and immune resistance. 

Furthermore, in hepatocellular carcinoma, hypoxia-induced EMT triggered an immunosuppressive TME 

in association with impairment of T-cell proliferation and promotion of regulatory T-cell (Treg) 

expansion, through the  induction of indoleamine 2, 3-dioxygenase (IDO) expression in monocyte-derived 

macrophages [76]. Indeed, many studies highlighted the central role of IDO as an inhibitor of the 

antitumor immune responses [77, 78]. Nevertheless, despite initial promising results in early-phase 

clinical trials in a range of tumor types, a phase III study of the IDO1-selective inhibitor combined with 

pembrolizumab showed no difference between the IDO inhibitor-treated group versus placebo in 

metastatic melanoma patients [79]. In another study, secreted protein, acidic and rich in cysteine 

(SPARC) expression, a well-known mediator and marker of EMT, contributed to the establishment of an 

immunosuppressive microenvironment, composed of infiltrating Tregs, mast cells, and myeloid derived 

suppressor cells (MDSCs) [80]. 

Finally, it was shown that a high EMT signature score correlated with increased tumor infiltration of 

immunosuppressive CD4+ Foxp3+ Tregs, and an upregulated PD1/PDL1 axis components [81]. More 

importantly, a survey inspecting tumors of different origins revealed positive correlations between an 

EMT signature score, and the amount of inhibitory immune checkpoints PD-1, PD-L1, PD-L2, OX40L 

and CTLA4 [82]. 

Taken together, these data provide insight into how plasticity of cancer cells may drive immune resistance 

phenotype. More studies are now needed to decipher how EMT mediators control immunomodulatory 

genes and immune environment during tumor progression, as well as response to immunotherapies. 



 

 

b. Hypoxia interferes with cancer cell stemness 

Both hypoxia and HIF signaling pathway are essential in the regulation and sustenance of cancer stem 

cells (CSCs), and EMT phenotype [83, 84]. Thus, hypoxia in the TME promotes the neoplastic process 

by, at least, generating a CSC-like phenotype. CSCs, referred to as “tumor initiating cells” or “tumor 

propagating cells”, are cancer cells with properties of normal stem cells. They share characteristics with 

mesenchymal cells and may be responsible for tumor initiation, invasive growth, and metastasis 

development [85]. As they possess self-renewing properties that drive long-term tumor survival, CSCs 

have been hypothesized to be the root cause of malignant cancers, and to contribute to cancer 

aggressiveness. Hypoxia results in an increase in transcription factors that support the stem–like state of 

cells, namely, OCT4, SOX2, c-myc, and Nanog [84, 86, 87].  Nanog is a prominent and pluripotent factor 

in the activation of autophagy under hypoxia, participating in the increase of tumorigenic potential in the 

setting of hypoxia-induced tumor cell resistance. While Nanog is involved in the maintenance of self-

renewal and pluripotency of embryonic stem cells, it also plays a role in immunosuppression by directly 

regulating TGF-β1 that modulates the expansion of Tregs and that increases macrophage recruitment, 

enabling tumor evasion of the immune system [88]. Nanog also contributes to the induction of autophagy 

in hypoxic tumor cells, and to their resistance to killer cells in the TME [89]. 

Additionally, unique surface markers are overexpressed on CSCs that are significantly correlated with 

tumor growth and proliferation. Currently, several promising therapeutic strategies targeting CSCs exist, 

including blocking both oncogenic signal transduction pathways and telomerase activity in the CSCs; 

inducing the CSCs differentiation and microenvironmental modification; as well as using specific gene 

therapy [90, 91]. Furthermore, several studies revealed that the sensitivity of cancer cells to chemotherapy 

can be enhanced by inhibiting key CSC markers such as Nanog, ATP-binding cassette transporters (ABC 

transporters), Wnt, CD44, CD133, CD55, ALDH1, OCT4, SOX2 or KLF4 [92-94]. Hence, the CSCs 

markers are crucial for identifying and developing novel targeted therapies. These therapies could 

potentially reduce tumor recurrence, metastasis, and drug resistance. However, the development of such 

therapies may be entangled by off-target effects, which result in normal tissue damage and treatment-

induced toxicity [95]. CSCs have heterogeneous phenotypes as a result of their adaptation and cross-talks 

with the hypoxic TME following therapeutic pressures [90]. They express surface stemness-related 

markers potentially exploitable in cancer treatment, including immunotherapy [96]. However, CSCs 



express immunosuppressive molecules (i.e. CTLA4, B7-H2, B7-H3, PD-1/-1L) [97, 98], low levels of 

MHC-1 [99] and can produce higher level of macrophage migration inhibitory factor (MIF) [100]. Thus, 

they are characterized by low immunogenicity and immunosuppressive activity [101]. 

Another cellular pathway contributing to the CSCs immune resistance is the JAK/STAT pathway that is 

deregulated in these cells. In fact, STAT3 signaling is an important regulator of CSCs in tumor formation 

[102], invasion and progression [103]. While, STAT3 activation is tightly controlled, activated STAT3 

(p-STAT3) has been identified in many kinds of human tumor samples and cancer cell lines, underlining 

its pivotal role in tumor development and malignancy [103-106]. As such, inhibiting STAT3 triggers an 

intrinsic immune-surveillance response that curbs the growth of cancer cells and augments antitumor 

immunity [107, 108]. Consequently, several ongoing trials are targeting the STAT3 signaling pathway 

including Napabucasin (BBI608), which affects cancer cell stemness by inhibiting oncogenic cellular 

pathways, which is currently in phase III clinical trial and is under investigation in metastatic colorectal 

cancer, metastatic pancreatic cancer, and other solid tumors [109, 110]. In mouse 

models, napabucasin was effective both as a monotherapy and in combination with other agents; in 

particular, synergy was observed with paclitaxel in vivo [111]. 

