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Abstract: 34 

Computational approaches have been developed to prioritize candidate genes in disease gene 35 

identification. They are based on different pieces of evidences associating each gene with the 36 

given disease. In this study, 648 genes underlying genodermatosis has been compared to 1808 37 

genes involved in other genetic diseases using a bioinformatic approach. These genes were 38 

studied at the structural, evolutionary and functional levels. Results show that genes 39 

underlying genodermatosis present longer CDS and have more exons. Significant differences 40 

were observed in nucleotide motif and amino-acid compositions. Evolutionary conservation 41 

analysis revealed that genodermatoses genes have less paralogs, more orthologs in Mouse and 42 

Dog and are less conserved. Functional analysis revealed that genodermatosis genes involved 43 

in immune system and skin layers. The Bayesian network model returned a rate of good 44 

classification of around 80%. This computational approach could help investigators working 45 

in the field of dermatology by prioritizing positional candidate genes for mutation screening.  46 

 47 

 48 

Keywords: Bayesian network, bioinformatics, classification, genetic diseases, 49 

genodermatosis, prioritization methods, skin 50 
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1. Introduction: 52 

Genetic diseases represent a large burden on public health, especially in developing countries 53 

often featured by high rates of consanguinity, where more than 500 pathologies have been 54 

identified, namely in Tunisia (Mezzi N et al., unpublished). For many decades, linkage 55 

analysis is a successful procedure to associate diseases with genomic regions. This approach 56 

in combination with homozygosity mapping and linkage disequilibrium, has led to the 57 

identification of many genes involved in the molecular aetiology of genetic diseases mainly 58 

from North African families [1-6]. With the explosion of the molecular techniques of orphan 59 

genetic disease investigation, genomic and functional information around morbid genes have 60 

been accumulated and stored in specific databases. The genes known to be involved in human 61 

diseases as well as the underlying mutations are collected in centralized databases such as 62 

OMIM [7] and Human Gene Mutation Database (HGMD) [8].  63 

The availability of the Human genome and other genome organisms’, as well as functional 64 

data and large genetic databases provided the opportunity to the identification of intrinsic 65 

features of morbid genes traditionally by computational methods. Global analysis revealed 66 

distinct patterns between disease and non-disease genes [9]. Disease genes as well as their 67 

product and 3’UTR are longer and have more exons, a feature that could be correlated with 68 

the increase probability of deleterious mutation accumulation [9]. Furthermore, disease 69 

proteins seem to have signal peptides and preferentially enriched in alanine and glycine [10].  70 

A study of the phylogenetic extent showed that morbid genes tend to be more conserved 71 

among species [11]. On the other hand, disease phenotype expression was also attributed to 72 

the fact that morbid genes have less paralogs [11]. Therefore, the altered protein function 73 

could not be rescued in the absence of a wild type paralog protein [11] . 74 

Functional features of disease genes revealed also distinct patterns. They encode essentially 75 

for enzymes, transporters, transcription regulators, structural molecules, and protein function 76 
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modulators [12, 13]. With respect to biological processes, disease genes are involved in 77 

metabolism, stress response, developmental process, cell communication and cell cycle  [13]. 78 

Positional regions deduced from linkage analysis are often large containing hundreds of genes 79 

making experimental methods for disease gene identification challenging. Computational 80 

approaches have been developed as complementary methods to prioritize candidate genes [14-81 

16]. The proof of principle of such tools is “guilty by association”: given a set of genes known 82 

to be associated with a disease, computational tools for candidate gene prioritization rank 83 

position genes according to their “similarity” profile to a set of reference genes. These 84 

methods could integrate different data type ranging from sequence, phylogenic, functional and 85 

interaction data and differ by their input and output as well as the classification algorithm 86 

used to rank the candidate genes with diverse rates of accuracy [16, 17]. Recently, whole-87 

exome sequencing appears to be an efficient genomic technique to unravel the molecular 88 

aetiology of Mendelian disorders [18]. Nevertheless, hundreds of de novo mutations can be 89 

generated to be screened for a query disease [18]. The question that remains is how to infer 90 

true causative genes from candidate genes that harbour such mutations. Thanks to 91 

bioinformatics, appropriate tools could be used to help detecting genetic alterations and infer 92 

their association with human diseases [19]. 93 

In general, these methods have considered that all disease genes are homogeneous thus 94 

neglecting disease type specificities. In this context, we investigated a group of genes 95 

implicated in a pathological group which is genetic disorders of the skin. Genetic diseases of 96 

the skin or genodermatoses, such as epidermolysis bullosa, Xeroderma pigmentosum and 97 

ichthyosis, are disabling and life-threatening  [20]. In population where consanguinity is high, 98 

