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Within the context of nuclear power safety, the In-Vessel Retention (IVR) strategy consists in sustaining the integrity of the reactor pressure vessel by External Reactor Vessel Cooling (ERVC). However, due to the ablation of the vessel wall and the thermochemical effects, a thin metallic layer may be formed on top of the corium pool and lead to the vessel failure. In this article, numerical simulations of the thermal-hydraulic behavior of the thin metallic layer are carried out to reduce the uncertainties in the heat flux evaluation. Specifically, the Rayleigh-Bénard and Bénard-Marangoni convections are considered in the heat transfer models of the metallic layer. The TrioCFD code is validated for the Bénard-Marangoni convection, then applied for the numerical simulations of the metallic layer with different top boundary conditions: pure radiative heat transfer, and radiative heat transfer plus positive or negative Marangoni effects. The mean temperature and focusing effect of the metallic layer are evaluated and compared for various cases, as well as the temperature profile inside the layer. Results show that the Marangoni effects have to be considered for small metallic layer thicknesses. Furthermore, the layer can be divided into two regions, of which the heat flux correlations can be evaluated independently, giving a better estimation of the heat flux profile.

Introduction

In nuclear power safety, various strategies can be applied to mitigate a reactor severe accident. The IVR strategy, consists in sustaining the integrity of the reactor pressure vessel by ERVC, hence keeping the radioactive materials inside the vessel. The assessment of IVR strategy relies on the evaluation of the heat flux near the vessel wall, which should be lower than the specific 5 vessel Critical Heat Flux (CHF). An in-depth understanding of the melt pool thermal behavior is required to give a reliable evaluation.

Intensive researches have been carried out on this topic, several experimental studies indicated that the melt pool divides into several layers: the heavy metal layer, the oxide layer, and the light metal layer (metallic layer) [START_REF] Tellier | Transient stratification modelling of a corium pool in a LWR vessel lower head[END_REF]. The thin metallic layer is heated from below by the corium pool 10 (oxide layer) and cooled from its lateral and top surfaces, it has an evolving thickness during the accident transients, ranging from centimetric to decimetric [START_REF] Asmolov | Challenges left in the area of in-vessel melt retention[END_REF]. The heat and mass transfer model of the metallic layer is shown in Figure 1, where e is the thickness, L is the diameter of the vessel, ϕ lat and ϕ up correspond to the heat flux through the lateral wall and the top surface, separately, ϕ down is the incoming heat flux from the corium pool, T is the mean temperature of the metallic layer, T up and T lat are the temperatures at the top and lateral surfaces, separately. The mass transfer dm fusion dt is neglected in current study. Due to the high thermal conductivity and small thickness of the metallic layer, the heat flux would be concentrated on its lateral interface if the top cooling is insufficient. The lateral heat flux increases sharply as the thickness decreases, inducing the so called 'focusing effect', when it exceeds the CHF of the RPV external wall, the RPV would be melt down, which is one of the major risks for Reactor Pressure Vessel (RPV) failure during the IVR. The concentration factor Ω FE is used to quantify the focusing effect, and taken as a major concern in the BALI experiment [START_REF] Bonnet | In-Vessel Corium Pool Thermalhydraulics for Bounding Cases[END_REF], it is defined as

Ω FE = ϕ lat /ϕ down . (1) 
A number of simplified analytical models [START_REF] Esmaili | Analysis of likelihood of lower head failure and ex-vessel fuel coolant interaction energetics for AP1000[END_REF] and severe accident scenario codes [START_REF] Henry | MAAP4-Modular Accident Analysis Program for LWR Power Plants[END_REF][START_REF] Van Dorsselaere | The ASTEC integral code for severe accident simulation[END_REF]7] based on steady state heat exchange correlations [START_REF] Globe | Natural convection heat transfer in liquids confined by two horizontal plates and heated from below[END_REF][START_REF] Chawla | Heat transfer from vertical/inclined boundaries of heat generating boiling pools[END_REF] are commonly used to evaluate the thermal behavior of the corium pool and the metallic layer. In a preliminary study of Saas et al. [START_REF] Saas | Rayleigh-Bénard and Bénard-Marangoni convection in a thin metallic layer on top of corium pool[END_REF], a simplified analytical model was proposed introducing the so-called Bénard-Marangoni convection into the metallic layer heat transfer model. Marangoni effect is induced by the surface tension on a free surface, for example, on the top surface of a metallic layer. The temperature gradients introduced by the Rayleigh-Bénard natural convections activate surface flows, which would further initiate convection cells due to the mass conservation. This article focuses on the numerical simulations of Rayleigh-Bénard-Marangoni convections of a thin metallic layer with physical properties of steel. The main goal is to understand the influences of various boundary conditions, i.e. radiative heat transfer, radiative heat transfer plus positive or negative Marangoni effects, on the natural convections and on the concentration factors of the metallic layer. Moreover, different layer thicknesses, emissivities, and ambient temperatures are investigated by numerical simulations. The non-dimensionalized heat transfer equations are introduced in Section 2, taking into consideration the surface tension driving Marangoni effect, then used in the numerical simulations by the TrioCFD code. In Section 3, the TrioCFD code is validated for the thin metallic layer configuration with high aspect ratios and various boundary conditions, simulating the Rayleigh-Bénard and Bénard-Marangoni convections separately. Finally, numerical simulations of the thin metallic layer with various top boundary conditions are carried out in Section 4, the mean temperatures and concentration factors of various cases are compared, as well as the temperature profiles at the top surface. Conclusions are given in Section 5.

