
HAL Id: hal-03491230
https://hal.science/hal-03491230

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Probabilistic regressor chains with Monte Carlo methods
Jesse Read, Luca Martino

To cite this version:
Jesse Read, Luca Martino. Probabilistic regressor chains with Monte Carlo methods. Neurocomput-
ing, 2020, 413, pp.471 - 486. �10.1016/j.neucom.2020.05.024�. �hal-03491230�

https://hal.science/hal-03491230
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Probabilistic Regressor Chains with Monte Carlo Methods

Jesse Reada,1, Luca Martinob

aLIX, Ecole Polytechnique, Institut Polytechnique de Paris, France
bDept. of Signal Theory and Communications, Universidad Rey Juan Carlos, Spain

Abstract

A large number and diversity of techniques have been offered in the literature
in recent years for solving multi-label classification tasks, including classifier
chains where predictions are cascaded to other models as additional features.
Chaining methods have often providing state of the art results, and the
idea of extending it to multi-output regression has already been trialed.
However, these ‘regressor chains’ have seen limited applicability, on account
of yielding relatively little predictive performance compared to individual
regression models, and also limited interpretability. In this work we identify
and discuss the main limitations of regressor chains, including an analysis
of different base models, loss functions, explainability, and other desiderata
of real-world applications. We develop and examine techniques to overcome
these limitations. In particular we present Monte Carlo schemes in the
framework of probabilistic chains. We show they can be effective, flexible
and useful in different areas. Overall, we also place regressor chains in
context among general multi-output learning with continuous outputs, and
in doing this shed additional light on the applicability of chaining to machine
learning tasks.

Keywords: multi-output regression, multi-label classification, regressor
chains, classifier chains, Monte Carlo methods, particle filters

1. Introduction

Multi-dimensional data is ever-more present in industrial and scientific
contexts. For example, multi-label classification has made a significant im-
pact in the machine learning literature over recent years, where data points

1Corresponding author,

Preprint submitted to Neurocomputing March 21, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0925231220308596
Manuscript_16e71c38671174165f34a06bbc31783e

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0925231220308596
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0925231220308596

y4y3y2y1

x5x4x3x2x1

(a) Independent models

y4y3y2y1

x5x4x3x2x1

(b) Chained models

Figure 1: The naive/independent approach (Figure 1a) vs chained models (Figure 1b) for
multi-output prediction. Each of the target labels (in this example, there are 4 outputs)
is learned by a base model, so each yj-node represents a model where its inputs are shown
as incoming arrows and prediction as an outgoing arrow. The class of base model depends
on the type of target variable.

are naturally associated with multiple outputs2. Rather than a naive ap-
proach of building one model per output, advanced methods can model
the outputs together, resulting in better predictive performance (and often
efficiency). Although the potential of individual models is periodically re-
vived under particular scenarios, the vast majority of literature proposes
joint modeling, and as a result show improvement in both predictive perfor-
mance and efficiency. A recent review of this area containing many useful
references, is given in [1].

An established method in multi-label classification is that of classifier
chains, where a model is trained for each label, but estimates of the other
models are used as additional features, in a cascaded chain along the tar-
get labels. This is exemplified (and contrasted to the naive approach) in
Figure 1.

This ‘chaining’ mechanism, although simple in its basic form, has proved
successful in multi-label classification and provided dozens of modifications,
extensions, and improvements, in the literature (see, e.g., [2, 3, 4, 5, 1, 6, 7]
and references therein). It is flexible, in the sense that the base model class
is a user hyperparameter, easily selected for different domains, and even
relatively simple base models (e.g., off-the-shelf logistic regression) lead to
greater predictive performance than if they had been used independently for
each label.

In view of its success in classification, we are motivated to more thor-
oughly investigate the use of chaining methods in the regression context,

2Distinguished from multi-class classification where a single output may take multiple
values, but only one such value is assigned per output

2

with continuous output variables. Although there have been instances of
application already to the regression context (note [8, 9, 10, 11, 12]), many
limits were shown in terms of functionality. Namely, the methods presented
were limited to greedy inference which represents only a small part of classi-
fier chains literature, rather than a generalizable probabilistic inference and
the effectiveness (including predictive performance), and wider application
was not yet widely explored. In some cases, predictive performance was not
noteworthy at all, was not greater that using independent classifiers, or such
a comparison was not shown. For example, in [9], good performance was
achieved with decision tree regressor base models in ensemble, but this was
not shown to be greater than corresponding ensemble of independent mod-
els. Again, this was also a greedy chain without providing a probablistic
interpretation.

After summarizing background work (Section 2), we provide a rigor-
ous discussion and development of probabilistic regressor chains, including
a survey of possible approaches (Sections 3 and 4). Following this, we ex-
tend findings to develop a sequential Monte Carlo scheme (Section 5). This
scheme allows sampling and evaluation of candidate paths through the tar-
get space, which is useful for many applications. We implement and test
our approaches on synthetic and real-world datasets involving multiple con-
tinuous outputs (Section 6), the results of which we reflect upon in detailed
discussion (Section 7). After looking at connections to related and potential
future work (Section 8) we draw conclusions and make recommendations
(Section 10).

2. Chain Methods

Given a dataset D = {(xi,yi)}Ni=1 of training instances xi ∈ RD coupled
with associated outputs3 yi ∈ Y ⊆ RL, we are interested building a model
that can output predictions corresponding to the L target variables (labels),
for any given input observation. In other words, given any x = [x1, . . . , xD]
our task is to produce ŷ = [ŷ1, . . . , ŷL], having previously observed D.

In the multi-output classification scenario [2, 3, 4, 13], each j-th output
takes some value yj ∈ {1, . . . ,Kj}. We may highlight the popular case of
binary outputs where each yi ∈ {0, 1}, and thus Y = {0, 1}L, which is known
often as multi-label classification). In the general case of continuous outputs,
i.e., multi-output regression – then each yj ∈ R, and thus Y = RL.

3In cases where it is not clear from context, we will denote xij as the value of the j-th
attribute of the i-th instance, and yij as the j-th output associated with this i-th instance

3

A naive approach is to simply build a separate model hj (a model class
of the user’s choice) for each target independently, such that

ŷ = [ŷ1, . . . , ŷL] = [h1(x), . . . , hL(x)] (1)

where each model hj has been built from training set {(xi, yij)}Ni=1, as a
traditional single-output classifier or regressor according to the domain of
the j-th target label (e.g., clearly a regressor if yij ∈ R). The exact class of
model (type of regressor) is largely dependent on preference and/or driven
by domain assumptions and constraints.

Particularly with regard to multi-output classification, a large volume of
literature proposes a plethora of models that out-compete this baseline by
modelling the dependencies among outputs; consider, e.g., [2, 3, 14, 4, 5, 13,
1] and references therein. The literature dealing explicitly with multi-output
regression is smaller in volume (consider, [8, 9, 10, 12]).

In the classification context, the classifier chains method has been pre-
sented, analysed, and incorporated into other methods [2, 3, 4, 13] and
under dozens of empirical studies provides state-of-the-art results. Due to
the relatively large amount of work in the literature on this topic, including
continued and recent interest (e.g., [15, 16] among others), we argue it is
worth studying this mechanism in the context of multi-output regression,
wherein we can call this method regressor chains.

In the simplest form of any chaining approach, the estimates of other
labels are used as feature inputs for the following classifier, thus augmenting
the input space along the chain. Given some test instance x, we may obtain
an estimate as

ŷ = [ŷ1, . . . , ŷL] = [h1(x), h2(x, ŷ1), . . . , hL(x, ŷ1, . . . , ŷL−1)] (2)

where a recursion takes placed based on ŷj = hj(. . .).
In the classification context, this is known as a classifier chain and,

specifically, one with greedy inference. Note that models hj can be estimated
individually and in parallel at training time, similarly to those in Eq. (1), and
– likewise – those models may be any class appropriate for each individual
target (a binary classifier for binary output, etc).

The estimate ŷ is just one possible path/label combination in space Y of
size 2L. The development of probabilistic inference in classifier chains [3, 5]
led to broadening inference into a search of this space, to select the best
according to a given metric, typically 0/1 loss, which implies a maximum

4

a-posteriori (MAP) estimate4, hence

ŷ = h(x) = argmax
y∈Y

P (y|x)

= argmax
y∈Y

L∏
j=1

P (yj |x, y1, . . . , yj−1), (3)

where distribution5 P (yj |x, . . .) is associated with the j-th model. This is
known as a probabilistic classifier chain. The need for a probabilistic inter-
pretation can be addressed by building such models, e.g., logistic regression.

Since the search space in Y in Eq. (3) is exponential with the number
of labels L, exhaustive inference (where the entire space of label combi-
nations is explored) is usually prohibitive. Therefore, one may consider
the search space as a probability tree, and conduct a tree search, where
P (yj |x, y1, . . . , yj−1) provides the outgoing branch weights from the node at
the end of path y1, . . . , yj−1. Figure 2 offers some visual intuition.

y3y2y1

x

x

0

0
0

0.5

10.5
0.2

1
0 0.288

0.9

10.1

0.8

0.4

1

0
0

0.4

1 0.2680.6
0.7

1
0

0.5

10.5

0.3

0.6

Figure 2: Probabilistic classifier chains where L = 3, yj ∈ {0, 1}: As a probabilistic
graphical model (left), and with two explored paths in the probability tree (right). Note
that the best path (in red, right) is not found by greedy inference. There are 2L possible
paths (Y = {0, 1}3). The label on each edge indicates P (Yj = 1| . . .); shown for explored
paths only.

