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Abstract

In this paper, we develop a mean-field model for simulating the microstruc-

ture evolution of crystalline materials during static recrystallization. The model

considers a population of individual cells (i.e. grains and subgrains) growing in a

homogeneous medium representing the average microstructure properties. The

average boundary properties of the individual cells and of the medium, required

to compute growth rates, are estimated statistically as a function of the mi-

crostructure topology and of the distribution of crystallographic orientations.

Recrystallized grains arise from the competitive growth between cells. After a

presentation of the algorithm, the model is compared to full-field simulations

of recrystallization performed with a 2D Vertex model. It is shown that the

mean-field model predicts accurately the evolution of boundary properties with

time, as well as several recrystallization parameters including kinetics and grain

orientations. The results allow one to investigate the role of orientation spreads

on the determination of boundary properties, the formation of recrystallized

grains and recrystallization kinetics. The model can be used with experimen-

tally obtained inputs to investigate the relationship between deformation and

recrystallization microstructures.
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1. Introduction

In most models of static and dynamic recrystallization, recrystallized grains

arise from a competitive growth of subgrains or cells pre-existing in the de-

formed microstructure [1, 2, 3, 4, 5, 6, 7, 8, 9]. In high stacking fault energy

materials, the force driving the growth of subgrains comes almost entirely from

the interfacial tension of the subgrain network (e.g. aluminium alloys [5]), while

the energy stored in tangled dislocations plays a more important role as the

stacking fault energy decreases (e.g. silver and nickel [2], copper [2, 6, 8]).

While the micro-mechanisms at the origin of recrystallization are well known,

the conditions leading to the development of recrystallized grains of particular

orientations, and their incidence on the kinetics, remain difficult to identify.

This challenge is to a great extent due to the large number of features in-

volved in recrystallization. Deformed grains contain of the order of 105 subgrains

[5], out of which a handful turn into recrystallized grains during annealing.

State-of-the-art full-field models (e.g. phase field, Vertex dynamics, level-set)

can simulate this many subgrains [10, 11], but this is still insuficient to confi-

dently predict recrystallization kinetics, grain size and crystallographic texture.

As a result, the most significant applications of full-field models to recrystal-

lization remain restricted to comparison with analytical model predictions [4, 7]

or to parametric studies on the role of some initial microstructure parameters

[3, 12].

Mean-field models are computationally more efficient than full-field models,

but are limited by additional assumptions. In the early model of Bailey and

Hirsch [1, 2], a subgrain is considered as a potential recrystallized grain when

its radius exceeds the value where its inward capillary pressure is overcome by

the outwards pressure induced by its neighbours. This model was extended

by Zurob et al. [6] to predict the incubation period during which future re-

crystallized grains grow normally compared to the rest of the microstructure.

This approach, however, misses the fact that every growing subgrain satisfies

the Bailey-Hirsch criterion [1, 2]. Meeting the Bailey-Hirsch criterion is nec-
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essary but insufficient for a subgrain to become a grain in the recrystallized

state. In two separate publications, Humphreys [13], and Rollett and Mullins

[14] proposed an approach that considers that a recrystallized grain forms when

the growth rate of a subgrain relative to the average is positive. Notably, the

model highlights the role of heterogeneous subgrain size and boundary proper-

ties on the onset of recrystallization. Despite a few interesting applications to

experimental cases [5, 15], and comparisons to full-field simulations [4, 16], this

approach remains much less popular than those relying on the Bailey-Hirsch

criterion (e.g. [8, 9, 17, 18]).

As the microstructural heterogeneities giving rise to recrystallization develop

during prior deformation, substantial efforts have also been made to simulate

recrystallization from outputs of crystal plasticity models. In these cases, het-

erogeneities of subgrain size and disorientation have been attributed to inter-

granular contrast of slip activity (estimated by Taylor factors) [19], resolved

shear stress [20], and intragranular disorientation levels [21]. These approaches

generally focus on predicting the texture out of these heterogeneities while ig-

noring the recrystallization kinetics.

In this paper, we propose an extended mean-field model that builds on the

approaches described above. In our approach, a discrete population of sub-

grains evolves according to classic cellular growth laws, with a time-integration

scheme implemented to update the microstructural parameters. The recrys-

tallized grains are identified based on a size threshold. The model extends

beyond classic mean-field approaches by accounting for the variation of sub-

grain properties with crystallographic orientation by tracking the moments of

several boundary property distributions. As a result, recrystallization kinet-

ics and recrystallized grain orientations are predicted together. This model is

tested against full-field vertex simulations of subgrain growth and its extension

to predicting experimental results is discussed.

The paper starts by briefly introducing the methodology used for Vertex

simulations. This serves to also familiarize the reader with the topology of the

microstructures investigated. Next, the mean-field model is introduced. In the
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following sections, the ability of the mean-field model to reproduce the full-field

simulations is shown, with a discussion on the strenghts, weaknesses and areas

for further improvement.

2. Full-field simulations

The conditions simulated in this work by the full-field model can be viewed

as the recrystallization of a deformed grain in a high stacking fault energy

material (e.g. an aluminium alloy or a ferritic steel). These will provide a

means to validate the mean-field model in a configuration where the boundary

properties and the topology of the microstructure are very well known. Yet,

some differences with experiments will be noticed: (i) the dimensionality of

the microstructure, (ii) the absence of spatial correlations between subgrain

orientations, and (iii) the absence of large scale heterogeneities. These aspects

will be discussed later in this work.

2.1. 2D Vertex dynamics

The 2D Vertex model simulations were performed following the methods

described in [22, 23, 24]. In this model, grain and subgrain boundaries are

discretized into vertices located at triple junctions and along boundaries, and the

velocities of each vertex calculated as a function of the capillary forces exerted by

its adjoining segments. Topological transformations account for the removal of

boundaries when two triple junctions meet [22], when cells become smaller than

a critical size [22], or when contacts between colliding boundaries occur [23, 24].