Mathematical model of the thin metallic layer

The considered thin metallic layer geometry is a 2D slab, similar to that used in the BALImetal experiments [START_REF] Bonnet | Thermal hydraulic phenomena in corium pools: the Bali experiment[END_REF] . It is considered as incompressible fluid with Boussinesq approximation, following the system of equations:

∇ • v = 0 ( 2 
)
ρ 0 ∂ v ∂t + v • ∇ v = -∇p + µ∆ v -ρ 0 β(T -T 0 ) g (3) 
ρ 0 C p ∂T ∂t + v • ∇T = λ ∆T (4)
with v the velocity, p the pressure, µ the dynamic viscosity, β the thermal expansion coefficient,

T the temperature, g the gravity acceleration, ν the kinematic viscosity, C p the heat capacity and λ the thermal conductivity. The ρ 0 and T 0 stand for the reference density and temperature, respectively.

The thermal boundary conditions of the model are as following:

• Upper boundary condition: -λ∇T • n = ϕ up , the top heat flux is obtained considering a radiative heat transfer to the upper structures assimilated to an infinite planar surface (a constant ambient temperature T ∞ is assumed), that is,

ϕ up = σ s (T 4 up -T 4 ∞ )
with the emissivity, σ s the Stefan-Boltzmann constant;

• Lateral boundary condition: T lat = T fu , T fu is the melting temperature of the RPV steel;

• Bottom boundary condition:

-λ∇T • n = ϕ down .
As to the mechanical boundary conditions, the lateral and bottom boundaries are considered as no-slip wall. While for the top boundary, two different conditions are studied: i) a rigid surface assumption; ii) a free surface considering the surface tension, defining two types of convections: the Rayleigh-Bénard convection and Bénard-Marangoni convection.

Rayleigh-Bénard convection

Considering the rigid surface upper boundary condition, the nondimensionalization analysis is performed in 2D by applying the following scalings:

• t = t 0 t * , t 0 = e 2
α is the thermal diffusion time scale, with α = λ ρCp the thermal diffusivity.

• z = ez * and x = ex * Γ , with the length scale as the thickness e of the layer.

• v x = v 0 v * x and v z = v 0 v * z , v 0 = e t 0 is the velocity scale. • T = T ref + δT T * , δT = T fu -T 0 is the temperature scale.
• p = p ref + p 0 p * , p 0 = ρ 0 ge is the pressure scale, p ref is taken as the gas pressure above the metallic layer.

Introducing the aspect ratio Γ = e/L, we have the non-dimensionalized system equations:

Γ ∂v * x ∂x * + ∂v * z ∂z * = 0 (5) ∂v * x ∂t * + Γv * x ∂v * x ∂x * + v * z ∂v * x ∂z * = -Ga P r 2 Γ ∂p * ∂x * + P r Γ 2 ∂ 2 v * x ∂(x * ) 2 (6) ∂v * z ∂t * + Γv * z ∂v * x ∂x * + v * z ∂v * z ∂z * = -Ga P r 2 ∂p * ∂z * + P r Γ 2 ∂ 2 v * z ∂(z * ) 2 -Ra P r T * (7) 
∂T * ∂t * + Γv * x ∂T * ∂x * + v * z ∂T * ∂z * = Γ 2 ∂ 2 T * ∂(x * ) 2 + ∂ 2 T * ∂(z * ) 2 (8) 
with the dimensionless numbers:

