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ABSTRACT 

 

For parallel surfaces, i.e. the oil control ring, the micro-geometry completely determines the hydrodynamic 

lubrication (HL). 

The cross-hatched grooves provide a certain load carrying capacity (LCC) and the surface (plateau) roughness 

can be an additional source. This paper extends earlier work to numerically solve the hydrodynamic pressure and 

LCC of parallel surfaces with random roughness and/or grooves. The influence of the groove spacing, width and 

depth on the LCC is studied.  

Results show that the larger the groove spacing, the higher the LCC. Grooves generate a large part of the LCC 

when the plateau roughness is small. However, for rough surfaces, grooves decrease the LCC and the wider or the 

deeper the grooves, the larger the decrease of the LCC. 
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Notation 

amp         groove depth 

A           dimensionless groove depth, A=amp/Lx 

cl           ACL of an isotropic surface 

d            groove spacing 

D           dimensionless groove spacing, D=d / Lx 

h            film thickness 

H           dimensionless film thickness, H= h / h0 

h0           nominal film thickness (flying height) 

Lx           domain length in x direction 

Ly           domain length in y direction 

N           dimensionless distance in the direction perpendicular to a groove, 

             N = d sin α / r          

p            pressure 

P            dimensionless pressure, P =p/(12 ηum Lx/h0
2) 

p0           boundary pressure, the difference between the ambient  

and cavitation pressure, p0=3×104 [Pa] 

r            groove width 

RMS         RMS roughness of surface 

um             mean surface velocity, um= 0.5 [m/s] 

x            coordinate in the direction of sliding 

X            dimensionless coordinate, X=x/ Lx 

y            coordinate perpendicular to the direction of sliding 

Y            dimensionless coordinate, Y=y/ Lx 

α            groove angle with respect to the sliding direction x 

η           oil viscosity, η=1×10-2 [Pa ⋅s] 

θ            cavitation fraction 

maxpδ          difference between the maximum pressure and p0 

∆ MAXP         dimensionless difference between the maximum pressure and p0 

ACL         autocorrelation length 

LCC         load carrying capacity, defined as the mean pressure minus pa. 

OCR         oil control ring 

RMS         root mean square 

'G'           surface with only grooves 

'R'           surface with only roughness 

'R+G'        surface with roughness and grooves 

 

1. Introduction 

In internal combustion engines (ICEs), the piston ring-cylinder liner (PRCL) contact is an important 

source of mechanical friction. Moreover, excessive oil consumption, associated with polluting 

emissions and early deterioration of particle filters, should be avoided.  

The piston ring pack plays a crucial part in both aspects because of its sealing and lubricating 

functions. An overview can be found in [1-4] where the effects of relative ring location, tension and 

design, ring conformability, bore distortion, etc. are outlined. Furthermore, the dynamic behavior of 



  

piston and ring is important. Tian [5] studied their effects on friction, wear and oil transport and 

discussed the influence of bore distortion on oil transport as well. Optimizing the PRCL contact 

consists of finding a compromise between fuel consumption, lubricant consumption and cylinder liner 

life (wear or scuffing, see Willn [6]) as a function of the operating conditions (load, speed, 

viscosity…).  

Optimization of the surface topography is one of the main ways to improve the tribological 

performance of ICEs [7-9] and special attention has been given to the cylinder bore finish [10]. The 

cylinder-surface micro-geometry is a predominant parameter that influences the film thickness and 

consequently the tribological performance, i.e. the load carrying capacity. The top ring has a 

macro-geometry, which determines the hydrodynamic pressure generation and the cylinder-surface 

micro-geometry (roughness or texturing) alters it somewhat [11]. However, for parallel surfaces, i.e. the 

OCR, the micro-geometry alone determines the LCC [12,13]. 

A simple, classical micro-geometry is the cross-hatched pattern obtained by the honing process. 

Such a surface consists of two principal components: plateaus and valleys (grooves) with depths 

exceeding the surface roughness [14].  