Many search methods have been applied for this purpose (a survey is
given in [17]), for example, using Monte-Carlo sampling [4]. Using an
adapted notation and terminology (so as to refer to in later sections of
this work): this method takes M samples, m = 1, . . . ,M across the chain,

4Although configurations for other losses are also possible; see [3]
5Formally, we are talking about the full conditional distribution P (Yj |X = x, Y1 =

y1, . . . , Yj−1 = yj−1) and associated probability mass function denoted P (yj |x, . . .) ≡
P (Yj = yj |X = x, . . .) for reasons of brevity

5

and weighting each sample, as

y
(m)
j ∼ P (·|x, y(m)

1 , . . . , y
(m)
j−1) (4)

w
(m)
j = w

(m)
j−1 · P (y

(m)
j |x, y(m)

1 , . . . , y
(m)
j−1) (5)

where w
(m)
j is the weight of the m-th sample at the j-th label; supposing

w
(m)
0 = 1. An example is shown in Figure 2 where M = 2. A final prediction

is obtained as

ŷ = y(m∗) = argmax
y∈{y(m)}Mm=1

P (y|x) (6)

where m∗ = argmaxm∈{1,...,M}w
(m)
L (index of the maximum weight), and

where y(m) = [y
(m)
1 , . . . , y

(m)
L] is a complete sequence/combination of labels.

Note that complexity is determined by M ≪ 2L.
In following the maximum, taking a single path, we recover greedy in-

ference
ŷj = argmax

yj
P (yj |x, ŷ1, . . . , ŷj−1) (7)

across the chain, to obtain a single greedy estimate ŷ. This method in
particular can be applied in an off-the-shelf manner to the multi-output
regression context (e.g., [18, 8]). However, as we highlight and discuss in
the following section, even though the application is straightforward, there
are some major differences that affect the relative results they obtain (i.e.,
relative to individual models / non-chained methods).

3. The Poor Behavior of Regressor Chains

By poor behavior, we mean in particular that regressor chains do not ob-
tain out-of-the-box predictive performance that improves over independent
models. This is quite different from the context of classifier chains where
such improvement (over independent models) is widely reported. In this
section we study and elaborate on the factors behind this; i.e., why regres-
sor chains cannot be expected to outperform independent models without
particular considerations.

Applying greedy inference in chains in the case of regression is – exactly
as in classification – a case of each output simply being “plugged in” to the
following model as an additional feature. Recall that this simply means that
predictions ŷ1, . . . , ŷj−1 are treated as fixed observations (i.e., and not ran-
dom variables) when inferring yj . This greedy plug-in approach has been

6

trialed, e.g., in [8]. However, the results obtained do not justify this ap-
proach over independent regression models. Recent attention has resulted
in more competitive performance, e.g., [10, 12], although – as we have men-
tioned above (and will expand on in the following and later in Section 7) –
it was not exhaustively determined that such performance could not have
been obtained by independent counterparts. But aside from strong absolute
performance under squared error metrics, such as from these methods, there
are also other aspects to consider which motivate a probabilistic approach.
We now discuss the different reasons why off-the-shelf applications should
be approached carefully.

As can be shown by Eq. (2) above, a basic application of regressor chains
simply requires L regression models, trained with their respective extended
feature spaces. The method of least squares regression could be considered
a first choice, given its prevalence in the wider scientific literature, where a
vector of parameters θj represents each j-th model, such that ŷj = hj(x) =
θ⊤
j [x1, . . . , xD, ŷ1, . . . , ŷj−1] (supposing column vectors). For simplicity of

illustration, supposing single-dimensional input x and L = 2 outputs, we
observe that

ŷ2 = h2(x, ŷ1)

= θ⊤
2 [x, ŷj] = θ⊤

2 [x, θ1x] = θ2,1x+ θ2,2θ1x = x(θ2,1 + θ2,1θ1) (8)
= θ′x

i.e., earlier predictions ŷ1, . . . , ŷj−1 are superfluous in predicting ŷj ; and a
regressor chain only performs a series of linear transformations which can
naturally be represented as a single operation. This effect was also noticed
in [8].

The effect is similar even in the case where each input dimension xj is
observed only at time j; i.e., we estimate ŷj = h(x1, . . . , xj , ŷ1, . . . , ŷj−1).
Unfortunately prior labels ŷ1, . . . , ŷj−1 are still not strictly needed wrt ŷj
since all available information already comes from x1, . . . , xj directly via
earlier labels, as illustrated in Figure 3.

Let us consider how data may be generated. Given input instance x, two
outputs could be generated by a chain as follows:

y1 = µ1(x) + ϵ1(x)

y2 = µ̃2(x, y1) + ϵ̃2(x, y1)

≡ µ2(x) + ϵ2(x)

with mean function µj and error function ϵj for each label j.

7

y1 y2

x1 x2

Figure 3: Even when x2 arrives only at time j = 2, information can still be carried
forward from x1 (rather than via y1), thus making the label cascade superfluous wrt the
prediction ŷ2 as long as h(x) is well modeled.

Note that the third line is obtain via function composition: since y1 is
composed of functions of x, so is also y2. Specifically, we then see that since
both outputs are dependent on x and, in general, we may write,

y = µ(x) +Σ(x) (9)

noting how both mean and covariance functions are dependent on input x.
In Eq. (8), with a linear model, we see that correspondingly, there is no

need to model y1 if we are interested in y2 (and vice versa). This is often not
apparent in classifier chains, because a prediction for ŷ1 used as a feature
adds extra capacity into the model for predicting ŷ2 in the form of a non-
linear feature expansion (a base classifier is always a non-linear function so
as to map real-valued input into the range of y1 ∈ {0, 1}). And in that case
the reduction in Eq. (8) no longer holds (which is to say: we obtain better
results with a chain as opposed to independent models).

Thus far, it is clear that the base models of regressor chains should be in
some way non-linear, if regression chains are to be of any benefit. But there
is another fundamental difference of chains in the classification vs regression
case: the evaluation metric.

In the regression context, we start naturally with the most popular choice
for regression is certainly a squared error such as the mean squared error
(MSE) loss criterion (considered also in the earlier work on regressor chains
of [8, 9] among others). Under random variables Y = Y1, . . . , YL, the mini-

8

mum MSE (MMSE) estimator under observation x is

µ̂ = E[Y1, Y2, . . . , YL|x]

= E[Y |x] =
∫

yp(y|x)dy (10)

=

∫
y
p(y,x)

p(x)
dy

=

∫
y
p(y1|x)

∏L
j=2 p(yj |x, y1, . . . , yj−1)p(x)

p(x)
dy (11)

∝
∫

y · p(y1|x)
L∏

j=2

p(yj |x, y1, . . . , yj−1)dy.

requiring the full conditional densities p(·|x, y1, . . . , yj−1) (homologous to
the probability functions P (·|x, y1, . . . , yj−1) of Eq. (3)). Note that µ̂ =
[µ̂1, . . . , µ̂L] is a vector of L integrals, where we see that each marginal

µ̂j =

∫
yjp(y|x)dy

=

∫
yjp(yj |x)dyj (12)

decouples from Eq. (10), i.e., each element µ̂j = E[Yj |x] is independent
of other elements µ̂1, . . . , µ̂j−1, µ̂j+1, . . . , µ̂L and they are not needed in this
marginal estimation. This is similar to the case of Hamming loss in classifier
chains: the risk minimizer shows decoupling [5] and precisely we expect
fewer gains using classifier chains (even if we do obtain some, according to
the non-linearity, as mentioned above and, e.g., in [19]).

More generally, we are not only interested in obtaining point-wise esti-
mators µ̂j , but we are also interested in extracting all the statistical infor-
mation encoded within the posterior p(y|x), such as uncertainty measures,
credible intervals, quantiles, and so on. Thus, our goal is to approximate
complex integrals involving this posterior

p(y|x) = p(y1, y2, . . . , yL|x) = p(y1|x)
L∏

j=2

p(yj |x, y1, . . . , yj−1) (13)

Having an estimate of the shape of p then allows us to estimate other
values aside from the expected value Eq. (10), such as the median or the
mode. We remark again that classifier chains typically predicts a mode in

9

the form of a MAP estimate, easily tackled in the scenario of a probabilistic
classifier chain.

We can illustrate with a synthetic toy example. Following from Eq. (9),
we generate a synthetic dataset (henceforth denoted Synth) where x ∼
N (0, 1) and

y ∼ N (µk,Σ)

where

µ =

{
[+1,+1] if k = 1

[−1,−1] if k = 0
, and Σ = I20.1. (14)

and k ∼ {0, 1} is drawn uniformly and randomly. This dataset thus has two
labels, y ∈ R2.

Note that x is ignored here; but later we look at a more complex case
where mean and variance functions are dependent thereon. Figure 4 illus-
trates the generating distribution; showing the two distinct modes; and the
output of different kinds of estimators.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
y1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y 2

(a) Generating joint distribution

1 2
j

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y j

MAP
MAE
MSE

(b) Path view of estimators

Figure 4: The generating distribution of the Synth data; viewed as (a) joint distribution
over two labels showing the surface over y = [y1, y2], and (b) equivalent path view showing
y1, y2 in sequence vs index j on horizontal axis. Each is equally probable given x. Idealized
MSE, MAP and MAE (mean absolute error) estimates (supposing knowledge of the true
density) are shown in black, yellow, and red, respectively.