• P e = v 0 e α , Peclet number

• Ga = ge 3 ν 2 , Galileo number • Gr = gβ∆T e 3 ν 2
, Grashof number Classically, the Grashof number Gr corresponds to the ratio of buoyancy force to viscous force characterizing the flow regime in natural convection, while the Prandtl number P r corresponds to the ratio of momentum diffusivity and thermal diffusivity. With the previous choice of scales, we fix the velocity according to the thermal diffusivity by setting P e = 1 and consequently the Reynolds number is given by Re = 1/P r. Indeed, the relation P e = P r • Re leads us to fix the Peclet number out of these three parameters, as the range of flows investigated in the light metallic layer study (from laminar to quasi-turbulent flows) and the varying physical properties (from water in the BALI experiment to prototypical fluid simulation with metal) lead to a large variation of Reynolds and Prandtl numbers. Also, the Ra number verifies Ra = Gr P r, characterizing the Rayleigh-Bénard convection driven by the buoyancy force, see Figure 2.

• P r = ν k ,

Bénard-Marangoni convection

Considering the surface tension and the temperature gradient on the top surface, surface flow may establish, which would stimulate a flow circulation cell inside the fluid bulk due to the mass conservation, namely, the Bénard-Marangoni convection. The top free surface is given by z(x, t) = e + η(x, t), where z is the coordinate of the vertical axis (at the bottom z = 0), η corresponds to the surface deformation at horizontal location x and time t. The norm of the free surface normal at (x, z) is given by:

N = 1 + ∂z ∂x 2 = 1 + ∂η(t, x) ∂x 2 . ( 9 
)
The top mechanical boundary condition is determined by the surface deformation equation and the balance equations of pressure, viscous, and surface tension forces:

∂η ∂t + v x ∂η ∂x = v z ( 10 
) (p -p gas ) -2 µ N 2 ∂v z ∂z + ∂v z ∂x ∂η ∂x 2 - ∂η ∂x ∂v x ∂z + ∂v z ∂x = - σ N 3 ∂ 2 η ∂x 2 (11) 
µ 1 -( ∂η ∂x ) 2 ∂v x ∂z + ∂v z ∂x + 2 ∂η ∂x ∂v z ∂z - ∂v x ∂x = N ∂σ ∂x + ∂η ∂x ∂σ ∂z . (12) 
! It is assumed that the surface tension varies linearly with temperature:

σ = σ 0 -γ • (T -T 0 ), 90
with σ the surface tension at temperature T , σ 0 the surface tension at reference temperature T 0 , γ a temperature coefficient.

Applying N * = 1 + Γ 2 ( ∂z * ∂x * ) 2 as the non-dimensionalized norm of the top surface normal, and the dimensionless scales in Section 2.1, the non-dimensionalized top boundary conditions are:

∂z * ∂t * + Γv * x ∂z * ∂x * = v * z (13) Ga P r p * - 2 (N * ) 2 ∂v * z ∂z * + Γ 3 ∂v * z ∂x * ∂z * ∂x * 2 -Γ ∂z * ∂x * ∂v * x ∂z * + Γ ∂v * z ∂x * = - Γ 2 (N * ) 3 1 Cr ∂ 2 z * ∂(x * ) 2 (14) 1 -Γ 2 ∂z * ∂x * 2 ∂v * x ∂z * + Γ ∂v * z ∂x * + 2Γ ∂z * ∂x * ∂v * z ∂z * -Γ ∂v * x ∂x * = ΓN * M a ∂T * ∂x * + ∂z * ∂x * ∂T * ∂z * , (15) 
where M a = γ∆T e ραν is the Marangoni number, Cr = ρνα σe is the Crispation number. Notice that, when M a << 1, the mechanical boundary condition corresponds to a no-slip boundary condition:

v * z = 0, p * = 0 and v * x = 0.
surface tension decreases with temperature, i.e. σ + up > σ - up . In this case, the surface flow is from high temperature to low temperature. Considering the surface temperature gradient induced by Rayleigh-Bénard convection (refer Figure 2), the Rayleigh-Bénard and Bénard-Marangoni convection cells are in the same direction. Therefore, in a macroscopic point of view, it could be assumed that the Marangoni effects enhance the heat transfer on the top surface and diminish the lateral focusing effect of the thin metallic layer. However, when γ is negative, the Bénard-Marangoni convection cells flow in the opposite direction of Rayleigh-Bénard convection cells. In this context, the flow structures inside the fluid have to be investigated further to evaluate the effects on heat transfer. S. Ozawa et al. [START_REF] Ozawa | Influence of Oxygen Partial Pressure on Surface Tension of Molten Type 304 and 316 Stainless Steels Measured by Oscillating Droplet Method Using Electromagnetic Levitation[END_REF] measured the surface tensions of molten SS304 and 316 stainless steels. Results showed that the pure molten metals usually have a negative γ, whereas under a high oxygen partial pressure in the ambient γ would turn to positive. Moreover, γ changes with the potential impurities in the steel, e.g. sulphur and oxygen contents. Thus, for the thin metallic layer, its surface tension temperature coefficient γ can be either positive or negative, or even switch between positive and negative at different temperatures, depending on its compositions, ambient compositions and temperature [START_REF] Chikhi | Influence of steel properties on the in-vessel retention strategy: measurement of 304L and 16MND5 steel density and surface tension[END_REF].

