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Segmentation of the left ventricle in magnetic resonance imaging (MRI) is important for assessing cardiac function. We present DT-GAN, a generative adversarial network (GAN) segmentation approach for the identification of the left ventricle in pediatric MRI. Segmentation of the left ventricle requires a large amount of annotated data; generating such data can be time-consuming and subject to observer variability. Additionally, it can be difficult to accomplish in a clinical setting. During the training of our GAN, we therefore introduce a semi-supervised semantic segmentation to reduce the number of images required for training, while maintaining a good segmentation accuracy. The GAN generator produces a segmentation label map and its discriminator outputs a confidence map, which gives the probability of a pixel coming from the label or from the generator. Moreover, we propose a new formulation of the GAN loss function based on distance transform and pixel-wise cross-entropy. This new loss function provides a better segmentation of boundary pixels, by favoring the correct classification of those pixels rather than focusing on pixels that are farther away from the boundary between anatomical structures. Our proposed method achieves a mean Hausdorff distance of 2.16 mm ± 0.42 mm (2.28 mm ± 0.21 mm for U-Net) and a Dice score of 0.88 ± 0.08 (0.91 ± 0.12 for U-Net) for the endocardium segmentation, using 50% of the annotated data. For the epicardium segmentation, we achieve a mean Hausdorff distance of 2.23 mm ± 0.35 mm (2.34 mm ± 0.39 mm for U-Net) and a Dice score of 0.93 mm ± 0.04 mm (0.89 ± 0.09 for U-Net). For the myocardium segmentation, we achieve a mean Hausdorff distance of 2.98 mm ± 0.43 mm (3.04 mm ± 0.27 mm for U-Net) and a Dice score of 0.79 mm ± 0.10 mm (0.74 ± 0.04 for U-Net). This new model could be very useful for the automatic analysis of cardiac MRI and for conducting large-scale studies based on MRI readings, with a limited amount of training data.

Introduction

Heart function analysis is crucial in clinical cardiology, especially in the evaluation of the left ventricular systolic function. An abnormal function of the left ventricle suggests the presence of heart disease. MRI imaging has been shown to be promising for the assessment of the left ventricle, and recent years have seen significant improvements in segmentation methods, such as semantic segmentation. Semantic segmentation is the task of assigning a class to every pixel in a given image. Usually, semantic segmentation is solved using supervised learning-based segmentation methods. Automatic segmentation methods for the left ventricle would be particularly useful for the clinical assessment of heart function, morphology, and temporal dynamics. However, such methods require a large amount of data that has been validated and annotated by experts. However, such annotation is fastidious, time-consuming, subject to observer variability, and potentially difficult to perform in a clinical setting. In recent years, atlas-based MRI segmentation ( [START_REF] Bai | Multi-Atlas Segmentation with Augmented Features for Cardiac MR Images[END_REF], [START_REF] Farrar | Atlas-Based Ventricular Shape Analysis for Understanding Congenital Heart Disease[END_REF], [START_REF] Iglesias | Multi-Atlas Segmentation of Biomedical Images: A Survey[END_REF], [START_REF] Medrano-Gracia | The Cardiac Atlas Project: Preliminary Description of Heart Shape in Patients with Myocardial Infarction[END_REF], [START_REF] Yang | Deep Fusion Net for Multiatlas Segmentation: Application to Cardiac MR Images[END_REF], [START_REF] Gilbert | Atlas-Based Computational Analysis of Heart Shape and Function in Congenital Heart Disease[END_REF], [START_REF] Bai | A Bi-Ventricular Cardiac Atlas Built From 1000+ High Resolution MR Images of Healthy Subjects and an Analysis of Shape and Motion[END_REF]) has shown promising results in detecting Email address: colin.decourt@mailfence.com (Colin Decourt) heart diseases. To be used in clinical applications, atlas-based segmentation methods, however, require many steps, and are both computationally-and time-intensive ( [START_REF] Iglesias | Multi-Atlas Segmentation of Biomedical Images: A Survey[END_REF]). These limitations and the success of deep learning ( [START_REF] Avendi | A Combined Deep-Learning and Deformable-Model Approach to Fully Automatic Segmentation of the Left Ventricle in Cardiac MRI[END_REF], [START_REF] Zhang | Radiological Images and Machine Learning: Trends, Perspectives, and Prospects[END_REF], [START_REF] Abdelmaguid | Left Ventricle Segmentation and Volume Estimation on Cardiac MRI using Deep Learning[END_REF], [START_REF] Yang | Deep Convolutional Neural Networks for Automatic Segmentation of Left Ventricle Cavity from Cardiac Magnetic Resonance Images[END_REF], [START_REF] Khened | Fully Convolutional Multi-Scale Residual DenseNets for Cardiac Segmentation and Automated Cardiac Diagnosis using Ensemble of Classifiers[END_REF], [START_REF]Automatic Segmentation of Left Ventricle from Cardiac MRI via Deep Learning and Region Constrained Dynamic Programming[END_REF], [START_REF] Tong | RIANet: Recurrent Interleaved Attention Network for Cardiac MRI Segmentation[END_REF]), particularly of the U-Net architecture ( [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF], [START_REF] Baldeon-Calisto | Adaresu-Net: Multiobjective Adaptive Convolutional Neural Network for Medical Image Segmentation[END_REF]) have contributed to the popularity of deep learning for a fully automatic left ventricle segmentation. The U-Net architecture consists of a contracting path that extracts the most relevant features, followed by an expanding path that uses up-convolutions to increase the feature map to the size of the segmented image. Deep learning models help improve left ventricle segmentation precision because neural networks are able to extract low-, mid-and high-level features. Nonetheless, both the U-Net and the other deep learning models require a large amount of annotated data to learn the proper segmentation.