A single empirical coefficient controls the triggering of these transformations

which, if set small enough, does not influence the results [22, 23, 24].

If differences in volumetric energy across boundaries are neglected, the evo-

lution of the boundary network is controlled by the microstructure topology,

the boundary energies (inducing capillary forces) and their mobilities. As in

previous work on recrystallization [13, 4, 25], the boundary energy and mobility
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are assumed to be functions of the boundary disorientation1 angle θ. For the

purposes of this study the boundary energy γ (θ) is taken to obey the Read-

Shockley equation [27]:

γ (θ) =

γc
θ
θc

(
1− ln θ

θc

)
if θ ≤ θc

γc if θ > θc

(1)

Where γc is a constant, θc is a cut-off angle set to 15◦ to simulate a high

angle boundary. The boundary mobility µ (θ) was set to follow the empirical

relation [13, 25]:

µ (θ) = µc

(
1− e−B( θ

θc
)
η)

(2)

Where µc is a constant, B = 5 and η = 4, following classic work on alu-

minium alloys [13, 25].

2.2. Microstructure construction

The starting subgrain microstructures were constructed by Voronoi tessela-

tion with periodic boundary conditions. Each Voronoi cell constitutes a sub-

grain, while the whole microstructure can be considered as the interior of a

deformed grain. A first relaxation of the microstructure was performed by set-

ting all boundary mobilities and energies equal, until the subgrain radii reached

the self-similar distribution associated with normal growth (i.e. for 2 dimen-

sional microstructures a Rayleigh distribution with maximum around 2 times

the mean radius [22, 28, 29]). The results presented in this paper were obtained

from averages of 6 simulations performed with 2.5×104 subgrains in this ‘as-

relaxed’ state. The recrystallization kinetics does not vary significantly between

1Following the standard terminology [26], a misorientation is defined as a rotation (de-

scribed by an axis and an angle) that transforms one crystalline orientation into another. The

disorientation is the misorientation having the smallest rotation angle out of all misorienta-

tions allowed by the crystal symmetry.
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the simulations. This procedure was implemented only to increase the number

of recrystallized grain orientations sampled.

Each subgrain in the ‘as-relaxed’ microstructure was assigned a crystallo-

graphic orientation assuming cubic symmetry and no spatial correlation. Ori-

entations are described here by their disorientation relative to an arbitrary refer-

ence orientation, and denoted in quaternion vector part δrref = (r1, r2, r3)
ref

sin (ω/2),

with (r1, r2, r3)
ref

the disorientation axis and ω the disorientation angle. This

notation is commonly used to describe orientations spread around the mean

orientation of deformed grains [21, 30, 31]. The initial orientations are drawn

from a trivariate normal distribution along the principal directions δr1, δr2, δr3

of the reference frame. The distribution is centered on (0, 0, 0) and controlled

through an isotropic standard deviation σref
(0), set identical in the three directions.

It remains a trivariate normal distribution as long as the largest disorientation

vectors (imposed by σref
(0)) do not exceed the bounds of the orientation space

set by the symmetry of the crystal. By convention, we consider only positive

disorientation angles with the vector direction carried by the sign of the rotation

axis. A representation of the reference disorientation distribution is shown in

Figure 1. An example of a relaxed microstructure is shown in Figure 2a.
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Figure 1: a) In dots, an orientation spread represented in the quaternion vector space. The

trivariate normal distribution is also represented, with σref
(0)

the standard deviation in the three

directions. b) The distribution of disorientation angles ω for an isotropic spread σref
(0)

=3.5◦.
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As the reference disorientation vectors follow a trivariate normal distribu-

tion, their norms follow a Maxwell distribution and in the limit of small angles so

too does the distribution of reference disorientation angles ω (Figure 1b). This

kind of distribution provides a good first order approximation to orientation

spreads found experimentally within deformed grains [30, 32, 33]. In a similar

way, boundary disorientations (i.e. disorientations calculated between pairs of

spatially adjacent cells) are denoted δrb = (r1, r2, r3)
b
sin (θ/2). As the cell ori-

entations are spatially uncorrelated, the distribution of boundary disorientation

angles also follows a Maxwell distribution2 [32, 33, 21].

(a) (b)

Figure 2: a) initial microstructure simulated with Vertex dynamics for a spread σref =3.5◦. b)

same microstructure at 50% recrystallization. In the bottom right corner, separated from the

top right corner by the diagonal line, recrystallized grains are highlighted in brighter colors.

Only half of the microstructure appears on the figures.

Adopting a definition used in previous work [4, 12], recrystallized grains

are defined as subgrains whose equivalent area radius is greater or equal to

2A Maxwell distribution of disorientation angles is a natural consequence of the operation

of three orthogonal slip systems during plastic deformation [32, 33]. Experimentally, the

boundary disorientation angle distribution in fcc metals has is closer to a Rayleigh distribution

[34], implying the domination of slip by two slip systems [33]
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eight times the mean radius in the relaxed microstructure. Figure 2b shows the

microstructure at 50% recrystallized fraction. The exact value of the threshold

recrystallized grain radius does not influence the comparison of the results as it

will be set the same for the full-field and mean-field models.

3. The mean-field model of cellular growth

Following the approach of Humphreys [13] and Rollett and Mullins [14], the

microstructure is considered in the mean-field model as a set of grains and sub-

grains embedded in a homogeneous medium representing the average properties

of the microstructure. Growth rates of grains and subgrains are calculated from

classic capillary growth laws, and a time-integration scheme is used to update

the microstructure. At each time step, the mean boundary energies and mobil-

ities required to compute growth rates are estimated from the moments of the

boundary disorientation angle distribution. Here, the mean (first moment) and

variance (centered second moment) of the disorientation angle distribution are

estimated in a statistical sense from knowledge of the orientation spread and of

potential spatial correlations between orientations. This approach differs from

most traditional mean-field models, where boundaries properties are fixed from

the start and recrystallized grains explicitly associated with a generic high an-

gle boundary [2, 6, 9, 21]. By considering the role of orientation spread on the

determination of boundary properties, this model allows the recrystallization

kinetics and recrystallized grain orientations to evolve together.