Additionally, for a Crispation number Cr < 10 -4 and a Galileo number Ga >> 1, which is applicable for the thin metallic layer [START_REF] Sarma | INTERACTION OF THE BUOYANCY AND SURFACE TENSION MECHANISMS IN A ROTATING LIQUID LAYER SUBJECTED TO A TRANSVERSE MAGNETIC FIELD[END_REF], a classical hypothesis is applied that the deformation of the free surface is neglected, i.e. η << 1, then we have:

∂z * ∂t * , ∂z * ∂x * = 0, and N * = 1. ( 16 
)
The mechanical boundary conditions implemented in current study become:

v * z = 0, p * = 0 and ∂v * x ∂z * = Γ M a ∂T * ∂x * . ( 17 
)

TrioCFD code

In present study, the Finite Volume Differences (FVD) method with cartesian meshing is employed for numerical simulations. This method combines the finite difference and the finite volume methods for incompressible Naiver-Stokes problems solving. It is realized in the open-source code TrioCFD. TrioCFD is dedicated to CFD simulations of laminar and turbulent flows, fluid/solid coupling, multiphase flows or flows in porous media [START_REF] Angeli | CFD analysis of the turbulent flow in a PWR 5x5 rod bundle with staggered structural grids[END_REF][START_REF] Angeli | Overview of the TrioCFD code: main features, V and V procedures and typical applications to nuclear engineering[END_REF]. It can be used to investigate a wide range of nuclear industrial flows at different scales, combining various complex physical phenomena such as flows in pressurized water reactors, sodium fast reactors and sub-assembly bundles [START_REF] Bieder | CFD analysis of the flow in the near wake of a generic PWR mixing grid[END_REF]. Moreover, it is designed for massively parallel computers thanks to a MPI parallelization with a quite ideal scalability up to 10,000 processor cores. In the FVD discretization, the QUICK scheme is used for the convective terms in this study, and a 2nd order centered scheme for the diffusion terms [START_REF] Angeli | Overview of the TrioCFD code: main features, V and V procedures and typical applications to nuclear engineering[END_REF].

In a previous work [START_REF] Guennic | Contribution of CFD studies to IVR assessment[END_REF], TrioCFD has been validated based on the BALI experiment with water in a Parallelepiped geometry configuration. Especially, TrioCFD allowed to recover the heat flux splitting ratio in 3D for the BALI-metal experiment. However, the Marangoni effect is not considered in the experiments, so that we present here a complementary validation using academical cases from literatures with high domain aspect ratio and various boundary conditions (including the Marangoni effect). Finally, in the present work, the simulation of the metallic layer is carried out in a configuration similar to the BALI-metal experiment.

Numerical validations of the TrioCFD

The TrioCFD code has been modified to perform simulations with Bénard-Marangoni type boundary conditions, thus it should be validated by academic cases with simple configurations before applying into the thin metallic layer simulations. The simulations of Rayleigh-Bénard convection and Bénard-Marangoni convection are carried out separately for validation purpose. Moreover, this kind of simulations would give us a better understanding about the mechanisms of Rayleigh-Bénard and Bénard-Marangoni convections, separately. The simulation geometry is a 2D rectangular, with a Γ ranging from 0.66 to 8, and two different thermal boundary conditions exerted at the lateral walls, see Figure 4,'A' denotes the adiabatic wall, 'C' denotes the cooled wall, while 'H' denotes the hot wall. As we can see, we have the bottom (floor) as the hot wall (H), the top (ceiling) as the cold wall (C), while the left and right lateral walls have two different conditions: CC and CA. All the walls are no-slipping walls, the Ra number ranges from 10 3 to 10 6 , the P r number is 0.71, corresponding to that of air. The dimensionless scales used in [START_REF] Corcione | Effects of the thermal boundary conditions at the sidewalls upon natural convection in rectangular enclosures heated from below and cooled from above[END_REF] are: the velocity scale U * = u/(ν/H), pressure scale P * = (p + ρ 0 gy)/ρ 0 (ν/H) 2 , the length and temperature scales are the same as in Section 2.1, the dimensionless temperature is -0.5 for cold wall and 0.5 for hot wall.