Over the last five years, GAN ( [START_REF] Goodfellow | Generative Adversarial Nets[END_REF]) has become very popular in computer vision, especially for image synthesis ( [START_REF] Tmenova | CycleGAN for Style Transfer in X-ray Angiography[END_REF]) and image segmentation ( [START_REF] Luc | Semantic Segmentation using Adversarial Networks[END_REF]). Semi-supervised learning methods using adversarial networks have been proposed to improve the amount of data required for image segmentation ( [START_REF] Baur | Semi-supervised Deep Learning for Fully Convolutional Networks[END_REF], [START_REF] Hung | Adversarial Learning for Semi-Supervised Semantic Segmentation[END_REF], [START_REF] Souly | Semi Supervised Semantic Segmentation Using Generative Adversarial Network[END_REF]). This has in turn led to the wide use of GAN-based segmentation in many clinical MRI applications, such as brain imaging and prostate imaging ( [START_REF] Kazeminia | [END_REF], [START_REF] Xue | Segan: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation[END_REF]). However, to the best of our knowledge, no previous work has studied the segmentation of the left ventricle in pediatric MRI using generative adversarial networks and semi-supervised learning.

In this study, we present a semi-supervised segmentation algorithm using GAN, which is capable of segmenting the left ventricle in pediatric MRI with limited annotated data. We propose a new loss term based on the formulation of distance transform and pixel-wise cross-entropy to improve the segmentation results ( [START_REF] Caliva | Distance Map Loss Penalty Term for Semantic Segmentation[END_REF]) during the supervised training phase. This loss is used in a pre-trained segmentation network of GAN. The training procedure is based on a segmentation network which acts as a generator, and a discriminator network, which helps the segmentation network to produce better segmentation by generating a confidence map. According to Hung et al. ([21]), this confidence map is used as a signal to guide the cross-entropy loss in a self-taught manner. To leverage unlabeled data, two semi-supervised loss terms are combined. An adversarial loss is used on unlabeled data to encourage the model to predict their segmentation close to the ground truth distributions. This work is organized as follows: Section 2, "Related work" present previous work on real and medical image segmentation using GANs. Section 3, "Methodology" presents our segmentation approach, including image preprocessing and the new loss function, and introduces our semi-supervised GAN architecture. Section 4, "Results" presents experimental results for the segmentation of the endocardium and the epicardium and section 3, "Discussion", discusses the limits of our model. Then, the "Conclusion" outlines some future work.

Related work

GAN for image segmentation

GAN ( [START_REF] Goodfellow | Generative Adversarial Nets[END_REF]) has been successfully used for supervised segmentation ( [START_REF] Xue | Segan: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation[END_REF]) or for semi-supervised segmentation ( [START_REF] Souly | Semi Supervised Semantic Segmentation Using Generative Adversarial Network[END_REF]). The general formulation of a GAN has two parts:

• A generator G(z; θ G )
where G is a differentiable function and θ G are the parameters of G. To learn a distribution p g a prior input noise is defined as p z (z).

• A discriminator D(x; θ D ) where D where D is trained to maximize the probability of the data coming from p g or from the real data distribution p data .