We remark that µ in Eq. (9) and Eq. (14) is the mean of the k-th local
mode, whereas the estimate µ̂ of Eq. (10), is an estimated global mean of the
distribution. This is an important distinction since, although in a Gaussian
distribution the mean and mode is equivalent, this does not hold generally,
and to estimate a mode in a bimodal distribution – such as in Synth – we
require a model of posterior joint p(y|x) as in Eq. (13).

10

Even when using the chain rule to factorize p(y|x) this joint into its
components, we find that the integrals are generally intractable; seen al-
ready in Eq. (11). This is unlike in probabilistic classifier chains where
each P (yj | . . .) is a discrete distribution, hence producing a finite probabil-
ity tree (as in Figure 2) that one can explore with tree-search methods. In
continuous multi-dimensional output space, there is no such tree.

One more issue is worth attention: It is well-known that classifier chains
can suffer from error propagation [20] where an initial poor estimation raises
the possibility of a cascade of poor predictions down the chain, particularly
with greedy inference. In regressor chains this effect can be relativel much
worse. In multi-label classification at most one extra bit of wrong infor-
mation is propagated at each step of the chain, but in regressor chains an
estimate may degenerate rapidly and and become progressively lost in Rj

space as we propagate down the chain (j → L). This strongly motivates a
study of probabilistic chains, as we address in the following section, since
it is known that in the classification case, iterative inference mitigates error
propagation [3, 4].

We have thus far identified the main issues confronting the successful
application of greedy regressor chains: linear regression models serving no
additional benefit within a chaining mechanism, typical loss functions (e.g.,
MSE) not requiring joint distribution estimation, and thus neither the chain
mechanism, and also a potentially catastrophic error propagation. Having
identified the lacking in regressor chains, as compared to their classification
counterpart, in the following section we develop the idea of probabilistic
regressor chains to tackle these challenges, and then we build on this to
suggest new methods.

4. Probabilistic Regressor Chains with Monte Carlo Search

As discussed above, probabilistic chains offer several mechanisms to out-
perform independent models, such as greater flexibility wrt loss metric (and
the possibility to minimize 0/1-loss), and inference in the form of efficient
tree-search. However, in the regressor chains context there is no inherent
probability tree to sample from. We propose to use Monte Carlo methods
to build such a tree. The idea is to take samples y(m)

j ∈ R and use them as
nodes in the tree, assigning an appropriate payoff (weight) to each branch,
and to each full path. This implies two requirements: First, to be able to
draw samples from the full conditional,

y
(m)
j ∼ p(·|x, y(m)

1 , . . . , y
(m)
j−1), (15)

11

And secondly, to be able to evaluate each sample to provide a payoff,
i.e., to assign a branch weight and also, a path weight. Branch weights are
given by

w
(m)
j = w

(m)
j−1 · p(y

(m)
j |x, y(m)

1 , . . . , y
(m)
j−1). (16)

This corresponds approximately to Eq. (4) and Eq. (5). As in that case,
due to the recursion on wj−1, it means that wL carries the full path weight;
we could denote w(m) = w

(m)
L = p(y(m)|x) =

∏L
j=1 p(y

(m)
j |y(m)

1 , . . . , y
(m)
j−1,x)

from root to a leaf. To obtain a categorical distribution per level/label as
in the discrete case, we can simply consider normalized weights w̄

(m)
j =

w
(m)
j /

∑
mw

(m)
j , such that

∑
m w̄

(m)
j = 1 (noting that the summation over

samples/branches, per j-th level of the tree).
Having this tree (effectively a set of weighted samples) is useful to min-

imize different cost functions and their respective estimators, for example a
MMSE estimate,

ŷ = µ̂ =

M∑
m=1

y(m)w̄(m) (17)

or MAP estimate,

ŷ = ŷ(m∗) where m∗ = argmax
m

w(m) (18)

which is the homologue of Eq. (6) in the classification case (recall, w(m) =

w
(m)
L). We remark that, strictly, this is only a MAP estimate in the limit,

as M → ∞, due to the mode being an infinitesimally small range, i.e., a
point.

Generally, given observation x, a prediction may be given as path

ŷ = g
(
{y(m),w(m)}Mm=1

)
(19)

for appropriate function g over the tree/weighted samples6.
Figure 5 shows an example illustration of using the weighted samples to

form a probability tree where each complete (length-L) path from root to
leaf representing a sample y(m) ∈ RL, with its associated weights.

To simplify the notation of the following equations, for the remainder of
this section we denote

pj := p(yj |x′
j) := p(yj |x, y1, . . . , yj−1).

6Although individual branch costs are not always necessary when path cost w(m) ≡
w

(m)
L is sufficient, we nevertheless include it so as to depict a full tree

12

0.4

0.6

0.3 0.5

0.9 0.90.1

0.7

y
(1,2)
2 y

(3)
2

y
(3)
1y

(1)
1 y

(2)
1

y
(1)
3 y

(2)
3 y

(3)
3

Figure 5: A hypothetical tree through output space, given M = 3 samples across L = 3
continuous target labels. Nodes correspond to samples y

(m)
j (the m-th sample at the j-th

label) and edges show p(y
(m)
j |x, y(m)

1 , . . . , y
(m)
j−1) (from level/label j − 1 to j). According

to this, the full path weights are w = [w
(1)
3 , w

(2)
3 , w

(3)
3] = [0.162, 0.216, 0.315] for the three

possible paths. The dashed line indicates resampling (covered in Section 5) and is not a
branch and has no weight associated.

The fundamental consideration is how to model each local density pj , and
how to draw samples from it, while taking into account the aforementioned
issues. Let us now look at suitable methods that can be used to this end,
thus, with the combination of Monte Carlo sampling, lead to varieties of
probabilistic classifier chains. Later, in the following section, we further
develop this idea into a particle filter (sequential Monte Carlo) method.

4.1. Discretization and classification
A simple approach is to discretize the output space of the problem and

proceed from a classification perspective. This makes sense, since classifier
chains are easy to justify, and a wealth of methods available. Of course not
all problems are suited to such discretization, but in some areas it can be
effective and is common practice, for example in the domain of reinforcement
learning (see, e.g., [21]).

In this case we evaluate the pdf as

pj = p(yj |x′
j) = P (yj ∈ S(k)j |x

′
j)⇔ P (Yj = k) for bins S(k)j ⊂ R,

a multi-class classification problem, solvable under a classifier chain over
discrete labels and hence with no need to deal with integrals. Clearly it is

13

fundamental to choose a suitable set of bins S(k) which define the finite set
of class labels for each base model.

We can sample from pj simply by selecting bin k with probability |Sk|/N
(the proportion of the training set in that bin) and then returning the mean
of samples in this bin.

4.2. Bayesian regression
We may elaborate pj as a Bayesian linear regression model:

pj = N (yj |µj , σj) (20)

with sufficient statistics µj and σj . Sampling from a Gaussian is straightfor-
ward, however, it based on a linear combination of µj = w⊤

j x′
j and provides

a unimodal Gaussian-shaped estimate that is not suitable for multi-modal
data.

4.3. Variational inference
Wemay approximate each pj with some other distribution q(yj |θ) ≈ pj as

in variational Bayesian methods, which turns inference into the optimization
problem

θ∗ = argmin
θ

KL(q(yj |θ) ∥ pj)

minimizing Kullback-Leibler divergence (KL); see, e.g., [22]. We can then
sample y(m)

j ∼ q(·|θ) as an approximation to y
(m)
j ∼ pj . Unlike Monte Carlo

methods, this approach does not provide an exact model of pj in the limit
(given sufficient samples).

4.4. Kernel regression and density estimation
Noting Bayes rule,

pj = p(yj |x̃′
j) =

p(yj , x̃
′
j)

p(x̃′
j)

(where x̃′
j is our query instance) we may model the target density using

a non-parametric method such as a Parzen window (i.e., a kernel density
estimate). Given some kernel function Kγ (parametrized by γ),

p(yj , x̃
′
j) =

1

N

N∑
i=1

Kγ(x̃
′
j ,x

′
ij)Kγ(yj , yi) and p(x̃′

j) =
1

N

N∑
i=1

Kγ(x̃
′
j ,x

′
ij)

14

Sampling y(m)
j ∼ p(·|x′

j) can be carried out for certain kernels. For exam-
ple, under the Gaussian kernel (which we use in our implementations later):
one may choose an index i with probability proportional to Kγ(x̃

′
j ,x

′
ij) and

then draw from
y
(m)
j ∼ N (yij , γ)

As a lazy non-parametric method, the training set must be recalled and
processed for each test example, and for each j = 1, . . . , N , which implies
pairwise comparisons and quadratic complexity wrt number of examples,
unlike the density based on the discretization in Section 4.1.

5. Sequential Monte Carlo Regressor Chains

Experimental results in Section 6 show that the Monte Carlo regressor
chains method described above can be effective. One potential limitation of,
however, is that it relies on the approximation pj of the conditional densities
being suitable for density estimates (evaluation) as well as for obtaining
samples. This can restrict model choice considerably in many contexts, for
example with high-dimensional input observations or particular restrictions.