The averaging Nusselt number N u along the four walls at different Ra are computed and compared with the values from [START_REF] Corcione | Effects of the thermal boundary conditions at the sidewalls upon natural convection in rectangular enclosures heated from below and cooled from above[END_REF]. Figure 5 shows the variation of N u with Γ along the horizontal and vertical walls at Ra = 10 5 . As we can see, the N u are comparable between the simulation results and the literature results for both CA and CC cases, a similar trend is observed, and the differences decrease with Γ. To explain this undesirable deviation for low aspect ratios, several comparative cases were simulated with different meshes, schemes, and initial states. Results show that all these parameters have influences on the N u numbers, especially the schemes. Noting that the difference is more pronounced for low Γ cases where the lateral boundary condition is expected to have more influences, while a high Γ is relevant to the metallic layer case we focus on.

Moreover, the temperature profiles close to the walls (δx = δy = 0.01) are plotted to study the flow structures inside the domain. Considering the case with Γ = 4.0, Ra = 10 5 and CA configuration, Figure 6(b) shows the temperature profiles along the top and bottom walls, from which the influences of the cooling wall (at x = 0) can be clearly seen: the temperature at the top wall increases sharply from x = 0 to x = 0.1 then it fluctuates in a small temperature range at x > 0.1, which is dominated by the convection cells. This behavior is also illustrated by the temperature profile along the left wall in Figure 6(a). It is noted that the influence of the lateral cooling is restricted only within a small region close to the wall.

Validation for Bénard-Marangoni effect

In this section, both 2D and 3D simulations are carried out by TrioCFD with pure Bénard-Marangoni convection, neglecting the buoyancy force. The researches of Boeck et al. [START_REF] Boeck | Turbulent Bénard-Marangoni convection: Results of two-dimensional simulations[END_REF][START_REF] Boeck | Bénard-Marangoni convection at large Marangoni numbers: results of numerical simulations[END_REF] are used as reference cases, with a low P r = 0.1 and various M a.

The studied domain is heated from bottom with a constant dimensionless temperature 1.0, and cooled from the top with a constant dimensionless heat flux, the lateral walls are periodic. As to the mechanical boundary conditions, the bottom and lateral walls are rigid, while the top wall is set as rigid only in z direction (vertical velocity v z = 0), the velocities v x and v y in horizontal directions are determined by Marangoni effect (v y is not considered in 2D). That is,

v z = 0, v x = v y = 0, T = 1, at z = 0, v z = 0, ∂ z T = -1, ∂ z v i = -M a • ∂ i T, i = x, y, at z = 1. ( 18 
)
Since the heat flux at the top surface is fixed, the convection in the 2D domain reduces the temperature difference across the layer, thus, the Nusselt number can be obtained from N u = 1/ ∆T , with ∆T the mean temperature difference between the bottom and top surfaces.

2D cases

For 2D cases, similar geometry is used as in Figure 4 with a fixed aspect ratio Γ = 2, the meshing size is 512 × 128. The dimensionless time and temperature scales are taken as e 2 /α and ed/λ, respectively.

A total of six different M a from 4 × 10 4 to 12 × 10 4 are studied with two different spatial discretization schemes (upwind and Quick schemes) to evaluate the influence of the spatial discretization order, of which the N u numbers are calculated and compared with the reference values, as presented in Figure 7. As we can see, the N u obtained from TrioCFD agree well with the reference values at low M a, the maximum error is around 20% at very high M a. According to Boeck et al. [START_REF] Boeck | Turbulent Bénard-Marangoni convection: Results of two-dimensional simulations[END_REF], at high M a the flow fields become spatially irregular, the time signals display irregularity on the scale of a roll turnover time, so that the differences between the FVD method used in our simulations and the pseudo-spectral numerical method based on a Fourier?Chebyshev expansion used in Boeck et al. would be large.

Besides, the evolution of N u along time at M a = 5 000 and 60 000 are plotted in Figure 8. Comparing with the literature [START_REF] Boeck | Turbulent Bénard-Marangoni convection: Results of two-dimensional simulations[END_REF], the tendency and periodic behavior are comparable for both M a. Moreover, two quasi-periodic dynamics on different time scales can be identified: i) a short time oscillation due to the evolving sizes of the convection cells; ii) a long time oscillation related to the amplitude of the mean flow.