G is trained simultaneously to D to minimize log(1 -D(G(z)) where z ∈ p z and p z are each a prior input noise distribution. D and G play a two-player minimax game with value function :

(1) min G max D L(D, G) = E x∼p data (x) [log(D(x)] + E z∼p z (z) [log(1 -D(G(z))]
The generator G is trained to minimize L in order to reproduce the true data distribution p data and to fool the discriminator by generating images which are difficult to differentiate from real images. Concurrently, the discriminator D is trained to maximize L and to distinguish if images come from p g or p data . In recent years, several studies have focused on supervised and semi-supervised learning approaches using GAN. Luc et al. ([19]) trained a fully convolutional neural network for image segmentation (the generator) and added another network (the discriminator) to deduce whether the segmentation results originate from the generator (fake) or from the label (real). They demonstrated that such an antagonistic approach reduces overfitting during training. Hung et al. ([21]) also developed a discriminator trained to identify images that are fake and real, using the images' spatial resolution. This semi-supervised training technique was introduced to reduce the amount of learning data required for training. Souly et al. ([22]) also proposed a semi-supervised learning model using GAN. The novelty of their model lay in its generation of additional training data and a discriminator classifying images between their class memberships or as being generated. While these methods outperformed supervised learning methods, the images generated using them were still based on pixel intensities. According to [START_REF] Kazeminia | [END_REF], pixel intensities are not always associated with the actual physical properties of the anatomical structure.

GAN for medical image segmentation

When they were initially introduced, GAN-based methods were quickly adopted for medical image segmentation due to their high performance. However, in practice, early GAN architectures were difficult to train. Most GAN discriminators only returned a single probability, indicating the quality of segmentation and suffered from training instabilities. With fully convolutional GAN, better segmentation is obtained, with a quality level much closer to that of the ground truth segmentation, while the discriminator determines whether the segmentation originates from the generator or from the label ( [START_REF] Izadi | Generative Adversarial Networks To Segment Skin Lesions[END_REF], [START_REF] Son | Retinal Vessel Segmentation in Fundoscopic Images with Generative Adversarial Networks[END_REF], [START_REF] Zhang | Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images[END_REF], [START_REF] Li | Brain Tumor Segmentation Using an Adversarial Network[END_REF], [START_REF] Pham | Simultaneous Super-Resolution and Segmentation Using a Generative Adversarial Network: Application to Neonatal Brain MRI[END_REF]). This process is conducted on a pixel-by-pixel basis, to improve the accuracy of the segmentation. Based on this principle, Xue et al. ( [START_REF] Xue | Segan: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation[END_REF]) proposed SegAN, a novel adversarial critic network with a common multiscale L1-loss function, to force the critic and segmentor to learn both local and global features. Based on this, Upendra et al. ( [START_REF] Upendra | An adversarial network architecture using 2d u-net models for segmentation of left ventricle from cine cardiac mri[END_REF]) investigated 3 types of U-Net-inspired architectures for left ventricle segmentation. They showed that U-Net performed better when trained in a SegAN framework. Still using a discriminator to distinguish whether a segmentation map comes from the generator or from the ground truth, Pham et al. ( [START_REF] Pham | Simultaneous Super-Resolution and Segmentation Using a Generative Adversarial Network: Application to Neonatal Brain MRI[END_REF]) used the GAN generator for progressive reconstruction at different scales and segmentations of brain MRI. Another method was proposed by Rezaei et al. ( [START_REF] Rezaei | Whole Heart and Great Vessel Segmentation with Context-aware of Generative Adversarial Networks[END_REF]) consisting of a cascade of conditional GANs for semantic segmentation to segment the myocardium on patients with congenital heart disease. In [START_REF] Xu | Mutgan: Simultaneous segmentation and quantification of myocardial infarction without contrast agents via joint adversarial learning[END_REF], Xu et al. proposed MutGAN, a multitask GAN, to segment and quantify myocardial infarction. MutGAN consists of a generator and a discriminator module, and is implemented by 3 seamless connected networks, with each network learning different bits of information for use in specific tasks. However, apart from [START_REF] Zhang | Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images[END_REF], these methods are all fully-supervised. In [START_REF] Zhang | Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images[END_REF] the model assessed the quality of the segmentation using a scoring method and provides a segmentation for unannotated images through an iterative adversarial training process. The above methods have yet to be applied for cardiac MRI segmentation, though. Furthermore, discriminators are designed to determine whether or not a segmentation is real, and do not consider the spatial resolution of the image, which is very important for medical image segmentation. Finally in [START_REF] Chartsias | Factorised spatial representation learning: Application in semi-supervised myocardial segmentation[END_REF], the authors proposed a latent space factorization methodology relying on the cycle consistency principle. They demonstrated this method in a semi-supervised setting for myocardium segmentation.

Methodology

In this section, we describe our experimental dataset and the proposed segmentation method, including the preprocessing steps, the network architecture and the design of the loss functions for both supervised and semi-supervised contexts.