Classical parameters as Ra, Rq or valley/peak statistics may be insufficient to correctly describe 

complicated micro-geometries. To obtain the hydrodynamic pressure distributions, functional 

hydrodynamic analysis using statistical methods was proposed, notably the Patir & Cheng method, 

which lumps the different components of surface microstructures together. This method builds an 

averaged Reynolds equation with the Patir & Cheng flow factors [15,16]. This method was applied to 

the hydrodynamic pressure solution for parallel seals with artificially-generated Gaussian random 

roughness in [17] and for PRCL contacts with laser-textured grooves in [18].  

Other methods allow to decouple these components, such as the homogenization method. A mixed 

lubrication model using homogenization techniques was proposed by Larsson [19] and Sahlin et al. 

[20]. It uses measured surface topographies by modeling the surface roughness effects at a local scale 

and then solving the actual lubrication problem at a global level. This model was then used to 

investigate oil film formation and frictional losses of the PRCL system [21,22]. 

An alternative method is to numerically solve the Reynolds equation with deterministic surface 

geometries. Using this method, Tomanik et al. [23] studied the HL pressure and LCC of cylinder bores 

and piston rings with laser textured surfaces. Chen [24] studied the effect of liner finish on the LCC of 

a twin-land OCR and found that the plateau roughness is an additional source of the LCC. More 

recently, the HL pressure and LCC of PRCL contacts has been studied by Tomanik et al. [25] for real 

surface topographies, by Yin et al. [26] for laser-textured surfaces and by Noutary et al. [27] for 

artificially textured surfaces. 

However, for complex micro-geometries, the deterministic method leads to a long computing times. 

The use of Multigrid techniques in earlier work by the authors can drastically reduce the calculational 

costs [11,12,27,28]. 

For the HL of the OCR, Biboulet et al. [12] theoretically and numerically solved the pressure and 

analyzed the LCC as a function of the groove geometry (groove density, depth and angle). They found 

that a moderate depth leads to a higher pressure than deep or shallow grooves and an optimum groove 

exists for a maximum dimensionless LCC. Noutary et al. [28] studied the influence of the liner groove 

shape, depth and density on the LCC. Results show that groove depth and density are the important 

influencing of LCC, whereas the groove shape only has a small influence. 



  

However, these papers do not consider the contribution of the plateau roughness to the LCC, which 

is also significant [24]. The coupled influence of the groove geometry and the plateau roughness is 

more complicated. Mezghani et al. [29] investigated the mutual influence of the crosshatch angle and 

the superficial roughness of honed surfaces on the friction. They found that under mixed lubrication 

conditions, the friction coefficient decreases with decreasing liner surface roughness for both 

plateau-honing (PH) (50° honing angle) and helical slide honing (HSH) (130°) honed surfaces and 

friction is reduced by 36% for PH, compared to HSH. For a larger crosshatch angle, friction is much 

less sensitive to superficial plateau roughness, the average oil film thickness is more reduced and it is 

more likely to enter an HL regime.  

Similarly, Hu et al. [30] studied the mutual influence of the plateau roughness and the groove 

texture on the frictional performance of PRCL. The effect of plateau roughness is incorporated at a 

local scale by the homogenized technique while the valley component is considered at a global scale, 

see Spencer [31]. They found that for flat rings, wide and sparse grooves improve the tribological 

performance and there exists an optimum groove depth which minimizes friction. 

The current paper studies the hydrodynamic pressure and LCC of a smooth OCR - honed cylinder 

liner contact, extending the work by Biboulet et al. [13]. The solver originates from [32], using the 

deterministic method and incorporating a mass-conserving cavitation. As explained by Ausas et al. 

[33], non mass-conserving models underestimate the cavitation area leading to a poor estimate of the 

hydrodynamic pressure. Woloszynski et al. [32] developed an efficient algorithm, called 

Fischer-Burmeister-Newton-Schur (FBNS), for the joint solution of the Reynolds equation with 

mass-conserving cavitation and the Fischer-Burmeister equation for complementarity. The FBNS code 

roughly yields a two orders of magnitude reduction in computing time when compared with other 

mass-conserving cavitation algorithms, such as the augmented iterative Elrod-Adams p−θ [34], the 

exact linear complementarity based on pivoting [35] and the modified switch function ϕ−g [36]. 