3.1. Growth equations and time integration

We consider a set of individual cells characterized by radius R(i,t), mean

boundary energy Γ(i,t) and mean boundary mobility M(i,t), embedded in a ho-

mogeneous medium of properties R̄(t) and Γ̄(t). The subscript i denotes the

cell index, and t is the simulation time. Cells comprise all grains and subgrains

in the microstructure, the same laws being applied to all objects. At t = 0,

the input radii correspond to the measurements in the as-relaxed full-field mi-

crostructure. On the other hand, the assignment of unique boundary properties
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to cells having multiple neighbours is one major approximation of this model,

and will be treated below. Assuming that the above defined cell properties are

known, the growth rate of a two dimensional cell is given by [14]:

dR(i,t)

dt
=
M(i,t)Γ(i,t)

R(i,t)

(a(i,t)n(i,t)
6

− 1
)

(3)

Where n(i,t) is the number of sides (or neighbours) of the cell, and a(i,t) =

6sin−1
(
Γ̄(t)/2Γ(i,t)

)
/π ≤ 3 accounts for the effect of boundary curvature on

the growth rate. For two-dimensional microstructures, a linear relation can be

assumed between the number of sides of a cell and its size such that n(i,t) =

3
(
1 +R(i,t)/R̄(t)

)
[14, 35]. The growth rate equation is thus reduced to3 [14]:

dR(i,t)

dt
=
M(i,t)Γ(i,t)

2R(i,t)

(
a(i,t)

(
1 +

R(i,t)

R̄(t)

)
− 2

)
(4)

Then each cell radius is updated by integrating Equation 4 with Euler’s

method R(i,t+dt) = R(i,t) +
dR(i,t)

dt ∆t. The microstructure coarsening kinetics

scales with the magnitude of the boundary mobility and energy laws µc and

γc. The model’s predictions were found insensitive to the choice of ∆t so long

as the average increase in cell area per time increment remained below ∼1%.

Then, recrystallized grains are identified, as in the full-field simulations, based

on a critical radius R(i,t) ≥ Rrx = 8R̄(0).

After each time increment, the smallest cells and those of negative radius are

removed in order to maintain a constant total simulation area. This procedure

is implemented to compensate for the fact that Equation 4 (or Equation 3)

does not intrinsically insure area conservation (i.e.
∑ng(t)
i=1 R(i,t+dt)

dR(i,t)

dt 6=

0). To correct this discrepancy, one may further refine the contribution of the

homogeneous medium to the growth rates [36], but this does not change the

results presented below. The total change in area was not more than 8% and

only transient; the total simulation area returns back to its original value before

3We provide in Appendix A a similar expression of growth rates for microstructures in 3

dimensions.
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the onset of recrystallization. A reader wishing to replicate the prediction will

notice the transient nature of this behaviour.

3.2. Boundary properties

To compute the growth rates in Equation 4, one needs to know the mean

boundary energy terms Γ(i,t) and Γ̄(i,t) and mean mobility M(i,t). Here, we esti-

mate them in two steps. First the moments of the boundary disorientation angle

distribution are estimated statistically from those associated with the reference

disorientation distribution (i.e. the orientation spread) and from assumptions

on the spatial correlations. Then, boundary properties are calculated assum-

ing Taylor series expansion of the energy and mobility laws about the mean

boundary disorientation angles.

First, the moments of the reference disorientation distribution are calculated

in a statistical sense. As such, they carry no information on the neighbour to

neighbour disorientations. The first moment is (0, 0, 0) since orientations are

centered on the average. The second moment is a 3x3 matrix given by [31]:

< δrref ⊗ δrref >(t)=
1

ng (t)

ng(t)∑
i=1

δrref(i) ⊗ δr
ref
(i) (5)

Where <>(t) denotes the average of the quantity within brackets at time t, ⊗

is the dyadic product, and the sum runs over the ng (t) orientations4. Since

the first moment is null, the second moment is also the covariance matrix of

the distribution. Its eigenvalues provide the square of the standard deviations(
σ1
(t), σ

2
(t), σ

3
(t)

)
of spread in the principal directions of the reference frame.

With an isotropic spread σref
(t) = σ1

(t) = σ2
(t) = σ3

(t).

Next, one can estimate the moments of the boundary disorientation vector

distribution from those associated with reference disorientations. Zecevic et al.

[21] have shown that when the reference disorientation vectors follow a trivariate

4Weighting the second moment based on size, i.e. 1∑ng(t)

i=1 R(i,t)

∑ng(t)
i=1 R(i,t)δr

ref
i ⊗ δrref

i

did not lead to improved predictions.

10



normal distribution, the second moment of the boundary disorientation vector

distribution for a cell of reference disorientation δrref(i) can be expressed by:

< δrb ⊗ δrb >(i,t)= δrref(i) ⊗ δr
ref
(i) +

(
< δrref ⊗ δrref >−1(t) +

1

α
I

)−1
(6)

Where I is a 3×3 identity matrix, and α is the variance of a spatial correla-

tion function of Gaussian form. This parameter ranges from 0 for high spatial

correlation (i.e. when grains and subgrains of similar orientation are most likely

to be adjacent) to +∞ for no correlation. For our case, where we assume no

spatial correlations between orientations, α → +∞, and Equation 6 simplifies

to:

< δrb ⊗ δrb >(i,t)= δrref(i) ⊗ δr
ref
(i) + < δrref ⊗ δrref >(t) (7)

In Equation 6 and Equation 7, the first term on the right represents the shift

of the cell orientation from the reference frame, while the second term is the

covariance matrix of the boundary disorientation distribution. In the case of

Equation 7, the covariance matrices of the reference and boundary disorientation

vectors are identical, and the isotropic spread of the boundary disorientation

distribution becomes σb
(i,t) = σref

(t) .