We should note, however, that targeting STAT3, presents challenging roadblocks in preclinical models 

and early-phase clinical trials for solid malignancies mainly due to the lack of full inhibition of STAT3, 

off-target effects, the lack of specificity and/or potency, and the lack of comprehensive understanding of 

the intricate signaling crosstalk [112, 113]. As such, to improve its pharmacokinetics properties, synthesis 

of napabucasin derivatives that display stringer inhibitory activities are being designed [114]. 

In addition to the STAT3 targeting drug listed above, drugs that target cell surface markers (including 

CD44, CD47), cell signaling pathways (including  Wnt, Notch, Hedghog, PI3K/Akt) and that modulate 

the immune system (CXCR4 antagonists in combination with PD-L1 drugs) have entered clinical trials 

[110]. Of these, Enoticumab, an antibody to DLL4, a Notch ligand expressed specifically in endothelial 

cells and that plays a vital role in regulating angiogenesis, is having promising clinical activity in phase I 

clinical trials for the treatment of advanced solid malignancies [115]. Another small molecule inhibitor 

that targets the hedgehog signaling pathway, vismodegib, has gained FDA approval for the treatment of 

advanced basal cell carcinoma while its use for other types of cancers is at various stages and has shown 

promising activity in triple negative breast cancer CSCs [116]. Effective targeting of CSCs may require a 

combination type of therapy, and personalized medicine approach will ultimately determine the most 

appropriate anti-CSC agent used.  Indeed, anticancer therapy resistance is only partially reversed 

following targeted therapy toward these above-mentioned CSCs mechanisms. The partial efficacy to these 

CSC-targeted strategies points towards the existence of additional underlying determinants for CSCs 



resilience [117]. Finally, to be most effective, anticancer drugs must efficiently penetrate the tissue to 

reach all the cancer cells at adequate concentrations to exert their effect. The distance between solid 

tumors hypoxic regions and blood vessels results in a limited distribution of the drugs, which limits their 

effectiveness.  

c. Hypoxia-induced DNA damage response 

Most solid tumors experience hypoxia that are of acute, chronic and/or fluctuating type, characterized by 

low pH and nutritional imbalance. To manage such extreme stress and maintain cellular homeostasis, 

hypoxic cells conserve ATP by decreasing the proliferation rate and DNA repair capabilities. Hypoxic 

cells exhibit reduced DNA capacity through transcriptional and translational downregulation of DNA 

replication and repair proteins. Although common DNA damage and repair assays like comet assay, 

pulsed-field gel electrophoresis, absence of phosphorylated H2AX and 53BP1 foci demonstrate the lack 

of DNA damage under hypoxic conditions, the DNA damage response is activated remarkably. This is 

evidenced by the phosphorylation Ataxia Telangiectasia Mutated (ATM) and ATM-Rad3-related (ATR) 

and pan nuclear distribution of γH2AX inside the nucleus [118]. Depending upon the duration and 

severity of hypoxia, DNA repair pathways can be affected at different rates. Acute hypoxia leads to 

activation of DNA damage response through post-translation modifications. More chronic hypoxia leads 

to downregulation of mismatch repair capacity, double strand break repair (homologous recombination 

and Non-homologous end-joining) and nucleotide excision repair [118]. Further, longer duration of 

hypoxia poses serious threat to DNA repair mechanisms through epigenetic modifications in critical DNA 

repair genes like MLH1 and BRCA1. In addition, severe hypoxia can lead to replication stress, 

characterized by stalled replication forks and accumulation of long single-stranded DNA threads. 

Replication stress further triggers the ATM and ATR signaling to activate the DNA damage response 

[119]. 

Strategies for targeting DNA repair mechanisms in hypoxic cells are multifold. It is possible to target the 

post translational modifications in acute hypoxic phase through kinase inhibitors. Radiotherapy and/or 

PARP inhibitors can intensify DNA damage in chronic hypoxic cells that are already compromised for 

DNA repair capabilities [120]. Further, integrating DNA damaging agents with immune checkpoint 

blockade provides a rationale for targeting hypoxic cells with underlying DNA repair deficiency [121]. 

d. Hypoxia induced genetic instability and immunogenicity 

Hypoxia-induced genetic instability can be attributed mainly to aberrant DNA damage signaling and 

compromised DNA repair capacity. Hypoxic tumor cells are affected at the DNA level by excessive 



hypoxia and reoxygenation -induced reactive oxygen species (ROS) and decreased mitochondrial ATP 

production, inducing DNA damage checkpoints alteration during the cell cycle [122]. In addition, 

hypoxia-mediated genetic instability is evidenced by increased rate in point mutations, deletions, 

insertions, translocations and duplications as well as modifications in fragile sites [123]. An increase in 

microsatellite instability has been shown in cells with hypoxia-induced downregulation of the MMR 

pathway [124]. The double strand break (DSB) repair pathways by hypoxia can have severe consequences 

on genome integrity. For example, the induction of double minutes and expression of fragile sites has 

been seen in hypoxic cells leading to gene amplifications [125]. Hypoxia can exert selection pressure on 

tumor cells with a mutator phenotype through reduced apoptotic capacity [126]. Even at low hypoxic 

levels (24h at 0.2% O2), tumor cells with alterations in DNA sequence can bypass the G1/S and G2/M 

DNA checkpoint kinases, ATM and ATR [127], thus contributing to genomic instability. 