Inspired by the finding of Bouassida et al. [11] that the LCC of the top ring is deteriorated by 

cross-hatched grooves, this paper aims to quantify the effect of grooves on the LCC, created by the 

surface roughness for the OCR (flat ring). 

However, the plateau roughness varies substantially from one location to another. That is why this 

paper uses statistical methods to eliminate the random roughness influence. 

 

2. Lubrication model 

The dimensionless Reynolds equation with cavitation and the Fischer-Burmeister equation are 

solved simultaneously: 

3 3 ((1- ) )
( )+ ( )=

P P H
H H

X X Y Y X

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

θ
                   (1) 

2 2+ - + =0P Pθ θ                                (2) 

where H is the gap; P is the pressure; θ is the cavitation fraction; X is the sliding direction; Y is 

perpendicular to X. Eq. (2) indicates the complementarity condition: θ = 0 and P > 0; 0 < θ < 1 and P = 

0. 

In this paper the dimensionless parameters are denoted by capital letters. The dimensional ones are 

represented by the corresponding lowercase letters. 

A Dirichlet condition: p=pa is imposed on the boundaries. pa is the difference between the ambient 



  

pressure and the cavitation pressure. The specific LCC is defined as (equivalent to) the mean pressure 

minus pa. 

Using finite difference techniques, the equations above are discretized and a local linearisation 

(using Jacobian matrix) is implemented. A grid refinement strategy is used to quickly converge the 

cavitation boundaries. The implementation and the validation of the numerical solver are detailed in 

[13]. 

 

3. Results 

3.1. Pressure distribution 

Two types of artificially generated surfaces were studied, illustrated in Fig. 1. ‘R’ refers to a surface 

with only roughness; ‘R+G’ indicates that the rough surface contains grooves. When the plateau 

roughness is zero, the surface is called ‘G’.   

 

Fig. 1. Generated surfaces: ‘R’ (left) and ‘R+G’ (right), d=0.2. 

The surface roughness is randomly generated, using the algorithm by Patir [37], with a Gaussian 

height distribution and an exponential autocorrelation function. The groove cross-section has a cosine 

shape, as used in [11,12] where the groove parameters are detailed. The rough surfaces are considered 

to be stationary and separated from a smooth sliding surface by a constant distance h0, called flying 

height. Table 1 lists the operating conditions and surface parameters. In this paper, the random 

roughness has the same autocorrelation length (ACL) in both the x and y direction. The ACL is defined 

as the length at which the integral decays to 10%.  

The values in Table 1 are used for the numerical calculations if not stated otherwise. 

Table 1. Operating conditions and surface parameters 

Operating condition Surface roughness Groove 

h0 

[µm] 

pa 

[kPa] 

η 
[ Pa s⋅ ] 

um 

[m/s] 

Lx (Ly) 

[mm] 

cl 

[mm] 

amp 

[µm] 

r 

[mm] 

α  

[°] 

d 

[mm] 

1 30 0.01 0.5 1.2 0.12 1 0.05 76 0.1, 0.2, 0.3 

 

Fig. 2 shows the groove patterns with the following parameters: α=76° and d=0.1, 0.2, 0.3 mm, 

which ensures the intersection at the y-boundaries. The pressure distributions calculated with the 

roughness of Fig. 1 (d=0.2 mm for the ‘R+G’) are shown in Fig. 3. One can see that the grooves 

modify the pressure distribution substantially. Please note that most of the grooves are partially 

cavitated. 



  

 

Fig. 2. Groove patterns with a spacing of d=0.1 (left), 0.2 (middle), 0.3 (right) mm and the inclination 

angle: α=76°. 

 

Fig. 3. Pressure distribution for ‘R’ (left) and ‘R+G’ (right), d=0.2. 