3D cases

The geometry considered in 3D validation is a slab, with the layer thickness e (z direction) as the dimensionless length scale, the horizontal lengths in x and y directions are set to be 2π, which is much larger than in 2D cases to avoid a strong mean velocity in the domain. The meshing matrix in Boeck et al. [START_REF] Boeck | Bénard-Marangoni convection at large Marangoni numbers: results of numerical simulations[END_REF] is 256 × 256 × 32 for M a ≤ 1500, and 512 × 512 × 32 for M a ≥ 2000, to capture the small vortex at large M a. The same meshing parameters are used in TrioCFD. Seven different M a are studied from 500 to 4000 with the upwind and Quick schemes, the N u at different M a are plotted in comparison with the literature values [START_REF] Boeck | Bénard-Marangoni convection at large Marangoni numbers: results of numerical simulations[END_REF], as shown in Figure 9.

The N u values are considerably close to each other, the error is within 8% for various M a.

Numerical simulations of the thin metallic layer 205

In this section, the thermal-hydraulic behavior of the thin metallic layer is simulated with physical properties of steel, its geometry is assumed to be a sliced slab, with a length (along x axis) of L = 2 m and a width (along y axis) of 0.13 m. Three different thickness (along z axis) e = 1 cm, 2.5 cm, 4 cm are simulated, considering the Marangoni effect can be neglected for e > 3 cm [START_REF] Saas | Rayleigh-Bénard and Bénard-Marangoni convection in a thin metallic layer on top of corium pool[END_REF].

For the thermal boundary conditions, the bottom surface (z = 0) is subjected to a constant 210 input heat flux of 10 6 W/m 2 . The front and back walls are assumed adiabatic, as well as one of the lateral wall at x = 2 m. The other lateral wall at x = 0 is subjected to a fixed temperature T lat =1658 K, corresponding to the steel melting temperature. At the top surface, three different conditions are studied: radiative heat transfer, and radiative heat transfer plus positive or negative Marangoni effects. For the radiative heat transfer, the ambient temperature could be between 400 K and 1658 K, the emissivity could be from 0.2 to 0.8, corresponding to the minimum and maximum values usually taken. No-slipping boundary conditions are considered for all the boundaries except for the top surface where the Marangoni effect is applied. The physical properties of the steel are listed in Table 1, surface tension coefficients of steel (γ steel ) and iron (γ iron ) are considered for positive and negative M a, respectively. Unit kg/m 3 J/(kg

• K) K -1 m 2 /s W/(m • K) N/(m • K) N/(m • K)
Table 1: Physical properties of the steel with surface tension coefficients of steel γ steel and iron γiron.

The magnitudes of the dimensionless numbers of the metallic layer considered in present study are listed in Table 2. They are calculated with a thickness e =0.1 m, a temperature difference ∆T = 400 K, and the physical properties in Table 1 ((using γ iron )), which corresponds to one of the simulation configurations. Table 2: Order of magnitudes of the dimensionless numbers for steel (e = 0.1 m, ∆T = 400 K).

A mesh convergence study has been carried out on the 1 cm thickness case with fixed temper-ature. Firstly, the concentration factors for different mesh sizes are plotted in Figure 10(a). We observe a convergence for a grid cell size close to 1 mm (difference lower than 0.5% between the 1 mm grid cell size case and the 0.5 mm one). Then, to supplement this analysis, the Kolmogorov length scale defined by η

= ν 3 ε 1/4
is computed for the case with 1 mm cell size (Prandtl number verifying P r << 1, the mesh size is constrained by the viscous scale rather than the thermal diffusivity scale). Figure 10 plots the number of cells versus the ratio of the Kolmogorov length scale to the cell size for the 2000 × 130 × 10 mesh case (corresponding to 1 mm cell size). It is observed that most of grid cells have a size comparable to the Kolmogorov length scale. Thus, a mesh corresponding to 1 mm cell size is chosen for the following simulations. 

Results analysis

Table 3 presents the T mean and Ω FE for the four different top boundary conditions, with the emissivity = 0.2 and the ambient temperature T env = 1658 K. It can be seen that the Marangoni effect has a particular influence on Ω FE for e = 1 cm case: the Ω FE at a negative M a is almost 2 times larger than the pure Ra case. While for e ≥ 2.5 cm cases, the Ω FE are comparable for all cases, corroborating with the 0D analysis in [START_REF] Saas | Rayleigh-Bénard and Bénard-Marangoni convection in a thin metallic layer on top of corium pool[END_REF]. A possible reason is that the Marangoni effect decreases as e increases, such that the numerical deviation induced by the mesh and numerical scheme is more noticeable.