genodermatoses are prevalent and most often show atypical phenotypes and could be 99 

associated with other diseases thus hampering their diagnoses [20-24]. This prompted us to 100 

investigated the features of genes involved in genodermatoses by comparing them to another 101 
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set of genes involved in other diseases. The analysis of the properties of genes and their 102 

products revealed interesting findings that allowed obtaining a global overview on 103 

genodermatosis genes at multiple levels.  104 

2. Methods: 105 

2.1 Morbid gene group delineation: 106 

Disease genes were assigned into two groups. According to Feramisco et al., a 107 

genodermatosis is genetic disease with a primary cutaneous phenotype [25]. In order to 108 

identify genodermatosis genes, we queried the clinical synopsis section of the OMIM 109 

database using the key-word “skin” (Last accessed September 2015). Results were limited to 110 

entries with known molecular aetiology. This step led to the identification of genodermatoses 111 

with at least one symptom at the skin level. Genetic diseases except genodermatoses were 112 

identified using the same procedure but keeping blank the OMIM clinical synopsis search 113 

field [7]. Returned entries were manually curated and responsible genes were assigned to the 114 

corresponding groups. Furthermore, two other published databases for genetic diseases of the 115 

skin were also queried [25, 26]. Querying the “Entrez Gene” database defines a total of 648 116 

genes (Skin disease group) and 1,808 genes underlying genetic diseases excepting 117 

genodermatoses referred to the “Other” disease group (Last accessed September 2015).  118 

2.2 Structural analysis: 119 

Genomic and functional sequences as well as structural features (Additional File 1) were 120 

downloaded from the “RefSeq” database (RefSeq Homo sapiens Build 37.2) [27] . DNA and 121 

protein motif frequencies were estimated using Wordcount and GeeCee softwares from the 122 

EMBOSS suite (http://emboss.sourceforge.net/). Protein structural features were downloaded 123 

using Ensembl Biomart [28]. Furthermore, we analysed coding sequences using the Z-curve, 124 

which is a bioinformatics algorithm for genome analysis describing a given DNA sequence at 125 

the three-dimensional level [29]. 126 
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 127 

2.3 Evolutionary conservation study: 128 

We also studied the phylogenetic extent (that is the extent to which a gene is conserved back 129 

through evolution based on homologs in other species) of each morbid gene examined.  130 

Therefore, orthologs in 6 Vertebrate species (Pan troglotydes, Bos taurus, Canis lupus, Rattus 131 

norvegicus, Mus musculus and Gallus gallus) were retrieved from the NCBI HomoloGene 132 

database [30]. For each ortholog, the percentage of identity at both nucleic and amino-acid 133 

levels were noted. To estimate the degree of paralogy, a BlastP 134 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) search was performed for each protein in the group 135 

against the human proteome. The best BlastP hit found in the human genome was kept for an 136 

“E-value” cuttof of 10-30. For each paralog, an identity percentage is returned as well as an 137 

average of this measure for alternatively spliced isoforms. For each gene, the number of 138 

putative paralogs found is calculated in each disease gene group. 139 

2.4 Calculation of nucleotide substitution rates at DNA level: 140 

We estimated dN (nonsynonymous substitution rate), dS (synonymous substitution rate) and 141 

ω =dN/dS for each gene with the Codeml software of the PAML package (Additional File 1) 142 

[31]. Codeml uses the codon as the evolutionary unit in DNA alignments of coding regions 143 

and an explicit model incorporating the genetic code to estimate the amount of natural 144 

selection for or against protein-level changes. Total substitution rate (d) was estimated from 145 

the HomoloGene database. To test whether a difference exists between the disease groups, 146 

genes with no orthologs as well as those with dS= 0 were excluded. 147 

To identify amino acids under positive selection in skin and non-skin genes, we used the 148 

Codeml program after aligning nucleic sequences of orthologs genes with MAFFT [32] and 149 

generating phylogenetic trees. The selective pressure is estimated with the ω ratio calculated 150 

with PAML. When ω > 1, this is indicative of positive Darwinian selection [33]. A likelihood 151 
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ratio test (LRT) of positive selection comparing the nearly neutral and the positive selection 152 

models, as well as P-value were computed. Naïve empirical Bayes [33,34] and the Bayes 153 

empirical Bayes [35] were used for calculating the posterior probabilities for site classes and 154 

to identify sites under positive selection if the LRT and P-value are significant. Amino acids 155 

sites with posterior probabilities of Bayes Empirical Bayes analyses superior to 95 or 99% 156 

were considered as positively selected. 157 

2.5 Functional analysis: 158 

Enrichment in specific GO terms was assessed using FatiGO on the Babelomics server for 159 

gene expression, genome variation and functional analysis (http://babelomics.bioinfo.cipf.es/) 160 