Dataset

The proposed method was evaluated on short-axis cardiac MR image sequences provided by the Department of Diagnostic Imaging of the Hospital for Sick Children in Toronto, Canada ( [START_REF]Efficient and Generalizable Statistical Models of Shape and Appearance for Analysis of Cardiac MRI[END_REF]). The MRI dataset is comprised of 33 subjects and each patient's scan consisted of 20 frames, each with 8 to 15 slices, for a total of 10,022 images. Patient ages ranged from 2 to 18 years old. Two patients were normal. The remaining subjects displayed a variety of heart abnormalities, such as cardiomyopathy, aortic regurgitation, enlarged ventricles and ischemia. The images were scanned with a GE Genesis Signa MR scanner, using the FIESTA scan protocol. All slices were 256×256 in size, but the pixel resolution and spacing between slices differed for each patient. This dataset is composed of 3D images, but for this study, we focused on the segmentation of 2D images. Moreover, the dataset contained 5011 images, with contours drawn by clinicians to provide a ground truth (GT) for the segmentation of the endocardium and epicardium. Therefore, all in all, we used 5011 images to train, test and evaluate the network.

Image pre-processing

Each MR image was scanned using the same MR scanner, and using the same protocol. However, the pixel spacing differed from one patient to the next, and all volumes had to be normalized. For each image, we applied the following preprocessing steps: As explained in 3.1 the segmentation of the endocardium and the epicardium were provided by the dataset, in the form of 2D coordinates in the image. We used these coordinates to create a binary mask as the ground truth, as shown in Figure 1.

GAN architecture and algorithm overview

Figure 2 shows the architecture of the GAN used for this study (similar to what is described in [START_REF] Hung | Adversarial Learning for Semi-Supervised Semantic Segmentation[END_REF]). It consists of two networks: a segmentation network and a discriminator network.

For the segmentation network, we used a DeepLab-v2 framework ( [START_REF] Chen | DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[END_REF]) with ResNet-101 ( [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]) with the same modification used by authors of [START_REF] Hung | Adversarial Learning for Semi-Supervised Semantic Segmentation[END_REF]. We used pre-trained weights to ensure quick convergence of the segmentation network. The last classification layer of ResNet-101 was removed and the stride of the last two convolution layers was changed from 2 to 1. A dilated convolution from [START_REF] Yu | Multi-scale context aggregation by dilated convolutions[END_REF] was applied to the conv4 and conv5 layers, with strides of 2 and 4, respectively. Then, the Atrous Spatial Pyramid Pooling method ( [START_REF] Chen | DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[END_REF]) was used in the last layer. Finally, an up-sampling layer was added to match the size of the input image.

The discriminator network was based on a fully convolutional network (FCN). It consisted of 5 convolution layers, with a 4×4 kernel. The layers had 64, 128, 256, 512 and 1 channels, respectively. We used a stride of 2 for each layer. A leaky ReLU activation function was used for all layers, except the last one. An up-sampling layer was added to the last layer in order to rescale the output to the size of the input map.

The segmentation network was designed to receive as input a set of cardiac MRI images of size H×W×3 and outputs a class probability maps of dimension H×W×2. The latter were divided into 2 classes, namely, the endocardium or epicardium and the background. The discriminator network received as input a class probability map obtained either from the segmentation network or from the ground truth (GT). It output a confidence map of size H×W×1 where each pixel p i represented the probability of p i originating from the ground truth or from the segmentation network. During the training, both labeled and unlabeled data are used under the semi-supervised setting with different loss functions. When labeled data is used, training is supervised both by the distance map loss penalty term ( [START_REF] Caliva | Distance Map Loss Penalty Term for Semantic Segmentation[END_REF]) L pm with the GT label, and by the adversarial loss L adv with the discriminator network. For unlabeled data, segmentation network is trained as follows. After a prediction of the segmentation made by S is obtained, a confidence map is computed by passing the prediction through D. This confidence map is used as a supervisory signal to train S with a masked cross-entropy loss (the semi-supervised loss) L semi . Because the confidence indicates the quality of the segmentation, the confidence map help S to know the regions it can trust during the training. 

L D = - h,w ((1 -q) • log(1 -D(S(x)) (h,w) )) + (q • log(D(y) (h,w) )) (2) 
where : q = 0 if the sample come from S q = 1 if the sample come from the ground truth label [START_REF] Iglesias | Multi-Atlas Segmentation of Biomedical Images: A Survey[END_REF] where x is the input image, y the GT label and ŷ the predicted label. In addition, the pixel value of y in coordinate (h, w) is denoted by y (h,w) .

Segmentation network training

The segmentation network is trained by minimizing the multitask loss function below:

L seg = L pm + λ adv L adv + λ semi L semi (4) 
where λ adv and λ semi are two weights for minimizing L seg .