3.2. Mesh size and accuracy 

The accuracy of the numerically calculated LCC (mean pressure) depends on the mesh size. The 

finer the mesh, the more accurate the solution. Unfortunately, increasing the mesh size increases the 

computing cost (memory and time). Table 2 compares the LCC results of eight ‘G’ cases on grids with 

20482, 10242 and 5122 points. Some calculations involve very deep (amp=3 µm) or very narrow 

(r=0.02 mm) grooves.  

 

As expected, the computing time increases with the number of points. The relative difference of 

grid 512 to grid 1024 is approximately twice that of grid 1024 to grid 2048 except for the first case: 

amp=0.5 µm and r=0.02 mm. Based on this observation, one can estimate the numerical error to be 

first-order. So, the error on a certain grid can be considered to be twice the relative difference with the 

next finer grid. As the mesh size choice depends on the slope amp/r [11], Fig. 4 plots the errors as a 

function of the slope. We consider 10% to be an acceptable error limit. For a depth-width ratio smaller 

than 0.035, a mesh size of 512×512 is appropriate; for a ratio larger than 0.06, one has to use the finest 

mesh 2048×2048; for an in-between ratio, one can choose the mesh 1024×1024. 

For all the calculations in this paper, we have selected proper grids to obtain an overall error of 

smaller than 10%. 

 

Table 2. LCC [kPa] for different meshes. Grid (*): the mesh number of the domain (*) × (*). Rel diff: 

the LCC difference of the current grid relative to the next finer grid. 

amp [µm] 0.5 1 1 1.5  2  2.5 2.5 3 Computing  



  

r [mm] 

amp / r [-] 

0.02 

0.025 

0.03 

0.033 

0.05 

0.02 

0.05 

0.03 

0.05 

0.04 

0.05 

0.05 

0.04 

0.063 

0.07 

0.043 

time [s] 

Grid 2048 9.04 23.3 33.6 39.8 40.7 38.9 32.73 42.95 1233 

Grid 1024 

Rel diff 

9.19 

1.6% 

23.7 

2.0% 

33.8 

0.7% 

40.5 

1.8% 

41.8 

2.8% 

40.3 

3.8% 

34.41 

5.1% 

44.29 

3.1% 

222 

Grid 512 

Rel diff 

9.57 

4.1% 

24.7 

4.3% 

34.2 

1.4% 

42.0 

3.8% 

44.3 

5.8% 

43.5 

7.8% 

38.00 

10.4% 

47.08 

6.3% 

50 

 

 

Fig. 4. Accuracy of LCC on grid 512 (top) and 1024 (bottom) as a function of the groove depth-width 

ratio. 

3.3. Ensemble study: statistical dispersion 

The LCC depends on the random roughness, therefore we study 20 randomly generated rough surfaces 

and call them an ensemble. Fig. 5 left shows the average LCC of the ensemble as a function of the RMS 

value. The large error bars indicate the standard deviation of the LCC. For an RMS larger than 0.2 µm 

(h0=1 µm), some of the 20 random rough surfaces will show contact spots, which leads to divergence 

of the solver. The standard deviation for each RMS value is large, roughly half the average value. Thus, 

even though the averaged LCC shows a smooth variation as a function of the RMS, it is not possible to 

conclude on an overall trend. 

 

Fig. 5. The average LCC as a function of the RMS roughness: one ensemble (left) and averaged over 

10 ensembles (right). 

 

Therefore, 10 ensembles are studied statistically. Fig. 5 right shows the average of the 10 



  

ensemble-averaged LCCs as a function of the RMS value. The small error bars show that the standard 

deviation of the 10 ensemble-averaged LCCs is small compared to the average LCC value. Moreover, 

the trend is very much the same as the one of a single ensemble. This means that 20 surfaces as an 

ensemble give statistically relevant results. Hence, single-ensemble roughness profiles will be used in 

the following calculations. 