As the boundary disorientation vectors follow a trivariate normal distribu-

tion with non-zero mean, the variable Θ(i,t) =
√
δrb(i,t) · δr

b
(i,t)/σ

b
(i,t) follows a

non-central χ distribution [37]. In addition, in the hypothesis of small angles,

θ(i,t) ≈ 2

√(
δrb(i,t) · δr

b
(i,t)

)
. With θ(i,t) and Θ(i,t) being proportional, the mo-

ments of the boundary disorientation angle distributions can be expressed as a

function of the moments of the χ distribution for the variable Θ(i,t):

< θ >(i,t)= 2σb
(i,t)

√
π

2
L
(1/2)
1/2

(
−
(
κ(i,t)

)2
2

)
(8)

< θ2 >(i,t)=
(

2σb
(i,t)

)2 (
3 +

(
κ(i,t)

)2)
(9)
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Where L
(1/2)
1/2 is the Laguerre function of coefficients 1/2 and (1/2) (see

Appendix B), and κ(i,t) is a scaling parameter defined by:

κ(i,t) =

√
δrref(i) · δr

ref
(i)

σb
(i,t)

≈ ω

2σb
(i,t)

(10)

The approximation on the right side of the equation holds for small angles,

and is shown only to highlight the dependency on the disorientation angle ω.

Since the isotropic spread σb
(i,t) is the same for all cells and equal to σref

(t) , the

parameter κ(i,t) is constant for a given reference disorientation angle ω.

The same method can be used to estimate the moments of the boundary

disorientation vector distribution taken over the whole microstructure. This

distribution is centered on (0, 0, 0), and its second moment is [21]:

< δrb ⊗ δrb >(∀i,t)=

(
< δrref ⊗ δrref >−1(t) +

1

α
I

)−1
< δrref ⊗ δrref >−T(t)(

< δrref ⊗ δrref >−1(t) +
1

α
I

)−T
+

(
< δrref ⊗ δrref >−1(t) +

1

α
I

)−1
(11)

Where (∀i) indicates that the average is now taken for all cells in the mi-

crostructure, and −T is the inverse of the transpose matrix. Considering, again,

that α→ +∞, Equation 11 simplifies to:

< δrb ⊗ δrb >(∀i,t)= 2 < δrref ⊗ δrref >(t) (12)

The isotropic spread of boundary disorientation vectors for the whole mi-

crostructure is thus equal to σb(∀i,t) =
√

2σref
(t) . Since the distribution is centered

on (0, 0, 0), κ(∀i,t) = 0, and the first and second moments of boundary disorien-

tation angles follow 5:

< θ >(∀i,t)= 2σb(∀i,t)

√
π

2
L
(1/2)
1/2 (0) (13)

5Note than when κ = 0, the χ distribution coincides with the Maxwell distribution cited

earlier.
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< θ2 >(∀i,t)= 12
(
σb(∀i,t)

)2
(14)

Finally, the mean boundary energies and mobilities can be estimated from

the moments of the boundary disorientation angle distributions. Expressing

the mobility and energy laws by a second order Taylor series about the mean

boundary disorientations gives the mean boundary mobilities and energies:

M(i,t) =< µ (θ) >(i,t)= µ
(
< θ >(i,t)

)
+
µ′′
(
< θ >(i,t)

)
2

(
< θ2 >(i,t) −

(
< θ >(i,t)

)2)
(15)

Γ(i,t) =< γ (θ) >(i,t)= γ
(
< θ >(i,t)

)
+
γ′′
(
< θ >(i,t)

)
2

(
< θ2 >(i,t) −

(
< θ >(i,t)

)2)
(16)

Γ̄(t) =< γ (θ) >(∀i,t)= γ
(
< θ >(∀i,t)

)
+
γ′′
(
< θ >(∀i,t)

)
2

(
< θ2 >(∀i,t) −

(
< θ >(∀i,t)

)2)
(17)

As will be shown below, the second order terms are not necessary to capture

the main trends of the microstructure evolution, but they substantially increase

the accuracy of the prediction. The second derivatives of the mobility and

energy functions are provided in Appendix C.

3.3. Algorithm

First, the model reads as input a list of subgrains characterized by their

radii and orientations. Since an orientation is characterized by at least three

parameters regardless of the representation space, the total is four parameters

per subgrain. From the list of subgrain orientations, the reference orientation

is computed as well as the reference disorientations. The initial simulation area

is obtained from the sum of all subgrain areas in the input microstructure.

In this case study, the input files were generated from the cell parameters of

the relaxed Vertex microstructures. Other potential sources of input will be

discussed below.
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Next, the time iteration loop is started. From time t to t+ dt, the following

sequence is executed:

1. Identify the recrystallized grains based on the size criterion.

2. Calculate the mean boundary properties M(i,t) and Γ(i,t) for each cell,

and Γ̄(t) for the whole microstructure using Equation 15, Equation 16 and

Equation 17.

3. Calculate the growth rate of each cell using Equation 4.

4. Integrate the growth rates over a time increment to update the cell radii.

The new cell radii are representative of the microstructure at time t+ dt.

5. Remove the cells of negative radius and the smallest cells of positive radius

so as to minimize the difference between the initial microstructure area

and the sum of cell areas at t+ dt.

6. Update the average radius.

The only model parameter is the variance of the spatial correlation function

α, set to +∞ (no correlation) in this case. The parameters controlling the

boundary energy and mobility laws were set identical to the full-field simulation.

Any other mobility and energy laws can be implemented as long as they are

differentiable to the second order. This implementation is called the complete

mean-field model for the rest of the paper.

4. Results

In this section, the mean-field model predictions are compared to a full-

field simulation of recrystallization realized with an initial orientation spread of

σref
(0)=3.5◦. This value is in the range of experimental measurements in deformed

polycrystalline materials [38, 39]. The initial subgrain number density is denoted

ρ0. This parameter is used as a normalizing factor in much of the subsequent

analysis.