Considering the training with annotated data, the distant map loss penalty term is firstly computed.

Distance map loss penalty term. Semantic GAN segmentation focuses on categories, while in medical imaging, the accuracy of the contour of the anatomical structure is very important. In order to improve the shape preservation at left ventricle boundaries, we introduced a loss function based on the distance transform of the ground truth to penalize overand under-segmentation. The distance transform allowed to interpolate the 2D distance between each pixel to the ground truth segmentation. We use the following loss function:

L pm = 1 N N i=1 (1 + Φ γ ) h,w c∈C -y (h,w) log(ŷ (h,w) ) (5) 
where the second sum is the pixel-wise cross-entropy between the predicted label and the ground truth label; C is the number of classes; N = H × W. is the Hadamard product and Φ is our distance map penalty term. To compute Φ we first compute the distance transform of the inverse of the ground truth and then invert it to favor the pixels closer to the boundaries. The variable γ controls the fit with the LV boundary, and was set experimentally to 20 in the present study. Then, we compute the distance transform ground truth to obtain a distance map inside the left ventricle. In other words, we compute the inward and outward distance from the object's boundaries.

Adversarial loss. The adversarial loss is used to train the segmentation network to fool the discriminator (trained only with labeled data) by maximizing the probability of the predicted results being generated from the ground truth distribution. Given the discriminator network D, L adv is defined as :

L adv = - h,w log(D(S (h,w) (x)) (6) 
Training with unlabeled data. Hung et al. ( [START_REF] Hung | Adversarial Learning for Semi-Supervised Semantic Segmentation[END_REF]) considered adversarial training under a semi-supervised setting. For unlabeled data L pm is not used because labeled data are not available. The adversarial loss is still applicable because it requires only D. Note that in this step of the training, the discriminator network is already trained. Going forward, this trained discriminator is used to generate a confidence map D(S(x)) which describes the regions sufficiently close to those from the ground truth distribution ( [START_REF] Hung | Adversarial Learning for Semi-Supervised Semantic Segmentation[END_REF]). The semi-supervised loss is define as :

L semi = - h,w I(D(S(x)) (h,w) > T semi ) • ŷ(h,w) log(S(x) (h,w) ) (7)
Where T semi is a threshold applied on the confidence map to highlight the trustworthy region and I is defined as :

I(x) =        1 if D(S(x)) (h,w) > T semi 0 otherwise (8) 
T semi value is set to 0.2. Values below this threshold produced trustworthy regions too small to properly improve the segmentation under the semi-supervised setting. The same analysis was done with a threshold higher than 0.2. 

Experimental setup and assessing metrics

Experimental setup

The model was implemented using Python and the deep learning framework, PyTorch. We trained and evaluated our model on the dataset described in 3.1. To avoid overfitting, we applied cross-validation during the training. Because the dataset was composed of 33 patients, we broke it down into three different sets: training (25 patients), testing (4 patients) and validation (4 patients). Then, all images of patients in each set were shuffled to avoid considering two subsequent images in a batch and avoid biasing the training. We used the Adam optimizer for both networks with a weight decay of 10 -4 and a learning rate of 2.5 × 10 -4 for the segmentation network and of 10 -4 for the discriminator network. After several experiments, we set λ adv and λ semi to 0.1 and 0.001, respectively, similarly to what is present in [START_REF] Hung | Adversarial Learning for Semi-Supervised Semantic Segmentation[END_REF], because we observed no noticeable change in the training. We trained our model over 5000 iterations and started semisupervised learning after 700 iterations to prevent the model from suffering from initial wrong predictions; we then stopped it early to avoid overfitting. Due to the random selection of patients, the shuffling of images, a bad resolution and poor segmentation on some images, we averaged the results of 10 ex-periments to evaluate the model accuracy and robustness. Finally, we implemented the U-Net segmentation model for the LV segmentation proposed in [START_REF] Abdelmaguid | Left Ventricle Segmentation and Volume Estimation on Cardiac MRI using Deep Learning[END_REF] to compare the performance of our model against another segmentation network. U-Net model is composed of 23 layers. We also test our model with the adult cardiac MRI dataset ACDC ( [START_REF] Bernard | Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is the problem solved?[END_REF]).

Evaluation metrics

We used the Hausdorff distance and the Dice score to evaluate the performance of our model. The Hausdorff distance (HD) is widely used in evaluating medical image segmentation, and is an indicator of the largest segmentation error. It is a very informative criterion in medical image segmentation [START_REF] Karimi | Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural Networks[END_REF]. The Hausdorff distance is defined as the maximum distance of a set to the nearest point in another set. Considering ŷ as the prediction and y as the ground-truth, HD is defined by :

HD(y, ŷ) = max y min ŷ ( y -ŷ 2 ) (9)
Where . 2 is the euclidean distance.