Hypoxia-induced genetic instability may have some important consequences on tumor immunogenicity as 

well as response to immunotherapy. Both oxidative DNA damage and DSB regulate the expression of 

PD-L1 in cancer cells [128, 129]. Moreover, intrinsic DNA damage response can induce interferon 

response, activating the immune system [130, 131]. Nevertheless, the contribution of hypoxia or 

reoxygenation-induced DNA damage on the immune response is yet to be understood. Another important 

(but not fully described) aspect of the DNA damage response is to enable antigen-presenting functions 

[132]. In murine and other tumor models, contradictory reports about the up- and downregulation of 

hypoxia-induced MHC class I molecules on tumor cell surface were outlined [133, 134]. A diverse 

repertoire of tumor-specific neoantigens arises as a consequence of tumor-specific mutations (via non-

synonymous somatic mutations that modify amino acid coding sequences) [135]. These neoantigens 

represent a major factor in the recognition and rejection of cancer cells by the immune system. As such, 

neoantigens emerge as a solid parameter in the clinical activity of cancer immunotherapy. Tumors 

expressing neoantigens seemingly exemplify suitable targets for T cell-based cancer immunotherapy 

[136]. In fact, tumors expressing neoantigens have increased immunogenicity as there is increased 

homing of neoantigen-specific T-cell pool at the tumor site and neoantigen-specific T cells are not subject 

to central and peripheral tolerance [137]. Positive correlation of tumor mutational burden/neoantigen load 

and immunotherapy response has been well-established [138]. In addition, it was shown that hypoxia was 

associated with increased genomic instability exhibiting inter- and intratumor heterogeneity [139]. 

Finally, tumors with mutations in DNA repair genes and/or inactivated DNA repair pathways can boost 

neoantigen load [140, 141]. 



As hypoxia can influence DNA repair pathways and contribute to genomic instability in the tumor 

microenvironment, it will be important to understand the effect of hypoxia alone on the mutational 

spectrum and neoantigen load, and the latter’s influence on immunotherapy. 

3. Clinical impact of hypoxia on immunotherapy 

The abnormal TME, which is characterized by hypoxic, mal-vascularized, acidic and nutrient-deprived 

conditions has proven to be a prominent barrier to ICB, as it attracts immunosuppressor cells and 

excludes cytotoxic T cells or inactivate their effector function [24, 142]. Indeed, strategies for 

normalizing the TME have been shown to enhance the efficacy of ICB in mice with primary and 

metastatic breast cancer [9, 143, 144] and have been thoroughly reviewed [11, 25]. Hypoxia itself plays a 

pivotal role in sculpting the tumor reactive stroma by regulating tumor resistance, heterogeneity and 

plasticity, and immune suppression. As such, the characterization of tumor hypoxia is beneficial for 

determining novel targetable factors that can enhance patients’ therapeutic outcome. 

The relevance of hypoxia in resistance to immunotherapy has further been corroborated by a study of 

gene signatures that correlated resistance to PD-1 antibody therapy in melanoma patients with the 

enrichment of hypoxia gene sets in non-responding patients [26]. Similarly, a study by Buart S. and 

colleagues [145] revealed that the expression levels of hypoxia-regulated BNIP3 (Bcl-2 adenovirus E1B 

19 kDa-interacting protein 3)/GBE1(glycogen branching enzyme1) differential pair to be significantly 

associated with response status of a small cohort of melanoma patients to anti-PD1 (pembrolizumab) 

immunotherapy. BNIP3 and GBE1 are two genes identified from a 35-gene hypoxic signature validated in 

primary melanoma cell lines and patient-derived tumor tissue [145]. 

Recently, targeting hypoxia-mediated factors has been reported to sensitize tumors to immunotherapy in 

vivo [14-16, 146]. The expression of Carbonic Anhydrase IX (CAIX or CA9) hypoxia-induced enzyme, 

which is a cell-surface pH regulatory enzyme, has been correlated with a reduced Th1 response in a broad 

spectrum of tumors and with a worse overall survival in some cancer patients [146]. In particular, 

targeting CAIX with a specific small molecule in cancer patients, reduced both the tumor cells’ glycolytic 

metabolism and TME acidification, resulting in increased immune cell killing and enhanced locally and 

systemically ICB activity [146]. Indeed, under hypoxic conditions, tumor cells increase the level of HIF-

1α and HIF-2α, thus upregulating the expression of CAIX and activating glycolysis [147]. These various 

data suggest that pharmacologically inhibiting CAIX, in combination with ICB, is a potential therapeutic 

strategy for enhancing immune activity, via a better Th1 response. Hence, in patients with hypoxic solid 

tumors, blocking CAIX, in addition to ICB, may decrease tumor growth, and reduce metastasis, therefore 

improving the overall survival of cancer patients. 



Apart from pH neutralization, hypoxia reduction by directly altering tumor oxygenation has been 

investigated in conjunction with ICB [14, 15]. Hatfield SM and colleagues [14] reported that respiratory 

hyperoxia improved pulmonary tumor regression induced by dual blockade of CTLA-4 and PD-1. 

Hyperoxia in tumor-bearing mice subjected to 60% oxygen led to enhanced intratumoral infiltration and 

reduced inhibition of cytotoxic T lymphocytes (CTLs). On the other hand, the inhibition of both oxygen 

consumption and subsequent tumor-induced hypoxia, using metformin, has been associated with a better 

efficacy of anti-PD1 immunotherapy [15]. These findings suggest that the normalization of tumor-

induced hypoxia with metformin generates a more permissive TME to anti-PD1 immunotherapy, thus 

allowing an improved antitumor immune response, promoting tumor regression [15].  

Hypoxia-activated prodrugs (HAPs) have been developed to specifically target hypoxic tumor cells. The 

integration of HAPs to sensitize “cold” tumors to ICB has proven to be a promising approach in mouse 

models of metastatic prostate cancer [16]. Despite the encouraging results of several HAPs-based 

preclinical and clinical phase I and II trials, their implementation in the clinic has, thus far, been 

unsuccessful [148]. This could be due to the challenge in delivering these compounds to their target cells, 

which lie in hypoxic zones that are distant from functional blood vessels [149]. In addition, another 

central limitation is patient stratification [149]. Indeed, a better way to tackle the HAPs-based therapies 

could be a Phase III study design that is biomarker-stratified; such that only patients who are biomarker-

positive, that is hypoxia-positive, are randomized between ICB treatment and an ICB-HAPs combination 

treatment [148].   