To highlight the role of the different components of the mean-field model to

the prediction of recrystallization parameters, four different ways of calculating

the boundary properties are compared:
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1. Using only mean boundary disorientation angles (i.e. 0th order Taylor

series expansion), kept fixed with time and calculated initially at t = 0.

2. Using time-updated mean boundary disorientation angles.

3. Using means and variances of the boundary disorientation angles (i.e. 2nd

order Taylor series expansion), kept fixed with time and calculated initially

at t = 0.

4. Using time-updated means and variances of the boundary disorientation

angles (i.e. complete model).

4.1. Prediction of recrystallization kinetics

To illustrate the influence of boundary properties and their time-evolution

on the microstructure, Figure 3 compares the full-field simulation of recrystal-

lization kinetics to the four variants of the mean-field simulations. The recrys-

tallized fraction X is defined as the area of recrystallized grains divided by the

total simulation area. The dotted grey line shows the predicted kinetics when

the boundary properties are calculated using mean disorientation angles and

are not updated with time. As a result, the recrystallization kinetics are over-

predicted compared to the full-field simulation. Hurley and Humphreys arrived

at the same result with similar assumptions in their mean-field model [40]. The

solid grey line shows results obtained when the boundary properties are cal-

culated using mean disorientation angles, but under the conditions that they

are updated with time. The mean-field model predictions are not significantly

improved.

A much better agreement is found between full-field and mean-field simu-

lations when boundary energies and mobilities are calculated using both the

means and variances of the boundary disorientation angle distributions (solid

and dotted black lines). Updating the boundary properties is beneficial but of

second order for the prediction of kinetics. In this case, the time at 50% re-

crystallized fraction is predicted with less than 2% error between the full-field

simulation and the mean-field model prediction. Neither expanding the series

expansion beyond the 2nd order in Equation 15, Equation 16 and Equation 17,

15



101 102 103
0%

20%

40%

60%

80%

100%
F-F.
M-F.1
M-F.2
M-F.3
M-F.4

Figure 3: Comparison of the recrystallization kinetics predicted by the mean- and full-field

models. Time is normalized by 1/ (µcγcρ0). Full-field simulations performed with the Vertex

model appear as points (F-F.). Grey lines denote mean-field predictions made using only

mean disorientation angles, either fixed (M-F.1) or time-updated (M-F.2). Black lines denote

mean-field predictions made using means and variances of the disorientation angles, either

fixed (M-F.3) or time-updated (M-F.4, i.e. complete model).
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Figure 4: Comparison of a) the recrystallized grain density ρrx and b) the mean recrystallized

grain radius < R >rx predicted by the mean- and full-field models. Time is normalized by

1/ (µcγcρ0), recrystallized grain density by ρ0 and recrystallized grain radius by the threshold

recrystallized grain radius Rrx . Full-field simulations performed with the Vertex model appear

as points (F-F.). Grey lines denote mean-field predictions made using only mean disorien-

tation angles, either fixed (M-F.1) or time-updated (M-F.2). Black lines denote mean-field

predictions made using means and variances of the disorientation angles, either fixed (M-F.3)

or time-updated (M-F.4, i.e. complete model).
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nor performing the series expansion directly on growth rates significantly im-

proved the predictions.

The same analysis is performed in Figure 4 for the recrystallized grain den-

sity and size. These parameters are of interest as they directly determine the

recrystallization kinetics. Figure 4a shows that the best agreement with the

full-field simulation in terms of recrystallized grain density ρrx is obtained with

the complete mean-field model (solid black line). The differences between the

full-field simulation and the four mean-field model predictions mirror those of

the recrystallization kinetics shown in Figure 3. In particular, one can see that

only using the mean boundary disorientation angles to predict boundary prop-

erties (grey lines) significantly overpredicts the number of recrystallized grains

and the time required for their appearance. This helps to explain the overpre-

dicted kinetics in Figure 3. The decrease in recrystallized grain density predicted

by all implementations at long times corresponds to the coarsening of the re-

crystallized grain structure at the end of recrystallizaton. This non-monotonic

evolution has been observed experimentally in aluminium alloys by Perryman

et al. [41]. One may further remark that the ratio of recrystallized grains to

initial subgrain density is quite high (∼2 out of 103 for the full-field simulations)

compared to ‘a handful’ out of 105 stated in the introduction. This can be at-

tributed to the fact that the initial full-field microstructure is less heterogenous

than that of most experimentally deformed materials.

Figure 4b shows that the complete mean-field model (solid black line) pre-

dicts correctly the the mean recrystallized grain radius < R >rx . One may

notice that the implementations relying only on mean boundary disorientation

angles (grey lines) yield even better predictions. This results from the faster

predicted recrystallization kinetics, which translates the curve of recrystallized

grain radius towards short times.

4.2. Prediction of recrystallized grain orientations

While the time evolution of boundary properties influences only moderately

the recrystallization kinetics, it is a critical aspect for determining the recrystal-
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Figure 5: Area fraction of grains and subgrains as a function of their reference disorientation

angle ω. a) Full-field simulation, b) mean-field simulation considering means and variances

of boundary disorientation angle distribution fixed at their initial values, c) mean-field model

considering means and variances of boundary disorientation angle distribution updated with

time. The initial microstructure dataset (in black) includes all grains and subgrains regardless

of recrystallization, and is identical for a), b) and c). The recrystallized grain datasets (red

and blue) include only the recrystallized grains at specific recrystallized fractions.
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lized grain orientations. To illustrate this, Figure 5 compares the distribution of

grain and subgrain orientations predicted by the full-field model and by the two

implementations of the mean field model using means and variances of bound-

ary disorientation angle distributions (i.e. 2nd Taylor series expansion with fixed

and updated boundary properties). As the orientation spread is isotropic, orien-

tations can be plotted as a function of their reference disorientation angle ω. For

the full-field simulations (Figure 5a), a preferential development of orientations

with large reference disorientation angle (i.e. with approximately ω ≥ 5◦) in

the recrystallized grains is observed. The orientations that develop with highest

fraction exhibit a compromise between fraction in the initial microstructure and

magnitude of the disorientation angle. Without updating the boundary proper-

ties with time, the mean-field model poorly captures this evolution (Figure 5b).