The Dice score is used to evaluate the amount of overlap between two regions. It is defined as :

Dice = 2 | y ∩ ŷ | | y | + | ŷ | (10)

Results

Tables 1, 2 and 3 show the results we obtained for the prediction of the endocardium, the epicardium and the myocardium for different models. "DT-GAN" represents the results of our model based on [START_REF] Hung | Adversarial Learning for Semi-Supervised Semantic Segmentation[END_REF] with the loss we defined in 3.3. We evaluated the segmentation performance with different amounts of data used for the supervised learning phase and two different datasets. The first dataset, the York dataset is a pediatric dataset. The second dataset, the ACDC dataset ( [START_REF] Bernard | Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is the problem solved?[END_REF]), is an adult dataset we used to validate our method. Finally, we compared the introduction of the distance loss penalty map with the initial model of Hung et al. [START_REF] Hung | Adversarial Learning for Semi-Supervised Semantic Segmentation[END_REF], using a masked cross-entropy loss, and with a U-Net model for LV segmentation for both datasets.

Endocardium segmentation

For the segmentation of the endocardium, figure 3 shows the segmentation for different models. While the U-Net model performs well in terms of the Dice score, the Hausdorff distance score is not as good as in our model. Compared to the U-Net model, ours produces lower Dice score results for the segmentation of the endocardium using different amounts of annotated data. However, our approach outperforms U-Net for the mean Hausdorff distance for the endocardium segmentation. Indeed, we observed that our approach yields better results than the U-Net model, while using only 50% or 25% of the complete training set. We also obtained a better segmentation with our model as compared to the initial model, using a masked cross-entropy loss. Figure 3 shows the predictions (in blue) of different model with different amount of data. We can note in Figures 3b,3h, 3e and 3k that our model outputs a prediction which is closer to the ground truth (in red) than does the original GAN model. The distance map loss penalty term helps our model predict more realistic forms (see Figures 3h to 3k). Furthermore, compared to U-Net predictions in Figures 3f and3l our model predicts shapes at least as good as those predicted by U-Net, irrespective of the amount of data used. Figures 3b,3c, 3d, 3h, 3i and 3j as well as table 1 shows that our approach produces a very good segmentation of the endocardium, even with a small amount of data submitted for training. Finally, regarding ACDC dataset we draw the same conclusions as the York dataset. We obtain similar Hausdorff distances using our method as using U-Net although the Dice scores of DT-GAN are lower than U-Net. The added value of our loss function is noticeable comparing our model (DT-GAN) to a GAN model using only a cross-entropy loss function.

Epicardium segmentation

The segmentation of the epicardium (figure 4 and table 2) shows that mean Dice scores are similar regardless of the model. Differences between each model can be noted in terms of the mean Hausdorff distance. As in the segmentation of the endocardium, our model presents a better mean Hausdorff distance than does the U-Net model, and a GAN using a masked cross-entropy. The similarity in these results is probably due to the fact that the epicardium is the outer wall of the left ventricle, and is larger than the endocardium, and consequently, this part of the left ventricle is easier to segment. As shown in table 2 the U-Net's Hausdorff distance increases drastically as the amount of annotated data decreases, while its Dice score remains stable. Conversely, the GAN models' Hausdorff distance increases only slightly as the amount of data decreases. Specifically, our model's Hausdorff distance showed a marginal decrease relative to other baselines. Figures 4b,4c, 4d, 4h, 4i and 4j show a slight difference between each prediction, irrespective of the amount of annotated data used for training. Generally, prediction results are positive and segmentations generated are visually matched for all models. However, as in the endocardium segmentation, our method produces a segmentation that is very close to the ground truth. On an adult database, our model performs similarly to U-Net regarding Dice scores. We can see on table 2 that when the number of annotated data decrease GAN models perform better comparing to U-Net. Finally, the usage of our loss function enable to our GAN model to produces similar results regardless of the amout of data.

Myocardium segmentation

Table 3 and figure 5 show the Dice scores, the Hausdorff distance and figure for myocardium segmentation. On the York dataset our model reach a Dice score of 0.79±0.10 using 50% of annotated data for training while U-Net and a classic GAN reach respectively 0.74±0.04 and 0.77±0.08. Our model also seems to be less sensitive to the amount of data compared to other models. Indeed on both database, although the Dice scores are better with the U-Net model (except for the York database), we note that with 10% of annotated data for training, our model DT-GAN obtain the best performance (see figures 5d and 5j) whereas U-Net performances collapse. However regarding the Hausdorff distances GANs obtain the best results on the York dataset. On the ACDC dataset U-Net and DT-GAN have similar results but DT-GAN is better with less annotated data.