In this section we build a probabilistic regressor chain method where sam-
pling and evaluation functions are separate: Particle filter regressor chains
(PFRC). This method is inspired by the particle filter methodology (PF, see,
e.g., [23]), however we make some particular considerations and adaptations
for its application as a probabilistic regressor chain.

5.1. The particle filter
A particle filter consists of a model

M :

{
f(yj |yj−1)
ℓ(xj , yj)

(21)

running over time-steps j = 1, . . . , L, encompassing a transition function
and observation function, f and ℓ, respectively. See [23] for an in-depth
introduction and survey7.

7For readers already familiar with the literature on particle filters and continuous state-
space models, it is important to remark that we denote x as the observation and yj as
the label or ‘state’ label at time j. This may contrast with standard convention for a
state-space model where x is the state

15

The vanilla particle filtering method for obtaining a marginal MMSE
estimation for yj as

y
(m)
j ∼ f(·|y(m)

j−1) (22)

w
(m)
j = w

(m)
j−1 · ℓ(y

(m)
j ,xj) (23)

ŷj =

M∑
m=1

w̄
(m)
j y

(m)
j (24)

where, recall (as in Eq. (17)) that w̄
(m)
j denotes normalized weights, such

that
∑

m w̄
(m)
j = 1. The instance xj is some observation that we observe at

step/label j (implying that the test instance is x = [x1, . . . ,xL]).
We highlight the strong connection to Eq. (4)–(6) in Monte Carlo classi-

fier chains, at the same time pointing out the use of two separate functions,
f and ℓ, in this context.

There are important differences from typical applications of particle fil-
ters, namely 1) in our case the model is learned from training data (i.e.,
no domain knowledge assumptions); 2) a single observation x is relevant to
an entire sequence of states y1, . . . , yL (an isotemporal model); and 3) the
full cascade can be considered rather than the standard single-order Marko-
vian model (as developed in the following). In brief, at label j we consider
x′
j = x, y1, . . . , yj−1 rather than only xj and yj−1 as in the single-Markov

case.

5.2. Training
In our method, the training phase consists of learning the two functions;

the transition function fj and observation function ℓj , for each step in the
chain j = 1, . . . , L. Unlike the vanilla particle filter model described above,
we consider the general case of taking into account the full chain history wrt
each j.

For fj , any suitable model of the density can be considered from which
we are able to take samples

yj ∼ fj(·|x, y1, . . . , yj−1)

(one may consider the methods given in sections 4.1–4.4). Optionally, to
speed up the training process, we may consider only the marginal depen-
dence yj ∼ fj(·|yj−1).

16

Each function ℓj should provide us with an evaluation of the underlying
density up to some normalizing constant, i.e.,

ℓj(yj ,x, y1, . . . , yj−1) ∝ p(yj |x, y1, . . . , yj−1)

Here we have more flexibility in function class, but accuracy is particularly
important at this step. There is no need to impose a particular choice,
as in the spirit of the chaining methodology we may consider the function
classes a user-defined hyperparameter. We address several options in our
experimental investigations in Section 6.

5.3. Inference
Algorithm 1 elaborates our Sequential Monte Carlo (SMC) scheme which

is carried out on a test instance x. We also need to specify the number of
samples/particles M , depending on accuracy needs and computational con-
straints, a parameter η determining the threshold for particle degeneracy,
and a function g which provides a desired estimator over the weighted sam-
ples; namely we can approximate the complex integrals involving of type
Eq. (10) which represents a MMSE estimator, or other estimations such as
the mode; recall, e.g., Eq. (17) and Eq. (18). We assume that the required
functions have been provided by the training process.

The effective sample size (ESS) measurement decides when to carry out
a resampling step and thus prevent sample degeneration (i.e., error propa-
gation along the chain). Either

ÊSS(w̄) =
1∑M

m=1 w̄
2
m

, or ÊSS(w̄) =
1

max w̄m

is typically appropriate [24], mapping a set of normalized weights to a scalar
output indicating degeneracy, where lower values indicate greater degener-
ation and correspondingly greater risk of error propagation. The parameter
η is a threshold on this value to determine if resampling is carried out, on
a scale from η = 0 (never) to η = 1 (always). Resampling itself consists
simply of drawing M samples from a discrete distribution such that item
y
(m)
j is taken with probability w̄

(m)
j (sampling with replacement).

The Markov Chain Monte Carlo (MCMC) / adaptive importance sam-
pling (AIS) step (line 12) of the algorithm is not strictly necessary, but
may be useful in cases if the sequential scheme is struggling; a Metropolis-
Hastings variety of AIS based on [25] is given in Algorithm 2, which can be
carried out following the resampling proceduce at at any j-th step of the

17

algorithm. After K iterations of this algorithm, it produces a final set of
samples.

Note that in both Algorithm 1 and Algorithm 2 we make multiple use
of the notation 1 : M (or 1 : L) to indicate a vector, e.g., w(1:M)

j = wj =

[w
(1)
j , . . . , w

(M)
j]; we do this to simplify the pseudocode without creating

ambiguity as to the dimensionality of the vector.

Algorithm 1 Sequential Monte Carlo for Probabilistic Regressor Chains
1: procedure predict(x,M, η ∈ [0, 1], g)
2: Obtain models ℓ1:L, and f1:L from training stage
3: Set w(m)

0 = 1
M for all m.

4: for j = 1, . . . , L do
5: for m = 1, . . . ,M do
6: y

(m)
j ∼ f(yj |y(m)

1 , . . . , y
(m)
j−1) ▷ Draw sample

7: w
(m)
j = w

(m)
j−1

ℓ(y
(m)
j ,x,y

(m)
1 ,...,y

(m)
j−1)

f(y
(m)
j |y(m)

1 ,...,y
(m)
j−1)

▷ Compute weight

8: Ẑ =
∑M

m=1w
(m)
j

9: Set w̄(m)
j = 1

Ẑ
w

(m)
j for all m ▷ Normalized weights

10: if ÊSS(w̄
(1:M)
j) ≤ ηM then

11: ỹ
(1:M)
j ∼ {y(1:M)

j ; w̄
(1:M)
j } ▷ Resample

12: ỹ
(1:M)
j ←Mcmc/Ais

(
x, ỹ

(1:M)
j

)
▷ Optional, see Alg. 2

13: Set y(1:M)
j ← ỹ

(1:M)
j ▷ Set new particles

14: Set w(m)
j ← 1

M Ẑ for all m ▷ Reinitialize weights
return ŷ = g

(
y(1:M),w(1:M)

)
▷ Prediction∗, see Eq. (19)

∗where y(m) = [y
(m)
1 , . . . , y

(m)
L

] is a full path across L labels; thus y(1:M) are M such paths.

Figure 6 provides further intuition. The circles refer to conditional sam-
ples (as drawn in line 6 of Algorithm 1), and the relative size is indicative
of particle weight (computed at line 7). Recall that the form of f and ℓ is
determined by the base classifiers. Different estimates are shown (according
to function g(·, ·) in the final line of Algorithm 1), corresponding to Eq. (17)
and Eq. (18), respectively. Training points and their distribution are shown
in gray. Figure 7a shows the corresponding path view of all y, again with
inference samples and training samples (in the same colors as Figure 6); and
–again– the different estimates.

Recall that, given a model that approximates pj meeting both require-

18

x

1.0

0.5

0.0

0.5

1.0

y 1

{x, y(m)
1 }M

m = 1

{x(i), y(i)
1 }N

i = 1

0.2 0.4

p(y)
p(y|x)

y1

1.0

0.5

0.0

0.5

1.0

y 2

{y(m)
1 , y(m)

2 }M
m = 1

yMSE

yMAP

{y(i)
1 , y(i)

2 }N
i = 1

0 2

p(y)
p(y|x)

x

1.0

0.5

0.0

0.5

1.0

y 1

{x, y(m)
1 }M

m = 1

{x(i), y(i)
1 }N

i = 1

0.0 0.5

p(y)
p(y|x)

y1

1.0

0.5

0.0

0.5

1.0
y 2

{y(m)
1 , y(m)

2 }M
m = 1

yMSE

yMAP

{y(i)
1 , y(i)

2 }N
i = 1

0.0 0.5

p(y)
p(y|x)

x

1.0

0.5

0.0

0.5

1.0

y 1

{x, y(m)
1 }M

m = 1

{x(i), y(i)
1 }N

i = 1

0 1

p(y)
p(y|x)

y1

1.0

0.5

0.0

0.5

1.0

y 2

{y(m)
1 , y(m)

2 }M
m = 1

yMSE

yMAP

{y(i)
1 , y(i)

2 }N
i = 1

0 1

p(y)
p(y|x)

Figure 6: Illustration of Monte Carlo regressor chains; inference on the Synth data (de-
scribed above in Section 3). For a given test instance x, samples (shown in magenta) are
drawn across the chain, y(m)

1 ∼ f1 (left) and y
(m)
2 ∼ f2 (right) where circle size ∝ w̄

(m)
j .

The density estimate is shown in the right of each figure. Training points xi,yi are shown
in grey. The function class (i.e., base model) used is Bayesian regression (top), discretiza-
tion (mid); kernel regression/density estimation (bottom) – all described in Section 4.
.