[36], StringDB  [37] and ClueGO cytoscape plugin [38]. Statistical significance in GO terms 161 

occurrence difference is considered using a Fisher's exact test and/or false discovery rate 162 

(FDR<=0.05).  163 

2.6 Programming and statistic tests: 164 

NCBI Databases were queried using in-house “Python” and “Biopython” scripts integrating 165 

“E-Utilities” [39] (www.r-project.org; www.python.org; www.biopython.org). Statistical 166 

analyses were performed using the “R” environment at significance of 5 %. Plots were carried 167 

out using the “ggplot2” R package [40]. To assess whether the distribution of a statistic 168 

feature differed between two groups of genes, we used a Kolmogorov-Smirnov test. To test 169 

whether the studied features differed between the two disease gene groups, a Wilcoxon test 170 

was performed.  171 

2.7 Bayesian network 172 

We proceeded to automatic learning from data of a Bayesian network that served later as a 173 

gene classifier (involved or not in genodermatosis). This classifier learns from training data 174 

the conditional probability of each attribute given the class label. The attributes used to build 175 

the model are all the studied features except the functional ones. We proceeded first to the 176 
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discretization of the continuous variables using the Colot algorithm sed as the model attributes 177 

[41]. For the construction and manipulation of the Bayesian network, we used the Bayesian 178 

network toolbox (BNT) [42] (http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html) on 179 

the Matlab software version 2010 (www.mathworks.com). We employed the « Augmented 180 

Naïve Bayes » [43] for the structure learning and the « Clique-tree propagation algorithm » 181 

[44] for the inference. During the learning phase, we used 548 genes (from the initial 648) 182 

involved in genodermatosis and 1,708 genes (from the initial 1,808) involved in other genetic 183 

diseases thus forming the learning set. The remaining 200 genes, the test set, were used during 184 

the test phase of the constructed classifier.  185 

We used a ROC (Receiver Operating Curve) curve to evaluate the overall accuracy and 186 

predictive value of the method. The ROC analysis is a standard approach to evaluate the 187 

sensitivity and specificity of prediction methods. The ROC curve is obtained by plotting the 188 

true positive rate against the false positive rate for different values of the cut-off probability 189 

score. The 45° diagonal of the ROC space represents a random guess situation. The ROC 190 

curve was plotted using the ROCR package [45]. 191 

3. Results: 192 

3.1 Structural features of genes and products: 193 

3.1.1 Length features: 194 

Length feature analysis reveals that significant differences exist between the two morbid gene 195 

sets concerning CDS and protein length as well as exon counts. CDS of genes of 196 

genodermatoses seem to be longer with more exons (Figure 1) and code for longer proteins 197 

than the other disease gene set (Table 1). Furthermore, exon count distribution is different 198 

(KS p-value = 4 10-3). Genes with exon count less than 20 are less prevalent among the 199 

genodermatosis gene group while those with exon count between 30 and 70 are more 200 
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prevalent among the genodermatosis group of gene (Figure 1). No difference has been 201 

noticed regarding remaining studied features (Table 1). 202 

3.1.2 Mono, di and tri nucleotide motif frequencies: 203 

Analysis of motif composition of CDS shows an enrichment of some motifs. Coding regions 204 

of genodermatosis genes are more enriched in Guanine (p-value = 0.03). Differences in the 205 

composition of dinucleotide motifs as well as their distributions were revealed. Skin disease 206 

CDS are less enriched in CA, GG and TC motifs but more in TG. Trinucleotide motif 207 

frequency is significantly different for 11 motifs as highlighted by the Wilcoxon test but 8 of 208 

them show a different distribution (Additional File 2). Codon translation suggests that 209 

genodermatosis proteins could be composed essentially by hydrophobic amino-acids. 210 

3.1.3 Z curve of CDS: 211 

We aimed to study CDS composition according to the 3 components of the Z curve. 212 

Significant differences have been highlighted for one variable calculated from 213 

mononucleotide frequency, for 3 variables calculated from dinucleotide motif frequencies and 214 

for 13 variables estimated from trinucleotide motif frequencies. In order to present a global 215 

description of the 3 properties of these DNA sequences, we took the mean of each component 216 

(Additional File 2). According to the X component, CDS in both disease gene sets show a 217 

positive mean value meaning that all these CDS are more enriched in purine. Genodermatosis 218 