 

Actually, the LCC as a function of the RMS roughness can be accurately described by the equation: 

4/3

RLCC b RMS= ⋅                             (3) 

One obtains b=1723 with R2=0.998 for Fig. 5 left and b=1800 with R2=0.999 for Fig. 5 right, using the 

LCC in kPa, and RMS in µm.  

b depends on the roughness ACF, cl. Three more cases with cl=Lx/40, Lx/20 and Lx/5 are studied. 

Fig. 6 shows the single ensemble-averaged LCC as a function of the RMS roughness for the four ACFs. 

The calculations were run on grid 1024 except for cl=Lx/40 on grid 2048, which gives an error of 

smaller than 5% for all the cases. One can see that the larger the cl value, the higher the LCC.  

 

 

Fig. 6. The average LCC as a function of the RMS roughness for cl= Lx/40, Lx/20, Lx/10 and Lx/5. 

 

Table 3 shows the curve-fitting results using Eq. (3). We found that b is proportional to cl3/4, with 

an R-square of 0.997. 

 

Table 3. Curve-fitting results for cl= Lx/40, Lx/20, Lx/10 and Lx/5 by Eq. (3). 

cl Lx/40 Lx/20 Lx/10 Lx/5 

b 614 1122 1720 3000 

R2 0.986 0.997 0.997 0.996 

 

Fig. 7 shows the pressure distribution of a single random roughness. The same seed was used to 

generate the four roughnesses. One can see that the all the pressure distribution patterns are globally the 



  

same. The frequency of the pressure variation depends on the roughness ACF. Of the four cases, the 

roughness ACF: Lx/5 generates the highest pressure, the biggest pressurized zone (bottom left of the 

domain) and the largest cavitated area. 

The ACF can be seen as the surface wavelength. In earlier work, the authors found that the pressure 

distribution of a sinusoidal surface is approximately sinusoidal with a phase shift of about 90° and the 

maximum pressure is proportional to the wavelength. This means that the larger the wavelength, the 

higher the maximum pressure and the lower the pressure variation frequency. 

Any roughness can be decomposed into sinusoidal components. Therefore, a higher-frequency 

roughness (with a smaller ACF) generates lower pressures, smaller pressurized zones and smaller/more 

fragmented cavitated zones.  

For cl = Lx/40, Lx/20, Lx/10 and Lx/5, the LCC is 26.8, 45.0, 67.1 and 84.7 kPa and the cavitated area 

takes up 19%, 28%, 34% and 40% of the total area. 

 

 

Fig. 7. Pressure distribution with RMS=0.1 µm, cl = Lx/40, Lx/20, Lx/10 and Lx/5. Please note the 

different color bars. 

The following section studies the influence of the groove parameters on the LCC. The LCC for each 

numerical experiment is averaged over the same ensemble with cl=Lx/10 (as in Fig. 5 left). All R+G 

cases in the following sections use the same surface roughness with RMS=0.15µm. 

 

3.4. Influence of groove parameters 

 

(1) Groove spacing 



  

 

Fig. 8. Pressure distribution with r=0.05 mm (width), amp=1 um (depth). The first row for groove only 

surfaces; the second row for ‘R+G’ surfaces, RMS=0.15 µm. From left to right, d=0.1, 0.2, 0.3 mm. 

The first row in Figure 8 is for groove only surfaces. From left to right the LCC is 16.3 kPa, 33.8 kPa, 

44.2 kPa and the relative cavitated area is 31.7%, 21.0%, 14.4%. The second row is for the 

corresponding ‘R+G’ surfaces. From left to right, the LCC is 29.6 kPa, 64.1 kPa, 99.7 kPa and the 

relative cavitated area is 41.4%, 35.9%, 29.9%. 

Fig. 9 shows the variation of the LCC with the RMS roughness for an ‘R’ and three ‘R+G’ surfaces of 

different groove spacings.  

 

Fig. 9. LCC as a function of the plateau RMS roughness for ‘R’ (open dots) and for ‘R+G’ with bottom 

to top groove spacings d=0.1, 0.2, 0.3 mm (closed dots) and groove depth amp=1 µm. 