Discussion

From our experiments, as expected, the results varied depending on the data used for training, which was selected randomly during cross-validation. A total of 5011 images on 10022 images were manually annotated. Among annotated images, a quarter (1/4) had rough manual annotations, where the endocardium was not clearly visible. If these images are included in the training set, the model learns more complex structures, and will allow recognizing more complex anatomical structures in MR images. Conversely, if the training set contains only good quality images with very visible left ventricles, the model will not be able to generalize information. A dataset with a manual image distribution could be created in order to obtain a training set with both good and difficult images to enable an efficient and generalizable training, as illustrated in Fig instance, Figure 4b shows that our model produces a better segmentation of the epicardium as compared to the U-Net model in Figure 4f. However, the segmentation of the epicardium using Figure 4g is better when using a U-Net (figure 4l) model than when ours is used (figure 4h). Objectively Table 2 show that the results are similar using a U-Net model with 100% annotated data and a DT-GAN with 50% annotated data. Second, we notice that our model converges very quickly, as compared to the other models, for both endocardium and epicardium segmentation. However, even though the model converges rapidly in terms of number of iterations, using a GAN model involves a longer training time than using U-Net. This is because the GAN model must train two neural networks in parallel. On an indicative basis, the U-Net model takes a lot of iterations to converge, but its training time is around 15 minutes while our model (in the best case scenario) needs around 40 minutes (1 hour and 20 minutes using the masked cross-entropy).

A semi-supervised framework combined with a GAN model constitutes a very promising approach to produce good LV segmentation, with a limited amount of annotated data. Compara-tively (with the same dataset), our model achieves a Dice score of 0.86 ± 0.15 using only 10% of annotated data and 0.89 ± 0.18 using the whole dataset while Nasr-Esfahani et al. ( [START_REF] Nasr-Esfahani | Left Ventricle Segmentation in Cardiac MR Images Using Fully Convolutional Network[END_REF]) reach a Dice score of 0.8724 using the whole dataset, a fully connected network and a post processing step. One limitation of our method is that it less efficient for myocardium segmentation, unlike other methods using GANs or other types of neural network models ( [START_REF] Khened | Fully Convolutional Multi-Scale Residual DenseNets for Cardiac Segmentation and Automated Cardiac Diagnosis using Ensemble of Classifiers[END_REF], [START_REF] Xu | Mutgan: Simultaneous segmentation and quantification of myocardial infarction without contrast agents via joint adversarial learning[END_REF] and [START_REF] Chartsias | Factorised spatial representation learning: Application in semi-supervised myocardial segmentation[END_REF]). Indeed using our method, we did not obtain results as good as we wanted for myocardium segmentation (see Table 3).

Our approach seems to be similar to the ter myocardium segmentation, we will investigate a weighted cross-entropy loss function based on distance maps for multiclass segmentation in a future study. Finally, this study presents a GAN framework that is very promising for bridging wellestablished medical imaging segmentation models ( [START_REF] Karimi | Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural Networks[END_REF], [START_REF] Xue | Shape-aware organ segmentation by predicting signed distance maps[END_REF] and [START_REF] Kervadec | Boundary loss for highly unbalanced segmentation[END_REF]) within a learning framework. external/internal forces in the active contour formulation can be modeled by the discriminator and the generator function of GAN. This will be further investigated in future studies.

Conclusion

In this paper, we have presented a new semi-supervised learning approach using GAN. This method promises to segment the endocardium and epicardium of the left ventricle from cardiac MRI. Our new loss function based on the distance transform penalizes wrong predictions during the training phase and helps the segmentation network to produce more accurate segmentations on unannotated images during the unsupervised learning phase. We have shown that the model of Hung et al. ([21]) can be generalized from natural to medical images. Also, we have shown that it is possible to obtain an accurate segmentation of the left ventricle, using a limited amount of annotated data. In fact, the method can generate good predictions of the location and the form of the left ventricle. However, the model is still highly dependent on the image quality distribution. For proper training, it requires a good balance of well-annotated images and of different image qualities in the training set to be able to accurately predict the segmentation on any images. For future work, we aim at integrating additional shape and heart motion constraints in the formulation of our GAN, as well as extending this work to 3D. Also, we will investigate the detection of anatomical defects from the MRI versus a healthy control population, to automatically detect and classify congenital heart defects from the segmentation output.
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 12 Normalization: Normalize pixel spacing values to 1mm×1mm. Rescaling: Rescale image size to 256×256. 3. CLAHE: Apply CLAHE equalizer.