Therefore, there is currently a critical need for integrating the assessment of tumor hypoxia biomarkers in 

the clinic to improve patients’ response to ICB treatment [150, 151]. Nonetheless, and despite all the 

evidence linking tumor hypoxia with immunotherapy resistance, there are a few ICB-based trials 

assessing the effect of hypoxia on the efficacy of immunotherapy in cancer [152]. The apparent reluctance 

to build hypoxia-biomarker based anticancer trials is probably due to the difficulties in measuring tumor-

induced hypoxia [152]. In this case, hypoxia gene signatures could potentially serve as a straightforward 

hypoxia-biomarker based therapeutic approach for patients undergoing immunotherapy. 

4. Assessment of tumor hypoxia: the road to hypoxia gene signatures 

One of the earliest methods to assess hypoxia was the direct measure of oxygen partial pressure (pO2) in a 

patient’s tumor tissue in comparison with normal tissue, using fine needle electrodes [153, 154]. While 

this validated technique is considered the gold standard, it is challenged by several disadvantages. The 

latter include: the highly invasive nature of this technique, its inability to distinguish between hypoxic and 

necrotic cells, which do not contribute to tumor growth, and its limited application (this technique being 

restricted to accessible tumors) [155]. A non-invasive promising imaging approach to monitor tissue 



oxygen levels has recently been developed, namely blood oxygenation level-dependent magnetic 

resonance imaging detection (BOLD-MRI) [156]. BOLD-MRI assesses tissue oxygenation by utilizing 

hemoglobin as an endogenous contrast agent and measuring deoxygenated hemoglobin content by 

sampling the tissue oxygen content. However, the signal is sensitive to other factors than hypoxia, thus 

limiting its specificity. To circumvent this issue, an indirect method involving the use of hypoxia 

exogenous markers, such as pimonidazole, was developed [155, 157]. An alternative hypoxia-imaging 

approach, which does not need an additional biopsy as in the pimonidazole-based method, is the use of 

hypoxia-specific positron emission tomography (PET) radiotracers [155]. Currently, the most extensively 

used PET tracer is 18F-FMISO [158]. Another feasible method has been the immunohistochemical 

detection of hypoxia-induced endogenous protein markers, such as HIF-1, CAIX and VEGFA, which can 

be characterized on tumor biopsies [155, 159]. Nowadays, hypoxia gene signatures have emerged as 

novel means to capture the effect of hypoxia in cancer and translate it to prognostic and predictive 

biomarkers. These signatures offer a direct and simplified approach for determining a tumor’s hypoxic 

state; in what follows, the most pertinent signatures will be discussed, as will their relevance to 

immunotherapy. 

a. Prognostic hypoxia gene signatures 

Over thirty-two hypoxia gene signatures, ranging from metagenes to compact gene lists, have been 

published to date [159, 160]. A fraction of these signatures additionally harbored clinically relevant 

prognostic potential (Table 1). Indeed, the eighteen presented signatures revealed a common consensus, 

where patients classified as having more hypoxic tumors experienced worse prognosis than those with 

less hypoxic tumors. Moreover, fourteen signatures were found to be independent prognostic factors 

(based on multivariate analysis), and at least five signatures demonstrated prognostic significance in 

multiple tumor types. Such signatures seemed to capture a transcriptional response to hypoxia that was 

reflective of prognosis in multiple cancers. 

The methods utilized for deriving hypoxia gene signatures varied and could be summarized as distinct 

combinations of in vitro-, in vivo- and computational- based approaches [159, 160]. The hypoxic score of 

a tumor could be determined either from a continuous score, which is binarized into high- and low-

hypoxia using a predetermined cut-off for the cohort median/mean score; or the hypoxic score could be 

used to directly binarize tumors into high- and low-hypoxia, as in the case of formula-based signatures. 

The resulting gene signature classification of the hypoxic state of a tumor is thus similar in its indirect 

nature to measurements done using immunohistochemical analysis of endogenous and exogenous markers 

of hypoxia; on the other hand, oxygen electrodes allow the direct measure of oxygen concentration. 

Overgaard’s group, who derived a 15-gene hypoxia signature with prognostic power in head and neck 



cancer, was the only one to pair the derivation of the gene signature with direct pO2 measurements in 

patients using needle electrodes, thus directly associating the genes in the signature with the hypoxic 

phenotype in vivo [30]. This signature, which, was also found to be prognostic in soft tissue sarcoma 

(Table 1), poorly correlated with oxygen electrode measurements in 16 patients. As per the authors, this 

could be due to the small number of patients for which tumor oxygen tension status was available as well 

as the effect of necrosis and tumor size on pO2 measurements [161]. The technically demanding and 

highly invasive nature of needle electrode pO2 measurement makes it impractical to benchmark hypoxia 

gene signatures against this gold standard criterion in a large-scale validation study [159]. In a fraction of 

studies, other classical methods for the assessment of hypoxic status, such as imaging and 

immunohistochemical staining of endogenous or exogenous markers of hypoxia, were integrated in the 

production of gene signatures [162-165]. These studies highlighted the utility of hypoxia gene signatures 

in substituting traditional hypoxia biomarkers as a more practical approach for widespread clinical use 

[159]. 

b. Predictive hypoxia gene signatures 

Among the published hypoxia gene signatures, four were found to be predictive of response to hypoxia 

modifying therapy [30, 32-34]. These signatures were retrospectively tested in phase III randomized trials 

of radiotherapy alone or in combination with: carbogen and nicotinamide (CON) as in the ARCON 

(accelerated radiotherapy with carbogen and nicotinamide) and BCON (bladder carbogen nicotinamide) 

trails, or with nimorazole, as in the DAHANCA 5 (The Danish Head and Neck Cancer) trial. Carbogen 

and nicotinamide are employed to increase oxygen supply and enhance response to radiotherapy. 