As explained in Section 3.2, the negative Marangoni convection cells are in the opposite direction of the Rayleigh-Bénard convection cells, which reduces the top cooling and enhances the focusing effect. However, the effects of positive M a on Ω FE seem unclear: the positive M a cases give higher Ω FE than the pure Ra cases. That is, both positive and negative M a enhance the focusing effect of the metallic layer. Regarding the T mean , a positive M a leads to a lower T mean whereas a negative M a increases the T mean .

The results are further validated through simulation cases with = 0.8 and T env = 400 K. The results are shown in 

Flow structures analysis

To understand the non-obvious effects of positive M a on the Ω FE shown in the former section, the temperature profiles and fields in the domain under the stationary state are analyzed for the simulation cases with = 0.2, T env = 1658 K, and e = 1 cm, 2.5 cm. Figure 11 shows the temperature profiles along the x axis located in the middle of the top surface.

As discussed in Section 3.1, only the region close to the lateral cooling wall is affected by the lateral cooling, the rest part is dominated by the convection cells. Thus, the temperature rises up quickly in the region close to the lateral cooling wall, then fluctuates due to the convection cells. In Figure 11(a), the temperature rises up quickly at x < 0.3 m (the lateral cooling region), then fluctuates at 0.3 < x < 2 m (the convection dominate region), which agrees well with the temperature profiles of the CA configuration in Section 3.1. Similar trend is observed in Figure 11(b), except that the lateral cooling region is 0 < x < 0.6 m, which is longer than that in e = 1 cm case. Moreover, it is observed in Figure 11(b) that in the convection dominate region, the mean temperatures of the pure Ra and positive M a cases are higher than that of the negative M a case. Considering the radiative heat flux is a power of 4 to the temperature, higher radiative heat flux are emitted to the ambient in the pure Ra and positive M a cases than in the negative M a case. On the opposite, the radiative heat flux in the lateral cooling region are larger for the negative M a case. This compensation effect explains the similar Ω FE for e = 2.5 cm case shown in Table 3. Similar mechanisms hold for e = 1 cm case (refer Figure 11(a)), while the lateral cooling region is shorter, which explains the Ω FE for e = 1 cm case in Table 3.

Furthermore, the temperature fields at the top and the lateral cooling surface for pure Ra case with e = 2.5 cm are shown in Figure 12. From Figure 12(a) we can see that the temperature rises before x ≈ 0.5 m, after that the convection cells are observed. While in Figure 12(b) and 12(c) the cold stripe induced by the lateral cooling can be clearly seen close to the cooling wall.

Figure 13 shows the temperature fields at the top surface for positive and negative M a cases. As we can see, the temperature fields of both cases are in the same pattern with pure Ra case, while the length of the lateral cooling region is different. While in the convection dominate region, the positive M a case gives stronger convection cells, the negative M a case gives a more homogeneous temperature field, which confirms that the convection cells induced by a negative M a are in the opposite direction to that induced by Rayleigh-Bénard convection.

Additionally, the temperature fields at the top surface for e = 1 cm and 4 cm cases with positive M a are shown in Figure 14. They are in the same patterns with e = 2.5 cm cases, while it is noticed that the length of the lateral cooling region is increasing with e.

To sum up, the temperature field of the metallic layer can be divided into two regions: i) the region close to the lateral cooling wall is affected by the lateral cooling, no convection cell is initiated, the temperature is rising continuously with x; ii) the other region is dominated by convection, it has fully-developed convection cells induced by Rayleigh-Bénard and Bénard-Marangoni convections. The length of each part is dependent on the top boundary conditions and the thickness of the layer e.

Summary and conclusion

In this article, numerical simulations are carried out to investigate the thermal behavior of a metallic layer appearing above the corium pool under the IVR context during a severe accident. Specifically, the Rayleigh-Bénard and Bénard-Marangoni convections are considered in the heat transfer models, their influences on the heat transfer behavior of the metallic layer are studied with various layer thickness. The TrioCFD code is validated with academic cases with separate Rayleigh-Bénard and Bénard-Marangoni effects, then applied in the numerical simulations of the metallic layer with a set of top boundary conditions and layer thickness.

Results show that the Marangoni effects have to be considered for low metallic layer thicknesses: the numerical simulations give an indication that the Marangoni effect actually can enhance the focusing effect of the metallic layer only for very thicknesses, no matter it is positive or negative. The flow structures inside the metallic layer are analyzed to explain this unexpected result. The temperature fields at the top surface and the cold stripes near the lateral cooling wall for various configurations show that the thermal behavior of the metallic layer can be divided into two regions: i) one region is dominated by the lateral cooling, in which no convection cell is initiated; ii) the other region has fully-developed convection cells induced by Rayleigh-Bénard-Marangoni convections. Therefore, it seems necessary to take into account this complex interaction between the lateral and upper heat flux in the computation models widely used in severe accident scenario codes.