CDS are more enriched in purine (Wilcoxon p-value < 10-6). Mean Y component is also 219 

positive in the 2 gene sets. This illustrates that CDS in both groups are more enriched in 220 

amine bases than in ketones. Nevertheless, genodermatoses CDS are less enriched in amine 221 

bases than the other gene group (Wilcoxon p-value = 1.13 10-6). Distributions of these 2 222 

variables are also different. Similar frequencies and distributions of bases with weak/strong 223 

bounds among the CDS and corresponding to the Z component have been noticed. 224 

3.1.4 Primary and secondary structure of proteins: 225 
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Proteins responsible for genodermatoses are more enriched in cysteine and glutamine (Table 226 

2). Nevertheless, they are less enriched in isoleucine, methionine and phenylalanine. The 227 

distribution of these frequencies is also different in the two groups except for glutamine. In 228 

addition, we studied the prevalence of some protein structure such as the presence of signal 229 

peptide, transmembrane domains as well as alpha helices. Only 23.9 % of genodermatosis 230 

proteins versus 22.5 % of proteins of the second group have a secondary structure of helix 231 

type. This difference is not significant (Chi2 test p-value = 0.51). Similar frequencies of 232 

signal peptide (34.5% in genodermatoses vs 30.8% in the second group, Chi2 p-value = 0.36) 233 

and transmembrane domain (30.5 % in genodermatoses vs 32.6 % in the second group, p-234 

value= 0.35) have also been noticed. Furthermore, genodermatosis proteins seem to be 235 

enriched in immunoglobulin C1-set domain (FDR=0.0048) while the second group of genes 236 

was enriched in Homeobox domain (FDR=0.00569) (Additional File 3). 237 

3.2  Evolutionary conservation features: 238 

3.2.1 Orthology: 239 

Genes underlying skin genetic diseases have more orthologs than genes in the second morbid 240 

group especially in Dog (91 % vs 87 %, Chi2 p-value= 0.7 10-2) and Mouse (97.22 % vs 94.8 241 

%, Chi-square p-value= 1.52 10-2). No significant difference has been reported in the other 242 

species (Additional File 4). Nevertheless, orthologs of skin genetic diseases seem to be less 243 

conserved at the nucleic level in 3 species (Table 3). At the protein level, chicken orthologs 244 

are less conserved than other species in the two gene groups. Distribution of conservation 245 

proportion of ortholog sequences is only different among the mouse orthologs at both DNA 246 

and protein levels (KS p-value= 1.8 10-2 and KS p-value =2.2 10-2, respectively) (Table 3, 247 

Figure 2). 248 

3.2.2 Paralogy: 249 
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Human protein alignment against the proteome using BlastP revealed that paralogs are less 250 

prevalent among genes of genodermatoses than do genes of the second group (63.88 % vs 251 

69.85 %, Chi2 p-value = 5.9 10-3). Nevertheless, genodermatosis proteins have more putative 252 

paralogs per gene, the median number of paralogs per gene being 5 versus 4 (Wilcox p-value 253 

= 1.15 10-3). The paralog number per gene distribution is also significantly different (KS p-254 

value = 3.2 10-2). Thus, paralog count distribution shows that duplication is frequent among 255 

the non-skin disease genes having putative orthologs under 7 paralogs per gene and less 256 

frequent for those having more than 31 paralogs per gene. Furthermore, skin disease gene 257 

paralogs are less conserved (42.44 % vs 43 %, Wilcoxon p-value =3 10-2). The conservation 258 

distribution is also significantly different (KS p-value = 4 10-2). More conserved paralogs with 259 

values over 60 % are more represented in the non-skin disease gene group. 260 

3.2.3 Selective pressure acting on morbid genes at the DNA level: 261 

The degree of conservation at the DNA level of the 2 sets of morbid genes was analysed in 262 

order to shed light on the selective pressures acting on them. We examined total substitution 263 

(d), non-synonymous (dN), synonymous (dS) rates, as well as dN/dS ratio, from coding 264 

sequences of orthologs of human in 6 Vertebrate species (Additional File 4). The total 265 

substitution rate (d) is statistically higher only among Human-Chicken (Wilcox test p-values 266 

=10-2, respectively), Human-Dog (Wilcox p-values = 3 10-2) and Human-Mouse (Wilcox test 267 

p-values = 2 10-2) orthologs in the skin disease gene group. The distribution is significantly 268 

different only for Human-Chiken and Human-Mouse orthologs (KS test p-values = 2.6 10-2 269 

and KS test p-values= 3.8 10-2 respectively). The dN, which is indicative of the selective 270 

pressure acting on sites that involve an amino-acid change, is lower among the skin disease 271 

genes of Human-Primate orthologs (0.002 vs 0.003, MW p-value= 4.7 10-2). Furthermore, the 272 

dN distribution is significantly different among all the studied orthologs except those of Cow 273 
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and Primate. Skin disease genes are thus evolving more slowly, in general, than the other 274 

disease genes, this indicates that they are subject to strong selective constraints.  275 