 

We observe that for zero roughness, only the grooves generate the LCC and with increasing RMS 

(the surface roughness geometry remains the same), the LCC of the ‘R+G’ remains constant or 

decreases slightly at low RMS values and then increases, similar to the LCC of the ‘R’ surface. The 

larger the groove spacing (smaller than the domain length), the higher the LCC-RMS curve. The curve 

for an ‘R’ surface intersects with those for ‘R+G’, showing that for small roughness, grooves increase 

the LCC while for large roughness, grooves decrease the LCC. The grooves serve as channels for oil 

flowing from high pressure to low pressure zones. This results in a decrease of the LCC, as was 



  

concluded in [11] for contacts with a macroscopic curvature. 

 

(2) Groove width 

 

Fig. 10. Pressure distribution with d=0.2 mm (spacing), amp=1 um (depth). The first row for groove 

only surfaces; the second row for ‘R+G’ surfaces, RMS=0.15 µm. From left to right, r=0.03, 0.05, 

0.07mm (width）. 

The first row in Figure 10 is for groove only surfaces. From left to right, the LCC is 23.7 kPa, 33.8 kPa, 

38.7 kPa and the relative cavitated area is 11.6%, 21.0%, 29.2%. The second row is for the 

corresponding ‘R+G’ surfaces. From left to right, the LCC is 69.2 kPa, 64.1 kPa, 61.1 kPa and the 

relative cavitated area 32.9%, 35.9%, 39.3%.  

Fig. 11 shows the variation of the LCC with the RMS roughness for an ‘R’ and three ‘R+G’ surfaces 

with different groove widths. Similarly, one finds that the grooves generate most of the LCC for 

low-RMS cases and that for a large RMS the LCC increases with the RMS roughness. Furthermore, one 

can see that for a smaller width, the LCC-RMS curve rises more rapidly. Roughly for each distance d, 

beyond the intersection of the LCC-RMS curves of the ‘R’ and ‘R+G’, the wider the grooves the lower 

the LCC, that is, the grooves deteriorate the LCC of the rough surfaces more and more. The reason is 

the same as explained above: the grooves serve as channels that reduce the pressure generated by the 

large roughness. 

 



  

Fig. 11. LCC as a function of the plateau RMS roughness for ‘R+G’ (closed dots) with groove spacing: 

d=0.1 (left), 0.2 (middle), 0.3 (right) mm. In each graph, from top to bottom (on the right side) groove 

width: r =0.03, 0.05, 0.07 mm, with the curve for ‘R’ (open dots) as a reference. 

 

Fig. 12 left (right) shows the variation of the LCC (the maximum pressure δpmax) at RMS=0 with the 

groove width. One finds that with increasing width, the LCC increases and then decreases. The 

maximum occurs when the width-spacing ratio is about 0.4, shown in Fig. 12 left. For the same groove 

width, the larger the spacing, the higher the maximum pressure and the LCC. This is because a large 

plateau creates a high pressure over a large zone and consequently a large LCC [27]. 

 

Fig. 12. LCC (left) and maximum pressure (right) of ‘G’ as a function of the groove width. amp=1 µm 

and d=0.1 (‘*’), 0.2 (‘.’), 0.3 (‘o’) mm. 

 

 

Fig. 13. LCC (left) as a function of the groove width-spacing ratio; dimensionless maximum presssure 

MAXP∆  (right) as a function of N, compared with the theoretical trend (dashed line) from Eq. (3). 

amp=1 µm and d=0.1 (‘*’), 0.2 (‘.’), 0.3 (‘o’) mm. 

 

Biboulet et al. [12] derived a 1D simplified model for the maximum pressure as a function of the 

groove depth and the spacing in dimensionless form, described by: 

 

 
21

2

2

( ( 1) )
=

(1 )((1 )( 1) 1)(2( 1)(1 ) 2)
MAX

A A N N
P

A A N N A A

− + −
∆

+ + − + − + + +
               (3) 

 

where A is the dimensionless depth, 0/A amp h= ; N is the dimensionless distance in the direction 



  

perpendicular to a groove, sin /= αN d r .   