Meanwhile, nimorazole is a hypoxia-targeted agent that acts as a radiosensitizer. The predictive power of 

the signatures tested in these trials followed the same direction, wherein only tumors classified as hypoxic 

based on the adapted signature benefited from the inclusion of hypoxia modifying therapy with 

radiotherapy regimens. 

In particular, the 26 top ranked genes from the Buffa signature [31] were able to predict benefit from 

CON in 157 patients with T2-T4 laryngeal cancer enrolled on the ARCON trial [32]. Hypoxia scores 

(HS) for each tumor were derived and patients were stratified into low HS and high HS groups based on 

the cohort median scores for the expression of all 26 genes. Laryngeal high HS patients showed greater 

benefit from ARCON, where the five-year regional control was found to increase from 81% with 

radiotherapy alone to 100% with CON (log rank test P=0.009). This trend was also achieved when a 24-

gene bladder specific hypoxia signature was used to stratify 185 patients with locally advanced bladder 

carcinoma, enrolled on the BCON trial, into low HS and high HS groups [33]. Patients with high HS 

receiving CON with radiotherapy had an improved local progression free survival compared to those 



undergoing radiotherapy alone (univariate Cox PH analysis P=0.015, HR 0.47, 95% CI 0.26–0.86) [33]. 

Interestingly, the 28-gene signature derived from prostate cancer cell lines was also predictive of hypoxia 

modifying therapy in the BCON trial, in which patients with tumors stratified as having high hypoxia had 

improved survival with the addition of CON (Cox PH analysis P=0.021, HR 0.54, 95% CI 0.32–0.91) 

[34]. On the other hand, the integration of CON in patients with low 28-gene signature scores was 

associated with worse survival (Cox PH analysis P=0.037, HR 2.49, 95% CI 1.06–5.89), and 25% of 

these patients suffered from CON’s negative side effects [34]. This outcome further underlines the utility 

of signatures in guiding treatment strategies to avoid such unnecessary adverse effects.  

The fourth predictive signature came from Overgaard’s group, whose 15-gene hypoxia signature 

accurately predicted benefit from integrating nimorazole in the more hypoxic tumor fraction of 323 

patients with HNSCC in the DAHANCA 5 trial. Indeed, higher cumulative incidence of locoregional 

failure at 5 years was observed in patients with more hypoxic tumors compared to those with less hypoxic 

ones (79% vs. 54%, P=0.001) [30]. This group has also validated the signature for prospective use in 

clinical trials [203]. Indeed, while all these signatures sound promising at the translational level, they have 

been derived and tested in a retrospective manner and their validation in prospective studies is pending. 

Nonetheless, the path seems promising, with two prospective trials already in progress for the 26-gene 

[32, 159] and 15-gene [30, 203] head and neck cancer signatures, respectively. 

c. Merging signatures: Hypoxia gene signatures in the context of anti-tumor immunity 

Cellular processes implicated in tumor progression and molecular classification, as well as 

clinicopathological factors, can be combined with hypoxia gene signatures to increase their prognostic 

and potentially predictive power in the clinic [139, 151, 204-208]. The same concept can be applied in the 

integration of factors representative of a tumor’s immune microenvironment, thus adding another layer of 

scrutiny for tumor classification and patient stratification. 

In this respect, it has been shown that in soft tissue sarcoma (STS), tumors with high HS have 

significantly lower immune infiltration scores than the low HS counterparts, suggesting that, hypoxia is 

associated with a weakened immune response [180]. Moreover, the most recently published studies have 

capitalized on the two interdependent characteristics of solid tumors, hypoxia and immune cells 

infiltration, to put forth signatures predictive of patient prognosis [151, 209]. 

Based on these studies it would be of great value to further derive and test the significance of combined 

hypoxia and immune signatures in predicting response to immunotherapy in a prospective fashion. In 

addition, it would be insightful to determine the pan-cancer vs cancer specific nature of such combined 

signatures and how they could be influenced by innate tumor heterogeneity. 



5. Hypoxia targeting and hypoxia-alleviating drugs in immune intervention 

Formulating effective immunotherapy to overcome a tumor’s immune escape from immunosurveillance is 

a major challenge. Understanding hypoxia and its components that generate an immunosuppressive 

environment is crucial in developing more efficient immunotherapies. 

Hypoxia associated abnormal vasculature facilitates immune evasion and reduces the efficacy of 

immunotherapy by decreasing delivery of oxygen, CTLs and drugs. Different, hypoxia-targeted and 

hypoxia alleviating therapies have been identified [210, 211]. These drugs can be used in combination 

with immune checkpoint blockers (CTLA-4, PD-1 and PD-L1) that have been approved by the FDA 

(Food and Drug Administration) for the treatment of diverse cancer types [3, 4, 212].  

Drugs designed in an attempt to target HIF-1α transcription factor are many, encompassing those 

inhibiting its DNA binding, protein synthesis, protein degradation and mRNA expression [213, 214]. 

Combinations of these drugs with immunotherapy may overcome hypoxic resistance, especially given 

that many classical chemotherapeutic agents, such as epirubicin, cisplatin, doxorubicin, and 

cyclophosphamide, are known immunogenic cell death inducers [215, 216]. Indeed, there are several such 

clinical trials being undertaken at the moment, and these are presented in Table 2. This table also 

highlights the mode of action of the hypoxia targeting drugs and the mechanisms being targeted.  

On the other hand, normalizing vessel function may enhance tumor perfusion, thus supporting more 

homogeneous delivery of drugs, oxygen, and immune cells [217]. Several clinical and preclinical 

hypoxia-alleviating strategies have been shown to be beneficial through the combination of anti-VEGF/ 

VEGFR2 agents with various immunotherapies [211]. For example, there are about 83 

immunotherapeutic combinational clinical trials on Bevacizumab, a recombinant, humanized mAb to 

VEGF, including, for instance, a phase III trial in treating colorectal cancer (NCT02997228) and a phase 

II Non-small Cell Lung Cancer with Brain Metastases (NCT02971501). Three other phase III trials with 

PD1/PD-L1 antibodies and anti-VEGF or anti-VEGFR agents, have led to FDA approvals for the 

combination in lung and kidney cancers (NCT02684006, NCT02853331, and NCT02366143) [211]. 