The agreement is improved when updating the properties with time (Figure 5c).

While in this case the mode of the distribution for the recrystallized grains is

still lower than that simulated by the full-field model, the range of disorientation

angles is very well captured.

In summary, the complete mean-field model yields the best predictions of

recrystallization kinetics and grain orientations while also giving a good repre-

sentation of the evolution of the mean recrystallized grain size. This implemen-

tation is kept for all following analyses.

4.3. Prediction of boundary properties

To evaluate the success of the mean-field model in predicting boundary prop-

erties, one can directly track them in the full-field and complete mean-field

models. Figure 6 shows that the evolution of the first and second moments of

the boundary disorientation angle distribution is well captured by the mean-

field model. Both moments evolve in a non-monotonic way, comparable to

experimental observations6. The magnitudes are well captured by the mean-

6Huang and Humphreys [25] reported a decrease of the mean boundary disorientation

during annealing of a deformed aluminium monocrystal. Mishin et al. [42] showed a similar
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field model, although the second moment tends to be underpredicted at longer

times.
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Figure 6: a) first moment and b) square root of the second moment of the boundary disori-

entation distribution as a function of time. Time is normalized by 1/ (µcγcρ0). Points are

calculated from the list of boundary properties in the full-field simulation, while lines are the

mean-field model predictions.

The same analysis is conducted in Figure 7 for the boundary properties of

individual cells as a function of their reference disorientation angle ω. Again,

the evolutions simulated by the full-field model are generally well reproduced by

the mean-field model. Figure 7a shows that the mean boundary disorientation

evolution flattens for cells with a large reference disorientation angle ω. This is

explained by the fact that the second moment of the cell boundary distribution

becomes less sensitive to the reference disorientation distribution as its own

reference disorientation increases (see Equation 7). One can also notice, as in

the previous figure, the strong relation between the evolution of the first and

second moments of boundary disorientation (in Figure 7a and b).

Overall, the non-monotonic evolution of boundary disorientation angles in-

duces similar trends in the boundary energies and mobilities. Figure 7c shows

that the mean boundary mobility for orientations with small and large refer-

decrease then increase of the density of high angle boundaries during static recrystallization

of a polycristalline aluminium alloy.
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Figure 7: Cell boundary properties as a function of time for three intervals of reference

disorientation angle ω. a) first moment and b) square root of the second moment of the

boundary disorientation angle distribution, c) mean boundary mobility, d) mean boundary

energy. Time is normalized by 1/ (µcγcρ0). Points are calculated from the list of boundary

properties in the Vertex simulation, while lines are the mean-field predictions. The lines are

calculated at the means of the reference disorientation angle intervals indicated on plot d).
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ence disorientation angles ω are well captured by the mean-field model while the

mobility of those with intermediate angles is less well predicted. In Figure 7d,

the mean boundary energy are well predicted for the full range of reference

disorientation angle, with again larger discrepancies for cells of intermediate

disorientation angle.

5. Discussion

5.1. Comments on the prediction of recrystallization kinetics

Figure 3 has shown that the prediction of recrystallization kinetics by the

mean-field model is particularly sensitive to the definition of boundary prop-

erties. Kinetics are overpredicted when considering only the mean boundary

disorientation angles to calculate the mean boundary mobilities and energies, in

agreement with the previous attempt of Hurley and Humphreys [40]. The mean-

field model prediction reaches a good agreement with the full-field simulation

only by including the contribution of the variances of the boundary disorien-

tation angle distributions. This improvement is due to the assumed boundary

mobility and energy laws. Indeed, the second derivatives of the boundary energy

and mobility laws used for calculating the 2nd order terms are mostly negative

as a function of the disorientation angle (γ′′ (θ) is negative for 0◦ < θ < 15◦ and

null above, µ′′ (θ) is negative above ∼ 9◦, see Appendix C), thus reducing the

predicted mean boundary properties and growth rates for the majority of the

recrystallized grains.

Most mean-field models of recrystallization are known to strongly overpre-

dict the density of recrystallized grains. Making the assumption of a site sat-

uration of recrystallized grains, Hurley and Humphreys have reported ratios

of 2 to 3 between their model’s prediction and experimental measurements at

50% recrystallization [40]. In models relying on the Bailey-Hirsch criterion, the

overprediction of recrystallized grain density is often hidden by assuming that

only a fraction of the potential recrystallized grains actually nucleates. This

is obtained either by multiplying the Bailey Hirsch criterion itself [18] or the
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number of subgrains meeting the Bailey-Hirsch criterion by fitting constants

[6, 17, 43]. The present results suggest that accounting for the distribution of

boundary properties and its time evolution provides a more physical solution to

this problem.

One may remark, however, that the complete mean-field model still exhibits

discrepancies in predicting the recrystallized grain density (solid black line in

Figure 4a). This may be caused by assumptions regarding the calculation of

growth rates and boundary properties, but it may also be inherent to the mean-

field formulation. As already suggested by Zurob et al. [6], the first recrystal-

lized grains are likely to arise from locations where the energy, and thus the

driving force, is higher than the average. Following this argument, mean-field

models should have a tendency to underpredict the time at which the first re-

crystallized grains appear. With the progress of recrystallization and the growth

of grains, this effect should become less significant.

5.2. Boundary dynamics during annealing

One can understand the time-evolution of boundary properties shown in Fig-

ure 6 and Figure 7 by considering a schematic microstructure composed of A and

B subgrains. The A subgrains form the largest fraction of the microstructure,

while the B subgrains possess orientations which are far from the average. Fig-

ure 8a illustrate the case of a small B subgrain embedded in an environment of A

subgrains. Due to its size and its high angle boundaries, the B subgrain shrinks

and disapears, inducing a decrease in boundary disorientation angles associated

with the A subgrains. By extension, it also slows down the average subgrain

growth rates of the A subgrains and prevents them from growing beyond their

first neighbour and reaching the critical recrystallized grain size. This evolution

is analogous to the concept of orientation pinning sometimes invoked to explain

texture developement during recrystallization of aluminium alloys [44, 45].