Fig. 13 right shows the theoretical variation of MAXP∆  with N, compared with the numerical 

results. These results have been adjusted by a pre-factor of Lx/r because of the different dimensionless 

parameters. One can see that all the data from the numerical experiments of Fig. 12 right fall onto a 

single curve. The 1D theoretical model cannot approximate the cross-hatched groove structure and it 

uses triangular grooves, periodical boundary conditions and a non-cavitation hypothesis. This possibly 

explains the difference with the numerical results. However, the 1D theoretical results show the same 

trend as our 2D numerical results.  

 

(3) Groove depth  

 

Fig. 14. Pressure distribution with d=0.2 mm (spacing), r=0.05 mm (width). The first row for groove 

only surfaces; the second row for ‘R+G’ surfaces, RMS=0.15 µm. From left to right, amp=0.5, 1, 2 

µm.  

The first row is for groove only surfaces. From left to right, the LCC is 21.3kPa, 33.8 kPa, 41.8kPa and 

the relative cavitated area is 22.5%, 21.0%, 15.7%.The second row is for the corresponding ‘R+G’ 

surfaces. From left to right, the LCC is 73.1 kPa, 64.1 kPa, 53.6 kPa and the relative cavitated area is 

36.3%, 35.9%, 30.4%. 

We observe a similar LCC versus RMS behavior as in Figs. 6 and 7 for four more groove depths 

(amp=0.5, 1.5, 2, 2.5 µm), shown in Fig. 16. One can see that with increasing groove depth, the curves 

tend to flatten. This is due to the deeper grooves dominating the plateau roughness influence.  

 



  

 

Fig. 15. LCC as a function of the plateau RMS roughness for ‘R+G’ (open dots) with d=0.1 (left), 0.2 

(middle), 0.3 (right) mm. In each graph, from top to bottom (on the right side) amp =0.5, 1, 1.5, 2, 

2.5 µm; the curve for ‘R’ (open dots) is used as a reference.  

 

We found that the LCC-RMS behavior can be accurately described by: 

2 4/3 2

R+G ( * )LCC a b RMS= +                         (4) 

Take the case of d=0.2 mm as an example, the curve fitting results are listed in Table 4. By comparing 

Eq. (4) to Eq. (2), one finds that a is the LCC generated only by the grooves and
4/3

RMS represents the 

effect of the roughness. b depends on both the roughness and groove parameters and decreases with the 

groove depth. 

 

Table 4. Curve-fitting results for d=0.2 mm by Eq. (4). 

amp [µm] a [kPa] b [
4/3

kPa m
−⋅µ ] R2 

0 0 1723 0.998 

0.5 20 1323 0.9995 

1 34 1046 0.998 

1.5 40 826 0.998 

2 42 663 0.998 

2.5 40 564 0.9997 

 

The variation of a (LCC at RMS=0) with the groove depth is numerically obtained, shown in Fig. 

13 left. It reveals that with increasing groove depth, the LCC increases and decreases when the groove 

depth exceeds 2 µm. Figure 16 right shows the variation of the dimensionless maximum pressure 

MAXP∆ with the groove depth, compared with the theoretical one. Once again, the two sets do not 

exactly match. The origin of the difference is the same as mentioned above. However, all the curves 

have a similar trend. Moreover, they reach their peaks around A=1, that is, amp=1 µm (h0 =1 µm); the 

larger the spacing, the higher the maximum pressure and when the spacings are large, the curves are 

close. Actually, for the theoretical model, with increasing N (or d), all the curves get close to an upper 

limit. The limit is obtained from Eq. (3) with +N = ∞ , as: 
2

=0.5 / (1+ )
MAX

P A A∆ .   



  

 

Fig. 16. LCC (left) of the ‘G’ as a function of the groove depth; MAXP∆ (right) as a function of the 

groove depth (open dots) in comparison to the theoretical trends (dashed line) from Eq. (3). r= 0.05 

mm and bottom to top d=0.1, 0.2, 0.3 mm. 