Several other combination strategies that improve the function of tumor vessels have been reported and 

they are thoroughly reviewed elsewhere [11, 25, 142, 211, 218]. The hypoxia alleviating drugs that are 

currently being tested in combination with immunotherapeutic interventions in clinical trials are also 

listed in Table 2. 

Overall, it should not be disregarded that vast challenges lie ahead, due to the complexity and 

heterogeneity of tumor hypoxia. Indeed, not all patients fully respond to hypoxia-targeted therapy, and 

several trials have been terminated due to the lack of efficiency and low response rate [219]. Combination 



of hypoxia targeting drugs with immunotherapy using delivery nanoparticles could possibly overcome 

such drawbacks of targeting tumor hypoxia [220]. In addition, other challenges linked to resistance 

mechanisms and presence of suitable biomarkers for patient selection and monitoring in the clinic remain 

to be resolved [11].  

6. Concluding remarks 

Hypoxia in the tumor microenvironment plays a central role in the evolution of immune escape 

mechanisms by tumor cells through its impact on tumor heterogeneity and stroma reactivity. Strong 

evidence has been provided indicating that tissue hypoxia contributes to therapeutic resistance, 

heterogeneity and progression. It also interferes with immune plasticity, promotes the differentiation and 

expansion of immune-suppressive stromal cells, and modifies the metabolic landscape to support immune 

privilege. Manipulating host-tumor interactions in the context of the hypoxic TME may therefore be 

critical in reverting malignant conversion and in, presumably, guiding cancer treatment. 

Gene signatures have emerged as a novel approach for defining the hypoxic state of a tumor and among 

existing hypoxia detection methods, they are in the lead for advancing to clinical application [159]. Such 

signatures could prove essential for patient stratification and guiding immunotherapy treatment 

approaches, in which hypoxia is a known culprit. Given that intratumoral hypoxia is a driving force of 

tumor progression, playing a critical role in remodeling the tumor stroma and favoring the emergence of 

immune tolerance, efforts to incorporate components of the hypoxic microenvironment are attracting 

particular attention at present in guiding the successful design of future cancer immunotherapeutic 

approaches. 
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Figure 1 Schematic model for hypoxic remodeling of the tumor microenvironment in cancer. Under 
normal oxygen supply (normoxia), the intact tumor vasculature allows for the recruitment of immune 
cells which results in an increased susceptibility of cancer cells to CTL (cytotoxic T cell)- and NK 
(natural killer) -mediated attacks. The drop in oxygen levels (hypoxia) gives rise to a cascade of 
phenotypic changes resulting in increased tumor plasticity and heterogeneity. A subset of transformed 
cancer cells takes on mesenchymal features, reflected by a high epithelial to mesenchymal transition 
(EMT) score. The result is an increase in their resistance to immune cell attacks and an increase in the 
recruitment of immune suppressive cells. 

 



Table 1 Prognostic hypoxia gene signatures.  

Signature Cancer cohorta Prognostic 
end pointb Statistical testc P-value Point estimated 

253-gene epithelial 
hypoxia signature 
[27] 

85 breast cancer [166] RFS 
OS Log-rank test 0.004  

< 0.001 - 

72 ovarian cancer RFS 
OS Log-rank test 0.008 

0.003 - 

295 breast cancer NKI dataset [167] RFS 
OS 

Cox PH Multivariate 
analysis 

0.003 
0.004 

HR 2.38 (95% CI 1.35-4.19) 
HR 2.16 (95% CI 1.28-3.64) 

286 breast cancer [31, 168] RFS Cox PH Multivariate 
analysis 0.024 HR 2.20 (95% CI 1.11-4.34) 

130 lung cancer GSE4573 [31, 169] OS Cox PH Multivariate 
analysis 0.010 HR 3.15 (95% CI 1.32-7.54) 

15-gene early 
hypoxia signature 
[170] 

251 breast cancer GSE3494 DSS Log-rank tests 0.005* - 

88 neuroblastoma GSE17714 [171] OS Cox PH Multivariate 
analysis 0.012 HR 6.35 (95% CI 1.50-27.03) 

99-gene hypoxia 
upregulated 
signature 
[28] 

295 breast cancer NKI dataset [167] MFS 
OS 

Cox PH Multivariate 
analysis 

0.003 
0.002 

HR 1.38 (95% CI 1.11-1.70) 
HR 1.43 (95% CI 1.14-1.81) 

60 head and neck squamous cell 
carcinoma GSE686 [172] RFS Cox PH Multivariate 

analysis 0.012 HR 1.96 (95% CI 1.16-3.33) 

86 Lung cancer [31, 173] OS Cox PH Multivariate 
analysis 0.021 HR 6.90 (95% CI 1.34-35.60) 

13-gene VEGF 
profile 
[29] 

146 breast cancer GSE3521 RFS Log-rank test < 0.001 - 

295 breast cancer NKI dataset [167] RFS Cox PH Multivariate 
analysis 0.001 HR 1.60 (95% CI 1.19-2.14) 

111 lung cancer [174] Survival Log-rank test < 0.001 - 

50 glioma [175]  Survival Log-rank test 0.009 - 

51-gene common 
hypoxia metagene 
[31] 

295 breast cancer NKI dataset [167] MFS Cox PH Multivariate 
analysis 0.002 HR 4.15 (95% CI 1.73-9.96) 

86 lung cancer [173] OS Cox PH Multivariate 
analysis 0.014 HR 12.84 (95% CI 1.71-96.50) 



130 lung cancer GSE4573 [169] OS Cox PH Multivariate 
analysis 0.023 HR 2.75 (95% CI 1.15-6.56) 

 7-gene chronic 
hypoxia signature 
[176] 