The dS is more reflective of the background mutation level. Globally, skin disease genes 276 

show less dS values among the orthologs of the studied species (Additional File 4). The 277 

distribution is also statistically different (Additional File 4). This difference could be 278 

assigned to varying mutation rates in the genome. The analysis of dN/dS shows that the ratio 279 

is statistically lower only among the Human-Primate orthologs in the skin disease gene group 280 

(Additional File 4). The distribution is also significantly different (Additional File 4). 281 

Similar dN/dS values were found among the orthologs of the remaining species in the two 282 

groups although the distribution of dN/dS values is different. Moreover, the investigation of 283 

the amino acid under positive selection between skin and non skin genes showed that the most 284 

enriched amino acids under positive selection within the skin protein coding genes compared 285 

to the non-skin coding genes includes W: Tryptophan, L: Leucine, S: Serine, P: Proline, A: 286 

Alanine and M: Methionine (Figure 3). 287 

3.3 Function and process of morbid genes: 288 

We have used GO terms to characterize protein function and elucidate trends in our morbid 289 

protein dataset (Additional File 5, Figure 4). Protein binding activity is the most significant 290 

molecular function that is over-represented in the skin genetic disease genes (FDR=4.43 10-41) 291 

(Additional File 5). In terms of GO biological process, as expected, genodermatosis genes 292 

are highly involved in skin, tissue, ectoderm, immune system and epidermis development, 293 

protein localization, melanocyte differentiation, pigmentation, response to UV and regulation 294 

of inflammatory response (Figure 4). Genodermatoses are caused by mutations preferentially 295 

localized in the peroxysome, lytic vacuole, vacuole, intermediate filament cytoskeleton, 296 

cornified envelope and respiratory chain (Additional File 5).  297 

3.4 Bayesian network 298 
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We developed and tested an automatic learning approach from data using a Bayesian network 299 

as a gene classifier allowing to classify genes as involved or not in genodermatosis based on 300 

gene sequence features. We used 90 % of the data for model learning and 10% for validation. 301 

To validate the model, we checked how well the model is able to rank genes using the 302 

remaining data fraction that has not been used before (10 %, the test set). Each gene of the test 303 

set was assigned a probability score of being involved in genodermatoses (Additional File 6). 304 

On average, the constructed Bayesian network ranked genes with a rate of 80 % of good 305 

classification. Taking a cut-off probability score of 0.5, we obtained 59 % sensitivity, 97 % 306 

specificity and 31 % accuracy. The accuracy of the method was evaluated using a ROC 307 

analysis (Figure 5).  308 

4. Discussion:  309 

As previous studies focused on comparing morbid genes and those not underlying genetic 310 

diseases [9,46,47], few works aiming to analyse features of genes and their products 311 

responsible for a particular pathogenic group such as cancers, deafness,  cardiovascular, 312 

diseases of the eye or neuropsychiatric diseases have been performed [48-53]. In this context, 313 

we focused on establishing properties of skin diseases genes. Our study revealed that the 314 

genes involved in genodermatoses differ from the genes involved in other groups of genetic 315 

disorders.   316 

Skin disease genes coding sequences and their proteins are longer than the remaining of the 317 

morbid genes with higher number of exons. A similar pattern has been noted in comparison to 318 

protein involved in cancer and hereditary diseases when comparing with non-disease genes 319 

[9-11,48,54-56]. Taking cancer genes as a set of morbid genes, length pattern differences have 320 

been revealed between mutated and translocated cancer genes showing that those muted have 321 

longer CDS than those translocated [48]. In genodermatoses, as in the other hereditary 322 

diseases, a longer CDS is more susceptible to accumulate point mutations as a consequence of 323 
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its length and therefore more likely to produce a dysfunctional protein. Therefore, this length 324 

pattern among morbid genes of distinct groups of diseases could be assigned to a different 325 

mutation process of these two groups of genes. This could be verified by the study of the 326 

variant pattern accumulation in the genodermatoses genomic sequences as well as their 327 

corresponding transcripts and CDS. In addition to the correlation gene length - high mutation 328 

accumulation probability, it was also suggested that gene overlap and multiple amino acid 329 

runs are also morbid disease gene features [57]. Similarly, motifs enriched in CDS of 330 

genodermatoses could be associated with mutational hotspots that increase the probability for 331 

a mutation to occur. With respect to over-representations of some amino acids in 332 

corresponding proteins, their implications in the morbid phenotype of the skin are not clear. 333 