19

Algorithm 2 Parallel Metropolis-Hastings (MH) Chains
1: procedure Mcmc/Ais(x, ỹ(1:M)

j)
2: Use proposal function q

3: Let ỹ(1:M)
j,0 ← ỹ

(1:M)
j

4: for m = 1, . . . ,M do
5: for k = 1, . . . ,K do
6: y′j ∼ q(y|y(m)

j,k−1) ▷ Draw from proposal q
7: Let pj(·) = pj(·|x, ỹ(m)

1 , . . . , ỹ
(m)
1:j−1)

8: α = min

[
1,

pj(y
′
j)q(y

(m)
j,k−1|y

′
j)

pj(y
(m)
j,k−1)q(y

′
j |y

(m)
j,k−1)

]
9: y

(m)
j,k ←

{
y′j with probability α

y
(m)
j,k−1 with probability 1− α

return [ỹ
(1)
j,K , . . . , ỹ

(M)
j,K]

j = 1 j = 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

y j

{yi}N
i = 1

{y(m)
i }M

m = 1
y|x
yMSE

yMAP

p(yj|x)

(a) Synth data, ŷ = [ŷ1, ŷ2]

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

2

1

0

1

2

y j

{yi}N
i = 1

{y(m)
i }M

m = 1
y|x
yMSE

yMAP

yMAE

p(yj|x)

(b) Andro data, ŷ = [ŷ1, ŷ2, . . . , ŷ6]

Figure 7: Samples viewed as paths (for Synth (a) and Andro (b)) along the chain, from
single test example x. The approximation of each distribution p1, . . . , pL is shown hori-
zontally at respective ticks j = 1, . . . , L. Note that modal estimates cannot be made under
MSE. The samples from our method are not guaranteed to be the correct mode/prediction
(which is shown in black), but nevertheless are likely paths, according to the training data.

20

ments for sampling and evaluation, then line 7 of Algorithm 1 can be sim-
plified to the simple Monte Carlo approach described above, in particular:
Eq. (15) and Eq. (16).

6. Experiments

6.1. Methods and Implementation
In this section we empirically test the approaches we have identified, dis-

cussed, and developed above; that is the Monte Carlo methods (MCRC) dis-
cussed in Section 4, as well as further developed as a Particle Filter method
(PFRC) in Section 5. We compare these methods to independent regression
models (IR), standard regressor chains with greedy inference (RC), under
different configurations, including different base regression models.

For convenience, Table 1 summarizes the methods and their configura-
tions, with an abbreviation key as used in the results below. Each method
takes some base model, which in turn may involve their own hyperparame-
ters. Recall that the PFRC approach takes two base models, one is used for
sampling and the other for weighting – not necessarily from the same model
class. When base-model hyperparameters are indicated as a set, the best of
the set was selected under 5-fold internal cross validation (on each training
split). If not explicitly stated, then default parameters are used, according
to the implementation of each method.

IR and RC are implemented in the well-known Scikit-Learn framework8.
We implemented our novel contributions using the Scikit-Multiflow frame-
work9 [26]; which is based on Scikit-Learn.

We used a standard laptop machine (2.60GHz CPUs, with 8GB RAM)
for experiments. We set DNF for any kernel methods on datasets with
more than 1000 instances, as computational resources were insufficient. This
highlights one of the main limitations of kernel methods as a base classifier
– in contexts of larger datasets.

We recorded the best hyperparameters selected per dataset per base clas-
sifier. However, as there is no particular pattern or interesting conclusion to
be drawn from these (a fairly event distribution among the possible values),
so we do not discuss further.

8https://scikit-learn.org
9https://scikit-multiflow.github.io/; prior to publication, code is at https://

bitbucket.org/jmread/probabilistic_regressor_chains/src/master/

21

Table 1: Methods compared in the experiments. Base models f (and ℓ) are shown below.
In the case of discretization, the classifier is treated as a hyperparameter h, being one
of: extra random trees (ET), logistic regression (LR), or multi-layer perceptron with two
hidden layers of 30 units each (MLP). Any parameters not explicitly mentioned are default
as per Scikit-Learn.

Key Method
IRf Independent Regression models
RCf Regressor Chains (greedy inference)
MCf Monte Carlo Regressor Chains MCRC (M = 100, η = 0.1)
PFℓ

f Particle Filter Regressor Chains PFRC (M = 100, η = 0.1)
Key Base regression model
B Bayesian Regression
K Kernel Regression (Gaussian Kernel, γ ∈ {0.01, 0.1, 1, 10, 100})
D Discretization k ∈ {20, 30, . . . , 60}, h ∈ {ET, LR,MLP}

6.2. Datasets
We compared methods on the real-world sets described and referenced

in [9]10; covering a number of real-world applications involving predicting
the multi-components of sea-water, residential buildings, concrete pouring,
and natural resources; i.e., a variety of problem domains. All outputs are
standardized.

We also included in the experiments the synthetic dataset Synth de-
scribed earlier in Section 3 (recall in particular Figure 4). And additionally
we developed a more complex dataset, for simulating paths through an urban
environment: Traffic. This was inspired by the real-world data gathered for
and treated in [27], but in this case considering a continuous output space.

In Traffic, a prediction ŷ = [ŷ1, . . . , ŷL] corresponds to a path (i.e., tra-
jectory, or route) that a traveler is estimated to take, having observed noisy
observation x. The particular assumption here is that it is important to es-
timate paths that fall within appropriate transportation axes. For example,
a bus does not pass through a river but over one of the bridges that cross
it. This encourages the prediction of a mode (near a commonly traversed
path), rather than a mean estimator (average path).

10Available online: http://mulan.sourceforge.net/datasets-mtr.html

22

Given representation x ∈ R3, each output vector is generated as follows:

µj ∼ ρj(·|x, y1, . . . , yj−1) ▷ select one of K modes µj ∼ [µ1, . . . , µK]

ϵj ∼ ϕj(·|x, y1, . . . , yj−1) ▷ deviation of yj from mode µj

yj = µj + ϵj

for j = 1, . . . , L, where ρj , ϕj are models based on those [27]; sufficient
to generate realistic mobility among modes. And the K modes are pre-
generated as a random transport graph. Notice that covariance among out-
puts varies according to input x (as in the general case of Eq. (9)). Figure 8
illustrates a subset of data generated under this scheme, with L = 4, but
for experiments (where we denote Traffic) we set L = 30 and N = 10 000
in experiments. Multiple dimensions per real timestep (e.g., position coor-
dinates) are easily considered without loss of generality, since there is no
explicit time order in {1, . . . , L} to the chain in our methods (chain order is
discussed in Section 9.1).

7. Results and Discussion

In this section we present and discuss empirical results. Namely, our first
goal is to demonstrate the performance and behavior of of classifier chains
in general, and specifically to the developments in this work. Secondly, we
investigate the effectiveness of our proposed methodologies; both in terms
of acceptable performance, and potential applicability.

Results are shown in Tables 2–3, respectively for the following loss met-
rics: mean squared error,

MSE =
1

N

N∑
i=1

L∑
j=1

(yij − ŷij)
2

and the uniform cost function,

UCF =
1

N

N∑
i=1

{
0 if ∥ŷi − yi∥2 < δ

2

1 otherwise

such that a prediction ŷ will incur 0 loss if it falls area within δ of the true
path y (we set δ = 0.1), and 1 otherwise.

Averaged results over 10-fold cross validation are provided in Tables 2
and 3 for MSE and UCF, respectively, under all datasets, for the methods
considered in Table 1. Note that numbers in the tables are set in bold if

23

y1

y 2

y2

y 3

y3

y 4

1 2 3 4
yj

j

y
RCB

MCB

16 18 20 22 24 26 28

16

18

20

22

24

26

28

30

y
RC
MC

Figure 8: A subset of the generated Traffic dataset (N = 100, L = 4). The top row of
plots shows the data; yj vs yj+1 for j = 1, 2, 3. The centroids µk of local modes are shown
in red. Note the high non-linearity of the distributions and also varying density. At the
bottom left is a corresponding path-plot (comparable to those in Figure 7), and bottom
right shows the same paths cast into a 2-dimensional map such that path y1, y2, y3, y4
becomes a line from point (y1, y2) to (y3, y4). Training data is shown in black, alongside
some true y and two example estimates; our Monte Carlo method (MC) and baseline
regressor chains (RC) – which we see falls outside of commonly-traversed paths.

they are the best value in each row (per dataset), however results are then
rounded to two decimal places for display, so minor differences may not be
visible.

It is easy to confirm that greedy regressor chains (RC) shows little to no
advantage against independent regression models (IR) when a linear base
model is used (only a small exception under the Andro dataset) by compar-
ing RCB and IRB (recall, B denotes Bayesian regression – a linear model
in this case). These findings are in line with the analysis so far. Models
for classification involve an inherent non-linearity (such as for example the
sigmoid function in logistic regression) which adds predictive power via the
chain structure, leading to good performance of these methods, and a non-

24

Table 2: Results of 10-fold cross validation, under MSE.