 

3.5. LCC-decreasing behavior with grooves 

From the results of the last section, one can see that grooves lead to a decrease of the LCC for a rough 

surface, which resembles the findings for smooth macroscopically curved surfaces by Bouassida et al. 

[11]. 

 

In accordance with their study, we introduce the same parameters f( )A , ε  and ∆ : 

 
2

5/2

1 3 / 8
f( )

(1 )

A A
A

A

+ +=
+

                                  (5) 

 (2 )
sin( ) sin( )

ε = −
α α

r r

d d
                               (6) 

log( ) f( )A∆ = − ε                                     (7) 

 

where f( )A is the ratio of the flow resistances of a grooved surface and an un-grooved surface; ε is 

called the groove density parameter; ∆ is a unifying groove parameter. This parameter is composed of 

the groove depth and groove density (derivations are given in [11]). The lower limit of the relative LCC 

(LCCR+G/LCCR) is 0 when ∆ is 0 (the groove depth is infinitely large) and the upper limit is equal to 1 

at ∆=+∞ (the groove width is infinitely small or the spacing is infinitely large). However, please note 

that for the finite-size domain used in this work, once the spacing exceeds the domain size, the LCC 

decreases. 

  



  

 

Fig. 17. The relative LCC as a function of ∆ . Points: Numerical results; solid line: Eq. (8) with R2=0.98; 

dashed line: Eq. (9) from [11]. 

 

We studied the LCC-decreasing behavior at RMS=0.175 µm. Fig. 14 shows the relative LCC as a 

function of ∆ . This plot comprises 50 data points. The groove depth amp is within [0.1, 3.5] µm, the 

groove width r within [0.15, 0.35] mm and the spacing d=0.1, 0.2, 0.3 mm. 

The best exponential curve fit is obtained by: 

4.5 2.61 2R G

R

LCC
e e

LCC

− ∆ − ∆+ = − −                              (8) 

The curve-fitting equation from [11] is 

9.2 5.4 1.9 13.5 2.11 + +R G

R

LCC
e e e e e

LCC

− ∆ − ∆ − ∆ − ∆ − ∆+ = − − −                     (9) 

Eq. (9) is obtained for macroscopic-curvature cases and based on different boundary conditions. 

This may explain the difference from Eq. (8).  

Another explanation is that we use the ‘R+G’ type for grooved rough surfaces. When amp is small, 

the roughness inside the grooves dominates the groove depth. The ideal model should be ‘R/G’, which 

means the grooves are smooth and the plateau is rough. But the disadvantage of this choice is the 

possible discontinuity of the surface structure which may lead to other artefacts. 

Actually, the unifying parameter is not ideal. For very small groove depths (<RMS), the data points 

will lie far above the curve, Eq. (8). The LCC-decreasing behavior is also influenced by the operating 

conditions (especially the cavitation pressure) and the roughness parameters (i.e. ACF). 

Overall, the current model is a simplified one and its results confirm the earlier findings (for 

macroscopic-curvature cases).  

4. Conclusion 

The current paper numerically studies the influence of cross-hatched grooves on the 

hydrodynamic LCC of a smooth OCR- rough liner surface contact. 

For surfaces with random roughness, the LCC increases with the RMS roughness to the power 4/3 

and is proportional to the roughness ACF to the power 3/4. 

For grooved rough surfaces, the larger the groove spacing, the higher the LCC-RMS curve. 

Grooves create most of the LCC when the plateau roughness is small. However, for large roughness, 

grooves decrease the LCC and the wider or the deeper the grooves, the lower the LCC. The grooves 

serve as channels for oil flowing from high pressure to low pressure zones, resulting in a decrease of 

the LCC. 



  

The decreasing groove-induced LCC for large surface roughness can be described with a unifying 

groove parameter ∆ from Bouassida et al. [11]. When the groove depth is infinitely large, ∆ is 0 and the 

relative LCC (LCCR+G/LCCR) reaches 0; when the groove width is infinitely small or the spacing is 

infinitely large, ∆ is equal to +∞ and the relative LCC reaches 1. 
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