However, it was established that protein regions lacking secondary or tertiary structures, 334 

known as intrinsically disordered region, could be involved in protein-protein interactions, 335 

regulation and signal transduction explaining their crucial role in disease development 336 

including cancers and cardiovascular diseases [51,58]. As at least 4 genodermatosis proteins 337 

are shown be known as intrinsically disordered charged protein involved in human diseases, 338 

further studies on protein intrinsic disorders in this kind of diseases are needed and could help 339 

gain insights on amino acid residues occurrence involved in genodermatoses [59]. 340 

Our results revealed also that genodermatoses genes are more enriched in Cysteine and 341 

Glutamine, two negatively charged amino-acids, and less enriched in Isoleucine, Methionine 342 

and Phenylalanine compared to the set of genes from other disorders. Moreover, this study 343 

showed that Tryptophan, Leucine, Serine, Proline, Alanine and Methionine are the most 344 

enriched amino acids under positive selection in skin proteins, thus suggesting conserved 345 

functional and structural properties. Indeed, it has been shown that bovine, rat and human skin 346 

keratins are all rich in the amino acids glycine, serine, leucine and glutamic acid [60]. 347 

Glutamine plays a key role in regulating the acid-base balance within the body and firms the 348 
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skin by contributing to its elasticity [61]. In addition, the Glutamine plays an important role in 349 

cross-linking of cornified envelop proteins, such as involucrin, to the lysine residue of the 350 

head domain of keratins molecules [62]. Intensive concentration of sulfur in the 351 

keratogeneous zone through the amino acids cysteine and methionine residues can be 352 

involved to form disulphide bonds, sulphur-sulphur covalent linkages that confer more 353 

folding and stability to proteins in the processes of hard cornification in mammalian skin 354 

modifications, such as hairs and nails [63]. In mammals, a high content of cysteine in the head 355 

and tail domains, as well as in their rod domain, is characteristic of the α-keratins [64, 65]. 356 

The intrinsic features of the keratin filaments and of the keratin filament-associated proteins 357 

that are cross-linked through dissulfide bonds influence the mechanical properties of 358 

keratinocytes and corneocytes [66]. In addition, dissulfide bonds cross-link the keratins and 359 

keratin filaments to the proteins of the cellular envelope, such as involucrin, locricrin and 360 

periplakin [67]. All of these intracellular factors contribute to the mechanical properties of 361 

each keratinized or keratinized and cornified cells.  362 

In addition to cysteine, the acidic keratins in the follicular epidermis are characterized by a 363 

large number of proline residues in their head and tail domains [68].  The H1 subdomain of 364 

K1 of basic type II keratins contains many threonines and prolines [69] and may play an 365 

important role in the correct parallel alignment of keratin polypeptide chains during the 366 

formation of the coiled-coil heterodimer [70]. In addition, it was showed that Proline play a 367 

key role in protein binding and is the main component of the collagen, a high-tensile fiber 368 

found in connective tissue such as tendons and skin [71,72]. In all types of collagens, a 369 

sequence repeat occurs formed by the XaaYaaGly motif. The amino acids in Xaa and Yaa 370 

positions are proline (28%) and hydroxyproline (38%), with the ProHypGly being the most 371 

common triplet (10.5 %) [72]. Proper posttranslational modifications are critical for ultimate 372 

triple-helix formation of mature collagen and keratin assembly. These posttranslational 373 
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modifications include hydroxylation of proline residues in the procollagen. Consequently, the 374 

lack of a stable triple-helical collagen structure compromises the integrity of the skin, mucous 375 

membranes, blood vessels and bones [73]. In keratins, the serine residue of a head domain can 376 

become negatively charged by phosphorylation, resulting in the disassembly of the keratin 377 

filament. Therefore, this amino acid is instrumental in the disassembly and reassembly of 378 

keratin filaments [74].  379 

Previous study reports the importance of Tryptophan and Methionine residues within 380 

polypeptides stabilizing structures/domains [75,76]. Tryptophan also plays a key role in 381 

promoting protein-protein, protein-peptide, or protein-biomolecule structural hydrophobic 382 

interactions [75] and playing a significant anchoring role and protein folding [75]. However, 383 