135 hepatocellular carcinoma 
GSE1898 [177] and GSE4024 [178] 

OS 
Early 

recurrence 

Cox PH Multivariate 
analysis 

0.020 
0.008 

HR 2.57 (95% CI 1.14-5.76) 
HR 2.90 (95% CI 1.32-6.36) 

32-gene 
neuroblastoma 
hypoxia signature 
[171] 

88 neuroblastoma GSE17714 OS Cox PH Multivariate 
analysis 0.007 HR 2.73 (95% CI 1.31-5.69) 

 

15-gene hypoxia 
classifier 
[30] 

326 head and neck squamous cell 
carcinoma DAHANCA 5 trial 
dataset [179] 

LRF Cox PH Multivariate 
analysis NA HR 1.41 (95% CI 1.03-1.94) 

110 soft tissue sarcoma [161] DSS 
Bootstrapping 

method with 1000 
iterations 

0.044 HR 3.18 (95% CI 1.00-9.80) 

183 soft tissue sarcoma GSE21050 
FSG dataset [180] DMFS Cox PH Multivariate 

analysis 0.017 HR 1.80 

408 soft tissue sarcoma TCGA 
dataset [180, 181] DMFS Cox PH Multivariate 

analysis 0.030 HR 1.72 

31-gene DCE-
MRI hypoxia 
signature 
[162] 

155 cervical cancer GSE36562 PFS 
LRC 

Cox PH Multivariate 
analysis 

0.006 
0.026 

RR 2.50 (95% CI 1.29-4.84) 
RR 3.71 (95% CI 1.17-11.8) 

32-gene 
Pimonidazole 
signature 
[163] 

267 prostate cancer GSE16560 
[182] survival Cox PH Multivariate 

analysis < 0.001 RR 3.17 (95% CI 1.45-6.93) 

6-gene DCE-MRI 
classifier 
[164] 

281 uterine cervical cancer 
GSE72723 

PFS 
LRC 
DSS 

Cox PH Multivariate 
analysis 

0.002 
0.012 
0.006 

HR 2.12 (95% CI 1.33-3.40) 
HR 2.62 (95% CI 1.23-5.58) 
HR 2.12 (95% CI 1.24-3.61) 

10-gene hypoxia 
responsive 
signature 

88 melanoma TCGA dataset [184]  DFS Logistic regression 
analysis <0.001 - 



[183] 
21-gene hypoxic 
volume signature 
[165] 

300 oropharyngeal squamous cell 
carcinoma GSE65858 [185] PFS Cox PH Univariate 

analysis 0.047 HR 1.50 (95% CI 1.00-2.20) 

24-gene bladder 
cancer hypoxia 
signature 
[33] 

75 bladder cancer BCON 
radiotherapy arm dataset [186] LPFS Cox PH Multivariate 

analysis 0.017 HR 2.25 (95% CI 1.16-4.39) 

14 bladder cancer GSE13507 OS Log-rank test 0.002 - 
308 urothelial cancer GSE32894 
[187] OS Log-rank test < 0.001 - 

80 bladder cancer GSE1827 [188] OS Log-rank test 0.015 - 
144 bladder cancer GSE19915 
[189] OS Log-rank test 0.074 - 

24-gene soft tissue 
sarcoma-specific 
hypoxia signature 
[180] 

183 soft tissue sarcoma GSE21050 
FSG dataset DMFS Cox PH Multivariate 

analysis 0.005 HR 2.16 (95% CI 1.25-3.70) 

127 soft tissue sarcoma GSE21050 
FSG dataset DMFS Cox PH Multivariate 

analysis 0.001 HR 3.06 (95% CI 1.51-6.19) 

408 soft tissue sarcoma TCGA 
dataset [181] DMFS Cox PH Multivariate 

analysis 0.009 HR 2.05 (95% CI 1.19-3.53) 

 
28-gene localized 
prostate cancer 
hypoxia signature 
[34] 

491 prostate cancer TCGA dataset 
[190] 

BCR free 
survival Log rank test < 0.001 - 

131 prostate cancer GSE21032 
[191] 

BCR free 
survival 

Log rank test 
Cox PH Multivariate 

analysis 

0.002 
0.021 

HR 4.59 (95% CI 1.71-12.32) 
HR 3.51 (95% CI 1.21-10.15) 

100 prostate cancer GSE54460 
[192] 

BCR free 
survival 

Log rank test 
Cox PH Multivariate 

analysis 

0.009 
0.048 

HR 2.12 (95% CI 1.20-3.74) 
HR 1.84 (95% CI 1.00-3.39) 

111 prostate cancer Cambridge 
dataset [193, 194] 

BCR free 
survival Log rank test 0.060 HR 2.54 (95% CI 0.96-6.69) 

232 prostate cancer GSE62116 
DecipherGRID™ prostate cancer 
database (NCT02609269) 

BCR free 
survival Log rank test 0.007 HR 2.04 

48 prostate cancer GSE41408 
DecipherGRID™ prostate cancer 
database (NCT02609269) 

BCR free 
survival Log rank test 0.002 OR 7.60 



 182 prostate cancer GSE62667 
DecipherGRID™ prostate cancer 
database (NCT02609269) 

BCR free 
survival Log rank test < 0.001 OR 5.90 

212 prostate cancer CPC-GENE 
dataset [195] 

BCR free 
survival 

Log rank test 
Cox PH Multivariate 

analysis 

0.026 
0.021 

HR 1.80 
HR 1.81 (95% CI 1.02-3.21) 

130 prostate GSE72291 
DecipherGRID™ prostate cancer 
database (NCT02609269) 

BCR free 
survival 

Log rank test 
Cox PH Multivariate 

analysis 

0.007 
0.014 

HR 2.81 (95% CI 1.33-6.00) 
HR 2.17 (95% CI 1.17-4.01) 

248 prostate cancer Belfast dataset 
[196] 