3. 4 .Figure 1 :

 41 Figure 1: From left to right : (a) pre-processed image with endocardium contour (blue) and epicardium contour (red), (b) endocardium ground truth and (c) epicardium GT

Figure 2 :

 2 Figure 2: GAN architecture overview. Using a discriminator network trained with loss L D , the segmentation network is optimized using three loss functions during the training : distance map loss penalty term L pm for the segmentation ground-truth, adversarial loss L adv to fool the discriminator and the semi-supervised loss L semi based on the output of the discriminator (a confidence map).

  (a) Original image (b) DT-GAN 50% (c) DT-GAN 25% (d) DT-GAN 10% (e) Original GAN 50% (f) U-Net 100% (g) Original image (h) DT-GAN 50% (i) DT-GAN 25% (j) DT-GAN 10% (k) Original GAN 50% (l) U-Net 100%

Figure 3 :

 3 Figure 3: Prediction (blue) of endocardium with associated ground truth (red)

Figure 4 :

 4 Figure 4: Prediction (blue) of epicardium with associated ground truth (red)

Figure 5 :

 5 Figure 5: Prediction (blue) of myocardium with associated ground truth (red)

Table 1 :

 1 ure 4. The quality of images 4a and 4g is quite different, and we can also see differences in the quality of the segmentation. For Dice score (top) and Hausdorff distance (bottom) for different endocardium segmentation methods with different amount of data used for training the models.

		Endocardium		
	Data percentage for training (%)	100%	50%	25%	10%
	U-Net (York)	0.91 ± 0.09 2.19±0.23	0.91±0.12 2.28±0.21	0.91±0.13 2.27±0.42	0.85±0.11 2.34±0.57
	U-Net (ACDC)	0.94 ± 0.06 2.49±0.32	0.93±0.06 2.49±0.32	0.92±0.06 2.50±0.48	0.85±0.28 3.18±0.87
	DT-GAN (York)	0.87±0.11 2.14 ± 0.43	0.88 ± 0.08 2.16 ± 0.42	0.86±0.12 2.24±0.59	0.86±0.15 2.25±0.49
	DT-GAN (ACDC)	0.89±0.16 2.48±0.63	0.88±0.21 2.48±0.66	0.86±0.22 2.47±0.68	0.86±0.21 2.54±0.66
	GAN (York)	0.86±0.11 2.24±0.47	0.87±0.09 2.25±0.43	0.85±0.09 2.23±0.45	0.86±0.09 2.26±0.43
	GAN (ACDC)	0.87±0.19 2.53±0.61	0.87±0.18 2.57±0.69	0.85±0.24 2.58±0.67	0.85±0.21 2.58±0.67
		Epicardium		
	Data percentage for training (%)	100%	50%	25%	10%
	U-Net (York)	0.92 ± 0.04 2.25 ± 0.46	0.89 ± 0.09 2.34 ± 0.39	0.91 ± 0.18 2.76 ± 0.23	0.91 ± 0.13 2.71 ± 0.52
	U-Net (ACDC)	0.94 ± 0.08 2.45 ± 0.32	0.92 ± 0.08 2.52 ± 0.23	0.90 ± 0.12 2.74 ± 0.61	0.86 ± 0.15 3.12 ± 0.74
	DT-GAN (York)	0.94 ± 0.07 2.24 ± 0.62	0.93 ± 0.04 2.23 ± 0.35	0.93 ± 0.08 2.29 ± 0.41	0.92 ± 0.05 2.27 ± 0.37
	DT-GAN (ACDC)	0.92±0.16 2.50±0.59	0.92±0.15 2.53±0.62	0.92±0.15 2.60±0.69	0.91±0.17 2.63±0.69
	GAN (York)	0.90 ± 0.06 2.25 ± 0.46	0.91 0.05 2.34 ± 0.35	0.92 ± 0.04 2.37 ± 0.41	0.93 ± 0.04 2.31 ± 0.41
	GAN (ACDC)	0.89 ± 0.2 2.65 ± 0.71	0.88 ± 0.20 2.74 ± 0.60	0.88 ± 0.21 2.74 ± 0.65	0.88 ± 0.19 2.66 ± 0.63

Table 2 :

 2 Dice score (top) and Hausdorff distance (bottom) for different epicardium segmentation methods with different amount of data used for training the models.

Table 3 :

 3 Dice score (top) and Hausdorff distance (bottom) for different myocardium segmentation methods with different amount of data used for training the models.

	Khened et al. approach

for its part, our weight map is based on distances around contours. It helps the network focus on the boundaries of the object to segment, and improves the object's segmentation. We never obtained a Dice score better than 0.81 ± 0.08. For a bet-