Isoleucine, Methionine and Phenylalanine are rarely directly involved in protein functions, 384 

and can be involved in substrate recognition, binding/recognition of hydrophobic ligands and 385 

stacking interactions with other aromatic side chains, respectively.  386 

Furthermore, our results showed that genodermatosis proteins were enriched in 387 

immunoglobulin C1-set domain which are Ig-like domains involved in a variety of functions, 388 

including cell-cell recognition, cell-surface receptors, muscle structure and the immune 389 

system [77]. This is in concordance with our results revealing that genodermatosis genes are 390 

enriched in Immune system development and inflammatory response control. 391 

Persistence of human genetic diseases in the population could be attributed to a combination 392 

of many factors including mutation, genetic drift and natural selection. Many studies have 393 

reported that morbid genes and their products seem to be more conserved mainly because they 394 

have been exposed to strong evolutionary constraints and therefore have not the opportunity 395 

to accumulate multiple variations [48,56,78]. Using the dN/dS ratio was a main approach to 396 

evaluate how selective pressure acts on coding gene sequences. Comparison results between 397 

disease and non-disease genes have been conflicting. Some studies found that morbid genes 398 
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have lower dN/dS values [10,79], others found higher values [56,78] and one found similar 399 

pattern [80]. The most plausible explanations could be that genetic disease genes have been 400 

considered as a homogeneous dataset thus neglecting that they could in fact be categorized 401 

into house-keeping and non-essential genes exhibiting different patterns of substitution rates 402 

[80]. Similarly, different values of substitution rate accumulations were found according to 403 

the transmission mode [48,82]. Correspondingly, our study revealed distinct patterns of 404 

substitution rates as well as dN/dS ratio in pathogenic genes according to tissue/organ type. 405 

Skin disease genes seem to evolve at slower rates by accumulating less non-synonymous 406 

variations and thus are under selective pressure constraints. In opposition, we have observed 407 

that frequent skin genes have greater dN/dS values indicating that less selective pressure have 408 

been able to change among species and to tolerate variations without leading to the expression 409 

of a morbid phenotype. In addition, we have also found that extremely conserved proteins are 410 

less frequently found to be involved in genodermatoses. One likely explanation is that 411 

variations in this group of extremely conserved genes are mostly lethal.  412 

The functional analysis of the studied genodermatosis group of genes through GO enrichment, 413 

showed that these later are mainly involved in epithelium, organ, tissue, skin, cell 414 

development but also response to stress, immune response, pigmentation and the control of 415 

inflammatory response. These genes are mainly acting on peroxisome, vacuole, lysosome and 416 

cellular organelles. The most significant molecular function that is over-represented in these 417 

skin genetic disease genes is the binding activity. Function annotation pattern through GO 418 

terms could correlate with the conservation pattern.  As assumed earlier that genes in skin 419 

diseases are under selective constraints, this seems to be obvious as the skin is the first natural 420 

barrier protection from the external environment. Skin mechanism protection acts mainly 421 

through its pigmentation, the melanin, and its variation influences both pigmentation and skin 422 

cancer risks [83]. Melanin provides a crucial filter for solar UV radiation and it is mainly 423 
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effective against the harmful effects of the shorter wavelengths of the electromagnetic 424 

radiation that is the most damaging to DNA and proteins [84]. Sunlight is not only damaging 425 

to human skin, but also to some essential nutrients in particular folate that is required for 426 

DNA synthesis and repair. Complications during pregnancy, as spina bifida and anencephalus 427 

can rise as a consequence of folate deficiency [85,86]. Prenatal and postnatal mortality in 428 

some populations was caused by folate deficiency before preventive supplementation 429 

introduction [87]. Moreover, it was suggested that photo degradation of folates could play a 430 

key role in the increased tendency of populations of low melanin pigmentation living in areas 431 

of high UV exposure to develop skin cancers [88]. 432 

In the present work, as we have focused only on the analysis of the sequences’ features and 433 

functions of genes involved in genodermatoses, limitations have to be highlighted. Although 434 

OMIM is the most comprehensive database relating on human genetic diseases, its phenotypic 435 

classification is incomplete and sometimes outdated. Therefore, a more reliable annotation 436 

system of diseases should be used in order to classify each morbid gene in the correct 437 

pathogenic group. Furthermore, it would be also interesting to explore features of 438 

genodermatoses according to whether they manifest only cutaneous symptoms or in extra 439 

dermatological manifestations. Differences in sequence patterns of morbid genes allowed us 440 

to build a Bayesian network model able to differentiate these genes according to disease 441 

category with a relatively good classification rate. In order to increase the accuracy of our 442 

model, it would be interesting to integrate additional data type when available, for instance, 443 

functional annotation, expression pattern or their genomic distribution. It will be also 444 

interesting to explore the involvement of the proteins of this kind of disease in the context of 445 

protein networks and gene regulatory networks to get further insights on genodermatosis 446 

pathogenicity and prediction of genes involved in skin genetic diseases. Such models 447 