Dataset [L] IRB IRK RCB RCK MCB MCD MCK PFB
D PFB

K

synth [2] 1.05 1.05 1.05 1.10 1.03 1.07 1.08 1.05 1.06
traffic [30] 0.31 DNF 0.30 DNF 0.31 0.03 DNF 0.12 DNF
andro [6] 0.64 0.27 0.53 0.26 0.54 0.41 0.36 0.55 0.49
atp1d [6] 0.18 0.56 0.19 0.57 0.19 0.18 0.28 0.23 0.27
atp7d [6] 0.30 0.70 0.31 0.70 0.32 0.27 0.64 0.40 0.64
edm [2] 0.59 0.45 0.59 0.43 0.60 0.64 0.53 0.58 0.82
enb [2] 0.10 DNF 0.10 DNF 0.10 0.02 DNF 0.02 DNF
jura [3] 0.38 0.33 0.38 0.33 0.38 0.37 0.48 0.40 0.86
oes10 [16] 0.13 0.84 0.14 0.84 0.14 0.31 0.30 0.50 0.29
oes97 [16] 0.19 0.84 0.19 0.85 0.19 0.43 0.31 0.46 0.31
osales [12] 0.55 DNF 0.55 DNF 0.56 3.55 DNF 2.99 DNF
rf1 [8] 0.34 DNF 0.36 DNF 0.36 0.10 DNF 0.99 DNF
rf2 [8] 0.19 DNF 0.19 DNF 0.19 0.10 DNF 0.10 DNF
scm1d [16] 0.15 DNF 0.15 DNF 0.15 1.08 DNF 1.09 DNF
scm20d [16] 0.41 DNF 0.41 DNF 1.01 1.01 DNF 1.10 DNF
sf1 [3] 1.00 1.00 1.00 1.01 1.10 2.12 1.10 2.26 1.10
sf2 [3] 0.94 DNF 0.94 DNF 1.09 4.06 DNF 4.22 DNF
slump [3] 0.49 0.42 0.49 0.42 1.14 1.37 1.19 1.03 1.08
wq [14] 0.91 DNF 0.91 DNF 1.11 1.10 DNF 1.11 DNF
Avg Rank 2.89 4.30 2.84 5.50 4.47 4.11 5.90 5.00 6.10

25

Table 3: Results of 10-fold cross validation, under UCF (δ = 0.1)

Dataset [L] IRB IRK RCB RCK MCB MCD MCK PFB
D PFB

K

synth [2] 1.00 1.00 1.00 1.00 1.00 0.56 0.55 0.62 0.62
traffic [30] 0.96 DNF 0.95 DNF 0.94 0.31 DNF 0.15 DNF
andro [6] 1.00 0.71 0.96 0.69 0.97 0.73 0.77 0.94 0.94
atp1d [6] 0.54 0.46 0.55 0.46 0.68 0.43 0.54 0.68 0.77
atp7d [6] 0.83 0.51 0.83 0.51 0.87 0.32 0.51 0.66 0.74
edm [2] 0.89 0.67 0.87 0.63 0.87 0.55 0.42 0.93 0.53
enb [2] 0.22 DNF 0.22 DNF 0.22 0.08 DNF 0.27 DNF
jura [3] 0.73 0.71 0.73 0.70 0.74 0.69 0.72 0.82 0.91
oes10 [16] 0.94 0.93 0.94 0.93 0.99 0.96 1.00 0.98 1.00
oes97 [16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
osales [12] 0.97 DNF 0.97 DNF 1.00 1.00 DNF 1.00 DNF
rf1 [8] 0.45 DNF 0.46 DNF 0.75 0.02 DNF 0.98 DNF
rf2 [8] 0.36 DNF 0.36 DNF 0.59 0.02 DNF 0.13 DNF
scm1d [16] 0.95 DNF 0.95 DNF 1.00 1.00 DNF 1.00 DNF
scm20d [16] 1.00 DNF 1.00 DNF 1.00 1.00 DNF 1.00 DNF
sf1 [3] 0.43 0.43 0.43 0.40 0.80 1.00 0.18 1.00 0.49
sf2 [3] 0.32 DNF 0.32 DNF 0.83 1.00 DNF 1.00 DNF
slump [3] 0.82 0.70 0.85 0.71 0.99 0.99 0.95 0.81 0.94
wq [14] 1.00 DNF 1.00 DNF 1.00 1.00 DNF 1.00 DNF
Avg Rank 3.53 3.20 4.11 3.10 5.58 3.37 4.10 5.42 6.30

26

linearity is therefore also needed for chaining to obtain such an advantage
in the regression scenario.

We do not need to discuss the power of linear vs non-linear modeling for
regression, as this is an elementary concept, but it is particularly interesting
to observe how well regressor chains with a non-linear base learner (e.g.,
RCK) can perform better on average (i.e., in terms of average rank) against
independent models (IRK). This again highlights the need for a non-linear
base learner in regressor chains.

Although regressor chains may thus be effective, we can recall the po-
tential severity of the degeneration of estimates across the chain with poorly
regularized base models. Indeed, we found this regressor chains with basic
(non-regularized) linear regression models, estimates diverged so quickly and
so far (obtaining even greater than 1000 MSE) that it there was no value to
even include these results. Hence, the reason we chose Bayesian regression
as a baseline base model; the inherent regularization prevents catastrophic
divergence. For a similar reason we included resampling mechanisms in our
probabilistic regressor chains (MCRC and PFRC); to remove samples that
diverge away from the main probability mass.

Results show that some of the best predictive performance can be ob-
tained by the Monte-Carlo approaches MCRC and PFRC (MC and PF, re-
spectively, in the tables). For example, we can highlight that MCD, MCK ,
and PFB

D obtained 7, 3 and 1 wins, respectively under UCF. It is not surpris-
ing that MCB did not obtain top results, particularly under the UCF metric,
due to the unimodal nature of Bayesian regression (this could be observed
earlier in Figure 6), although correspondingly it performed reasonably well
under MSE. Although greedy RCK indeed performs well in many settings,
particularly under UCF, we can remark that being tied to a kernel method
has particular major limitations in scalability, incurring many DNFs.

It is worth taking a closer look at particular performance aspects, for ex-
ample those which are distinguished on the synthetic dataset Synth: a loss
of 1.00 (all standard IR and greedy RC approaches) vs 0.55–0.62 (among
our approaches) under UCF. We note that 0.50 would be the Bayes opti-
mal result for this data as we have controlled the distribution to have two
randomly assigned modes with that probability. The gains are even sharper
under Traffic, and echoed under MSE.

Recall (Figure 4 and in Figure 6) that any path crossing a low density
region is not likely to ever occur in the data, even though the best estimate
for MSE lies precisely across such a region. Our proposed Monte-Carlo
approaches model the underlying density and thus are able to identify its
modes, and to traverse this high-density area along the chain.

27

Having a probabilistic model of the density and its different character-
istics offers explainability regarding the actual paths taken (as seen already
in, e.g., Figure 6 and, particularly, Figure 7). One can study a set of hypo-
thetical paths accounting for uncertainty, rather than a single estimation.
This is useful in many domains, such as time series forecasting and anomaly
detection, where a set of possible explanations is significantly more useful
than single best guess. Indeed, in predicting routes (such as we simulated
in Traffic), the best estimate under MSE may correspond to a road vehicle
traversing a lake, yet a set of likely paths (e.g., around each shore of the
lake) is of more practical use in many applications.

Overall, the need for interpretable models is of increasing interest as ma-
chine learning methods are used in more sectors, especially such as medical,
security, and legal domains where providing a detailed explanation of results
is a requirement [28].

In terms of running time complexity (per test instance), both MC and PF
take M -times longer than RC to output a prediction, due to the M samples
taken at each step in the chain. However, we also show that methods are
effective with a relatively small number of samples (see Figure 9) and a few
dozen samples are sufficient to achieve asymptotic convergence regarding
MSE (vs RC and IR) as well as best results under UCF. Although the linear
increase in running time is obvious in the figure, we emphasise that this is
still only a fraction of a second per test example, and equivalent to obtaining
votes from an ensemble of M models; yet an ensemble being relatively much
more costly at training time. We can also bear in mind that most variance
in running time in our experiments does not come from the difference in the
specific type of chain inference, but from their base regression models. In
particular, kernel methods, as mentioned above. Especially we remark that
training time is identical for an identical base estimator in greedy regressor
chains (RC methods) as compared to our methods.

Although in this work we have been specifically interested in the compar-
ison among probablistic regressor chain methods (and their respective base-
lines, of independent regression models), as reflected in the main results,
the reader should also recall recent work on regression trees (as we have
discussed above) for multi-output regression. And Figure 9 additionally in-
cludes a small comparison versus both multi-output decision tree regression
and regressor chains with decision trees as base regression models.

We specifically chose synthetic elements of Traffic to highlight a context
which is favorable to probabilistic regressor chains (recall: Figure 8); namely
non-linear and multi-modal aspects. We can remark that these aspects can
also be found in real-world data. Indeed, we found such characteristics

28

1 5 10 20 30 40 50 75 100
M (number of particles per test instance)

1.0

1.2

1.4

1.6

1.8

2.0

MCD

MCK

ICB

RCB

DTR
RCT

(a) MSE

1 5 10 20 30 40 50 75 100
M (number of particles per test instance)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00 MCD

MCK

ICB

RCB

DTR
RCT

(b) UCF

1 5 10 20 30 40 50 75 100
M (number of particles)

0

1

2

3

4

MCD

MCK

ICB

RCB

DTR
RCT

(c) Running time (seconds)

Figure 9: Corresponding to the data of Figure 8; the relationship between the number
of samples (horizontal axes) and evaluation metrics MSE, UCF, and running/test time,
respectively. A number of baseline methods are provided. There is a linear cost in running
time for this performance.

precisely in the datasets on which our probabilistic chain inference performs
best in Table 3. For example, Figure 10 displays an analysis wrt the dataset
rf2.