By contrast, in Figure 8b the B subgrain is large enough (and has enough

neighbours) to grow at the expense of the A subgrains. As the environment of

A subgrains remains, the boundary properties of the B subgrain do not change
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with time. Due to the inverse relation between growth rate and subgrain ra-

dius (Equation 4), the shrinkage of small subgrains with high angle boundaries

dominates the microstructure evolution during the early time of annealing (Fig-

ure 8a). Once these grains have disapeared, the large subgrains grow and may

turn into recrystallized grains surrounded by high angle boundaries (Figure 8b).

The improved prediction of the recrystallized grain orientations in the complete

mean-field model (Figure 5c) results from taking account of this non-monotonic

boundary dynamics. One can finally remark that reviews often make an explicit

relation between the onset of recrystallization and the development of high an-

gle boundaries [46, 47, 9]; in the present model, this situation results naturally

from the dynamics of subgrains in contact with high angle boundaries.

(a) (b)

Figure 8: Schematic microstructure of A and B subgrains, with a) a small B subgrain shrinking,

b) a large B subgrain growing. High angle boundaries separate the A and B subgrains, while

low angles separate subgrains of the same population.

5.3. Possible effects of orientation spatial correlations

In the mean-field model presented above, spatial correlations between ori-

entations have been introduced through the parameter α, which expresses the

probability for grains and subgrains to share similar orientations with their

neighbours [21]. As it is fixed for the whole microstructure, it cannot take ac-

count of large scale heterogeneities, like those found at deformed grain bound-
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aries or shear bands. Figure 9a shows that as α increases, i.e. as correlations

vanish, the mean boundary disorientation angle increases towards a constant

value. The synthetic full-field microstructures presented above were constructed

to have no spatial correlations in the initial state, thus motivating α to be +∞.

On the other hand, spatial correlations induced by dislocation slip are com-

monly observed experimentally in deformed microstructures [48, 49]. These

correlations lower the average disorientation between adjacent subgrains, but

vanish beyond a few subgrains in distance. This explains why the average

boundary disorientation is much higher in this study (7.8◦ at t = 0) than in

previous experimental work (1◦ ∼2◦ [33], 2◦ ∼4◦ [25]), while at the same time

the orientation spread is in the range of experimental measurements. Figure 9b

suggests that the presence of spatial correlations, simulated by selecting lower

values of α, would slow down the recrystallization kinetics. The consideration

of this type of spatial correlations would also induce stronger variations of the

predicted time-evolution of the boundary properties.
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Figure 9: a) First moment of the boundary disorientation angle distribution < θ >(∀i,t)

as a function of α. b) Effect of α on the prediction of recrystallization kinetics for the

microstructure shown earlier.

It is also interesting to notice that spatial correlations may develop even if

there are none at the initial state. Orientation pinning is one example where the

local configuration of the microstructure affects the evolution of boundary prop-
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Figure 10: Comparison of the mean boundary disorientation angle with the mean uncorrelated

disorientation angle calculated from the Vertex microstructure.

erties. In Figure 8a, the B central subgrains shrinks because of its size and of

its environment of A subgrains. Thus, removal of the B subgrains preferentially

brings the A subgrains in contact and induces spatial correlations. As shown

by Figure 10, this scenario is supported by measurements on the Vertex mi-

crostructure. In this figure, the mean boundary disorientation angle, measured

from the list of boundary disorientation angles in the Vertex microstructure, is

compared to the mean uncorrelated disorientation angle. To account for dif-

ferences in cell size, the mean uncorrelated disorientation angle is calculated

as follows: i) each cell is paired with another cell selected at random, ii) the

number of pairs per cell is set proportional to its perimeter, and iii) the mean

uncorrelated disorientation angle is calculated as the mean disorientation angle

between all the pairs. The deviation at long times between the mean boundary

disorientation angle and the mean uncorrelated disorientation angle indicates

the development of spatial correlations, in a way that could be accounted for

by the parameter α. The orientation spread remains in any case the most im-

portant factor for determining the boundary properties, but the influence of

building spatial correlations could become stronger with more heterogeneous

microstructures.
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5.4. Merits and potential of the model

One can see this model as a first step towards the combined prediction of

recrystallization kinetics and texture in deformed polycrystals. In conventional

mean-field models, recrystallization is driven by the macroscopic stored energy

while effects from heterogeneities of crystallographic nature are usually ignored.

Here, orientations play an important role on the microstructure evolution and

can be output at any time of the simulation. In order to extend the model

to the prediction of recrystallization in polycrystals, an additional scheme is

required to account for the competitive growth between recrystallized grains

coming from different parent deformed grains. A first order approach would be

to consider the microstructure as a composite of several sub-regions evolving in-

dependently, as implemented in previous models for simulating recrystallization

of heterogeneous materials [50, 51].

The principal merit of the mean-field model compared to full-field equivalents

is its computational speed (few seconds vs. several hours on a laptop for the

simulations presented in this paper). This must not be neglected as the number

of subgrains that one needs to simulate to obtain one recrystallized grains is

very large (∼103 to 1 in Figure 4a). It is unlikely that full-field models will

perform accurately for microstructures that better replicate the experimental

measurement , i.e. having a higher degree of heterogeneity that in the present

work.