BCR free 
survival Log rank test 0.035 - 

631 pooled prostate cancer DMFS Cox PH Multivariate 
analysis 0.003 HR 2.57 (95% CI 1.38-4.77) 

42-gene basal like 
breast tumors 
hypoxia signature 
[197] 

basal subtype breast Metabric 2012 
dataset [198] OS Log rank test 0.031 - 

basal subtype breast Metabric 2016 
dataset [199] OS Log rank test 0.003 - 

basal subtype breast KMplotter 
2017 update dataset [200]  OS Log rank test 0.022 - 

5-gene glioma 
hypoxia signature 
[201] 

395 IDH1mut lower grade glioma 
TCGA dataset [202] OS Cox PH Multivariate 

analysis < 0.001 HR 5.85 (95% CI 2.89-11.83) 

120 IDHmut lower grade glioma 
Rembrandt database OS Cox PH Multivariate 

analysis < 0.001 HR 5.25 (95% CI 0.64-1.59) 

a Cohorts proving the prognostic capacity of each signature and reported accession numbers for datasets in gene expression omnibus are indicated (NKI: Netherlands Cancer 
Institute; DAHANCA 5: The Danish Head and Neck Cancer; FSG: French sarcoma group; TCGA: The Cancer Genome Atlas; BCON: bladder carbogen nicotinamide; CPC-
GENE: Canadian Prostate Cancer Genome Network; IDH1mut: Isocitrate Dehydrogenase 1 mutant) 
b Prognostic endpoints varied based on follow-up period and data availability (OS: overall survival; RFS: recurrence free survival; DSS: disease specific survival; MFS: metastasis 
free survival; LRF: locoregional failure; DMFS: distant metastasis free survival; PFS: progression free survival; LRC: locoregional control; DFS: disease free survival; LPFS: local 
progression free survival; BCR free survival: biochemical recurrence free survival)  
c Multivariate analysis included other clinical variables such as tumor grade, size and lymph node status, depending on the study (PH: proportional hazard)  
d Reported Hazard Ratio (HR), Relative Risk (RR) or Odds Ratio (OR) are for high hypoxic tumors vs low hypoxic tumors (CI: confidence interval) 
* Mean p-value at 5 and 10 years 
 NA: Not Available 



Table 2: Hypoxia-targeting and hypoxia-alleviating drugs in clinical trials with immunotherapeutic interventions        

Drug Inhibitory 
mechanisms Mode of action FDAa Clinical trial (n)b 

Hypoxia-Targeted 
Daunorubicin DNA binding Inhibits binding of HIF-1 to the HRE sequence Yes 14 
Doxorubicin DNA binding Inhibits binding of HIF-1 to the HRE sequence Yes 71 

Evofosfamide  
(TH-302) 

Drug delivery - 
Hypoxia-Activated 

prodrugs 

Upon activation in oxygen deficient zones, TH-302 is converted 
selectively to the drug's active form, dibromo isophosphoramide mustard, 

a potent alkylator 
No 1 

Bortezomib 
HIF-1 

Transcriptional 
Activity 

Inhibits the 26S proteasome, a large protease complex that degrades 
ubiquitinated proteins. Yes 18 

FK228 
(romidepsin) HIF-1α Expression Inhibits hypoxia-induced angiogenesis and depletes several heat shock 

protein 90 Yes 2 

Everolimus 
HIF-1α 

Translation/HIF1 
Expression 

mTOR inhibitor that binds with high affinity to FKBP-12, thereby 
forming a drug complex that inhibits the activation of mTOR Yes 12 

Temsirolimus 
(Torisels– CCI-

779) 
HIF-1α Translation 

Inhibitor of mTOR; Temsirolimus binds to an intracellular protein 
(FKBP-12), and the protein-drug complex inhibits the activity of mTOR 

that controls cell division 
Yes 12 

Topotecan 
Hypoxic 

Signaling/HIF-1α 
Translation 

Inhibits the action of topoisomerase I Yes 5 

Irinotecan Hypoxic Signaling Inhibits the action of topoisomerase I Yes 25 

Vorinostat Promoting HIFα 
degradation Inhibits the enzymatic activity of histone deacetylases (HDAC) Yes 8 

Hypoxia Alleviating 
Bevacizumab Angiogenesis Inhibiting the binding of VEGF to its cell surface receptors Yes 83 
Cetuximab Angiogenesis Inhibits the binding of EGFR and TGF alpha Yes 40 
Sorafenib Angiogenesis Protein kinase inhibitor Yes 20 

Erlotinib Angiogenesis Inhibits intracellular phosphorylation of tyrosine kinase associated with 
EGFR Yes 18 



Cabozantinib Angiogenesis Tyrosine-kinase inhibitor Yes 14 
Rapamycin/ 

SIROLIMUS 
Angiogenesis/ 

HIF-1α Translation mTOR inhibitor Yes 12 

Sunitinib Angiogenesis Targeting multiple receptor tyrosine kinases (RTKs) Yes 10 
Regorafenib Angiogenesis Tyrosine-kinase inhibitor Yes 9 

Gefitinib Angiogenesis Inhibits EGFR tyrosine kinase by binding to ATP binding site of the 
enzyme Yes 8 

Apatinib Angiogenesis Tyrosine-kinase inhibitor Yes* 8 
Panitumumab Angiogenesis Binds specifically to EGFR and inhibits the binding of ligands for EGFR Yes 6 

Nintedanib Angiogenesis Tyrosine-kinase inhibitor Yes 6 
Axitinib Angiogenesis VEGFR inhibitor Yes 4 
Losartan Angiogenesis Angiotensin system inhibitors No 1 
Brivanib Angiogenesis Tyrosine-kinase inhibitor No 24 

Vanucizumab Angiogenesis Bispecific monoclonal No 3 
a FDA approval status for drugs targeting hypoxia-related factors 
b Number of clinical trials (n) extracted from https://clinicaltrials.gov/ 
* CFDA: Chinese FDA 
 