8. Related Methods

To the best of our knowledge this is the first work treating regressor
chains in depth, and particularly from a probabilistic point of view with
a sequential Monte Carlo approach. Nevertheless, since multi-output re-
gression is a well-established problem it is also important to discuss related
methods and techniques. We do so in this section.

29

y4

y 5

1 2 3 4 5 6 7 8
yj

j

y
RCB

MCB

1 0 1 2 3 4

1

0

1

2

3
y
RC
MC

Figure 10: Real datasets exhibits non-linear and multi-modal aspects. In this example,
the dataset rf2 is examined (see also, Figure 8 for comparison).

8.1. Multi-output Regression
The multi-output regression problem has been approached several times

in recent decades, particularly wrt joint regularization [29]. Several such
approaches take the form of

y = Bθx

where B is a matrix used to to perform shrinkage on the ordinary (indepen-
dent) linear regression estimates θ. See [8] and references therein for details
and variations.

8.2. Neural networks
Greedy inference in a regressor (or classifier) chain can be seen as a

particular feed-forward pass across a neural network, where base models
represent activation functions. In particular, it is a network with skip layers,
since each node passes the input directly to further nodes down the chain.
Skip layers are common in modern neural network architectures such as
ResNets [30], although often in a layer-wise rather than node-wise fashion,
and only the final layer is used as output. However, layer-wise multi-label
architectures have indeed been proposed (including, e.g., [31, 19], although
these cited works deal primarily with classification).

8.3. Probabilistic models
A closely related approach to the inference in probabilistic regressor

chains can be seen as performing a standard regression with noisy inputs
[32, 33]. Indeed, suppose that L = 2, and

y1 ∼ p(y1|x),
y2 ∼ p(y2|y1,x). (25)

30

Under the assumption of additive noise, we can write

y1 = h1(x) + ϵ1 (26)
y2 = h2(x, y1) + ϵ2, (27)

where hj are the regression models. For performing proper inference, all
the statistical features of y1 should be taken into account (i.e., the uncer-
tainty), hence a regression problem with noisy inputs. Gaussian Processes
(GPs) provide a method relevant to this context, e.g., [34, 35], and in par-
ticular warped GPs [36, 37, 38] which are a kind of hierarchical GP, thereby
implying a form of ‘depth’.

8.4. State space models
The previous considerations have direct application to the inference and

prediction in so-called state-space models. Such models are formed by a
transition dynamic equation and an observation equation11,{

yt+1 = hd(yt) + ϵd,t,

xt+1 = ho(yt+1) + ϵo,t,
(28)

where yt is the state at time t, and ϵ is perturbation noise. Note that even
if the mappings h and noises ϵ are known, the inference and prediction in
this stochastic system can be interpreted, at each t, also as a noisy input
regression problem since

xt+1 = ho(hd(yt) + ϵd,t) + ϵo,t. (29)

showing strong parallels with the noisy regression model above. Further-
more, when the elements of the dynamic system are not deterministically
known the problem becomes even more complex. In [39, 40], the authors
suggest modeling hd and ho as two GPs.

9. Other Chaining Considerations

9.1. Chain order
The classifier chain literature many papers find that predictive perfor-

mance can change significantly after permuting the order of labels in the

11Once more, we have opted for notation where x is the observation

31

chain, and many methods leverage this fact, for example with an ensem-
ble of random orders ([2, 14]), hill-climbing towards a local maximum (e.g.,
[13, 4]) and even using a heuristic based on label dependence to order the
chain (e.g., [41, 42]). Some of these have already been looked at in the
regression context, e.g., [9, 10].

A full methodological development of chain ordering/structuring mech-
anisms is beyond the scope of this work. Nevertheless, we investigated the
effect of different order on the methods we propose and respective baselines.
Namely, Figure 11 shows that, despite the additional stochasticity of the
inference of the Monte Carlo methods (as with any such method drawing
random samples), the samples offer a stabilizing affect; and different orders
have a relatively small impact on results.

ICB RCB RCK RCT MCD MCK

2.0

2.5

3.0

3.5

4.0

4.5

Figure 11: Summary of MSE results for different methods on the Andro data under 50
different chain orders (with an identical train-test split). MC uses M = 100 particles, and
this helps it remain reasonably robust to changes in chain order; unlike greedy regressor
chains with tree-based (RCT) or, to a lesser extent, kernel-based (RCK) base models, in
this case.

Thus chain order is not a primary issue in our case. On the other hand,
we recall that the space and complexity of structure is exactly the same in
regression and classification, and most ensemble and hill-climbing methods
need no specific adaptation (to measure dependence of continuous variables,
in the case where such a heuristic is considered). Therefore, we can point
the interested reader to the classifier chains literature for a study of the
application of such methods and their respective complexity.

32

9.2. Multiple passes
Another consideration is the possibility of making more than one pass

over the set of variables (i.e., down the chain) multiple times per test in-
stance. This is an interesting proposal and would be an easy extension to
our methods: simply extend the chain twice in length. One can view this as
a special case of regressor stacking, as mentioned in [8] (in the general case,
we simply feed all predictions as inputs to a second model – not necessarily
a chain model). On the other hand, time complexity increases significantly
with each pass along the chain.

With greedy inference, one can also see a connection to recurrent neural
networks (RNN), as in recent work by [43], where the network is unrolled
across time. From the probabilistic perspective, an approach of many passes
can be seen as a form of Gibbs sampling on an undirected chain. In fact, an
undirected and fully connected network (rather than a ‘chain’) removes the
question of label order entirely. This has been developed in the context of
conditional dependency networks [44] for classification, but we notice that
this framework is also applicable to the regression case, whenever sampling
from the conditional is possible. Namely, adjusting the equations for con-
tinuous target variables, we see that Gibbs sampling provides an estimate
the full conditionals:

y
(m)
j ∼ p(yj |x, y ̸=j) (30)

µ̂j =
1

M −M0

M∑
m=M0

y
(m)
j (31)

where ̸= j denotes all indices except j, and M0 indicates an initial number
of burn-in samples, which are later discarded. Precisely on account of this
burn-in time the number of samples must be relatively much greater than
the Monte Carlo samples in our methods.

9.3. Other areas of application
Regressor chains can be applied to any problem involving multiple con-

tinuous output variables. Time series forecasting is a natural application,
e.g., [34], where one could simply include future values as the labels, and
past/present values as the input instance. Previously classifier chains was
applied to a discretized version of route prediction in urban traffic modeling
[27]. An application of regressor chains in continuous space is natural in
this setting, as we have initiated in Section 6.

Dealing with continuous action spaces in reinforcement learning is an-
other possibility for regressor chaining. Forming a tree to search on top

33

of a continuous space, as in [21], is indeed related to the problem we have
tackled in this paper. Interestingly, we noticed that the authors of this cited
work use a kernel regression approach which is also what we have empirically
found to work well in this work on regressor chains. Unlike our study, there
is no use of a chain in the sense of a cascade but such an investigation of
this aspect could be promising.

10. Conclusions

In this work we have looked at chaining models in the regression context,
called regressor chains. This was motivated by the fact that, although such
chaining models have been established in the multi-label classification lit-
erature and the its application to multi-output regression already attracted
initial interest, the resulting behavior of regressor chains failed to achieve
satisfactory and wide-reaching results. We carried out an in-depth study
to identify, unravel, and overcome the weaknesses of this method in the
regression context.

Namely, we could identify and explain (and expand, where relevant find-
ings existed) several important issues in this regard:

• Regressor chains are only useful when non-linearities are used in the
base models. This is equally applicable in the non-isotemporal case
where where attribute values arrive over time

• It is difficult to justify regressor chains if minimizing a squared error
is the goal, unless paying particular attention to the previous point

• Error propagation along the chain can be much more severe in the
regression case due to the unconfined output space

• Even taking into account the above points, inference is more difficult,
in the sense that ‘off-the-shelf’ results versus independent models are
more difficult to obtain, and when obtained, such models still fail to
provide any useful representation or interpretation

To our knowledge, this is the first work which looks in-depth at regres-
sor chains in the probabilistic context. We surveyed a number of applicable
methods, and developed our own based on Monte Carlo methodology, par-
ticularly crafted to tackle these identified issues: MCRC and PFRC. This
had the following aspects:

34

• In line with the chains methodology, we considered base models as a
flexible hyperparameter, which in practice may be selected according
to the problem domain, rather than an aspect hardwired to the overall
method. This should not be seen as a ‘nuisance’ parameter but as an
attractive feature for adaptation across different areas.

• The inference process results in a set of particles which can be used as a
mode-seeking mechanism or an estimator for minimum mean squared
error, as desired.

• Error propagation is controlled by a resampling scheme, which pre-
vents degenerate particles from propagating.

• Interpretation can be provided via a point cloud of sample paths, which
offer a description of the underlying conditional posterior distribution.

Probabilistic regressor chains have peculiarities that distinguish them
from other models, such as the full cascade involving all outputs and hyper-
parametrization of the base models. However, to properly place regressor
chains in context with the wider literature, we also identified and discussed
connections to a range of related work including neural networks and Gaus-
sian processes.