Furthermore, new correlations based on the Rayleigh-Bénard-Marangoni convections may allow a better evaluation of the focusing effect. For future improvements of the present work, more comparison and material internal heat source analysis of the boundary conditions are appealing. analysis was granted access to the HPC resources of Très Grand Centre de Calcul under the allocation A0012A07691 made by GENCI.

Figure 1 :

 1 Figure 1: Heat and mass transfer model of the metallic layer (the mass transfer is neglected in current study).

  Prandtl number • Ra = Gr P r = gβ∆T e 3 αν , Rayleigh number with ν the kinematic viscosity.

Figure 2 :

 2 Figure 2: Rayleigh-Bénard convection cells discarding the coupling with the lateral cooling. The convection cells drive the hot plumes up to the surface and cold plumes down to the bottom, as the body is heated from the bottom and cooled by top radiative heat transfer.

Figure 3 :

 3 Figure 3: Bénard-Marangoni convection cells.

3. 1 .

 1 Validation for Rayleigh-Bénard convection Corcione et al. [19] studied a number of cases with various geometrical aspect ratios Γ and boundary conditions in a wide range of Ra (10 3 to 10 6 ) close to those of the thin metallic layer in the IVR context. The results in their paper are used for the validation of TrioCFD for pure Rayleigh-Bénard convection.

Figure 4 :

 4 Figure4: Thermal configurations of the simulation geometry, adapted from[START_REF] Corcione | Effects of the thermal boundary conditions at the sidewalls upon natural convection in rectangular enclosures heated from below and cooled from above[END_REF] 

  Figure 5: Surface N u number varies with the aspect ratio Γ, Ra = 10 5 .

Figure 6 :

 6 Figure 6: Temperature profile along four walls in CA configuration, with Γ = 4.0, Ra = 10 6 .

Figure 7 :Figure 8 :

 78 Figure 7: Nusselt number varies with Marangoni number M a in 2D cases.

Figure 9 :

 9 Figure 9: Nusselt number N u versus Marangoni number M a in 3D cases.

3 ×

 3 10 -5 4.5696 × 10 -3 20 -9.6 × 10 -4 3.97 × 10 -4

Value 1 . 5 ×

 15 10 -1 2.2 × 10 10 3.93 × 10 7 7.81 × 10 5 1.04 × 10 -7

Figure 10 :

 10 Figure 10: Concentration factors for different mesh sizes (left); and the number of cells versus the ratio between the Kolmogorov length scale and the grid cell size for the 2000 × 130 × 10 mesh case (right).

Figure 11 :

 11 Figure 11: Temperature profiles in the middle of top surface at y = 0.065 m, for layer thickness e = 1 cm and 2.5 cm.

Figure 12 :

 12 Figure 12: Temperature fields at the top and lateral surfaces in pure Ra case (e = 2.5 cm).

Figure 13 :

 13 Figure 13: Temperature fields at the top surface with positive and negative M a (e = 2.5 cm).

Figure 14 :

 14 Figure 14: Temperature fields at the top surface for positive M a, for e = 1 cm and 4 cm.

Table 4 ,

 4 the conclusions are the same with the previous cases about the Cases 1 cm 2.5 cm 4 cm

		pure Ra	8.1	10.2	10.8
	Concentration factor	positive M a 16.1	11.2	11.3
	Ω FE	negative M a 19.2	10.4	9.9
		pure Ra	3152 3090 3004
	Mean Temperature (K)	positive M a 3065 3010 2915
	T mean	negative M a 3182 3168 3094

Table 3 :

 3 Results of TrioCFD with different top boundary conditions and = 0.2, Tenv = 1658 KMarangoni effects. Noticing that the T mean and Ω FE with = 0.8 and T env = 400 K are both lower than the previous values due to the higher radiation heat transfer at the top surface.

		Cases	1 cm 2.5 cm 4 cm
		Pure Ra	1.90	2.43	2.65
	Concentration factor	Positive M a	4.1	2.72	2.88
	Ω FE	Negative M a 6.46	3.59	2.95
		Pure Ra	2228 2237 2230
	Mean Temperature (K)	Positive M a 2176 2172 2156
	T mean	Negative M a 2289 2307 2312

Table 4 :

 4 Results of TrioCFD with different top boundary conditions and = 0.8, Tenv = 400 K

The dimensionless number M a characterizes the Bénard-Marangoni convection. Figure3shows the convection cells induced by Bénard-Marangoni convection with a positive γ > 0, where the
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