As a concluding remark, we emphasize that the mean-field model has been

constructed with the aim to make it applicable to experimental cases. Orienta-

tions spreads [30, 31, 38, 52], subgrain sizes [30, 53] and initial spatial correla-

tions [48, 49] can all be measured using EBSD for example. These parameters

can also be estimated from crystal-plasticity simulations [19, 20, 21]. Future im-

plementations could also introduce effects from microstructural heterogeneities,

like shear bands, transition bands and deformed grain boundaries, following

approaches adopted elsewhere [31, 43].
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6. Conclusion

A mean-field model was developed to simulate the time evolution of mi-

crostructures during static recrystallization. This model essentially simulates

the growth of a population of subgrains contained in well recovered deformed

grains, and identifies subgrains above a size threshold as recrystallized grains.

At each time increment, the subgrain growth rates are calculated from classical

cellular growth laws. The mean subgrain boundary energy and mobility are es-

timated statistically from knowledge of the orientation spread and of potential

spatial correlations between orientation. The orientation spreads considered in

this paper are not far from experimental measurements. The model input can

be obtained from experimental or synthetic microstructures.

The mean-field model presented here allows one to predict at the same time

the recrystallization kinetics and recrystallized grain orientations. The results

highlight the significant contribution of the orientation spread and its time-

evolution to the determination of boundary properties, the progress of recrys-

tallization and the selection of recrystallized grain orientations. Future work is

underway to compare the mean-field model predictions to experimental data.
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Appendices

A. Growth equations for 3 dimensional microstructures

The growth rate of a 3 dimensional cell embedded in a cellular structure of

uniform boundary energy and mobility is given by the MacPherson-Srolovitz

equation [54]:

dV

dt
= −2πMΓ

(
L − 1

6
M
)

(A.1)

Where V is the cell volume, M and Γ are its boundary mobility and energy,

L is so called mean width of the cell, andM =
∑nl
i=1 li is the sum of the cell edge

length, running over the nl edges. For simplicity, we omit subscripts associated

with time or cell index. This equation assumes that the turning angles at the

cell edges are all at equilibrium and equal to π/3, as in the 2 dimensional case.

To account for heterogeneous boundary properties, the second right term

in parenthesis in Equation A.1 can be replaced by 1/ (2π)
∑nl
i=1 ξli, with ξ the

equilibrium turning angle measured at the cell edges (see [54, 55]). In a mean-

field environement, ξ is the same for all cell edges, and the growth rate is given

by:

dV

dt
= −2πMΓ

(
L − ξ

2π
M
)

(A.2)

When all boundaries have equal energy, ξ = π/3, and Equation A.2 reduces

to Equation A.1.

The mean width L can be calculated from formulas given in ref. [54]. It

takes a value of 4R for a sphere. It is possible to show that it is strictly above

4R for polyhedrons at constant volume, with R the volume equivalent radius.

Zhang et al. [56] found on a 3D microstructure obtained by diffraction contrast

tomography that the grain mean width follows on average:

L ≈ 5R (A.3)
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Drawing analogies between the MacPherson-Srolovitz equation and the Hillert

equation, they suggested the sum of edges lengths to follow a quadratic relation

with the volume equivalent radius. After rerranging the relation proposed in

the original publication to make it dependent on the cell radius [56]:

M≈ 6

(
3R+

16R2

9R̄

)
(A.4)

The work of Glicksman et al. [57], showing for some solids that ξM varies

roughly linearly with ξ, suggests by induction that M can be considered inde-

pendent of ξ. Finally, inserting Equation A.3 and Equation A.4 in Equation A.2,

and expressing growth rate in terms of the cell radius, one obtains:

dR

dt
=
MΓ

2R

(
a

(
3 +

16R

9R̄

)
− 5

)
(A.5)

Which is the same form as Equation 4 used for 2 dimensional microstruc-

tures. When boundary energy is uniform, a = 1 and Equation A.5 reduces to

the classical Hillert equation for 3 dimensional microstructures [35].

B. Generalized Laguerre function

A review of the generalized Laguerre polynomials and functions has been

written by Mirevski and Boyadjiev [58]. Laguerre functions are solutions of the

Laguerre differential equation with fractional coefficients. First, the binomial

coefficient with real arguments α and β is defined as [58]:

α
β

 =
Γ (1 + α)

Γ (1 + β) Γ (1 + α− β)
(B.1)

Where Γ is, for this particular equation, the gamma function. Laguerre

functions are expressed by the series expansion [58]:

L(α)
ν (x) =

ν + α

ν

 ∞∑
k=0

(−ν) (−ν + 1) ... (−ν + k − 1)

(α+ 1) (α+ 2) ... (α+ k)

(−x)
k

k!
(B.2)
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For ν = 1/2 and α = 1/2, the right term is reduced to:

L
(1/2)
1/2 (x) =

 1

1/2

 ∞∑
k=0

1

1− 4k2
(−x)

k

k!
(B.3)

In the simulations conducted for this work, the parameter κ taken as argu-

ment of the Laguerre function remained between 0 and 6. Figure B.11 shows

that the series has converged in the interval [0 6] for k interrupted around 50.

Other ways to calculate the function are to use the builtin Laguerre functions

existing in standard programming languages, or to use an abacus made from

one of the two previous options.

0 2 4 6 8
0

2

4

6

8
Matlab built-in function

Series expansion  k=50

Series expansion  k=49

Range of  values
in mean-field simulations

Figure B.11: Evolution of L
(1/2)
1/2

(
−κ2/2

)
as a function of κ. The series expansion is compared

to the Matlab built-in function.

C. Second derivatives of the energy and mobility laws

The second derivative of the Huang-Humphreys law (Equation 2) is ex-

pressed by:

µ′′ (θ) =
µcBη

θ2ηc
e−B(θ/θc)

η (
−Bηθ2η−2 + θηc (η − 1) θη−2

)
(C.1)

The second derivative of the Read-Schockley equation (Equation 1) is dis-
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continuous at θ = θc. It was choosen to express it as:

γ′′ (θ) =

−
γc
θcθ

if θ ≤ θc

0 if θ > θc

(C.2)

The effect of this discontinuity on the calculation of boundary energy is

negligible since γ′′ (θ) already converges towards 0 in its first section.
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