integrating multiple data types were successfully used to assist disease gene discovery from a 448 
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candidate genomic region identified using a genetic linkage approach [89]. In the next-449 

generation sequencing era, high throughput sequencing like a whole exome and whole 450 

genome sequence is becoming more and more accessible and constitutes a pivotal 451 

methodology for rapid and cost-effective detection of pathogenic variations in Mendelian 452 

disorders. Determining the causative mutation from a pool of variations that could not be 453 

involved in the disease aetiology  is the principal challenge of such approach. Filtering 454 

strategies based on variation frequencies and functional annotations could be combined with 455 

computational tools of disease gene prioritization revealed to be an effective solution to 456 

reduce variation number on candidate genes and elucidation of the molecular aetiology of the 457 

disease in a single family [90]. Intersection of the results of variant analysis with an approach 458 

of prioritization of candidate genes according to their feature and relevance could be a key 459 

factor in exome prioritization algorithms [91]. Such approach will help elucidate aytpical 460 

phenotypic expression of rare genodermatoses unsolved by exome sequencing (Messaoud O, 461 

Personal communication) 462 

5. Conclusion: 463 

In summary, we have investigated the structural, evolutionary and functional properties of a 464 

group of genes known, when mutated, to be causative of genodermatoses compared to another 465 

group of genes not related to genetic diseases of the skin. We have detected clear trends in 466 

this group of genes in terms of biological process or cellular component as well as sequence 467 

and evolution properties. Based on these features, we have developed a Bayesian network 468 

classification model with which human genes have been scored for their likelihood of 469 

involvement in genetic diseases of the skin. These results could be useful for the future 470 

development of computational tools that allow prioritization of novel candidate genes for 471 

genodermatoses. Moreover, the in silico approach in this study could be expanded to 472 

investigate other disease-related genes. We believe that the division of disease genes by the 473 
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affected organ or tissue will enhance both understanding of the disease process, prediction 474 

and prioritization of candidate disease genes in the future.     475 
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Figure 1: Exon count distribution within skin and non skin genes group 

 



 

 

Figure 2: Average % identity of orthologs with Human genes in the two groups 



 

 

Figure 3: Frequency of positive selected amino acids in the skin and non skin group of 

genes. (*) P < 0.001. Comparison between amino acids frequency was performed by 

means of Chi-squared test 

 



 

 

Figure 4: Enriched Biological processes in Skin and non Skin diseases using Clue GO 

Cytoscape plugin 

 



 

Figure 5: ROC curve for the prediction of genodermatosis genes. 

 



Table 1: Median and p-values of Wilcox and KS tests for structural features 

  Gene CDS cDNA Exons 3’UTR 5’UTR Isoform Protein 

Genodermatoses 29901 1530 2934 10.5 1061.5 176.9 1 509.5 

Others 30025 1466 2889 9.5 1122.2 177.25 1 487.7 

Wilcox p-value 0.36 0.006 0.27 0.021 0.47 0.81 0.47 0.005 

KS p-value 0.8 0.091 0.52 0.004 0.2 0.87 0.88 0.086 

 



Table 2: Median and statistical analysis for peptide composition 

  Cysteine  

(%) 

Glutamine  

(%) 

Isoleucine 

(%) 

Methionine  

(%) 

Phenylalanine 

(%) 

Genodermatoses 0.023 0.045 0.043 0.021 0.038 

Others 0.022 0.044 0.045 0.023 0.039 

Wilcox p-value 0.039 0.032 0.046 8.2 10-4 0.025 

KS p-value 0.007 0.094 0.031 0.002 0.049 

 



Table 3: Median values and statistical analysis of ortholog conservation 

Species Genodermatoses 

(%) 

Others 

(%) 

Wilcox  

p-value 

KS 

 p-value 

Gallus gallus 

(Chicken) 

DNA 73.2 73.9 10-3 0.05 

Protein 74.85 76.4 3.3 10-2 0.19 

Canis lupus (Dog) DNA 89.2 89.6 3.1 10-2 0.14 

Protein 91.3 91.8 0.05 0.09 

Bos taurus (Cow) DNA 88.7 89.1 0.09 0.29 

Protein 90.5 90.9 0.05 0.07 

Ratus norvegicus 

(Rat) 

DNA 85.3 85.6 0.06 0.14 

Protein 88.3 88.5 0.06 0.17 

Mus musculus 

(Mouse) 

DNA 85.5 85.8 1.8 10-2 2.2 10-2 

Protein 88.4 88.8 1.4 10-2 1.8 10-2 

Pan troglotydes 

(Chimpanzee) 

DNA 99.4 99.4 0.9458 0.99 

Protein 99.4 99.4 0.94 0.97 

 

 

 