The analysis not only facilitates understanding the performance of re-
gressor chains, but also throws more light onto the performance considera-
tions of classifier chains, modifications of which are still under active devel-
opment and recent publication. For example, it becomes clearer that much
of the power of classifier chains comes as being used as labels being used as
feature representations; in addition to the fact that the chain is modeling
statistical dependence among outputs.

The Monte Carlo methods we develop suggest to be promising especially
for tasks where path explainability (i.e., different hypotheses regarding the
path taken through output space) is of more importance than outputting the
result of a minimum mean squared error estimator. Such tasks include med-
ical research, anomaly detection, de-noising, and missing-value imputation;
providing a multitude of application lines along which to develop this work
further and built additional connections with related areas of the literature.
In future work we also intend to explore areas (such as dynamic chains and
recurrent models) that are being developed in parallel in the classification
context to approach themes relating to chain order and structure.

35

References

[1] W. Waegeman, K. Dembczyński, E. Hüllermeier, Multi-target predic-
tion: a unifying view on problems and methods, Data Mining and
Knowledge Discovery 33 (2019) 293–324.

[2] J. Read, B. Pfahringer, G. Holmes, E. Frank, Classifier chains for
multi-label classification, Machine Learning 85 (2011) 333–359.

[3] K. Dembczyński, W. Cheng, E. Hüllermeier, Bayes optimal multilabel
classification via probabilistic classifier chains, in: ICML ’10: 27th In-
ternational Conference on Machine Learning, Omnipress, Haifa, Israel,
2010, pp. 279–286.

[4] J. Read, L. Martino, D. Luengo, Efficient Monte Carlo methods for
multi-dimensional learning with classifier chains, Pattern Recognition
47 (2014) 1535–1546.

[5] K. Dembczyński, W. Waegeman, W. Cheng, E. Hüllermeier, On label
dependence and loss minimization in multi-label classification, Mach.
Learn. 88 (2012) 5–45.

[6] J. Read, L. Martino, P. M. Olmos, D. Luengo, Scalable multi-output
label prediction: From classifier chains to classifier trellises, Pattern
Recognition 48 (2015) 2096 – 2109.

[7] J. Read, L. Martino, J. Hollmén, Multi-label methods for prediction
with sequential data, Pattern Recognition 63 (2017) 45 – 55.

[8] H. Borchani, G. Varando, C. Bielza, P. Larrañaga, A survey on multi-
output regression, Wiley Int. Rev. Data Min. and Knowl. Disc. 5 (2015)
216–233.

[9] E. Spyromitros-Xioufis, G. Tsoumakas, W. Groves, I. Vlahavas, Multi-
target regression via input space expansion: treating targets as inputs,
Machine Learning (2016) 1–44.

[10] J. M. Moyano, E. L. Gibaja, S. Ventura, An evolutionary algorithm for
optimizing the target ordering in ensemble of regressor chains, in: 2017
IEEE Congress on Evolutionary Computation (CEC), pp. 2015–2021.

[11] G. Tsoumakas, E. Spyromitros-Xioufis, A. Vrekou, I. Vlahavas, Multi-
target regression via random linear target combinations, in: ECML
PKDD 2014.

36

[12] G. Melki, A. Cano, V. Kecman, S. Ventura, Multi-target support vector
regression via correlation regressor chains, Information Sciences 415-
416 (2017) 53 – 69.

[13] K. Dembczyński, W. Waegeman, E. Hüllermeier, An analysis of chain-
ing in multi-label classification, in: ECAI: European Conference of
Artificial Intelligence, volume 242, IOS Press, 2012, pp. 294–299.

[14] G. Tsoumakas, I. Katakis, I. Vlahavas, Random k-labelsets for multi-
label classification, IEEE Transactions on Knowledge and Data Engi-
neering 23 (2011) 1079–1089.

[15] X. Jun, Y. Lu, Z. Lei, D. Guolun, Conditional entropy based classifier
chains for multi-label classification, Neurocomputing 335 (2019) 185 –
194.

[16] P. Teisseyre, CCnet: Joint multi-label classification and feature selec-
tion using classifier chains and elastic net regularization, Neurocom-
puting 235 (2017) 98 – 111.

[17] D. Mena, E. Montañés, J. R. Quevedo, J. J. Coz, An overview of
inference methods in probabilistic classifier chains for multilabel classi-
fication, Wiley Int. Rev. Data Min. and Knowl. Disc. 6 (2016) 215–230.

[18] G. Tsoumakas, E. Spyromitros-Xioufis, I. Vlahavas, Drawing paral-
lels between multi-label classification and multi-target regression, in:
ECML PKDD 2014 Workshop on Multi-Target Prediction.

[19] J. Read, J. Hollmén, Multi-label Classification using Labels as Hidden
Nodes, Technical Report 1503.09022v3, ArXiv.org, 2017. ArXiv.

[20] R. Senge, J. J. del Coz, E. Hüllermeier, On the problem of er-
ror propagation in classifier chains for multi-label classification, in:
M. Spiliopoulou, L. Schmidt-Thieme, R. Janning (Eds.), Data Analy-
sis, Machine Learning and Knowledge Discovery, Springer International
Publishing, Cham, 2014, pp. 163–170.

[21] T. Yee, V. Lisy, M. Bowling, Monte carlo tree search in continu-
ous action spaces with execution uncertainty, in: Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI’16, AAAI Press, 2016, pp. 690–696.

[22] D. Barber, Bayesian Reasoning and Machine Learning, Cambridge Uni-
versity Press, 2012.

37

[23] P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F.
Bugallo, J. Miguez, Particle filtering, IEEE Signal Processing Magazine
20 (2003) 19–38.

[24] L. Martino, V. Elvira, F. Louzada, Effective sample size for importance
sampling based on discrepancy measures, Signal Processing 131 (2017)
386 – 401.

[25] M. F. Bugallo, L. Martino, J. Corander, Adaptive importance sampling
in signal processing, Digital Signal Processing 47 (2015) 36 – 49.

[26] J. Montiel, J. Read, A. Bifet, T. Abdessalem, Scikit-MultiFlow: A
multi-output streaming framework, Journal of Machine Learning Re-
search 19 (2018) 1–5.

[27] J. Read, L. Martino, J. Hollmén, Multi-label methods for prediction
with sequential data, Pattern Recognition 63 (2017) 45–55.

[28] C. Molnar, Interpretable Machine Learning, 2019. https://
christophm.github.io/interpretable-ml-book/.

[29] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Springer Series in Statistics, Springer New York Inc., New
York, NY, USA, 2001.

[30] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016) 770–778.

[31] M. Cisse, M. Al-Shedivat, S. Bengio, Adios: Architectures deep in
output space, in: Proceedings of The 33rd International Conference
on Machine Learning, volume 48, PMLR, New York, New York, USA,
2016, pp. 2770–2779.

[32] P. Dellaportas, D. A. Stephens, Bayesian analysis of errors-in-variables
regression models, Biometrics 51 (2009) 1085–1095.

[33] J. E. Johnson, V. Laparra, G. Camps-Valls, A derivative-based variance
estimate for Gaussian Process regression, Submitted (2018) 1–20.

[34] J. Quiñonero-Candela, A. Girard, C. Rasmussen, Prediction at an un-
certain input for Gaussian Processes and Relevance Vector Machines
application to multiple-step ahead time-series forecasting, Technical
Report, no. 1 (2003) 1–14.

38

[35] P. Dallaire, C. Besse, B. Chaib-draa, An approximate inference with
Gaussian Process to latent functions from uncertain data, Neurocom-
puting 74 (2011) 1945 – 1955.

[36] E. Snelson, Z. Ghahramani, C. Rasmussen, Warped Gaussian Pro-
cesses, in: Advances in Neural Information Processing Systems 16,
2003, pp. 1–8.

[37] M. Lázaro-Gredilla, Bayesian Warped Gaussian Processes, in: Ad-
vances in Neural Information Processing Systems 25, 2012, pp. 1619–
1627.

[38] P. Dallaire, C. Besse, B. Chaib-draa, Deep Gaussian Processes, Pro-
ceedings of the Sixteenth International Workshop on Artificial Intelli-
gence and Statistics (AISTATS) (2013) 207–215.

[39] M. P. Deisenroth, M. F. Huber, U. D. Hanebeck, Analytic moment-
based Gaussian process filtering, in: Proceedings of the 26th Annual
International Conference on Machine Learning (ICML), pp. 225–232.

[40] H. Bijl, T. B. Schon, J. W. van Wingerden, M. Verhaegen, System
identification through online sparse Gaussian Process regression with
input noise, in: arXiv:1601.08068, pp. 1–25.

[41] D. Mena, E. Montañés, J. R. Quevedo, J. J. del Coz, Using a* for in-
ference in probabilistic classifier chains, in: Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 3707–3713.

[42] J. Read, C. Bielza, P. Larrañaga, Multi-dimensional classification with
super-classes, Transactions on Knowledge and Data Engineering 26
(2014) 1720–1733.

[43] J. Nam, E. Loza Mencía, H. J. Kim, J. Fürnkranz, Maximizing subset
accuracy with recurrent neural networks in multi-label classification, in:
Advances in Neural Information Processing Systems 30, pp. 5413–5423.

[44] Y. Guo, S. Gu, Multi-label classification using conditional dependency
networks, in: IJCAI ’11: 24th International Conference on Artificial
Intelligence, IJCAI/AAAI, 2011, pp. 1300–1305.

39

